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One-dimensional textures and critical velocity in superfluid 3He-A
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We study theoretically the stability of flow in superfluitHe-A. The calculations are done using a one-
dimensional model where the order parameter depends only on the coordinate in the direction of the superfluid
velocity vg. We concentrate on the case that the external magneticHiéddperpendicular tog, where only
a few results are available analytically. We calculate the critical velacitst which the superflow becomes
unstable against the formation of continuous vortices. The detailed dependenaendhe temperature and on
the form of the underlying orbital textulér) is investigated. Both uniform and helical textures @nd two
types of domain-wall structures are studied. The results are partially in agreement with experiments made in a
rotating cylinder.

I. INTRODUCTION The hydrodynamic free energy describing the current-
carrying states ofHe-A is recalled in Sec. Il. In Sec. Ill we
The superflow of*He-A differs markedly from the well study the general features of our one-dimensioftD)
known superfluid“He, where the decay of persistent currentsmodel and its numerical solution. Section IV discusses the
is limited by topo|ogica| constraints. The circulation of the instabilities of uniform and helical textures. In Sec. V the
superfluid velocityvs on a closed contour is not quantized in cfitical velocity associated with two initially inhomogeneous

3He-A, but depends on the fiel¢r) of the orbital anisotropy textures, a dipole-locked and a dipole-unlocked soliton, is
vector. Thus®He-A can respond to externally applied flow investigated. The comparison to experiments is briefly dis-

by forming an inhomogeneous texturel f). The rigidity of cussed in Sec. VI.
the order parameter stabilizes the uniform bulk sfatéh
[(r)=consi for small flow velocities in most cases, depend- Il. HYDROSTATIC THEORY

ing on the magnitude and direction of the external magnetic The order parameter oHe-A is fully specified by defin-

field H. With increasing velocity this configuration becomesing an orthonormal triadr,f,I} and a unit vectod. The
unstable against textural inhomogeneities that finally lead tQ -

> . . . . riad describes the orbital part antithe spin part of the
the_ formation of co_ntlnuog_s vortl_ces. In sgveral €ases aiancor order parametér
helical texture ofi(r) is stabilized at intermediate velocities.
The flow properties of bulHe-A were studied in many A =Ad (Mi+ih) (1)
theoretical papers which peaked in the late 1978$The # pe T
majority of that work studied the case where the superfluidiere A is a (temperature-dependentonstant and=mxf.
velocity and the magnetic field are parallel. Various methods|| the unit vectors may vary as functions of locationA

were used to generate the flow experimentéiysional 0s-  change in the total phasé of the order parametefl) is
cillator, thermal gradient, a piston, etc.; see Refs. 13 and 1gjven by

for reviews. Although some of the predicted features were

seen in the experiments, no satisfactory agreement between 1 o o

theory and experiment was found. ob=> > [M8n—njom 1=, m;én;. (2
More recently, a rotating cryostat has been used to gener- ! J

ate superfllové? This method gives a well-defined dc super- ths allows for the definition for the superfluid velocity as

fluid velocity under very steady conditions. These experi-

ments motivated our theoretical studies. First, it was 5

necessary to study the case whegas perpendicular tdd. vs=ﬁ E rthﬁj , 3

The helical texture in this case was previously considered J

only in one papef.Second, the calculation has to be gener- herem in the prefactor is the mass of 3e atom. The

alized to temperatures substantially below the superfluiGqiiprium properties of the superfluid are determined by

transition temperatur@.. Third, we consider two different the order-parameter configuration that minimizes the total

types of “solitons.” These are d_omain-wall-like structures geq energy. In the hydrodynamic approximation it has the
whose effect on the flow properties were previously considsg,

ered in a few cases'°-*2Here we present detailed calcu-

lations of the critical velocities . for the appearance of he-

lical textures and of vortices in different cases with. H. F:J d3ff=J d3r(fgtfgt ). 4
The comparison of the results with experimental measure-

ments has been given befdre. The gradient energy density can be written as
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+§K6i2j [(IXV)id;]2 (5)
The first four terms give the kinetic energy of the anisotropic,
superfluid. TheC and C, terms give the coupling between
flow and an inhomogeneoudield. The remaining five terms
are the bending energy densities fandd.

The energy density of the dipole-dipole interaction is

1 ~
fa= = Sha(d-)? (6)
Comparing this to the kinetic enerd$) defines the dipole
velocity vg=+vAg/pj~1 mm/s and the dipole lengti,
=h/2mvy~10 um. In addition, the energy density in the
presence of an external magnetic fiéldis

1 -
fh=§)\h(d'H)2- (7
It is customary to define the dipole fieltlg= g/,
moHg~2 mT, by comparing Eq96) and (7).
All the coefficientsp, , pj, C, Co, Ks, Ky, Ky, Ks, K,
N4, and\, are positive and depend on the temperaiuasad
the pressur@. Their values are determined as explained in

Ref. 17. In particular, the coefficients are calculated using the

weak-coupling approximation including leading Fermi-liquid
corrections. In reduced units ofy, &4, andHq4 our results
are independent of; and\,, but they are needed for com-
parison to experiments.For A4 we write

N(T,p)=4gp(P)AA(T,p), (8)

whereA , is the maximum energy gap in the weak-coupling

approximation. All calculations are done at the melting pres-

sure whergyp="5.9x 10" J * m~3.2® We wish to emphasize
that the calculations contain no adjustable parameters.

The hydrostatic theory gives a good description of theT

superflow in3He-A over most of the temperature region 0
<T<T,. It becomes invalid in a small regiof.—T
=10 °T, aroundT,, where the Ginzburg-Landau critical
velocity ~(ﬁ/2m)§g,} is smaller tharvy. We also limit to
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deformation of solitons in a flow that is perpendicular to the
soliton wall. Moreover, we also can determine the stability
limits of such textures against 1D perturbations. We will
argue in Sec. VI that the local stability of the states we con-
sider is indeed determined by such perturbations.

The cases oH=0 (Refs. 1, 2, 7, 10, and 12and H|x
(Refs. 3-6,8,9, and }have been studied extensively in the
literature. Here we study the more complicated ddsex.*°
We study in particular the high field limii>Hgy, where
d L H everywhere.

The order parameter ofHe-A can be parametrized by
introducing three Euler angles, g8, and y for the orbital
triad {m,n,I} and polar and azimuthal anglgsand ¢ for d.

In this representation one has to beware of the unphysical
singularities at the poles 98+ 0 or siny=0. For this reason
we choose the polar axis of the fixed coordinate system
perpendicular to the direction of (and parallel to the exter-
nal magnetic fielgd This results in a more complicated form
of the energy functional but it enables us to avoid the singu-
larities in all stationary states. With these definitions

1=sin B cosaX+sin B sinay+ cospz, 9
d=siny cospX+ sin i sin Y+ cosyz, (10
3 h [dy . 11
Vs——ﬁ &‘FCOS,Bd X. (12

The form of the unknown functiong(x), B(x), y(X), ¥(x),
and ¢(x) in equilibrium corresponds to the minimum of the
free energy functionald) where

of of d

of
a(daldx)

and similarly for other angles.

We point out two analytic observations that are useful in
testing the convergence and the accuracy of the numerical
solution. First, the superfluid velocity, Eq.(11), and there-
fore also the total free enerdy) do not depend explicitly on
the angley but only on its derivative. The corresponding
Euler equation(12) reduces to a conservation law

=0, (12

ot
a(dyldx)

he quantity (2n/4)p is thex component of the supercur-
rent density

—p=const. (13

js=p. Vet (p—p)I(1-v9) + CV X1=Cyl(1-VX1).
(14

such low fields that the deformation of the A phase ordefanother conserved quantity in the problem is the one corre-

parameter1) towards the A phase can be neglected.

I1l. ONE-DIMENSIONAL CALCULATION

We study flow in bulk *He-A far from any walls. The

main assumption in the present work is that the order param-

eter(1) depends only on one spatial coordinatdt follows
from the definition(3) thatvy is always parallel to the axis,
vdX. In addition to the homogeneous state, the 1D mode

sponding to the fact that the free eneidy does not depend
explicitly on x either. The invariant related to this is analo-
gous to the Hamiltonian of classical mechanics and can be
brought to the form
fg—fg— fr=const. (15

We wish to study a one-dimensional interval of length
B &4. A flow through the system is achieved by keeping a

allows us to calculate the structure of helical textures and théixed phase differenceA®=®(L/2)—®(—L/2) between
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the end points of the line. The constancyAspb as a function [ T

of timet is enforced by imposing the boundary condition -
1.2 ¢ e
da -]s,x .~
—+cosB— Pva |
x=—L/2

08} 4 .
Vel Ve : 1
This is a more convenient quantity thamb because all our l l ]
results are independent bfwhen expressed in terms of,. 0.0 — e
Here v,, could be identified as the velocity of the normal 0.0 0.4 0.8 1.2
component that drives the superfluid component of the lig-
uid. However v, should be considered as a scalar parameter FIG. 1. The supercurrent, as a function of driving velocity,
since all vector quantities in this papéike vs andjg) are  atT=0.6Tc andH>H,. The diagonal line corresponds to the cur-
given in the frame where the normal fluid is at regi=0. rent in the uniform texturejs=pjv,. The solid line betweew
(See Ref. 19 for a general formulation witf#0.) andv, corresponds to helical texture at the optimal wave vector
In the general case we have to use numerical methods ftpet:

determine the equilibrium state of the system. The order p
rameter is taken to be defined ldtequally spaced discrete

—0. (16)

It is, however, more advantageous to express the results in 04}
terms of a driving velocity defined by,=(A/2m)Ad/L.

v/ i

a\_/\/e call the stability limit of the uniform texture the first

points on the line. The discretization lengttx=L/N is cho- critical velocity vey. At va=vy the uniform state becomes
sen much smaller than the dipole length, usuallx  Unstable against a helical deformation wheweinds around

<0.1&4. As a first step we have to choose some initial conthe d_irectior_1 of the_ flow; see Fig. 2. At this_ point the energy
figuration for the five angles. A giveAd or v, is imple- cost |n.form_|ng an inhomogeneous texture is compensated _by
mented by taking an initial guesgx)=(—2m/%)v,x. The reductions in other energy terms. In particular, the superfluid
angle functions are then iterated numerically towards th&/€locity vs, Eq.(11), is lowered for a givew, and there is
equilibrium state for a givew, using the following diffu- & negative contr|blut|on from the energy term with the coef-
sionlike equations: ficient Co, EQ. (5)." , _

The instability point can be studied by expanding the en-

. da of ergy (4) around the uniform solution. This calculation was
M1 SlnzﬂgZ T Sa’ done by Lin-Liuet al. in the Ginzburg-Landau regichwe
generalize this calculation to all temperatures. We define
B Sf as above but otherwise use a parametrization that is different
Ui——=——=, from EQgs.(9)—(11):
ot 5B
T 1 2.2 1 212y2|% s 5
a_y:_é_f = 1—§(Iy+lz)—§(ly+lz) x+ly+l,z, (18
Maot oy’
e of d= 1—1(o|2+o|2)—3(d2+c|2)2 x+dy+d,z, (19
pasSiPy e = — 2y el gty e TS
3 at 5’
f dy 1/ dl, dly 1. Sl
Ms(?_l/f:_b‘_fi (17) Vs—ﬁ[—&'i‘z( y&—h& 1+Z(|y+|z) X.
at oy (20)

together with the boundary conditi¢ti6). The simplest dis-  These equations are valid up to fourth ordedjn I,, d,
cretized expressions have been used in representing the dgndd,. We eliminatey(x) in favor of the currentp, Eq.
rivatives in Egs.(17). Since we do not attempt to describe (13), by defining a new free energg=F + [dx(dy/dx)p.

the true time evolution of the textures, the viscosity constantSubstitution of Eqs(18)—(20) into G and expansion to sec-
M1, Mo, @ndug can be chosen according to numerical con-ond order gives linear Euler-Lagrange equations. These have
venience. the solution

IV. UNIFORM AND HELICAL TEXTURES —

The simplest texture has constdfit]|Xx. This uniform
state minimizes both the dipole-dipole ener@ and the
field energy(7) for H LX. It also corresponds to the mini-
mum of the first two terms in the gradient enek@y because
p|<p. . The current in this state is linear in,, js=pjv X,
as illustrated in Fig. 1.

The uniform state is stable at small velocitig@sH #0).

®a
n
e
\

FIG. 2. Variation ofl in a helical texture as a function &f(Ref.
20). One wavelengthn of the helix is shown.
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l,(x)=ussin(gx),

| ,(x)=(u/s)cogqx),

dy(x)=ué;ssin(gx),

d,(x)=(u3,/s)cog qx),

whereq is the wave vector of the helix. The magnetic field in For the free energy we find the expansion
the transverse direction introduces “easy” and “hard” di-

rections for the amplitudes, and thus the helix has an ellipti- 1 1

cally distorted form. Whei® is minimized with respect ts, G= GO+—Au2+ZB ut

61, and 8, we find

81=(Ksg?+1) "1,

(2D 8,=(Kgg?+H?+1) 1,
(22) 32=K2/K1,
(23

24 KZ=1+(p. —1)p*+Kpq?*~ 5.

2
(250  where

B:

K2

1
<2pl—1>co—z}(

Kz Ki

Ki Kz

1
qp+Z

1 2
Go:—§(1+p ),

A=KK,—(2Cy+1)gp,

K2
+ K—§[351<1—61>2+<Ks+<l<6—Ks)ﬁi+K55‘1‘>q2—3<pL—1>2p2]
1

2
+F[sfsz(l—52>2+<Ks+(KG—K5>5§+K56‘2‘>q2—3<pL—1>2p2]+[8Kt—2Ks—SCS—8Kb

1

+3(Kg—Ks) (83 + 62) — 2K 82 8310%+ (1— 8;)(1— 8,) (81 + 8,) — 2(p, —1)%p? ;.

For simplicity, we have used units whermgg=\,=pj|
=h/2m=1 in Egs.(25—(32). Near the superfluid transition
temperature these results reduce to those by Linetial*
The uniform texture is stable if the coefficieftis posi-
tive. The line whereA vanishes in the,—q plane is shown

Jopt On)
L2p stable
helical
texture :
984 03[ L
stable
04  uniform ; : b
texture
Vel Ve ]
0.0 : e
0.0 0.4

FIG. 3. The stability of different states in thg-q plane atT
=0.6T. and forH>H,. The solid line marks the instability of the
uniform texture according t&\(v,,q)=0, Eqg. (31). The helical
texture is stable inside the region spanned by the dashed line. TH#Ves the energy as a function of andq: F(v,,q).
dash-dotted line shows the optimum wave vectgy as a function

of the driving veloci

tyv,.

0.8 12y,

12377
(26)

(27)

(28)

(29

(30

(31)

(32

by the solid line in Fig. 3. In a long interval> ¢, the value

of the wave vectorg is not limited. This means that the
uniform texture is stable only below the critical velocity;
defined by the condition&=dA/dq=0. The velocityv ., is
plotted as a function of magnetic field and temperature in

Fig. 4. Note that, vanishes in zero field for temperatures

T=0.85T,.

The stability of small-angle helical textures is determined
by the coefficienB. The helix is stable iB>0 and unstable
if B<0. The stability as a function af andH is indicated in
Fig. 4. NeafT the helix is stable iH<2.5H4. Lowering the
temperature the stability region grows and in the temperature
interval 0.97.—0.8T; the helix is stable at all fields. Below
0.5T, the stability region starts to shrink. Stable helices are

again recovered at the lowest temperatusds 1T ..

Helical textures with general opening angles were studied
numerically. The periodicity of the helix allows the numeri-

cal calculations to be limited to a single wavelength
=2/q using periodic boundary conditions forandd. In
fact, making use of all the symmetries even a quartex of
would be sufficient. We then minimize the free enekgy
with respect to the five angle fields in Eq9)—(11). This

For each value ob, we determine the optimum wave

Vector g at which the energy of the helix is minimized.
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UnSIable helix

Stable helix

. . . . 0.5 0.6 0.7 0.8 0.9 1
0 2 4 6 8 10 T/Tc
H/H,

FIG. 5. The critical velocity as a function of temperatdréor
FIG. 4. The critical velocityv ., of the uniform texture(solid H>H,. The different curves correspond to instabilities of the uni-
lines) as a function of the magnetic field. The different curves form texturev.,, the helical texture ., the locked solitorv s,
correspond to different temperatures with intervals of T 05The and the unlocked soliton.,s. Helical textures are stable in the
regions of stability and instability of a small-angle helix are sepa-region betweemw, andv,. The dotted line ig, in units of pjvg.
rated by dashed lines. More details of the specific asd . are
given in Fig. 10. easily available. Thus the calculation of the Hessian at point
(vn,Qq) requires texture minimizations only at three points:
This process is simplified by the fact that the derivativéof (vn.d), (v,,9+Aq), and @,+Av,,q). In order to mini-

with respect tog can be obtained using the formula mize errors the numbeX of discretization points within a
wavelengthh was kept constant and the discretization length
JF 1 Ax=\/N was varied instead.
20 a(ZFgr_ Undsx) (33 For all helices the opening angle grows continuously from

zero with increasing ,; see Fig. 6. The largest stable values
with F 4 andJs  defined to be the corresponding densifigs ~ for the opening angle found in the simulations weré0°.
andj, integrated over the one-dimensional interval. At theWe have made numerical simulations in an interval contain-

optimum valueq=qp(v,) the derivative given by Eq33) ing several wavelengths of the helix>\. When the limit
vanishes. The dependence qut on v, is illustrated in of Stab”lty is exceeded, it seems that the number of Windings

Fig. 3. of the helix changes if a stable texture is possible at a given
The stability of helical textures is determined by the ei-vn- Otherwise, the instability seems to lead to the growth of

genvalues of the Hessian matrix B{v ,,q): the opening angle. Most likely this leads to the formation of

continuous vortex structurédHowever, we were not able to
2F 2F follovy this process beyonq 90° opening angles because of
I the singularity in the coordinate syste®)—(11).
dv n2 dvndq
H= I2F 92F ' (34) V. SOLITON TEXTURES
dvndq (9_q2 In the previous section we studied the case where a flow

was applied to an initially uniform texture. Here we investi-
A texture is stable if both the eigenvalues of the Hessian

matrix are positive, and unstable otherwise. The stability re- 50

gion is indicated by a dashed line in Fig. 3. The velocity

where the state at optimal wave vectpy, becomes unstable 2 40

is defined as the second critical velocity,. In helical tex- g

ture the current increases much slower withthan in the € 30}

uniform state(Fig. 1). Therefore, the critical current, is =

substantially smaller thapv ,. At H=0 andT~T. we find §b 20t

thatv,~1.284 and j~1.13v4 (Ref. 6. In general we g

find essentially no field dependencewg$, in contrast taw & 10l

which vanishes aH=0 whenT=<0.85T.. The temperature

dependences af.,, v, andj, in the high-field limit are 0 . . . . .
presented in Fig. 5. At high temperatur€s- 0.8T there is 0.0 0.4 0.8 L2, /vy
no stable helical texture and thug; and v, coincide. At "
lower temperatures,, is seen to grow distinctly aboue;; . FIG. 6. The opening angles bin the planeL H (g,L , solid line)

Below 0.5T helical textures again become unstafite. 4.  and|/H (8|, dashed linpand the opening angle af in the plane
The numerical calculation of the Hessian matrix is sim-1 H (8;, dash-dotted lineas functions of driving velocity , with
plified by the fact that both first derivativg$3) and(33) are  g=qg, T=0.6T;, andH>Hg.
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ox)

-20 -10 0 10 20
x/E,

FIG. 9. The structure of the locked solitonTat T, H>H4and
v,=0.84. The anglesy, 8, and¢ are defined in Eq9) and(10)
and = /2. The length scale is purely determined by the flow

FIG. 7. Distribution of the vectorin a one-dimensional soliton ~ Velocity, which here is much larger than in Fig. 8.
structure forv,,=0 (@) and forv,#0 in a transverse magnetic field
H (b) (Ref. 20. The flow tends to detach the texture from the planewall is on the order of the dipoIeAIengga, In the absence of

LH. flow the asymptotic directions dfdeviate from the normal
+x of the wall by an angle that depends on the temperature.

gate some cases where the initial state is inhomogeneous. Léthen a small flow is applied perpendicular to the wall, the

us consider a texture whetechanges from direction-X to  anisotropy of the kinetic energy<—(l-vg? forces the

X, as depicted in Fig. 7. Such a texture has the propertyasymptotic directions dfto +X. The calculated structure of

which follows directly from the definition(2), that if it is  the soliton is presented in Fig. 8.

rotated aroundx by angle ¢, the phase difference\® The second structure we study could be called a dipole

changes by 2. Thus, if nothing prevents the rotation of the |gcked soliton. The dipole locking means thﬂ(tx)~f(x)

texture, the critical current vanishes and the supercurrent iéverywhere The region whetazaries has finite length only
always dissipative. The presence of a magnetic field perpe :

> X / . M the presence of flow. The calculated structure of the
dicular tox prefers to havel, and via the dipole-dipole en- |ocked soliton is presented in Fig. 9.
ergy (6) alsol, in the plane perpendicular td. This gives For both soliton structures the flow mak@sleviate from
rise to a finite critical velocity that we aim to calculate. /2. When the flow is further increased, the structures be-
We study two different inhomogeneous structures. The&come unstable against unlimited winding around the flow
first is known as thedipole-unlockedl soliton?* This is a  direction. The critical values of , are denoted by s for
domain-wall-like object where on one side=1 and on the locked solitons and s for unlocked solitons. The critical
other sided=—1I. Because the change between these twelocities are plotted in Figs. 5 and 10. The unlocked case
orientations costs dipole-dipole energy, the thickness of théas previously been studied by Vollhardt and Makt T
~T. using a variational approach. Our calculations give a
much lower critical velocity than theirs. We note that the
same process that leadsdg,s also determines the critical

ox)

0L
20 10 0 10 20 A Veus
x/€ z
d 0.0 "
0 1 2 3 4
FIG. 8. The structure of the unlocked soliton B&T,, H H/H

>H,4 andv,=0.1%4. The anglesy, B, and ¢ are defined in Eqgs.

(9) and (10) and y=7/2 because of the high-field limit. The fast ~ FIG. 10. The critical velocities of the locked solitog s and the
change within|x| <&y is caused by the dipole unlocking in the unlocked solitorv s as a function of the magnetic field at tem-
soliton, and the slower change outside is caused by the anisotrogyerature T~T.. For comparison, we show alse.;, v, and
of the flow energy favorindg= = X. jca! py (Fig. 4).
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velocity of a vortex sheet?® The locked soliton has previ-
ously been studied only fdi =0 or H||vs, where the critical
velocity vanishes and only dissipative state exists*?

Measurements of the critical velocity are done by Ruutu
et al’® They study®He-A in a circular cylinder that is ro-
tated around its axis. In the vortex-free container the relevant

In the simulations the length of the computational re-  driving velocity v,=QR, whereQ is the angular velocity
gion has to be chosen large in comparisorf§os/v,. The  andR the radius of the cylinder. Becaufs ¢4, the flow
fast variation in the unlocked soliton sets an upper limit forpear the cylindrical wall is one dimensional to a good ap-
the discretization length, which was typically chosen asproximation. The magnetic field along the axis of the cylin-
0.1§4. If L is not very long, the correct procedure is to €X- der corresponds to a transverse field relative to the flow
tract the critical currenf s (andjcyg from the numerical  ajong the whole perimeter of the cylinder, and thus the cal-
calculation and then find the critical velocity using;s  culations presented above should apply to this case. If the
=]jas/p| (@ndveys=jcus/p))- field is perpendicular to the axis, all possible angles exist
between the field and flow. In this case the critical velocity
of the “uniform” texture is determined by the orientation
iy vs,? which gives a lower value af ., thanH L vg.

Ruutuet al. find a considerable spread in the critical ve-
ities. On the one hand, our largest calculated values. of
correspond to the instability of the helical texture and coin-
cide relatively well with the largest values observed in the
] . _ experiments. On the other hand, the lowest measured critical
1D _model above gives stability until va=ve;  yelocities can be explained by assuming the presence of a
=\g/(p.—p)) (for H>Hg), but allowing vs to deviate gipole-unlocked soliton. Quantitative comparison is given by
from the direction of the applied phase difference gives in-Ryutuet al’® The comparison supports the basic assumption
stability atv, that is by a factor ofJpj/p, lower? This  that the critical velocity in superfluidHe-A indicates an
situation differs, however, from the ones studied jn the pre-lnstab|||ty of the bulk, and it depends on the under|ying tex-
vious sections. For a homogeneous texture Withx there  tyre. The bulk critical velocity is quantitatively better under-

exists a strict prOOf that Only 1D perturbations are I’ele\‘}ant. stood in SuperﬂuidgHe_A than in any other Superﬂuid_
For helical and soliton textures the 1D model allows a natu-

ral decay mechanism for the current, and we are not aware of
any mechanism that could give a lower critical velocity.

Therefore we believe that other than 1D perturbations are
unimportant for the helical and soliton textures studied This research was supported by the Vilho, Yaad Kalle

VI. CONCLUSIONS

We have studied different 1D textures and determine
their stability against 1D perturbations. It is reasonable to aslﬁ)C
if limiting to 1D perturbations is sufficient to determine the
local stability. Namely, we know at least one situation in
3He-A where this is not the case: uniforim H||X. Here the
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