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One-dimensional textures and critical velocity in superfluid 3He-A

J. Kopu, R. Ha¨nninen, and E. V. Thuneberg
Low Temperature Laboratory, Helsinki University of Technology, 02150 Espoo, Finland

~Received 14 March 2000!

We study theoretically the stability of flow in superfluid3He-A. The calculations are done using a one-
dimensional model where the order parameter depends only on the coordinate in the direction of the superfluid
velocity vs. We concentrate on the case that the external magnetic fieldH is perpendicular tovs, where only
a few results are available analytically. We calculate the critical velocityvc at which the superflow becomes
unstable against the formation of continuous vortices. The detailed dependence ofvc on the temperature and on
the form of the underlying orbital texturel̂(r ) is investigated. Both uniform and helical textures ofl̂ and two
types of domain-wall structures are studied. The results are partially in agreement with experiments made in a
rotating cylinder.
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I. INTRODUCTION

The superflow of3He-A differs markedly from the well
known superfluid4He, where the decay of persistent curren
is limited by topological constraints. The circulation of th
superfluid velocityvs on a closed contour is not quantized
3He-A, but depends on the fieldl̂(r ) of the orbital anisotropy
vector. Thus3He-A can respond to externally applied flo
by forming an inhomogeneous texture ofl̂(r ). The rigidity of
the order parameter stabilizes the uniform bulk state@with
l̂(r )5const# for small flow velocities in most cases, depen
ing on the magnitude and direction of the external magn
field H. With increasing velocity this configuration becom
unstable against textural inhomogeneities that finally lead
the formation of ‘‘continuous’’ vortices. In several cases
helical texture ofl̂(r ) is stabilized at intermediate velocitie

The flow properties of bulk3He-A were studied in many
theoretical papers which peaked in the late 1970s.1–12 The
majority of that work studied the case where the superfl
velocity and the magnetic field are parallel. Various metho
were used to generate the flow experimentally~torsional os-
cillator, thermal gradient, a piston, etc.; see Refs. 13 and
for reviews!. Although some of the predicted features we
seen in the experiments, no satisfactory agreement betw
theory and experiment was found.

More recently, a rotating cryostat has been used to ge
ate superflow.15 This method gives a well-defined dc supe
fluid velocity under very steady conditions. These expe
ments motivated our theoretical studies. First, it w
necessary to study the case wherevs is perpendicular toH.
The helical texture in this case was previously conside
only in one paper.4 Second, the calculation has to be gen
alized to temperatures substantially below the superfl
transition temperatureTc . Third, we consider two differen
types of ‘‘solitons.’’ These are domain-wall-like structure
whose effect on the flow properties were previously cons
ered in a few cases.3,5,10–12Here we present detailed calcu
lations of the critical velocitiesvc for the appearance of he
lical textures and of vortices in different cases withvs'H.
The comparison of the results with experimental measu
ments has been given before.15
PRB 620163-1829/2000/62~18!/12374~7!/$15.00
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The hydrodynamic free energy describing the curre
carrying states of3He-A is recalled in Sec. II. In Sec. III we
study the general features of our one-dimensional~1D!
model and its numerical solution. Section IV discusses
instabilities of uniform and helical textures. In Sec. V th
critical velocity associated with two initially inhomogeneou
textures, a dipole-locked and a dipole-unlocked soliton
investigated. The comparison to experiments is briefly d
cussed in Sec. VI.

II. HYDROSTATIC THEORY

The order parameter of3He-A is fully specified by defin-
ing an orthonormal triad$m̂,n̂, l̂% and a unit vectord̂. The
triad describes the orbital part andd̂ the spin part of the
tensor order parameter16

Am j5Dd̂m~m̂j1 in̂ j !. ~1!

HereD is a ~temperature-dependent! constant andl̂[m̂3n̂.
All the unit vectors may vary as functions of locationr . A
change in the total phaseF of the order parameter~1! is
given by

dF5
1

2 (
j

@m̂jdn̂ j2n̂ jdm̂j #5(
j

m̂jdn̂ j . ~2!

This allows for the definition for the superfluid velocity as

vs5
\

2m (
j

m̂j“n̂ j , ~3!

where m in the prefactor is the mass of a3He atom. The
equilibrium properties of the superfluid are determined
the order-parameter configuration that minimizes the to
free energy. In the hydrodynamic approximation it has
form

F5E d3r f 5E d3r ~ f gr1 f d1 f h!. ~4!

The gradient energy density can be written as
12 374 ©2000 The American Physical Society
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f gr5
1

2
r'vs

21
1

2
~r i2r'!~ l̂•vs!

21Cvs•¹3 l̂2C0~ l̂•vs!

3~ l̂•¹3 l̂!1
1

2
Ks~¹• l̂!21

1

2
K t~ l̂•¹3 l̂!2

1
1

2
Kbu l̂3~¹3 l̂!u21

1

2
K5u~ l̂•¹!d̂u2

1
1

2
K6(

i j
@~ l̂3¹! i d̂j #

2. ~5!

The first four terms give the kinetic energy of the anisotro
superfluid. TheC and C0 terms give the coupling betwee
flow and an inhomogeneousl̂ field. The remaining five terms
are the bending energy densities forl̂ and d̂.

The energy density of the dipole-dipole interaction is

f d52
1

2
ld~ d̂• l̂!2. ~6!

Comparing this to the kinetic energy~5! defines the dipole
velocity vd5Ald /r i;1 mm/s and the dipole lengthjd
5\/2mvd;10 mm. In addition, the energy density in th
presence of an external magnetic fieldH is

f h5
1

2
lh~ d̂•H!2. ~7!

It is customary to define the dipole fieldHd5Ald /lh,
m0Hd;2 mT, by comparing Eqs.~6! and ~7!.

All the coefficientsr' , r i , C, C0 , Ks, K t , Kb , K5 , K6 ,
ld , andlh are positive and depend on the temperatureT and
the pressurep. Their values are determined as explained
Ref. 17. In particular, the coefficients are calculated using
weak-coupling approximation including leading Fermi-liqu
corrections. In reduced units ofvd , jd , andHd our results
are independent ofld andlh , but they are needed for com
parison to experiments.15 For ld we write

ld~T,p!54gD~p!DA
2 ~T,p!, ~8!

whereDA is the maximum energy gap in the weak-coupli
approximation. All calculations are done at the melting pr
sure wheregD55.931044J21 m23.18 We wish to emphasize
that the calculations contain no adjustable parameters.

The hydrostatic theory gives a good description of
superflow in 3He-A over most of the temperature region
,T,Tc . It becomes invalid in a small regionTc2T
&1026Tc around Tc , where the Ginzburg-Landau critica
velocity ;(\/2m)jGL

21 is smaller thanvd . We also limit to
such low fields that the deformation of the A phase or
parameter~1! towards the A1 phase can be neglected.

III. ONE-DIMENSIONAL CALCULATION

We study flow in bulk 3He-A far from any walls. The
main assumption in the present work is that the order par
eter ~1! depends only on one spatial coordinatex. It follows
from the definition~3! thatvs is always parallel to thex axis,
vsi x̂. In addition to the homogeneous state, the 1D mo
allows us to calculate the structure of helical textures and
c

e

-

e

r

-

l
e

deformation of solitons in a flow that is perpendicular to t
soliton wall. Moreover, we also can determine the stabi
limits of such textures against 1D perturbations. We w
argue in Sec. VI that the local stability of the states we co
sider is indeed determined by such perturbations.

The cases ofH50 ~Refs. 1, 2, 7, 10, and 12! and Hi x̂
~Refs. 3–6,8,9, and 11! have been studied extensively in th
literature. Here we study the more complicated caseH' x̂.4,5

We study in particular the high field limitH@Hd , where
d̂'H everywhere.

The order parameter of3He-A can be parametrized b
introducing three Euler anglesa, b, and g for the orbital
triad $m̂,n̂, l̂% and polar and azimuthal anglesc andf for d̂.
In this representation one has to beware of the unphys
singularities at the poles sinb50 or sinc50. For this reason
we choose the polar axisẑ of the fixed coordinate system
perpendicular to the direction ofvs ~and parallel to the exter
nal magnetic field!. This results in a more complicated form
of the energy functional but it enables us to avoid the sin
larities in all stationary states. With these definitions

l̂5sinb cosa x̂1sinb sina ŷ1cosb ẑ, ~9!

d̂5sinc cosf x̂1sinc sinf ŷ1cosc ẑ, ~10!

vs52
\

2m S dg

dx
1cosb

da

dxD x̂. ~11!

The form of the unknown functionsa(x), b(x), g(x), c(x),
andf(x) in equilibrium corresponds to the minimum of th
free energy functional~4! where

d f

da
[

] f

]a
2

d

dx F ] f

]~da/dx!G50, ~12!

and similarly for other angles.
We point out two analytic observations that are useful

testing the convergence and the accuracy of the nume
solution. First, the superfluid velocityvs, Eq.~11!, and there-
fore also the total free energy~4! do not depend explicitly on
the angleg but only on its derivative. The correspondin
Euler equation~12! reduces to a conservation law

] f

]~dg/dx!
[2p5const. ~13!

The quantity (2m/\)p is the x component of the supercur
rent density

j s5r'vs1~r i2r'! l̂~ l̂•vs!1C¹3 l̂2C0l̂~ l̂•¹3 l̂!.
~14!

Another conserved quantity in the problem is the one co
sponding to the fact that the free energy~4! does not depend
explicitly on x either. The invariant related to this is anal
gous to the Hamiltonian of classical mechanics and can
brought to the form

f gr2 f d2 f h5const. ~15!

We wish to study a one-dimensional interval of lengthL
@jd . A flow through the system is achieved by keeping
fixed phase differenceDF[F(L/2)2F(2L/2) between
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the end points of the line. The constancy ofDF as a function
of time t is enforced by imposing the boundary condition

dDF

dt
[2S dg

dt
1cosb

da

dt D
x5L/2

1S dg

dt
1cosb

da

dt D
x52L/2

50. ~16!

It is, however, more advantageous to express the resul
terms of a driving velocity defined byvn5(\/2m)DF/L.
This is a more convenient quantity thanDF because all our
results are independent ofL when expressed in terms ofvn .
Here vn could be identified as the velocity of the norm
component that drives the superfluid component of the
uid. However,vn should be considered as a scalar param
since all vector quantities in this paper~like vs and j s) are
given in the frame where the normal fluid is at rest,vn[0.
~See Ref. 19 for a general formulation withvnÞ0.!

In the general case we have to use numerical method
determine the equilibrium state of the system. The order
rameter is taken to be defined atN equally spaced discret
points on the line. The discretization lengthDx[L/N is cho-
sen much smaller than the dipole length, usuallyDx
&0.1jd . As a first step we have to choose some initial co
figuration for the five angles. A givenDF or vn is imple-
mented by taking an initial guessg(x)5(22m/\)vnx. The
angle functions are then iterated numerically towards
equilibrium state for a givenvn using the following diffu-
sionlike equations:

m1 sin2b
]a

]t
52

d f

da
,

m1

]b

]t
52

d f

db
,

m2

]g

]t
52

d f

dg
,

m3 sin2c
]f

]t
52

d f

df
,

m3

]c

]t
52

d f

dc
, ~17!

together with the boundary condition~16!. The simplest dis-
cretized expressions have been used in representing th
rivatives in Eqs.~17!. Since we do not attempt to describ
the true time evolution of the textures, the viscosity consta
m1 , m2, andm3 can be chosen according to numerical co
venience.

IV. UNIFORM AND HELICAL TEXTURES

The simplest texture has constantl̂i d̂i x̂. This uniform
state minimizes both the dipole-dipole energy~6! and the
field energy~7! for H' x̂. It also corresponds to the min
mum of the first two terms in the gradient energy~5! because
r i,r' . The current in this state is linear invn , j s5r ivnx̂,
as illustrated in Fig. 1.

The uniform state is stable at small velocities~if HÞ0).
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-
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e
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We call the stability limit of the uniform texture the firs
critical velocity vc1. At vn5vc1 the uniform state become
unstable against a helical deformation wherel̂ winds around
the direction of the flow; see Fig. 2. At this point the ener
cost in forming an inhomogeneous texture is compensate
reductions in other energy terms. In particular, the superfl
velocity vs, Eq. ~11!, is lowered for a givenvn and there is
a negative contribution from the energy term with the co
ficient C0, Eq. ~5!.1

The instability point can be studied by expanding the e
ergy ~4! around the uniform solution. This calculation wa
done by Lin-Liuet al. in the Ginzburg-Landau region.4 We
generalize this calculation to all temperatures. We defing
as above but otherwise use a parametrization that is diffe
from Eqs.~9!–~11!:

l̂5F12
1

2
~ l y

21 l z
2!2

1

8
~ l y

21 l z
2!2G x̂1 l yŷ1 l zẑ, ~18!

d̂5F12
1

2
~dy

21dz
2!2

1

8
~dy

21dz
2!2G x̂1dyŷ1dzẑ, ~19!

vs5
\

2m H 2
dg

dx
1

1

2S l y

dlz
dx

2 l z

dly
dx D F11

1

4
~ l y

21 l z
2!G J x̂.

~20!

These equations are valid up to fourth order inl y , l z , dy ,
and dz . We eliminateg(x) in favor of the currentp, Eq.
~13!, by defining a new free energyG5F1*dx(dg/dx)p.
Substitution of Eqs.~18!–~20! into G and expansion to sec
ond order gives linear Euler-Lagrange equations. These h
the solution

FIG. 1. The supercurrentj s,x as a function of driving velocityvn

at T50.6Tc andH@Hd . The diagonal line corresponds to the cu
rent in the uniform texture,j s5r ivn . The solid line betweenvc1

and vc2 corresponds to helical texture at the optimal wave vec
qopt .

FIG. 2. Variation ofl̂ in a helical texture as a function ofx ~Ref.
20!. One wavelengthl of the helix is shown.
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l y~x!5ussin~qx!, ~21!

l z~x!5~u/s!cos~qx!, ~22!

dy~x!5ud1s sin~qx!, ~23!

dz~x!5~ud2 /s!cos~qx!, ~24!

whereq is the wave vector of the helix. The magnetic field
the transversez direction introduces ‘‘easy’’ and ‘‘hard’’ di-
rections for the amplitudes, and thus the helix has an elli
cally distorted form. WhenG is minimized with respect tos,
d1, andd2 we find

d15~K5q211!21, ~25!
T

i-

d25~K5q21H211!21, ~26!

s25K2 /K1 , ~27!

Ki
2511~r'21!p21Kbq

22d i . ~28!

For the free energy we find the expansion

G5G01
1

2
Au21

1

4
Bu4 ~29!

where
G052
1

2
~11p2!, ~30!

A5K1K22~2C011!qp, ~31!

B5F ~2r'21!C02
1

4G S K2

K1
1

K1

K2
Dqp1

1

4H 1
K2

2

K1
2 @3d1~12d1!21~Ks1~K62K5!d1

21K5d1
4!q223~r'21!2p2#

1
K2

2

K1
2 @3d2~12d2!21~Ks1~K62K5!d2

21K5d2
4!q223~r'21!2p2#1@8K t22Ks28C0

228Kb

13~K62K5!~d1
21d2

2!22K5d1
2d2

2#q21~12d1!~12d2!~d11d2!22~r'21!2p2J . ~32!
e
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For simplicity, we have used units whereld5lh5r i
5\/2m51 in Eqs.~25!–~32!. Near the superfluid transition
temperature these results reduce to those by Lin-Liuet al.4

The uniform texture is stable if the coefficientA is posi-
tive. The line whereA vanishes in thevn–q plane is shown

FIG. 3. The stability of different states in thevn-q plane atT
50.6Tc and forH@Hd . The solid line marks the instability of the
uniform texture according toA(vn ,q)50, Eq. ~31!. The helical
texture is stable inside the region spanned by the dashed line.
dash-dotted line shows the optimum wave vectorqopt as a function
of the driving velocityvn .
by the solid line in Fig. 3. In a long intervalL@jd the value
of the wave vectorq is not limited. This means that th
uniform texture is stable only below the critical velocityvc1

defined by the conditionsA5]A/]q50. The velocityvc1 is
plotted as a function of magnetic field and temperature
Fig. 4. Note thatvc1 vanishes in zero field for temperature
T&0.85Tc .

The stability of small-angle helical textures is determin
by the coefficientB. The helix is stable ifB.0 and unstable
if B,0. The stability as a function ofT andH is indicated in
Fig. 4. NearTc the helix is stable ifH,2.5Hd . Lowering the
temperature the stability region grows and in the tempera
interval 0.5Tc–0.8Tc the helix is stable at all fields. Below
0.5Tc the stability region starts to shrink. Stable helices a
again recovered at the lowest temperatures'0.1Tc .

Helical textures with general opening angles were stud
numerically. The periodicity of the helix allows the numer
cal calculations to be limited to a single wavelengthl

52p/q using periodic boundary conditions forl̂ and d̂. In
fact, making use of all the symmetries even a quarter ol
would be sufficient. We then minimize the free energy~4!
with respect to the five angle fields in Eqs.~9!–~11!. This
gives the energy as a function ofvn andq: F(vn ,q).

For each value ofvn we determine the optimum wav
vector qopt at which the energy of the helix is minimized

he
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This process is simplified by the fact that the derivative oF
with respect toq can be obtained using the formula

]F

]q
5

1

q
~2Fgr2vnJs,x!, ~33!

with Fgr andJs,x defined to be the corresponding densitiesf gr
and j s,x integrated over the one-dimensional interval. At t
optimum valueq5qopt(vn) the derivative given by Eq.~33!
vanishes. The dependence ofqopt on vn is illustrated in
Fig. 3.

The stability of helical textures is determined by the
genvalues of the Hessian matrix ofF(vn ,q):

H5S ]2F

]vn
2

]2F

]vn]q

]2F

]vn]q

]2F

]q2

D . ~34!

A texture is stable if both the eigenvalues of the Hess
matrix are positive, and unstable otherwise. The stability
gion is indicated by a dashed line in Fig. 3. The veloc
where the state at optimal wave vectorqopt becomes unstable
is defined as the second critical velocity,vc2. In helical tex-
ture the current increases much slower withvn than in the
uniform state~Fig. 1!. Therefore, the critical currentj c2 is
substantially smaller thanr ivc2. At H50 andT'Tc we find
that vc2'1.28vd and j c2'1.13r ivd ~Ref. 6!. In general we
find essentially no field dependence ofvc2, in contrast tovc1
which vanishes atH50 whenT&0.85Tc . The temperature
dependences ofvc1 , vc2, and j c2 in the high-field limit are
presented in Fig. 5. At high temperaturesT.0.8Tc there is
no stable helical texture and thusvc1 and vc2 coincide. At
lower temperaturesvc2 is seen to grow distinctly abovevc1.
Below 0.5Tc helical textures again become unstable~Fig. 4!.

The numerical calculation of the Hessian matrix is si
plified by the fact that both first derivatives~13! and~33! are

FIG. 4. The critical velocityvc1 of the uniform texture~solid
lines! as a function of the magnetic fieldH. The different curves
correspond to different temperatures with intervals of 0.05Tc . The
regions of stability and instability of a small-angle helix are se
rated by dashed lines. More details of the specific caseT5Tc are
given in Fig. 10.
-

n
-

-

easily available. Thus the calculation of the Hessian at po
(vn ,q) requires texture minimizations only at three poin
(vn ,q), (vn ,q1Dq), and (vn1Dvn ,q). In order to mini-
mize errors the numberN of discretization points within a
wavelengthl was kept constant and the discretization leng
Dx5l/N was varied instead.

For all helices the opening angle grows continuously fro
zero with increasingvn ; see Fig. 6. The largest stable valu
for the opening angle found in the simulations were;60 °.
We have made numerical simulations in an interval conta
ing several wavelengths of the helix,L@l. When the limit
of stability is exceeded, it seems that the number of windin
of the helix changes if a stable texture is possible at a gi
vn . Otherwise, the instability seems to lead to the growth
the opening angle. Most likely this leads to the formation
continuous vortex structures.19 However, we were not able to
follow this process beyond 90° opening angles because
the singularity in the coordinate system~9!–~11!.

V. SOLITON TEXTURES

In the previous section we studied the case where a fl
was applied to an initially uniform texture. Here we inves

-

FIG. 5. The critical velocity as a function of temperatureT for
H@Hd . The different curves correspond to instabilities of the u
form texturevc1, the helical texturevc2, the locked solitonvcLS,
and the unlocked solitonvcUS. Helical textures are stable in th
region betweenvc1 andvc2. The dotted line isj c2 in units ofr ivd .

FIG. 6. The opening angles ofl̂ in the plane'H (b l
' , solid line!

and iH (b l
i , dashed line! and the opening angle ofd̂ in the plane

'H (bd
' , dash-dotted line! as functions of driving velocityvn with

q5qopt , T50.6Tc , andH@Hd .
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gate some cases where the initial state is inhomogeneous
us consider a texture wherel̂ changes from direction2 x̂ to
x̂, as depicted in Fig. 7. Such a texture has the prope
which follows directly from the definition~2!, that if it is
rotated aroundx̂ by angle u, the phase differenceDF
changes by 2u. Thus, if nothing prevents the rotation of th
texture, the critical current vanishes and the supercurren
always dissipative. The presence of a magnetic field perp
dicular to x̂ prefers to haved̂, and via the dipole-dipole en
ergy ~6! also l̂, in the plane perpendicular toH. This gives
rise to a finite critical velocity that we aim to calculate.

We study two different inhomogeneous structures. T
first is known as the~dipole-unlocked! soliton.21 This is a
domain-wall-like object where on one sided̂5 l̂ and on the
other sided̂52 l̂. Because the change between these
orientations costs dipole-dipole energy, the thickness of

FIG. 8. The structure of the unlocked soliton atT5Tc , H
@Hd andvn50.15vd . The anglesa, b, andf are defined in Eqs.
~9! and ~10! and c5p/2 because of the high-field limit. The fas
change withinuxu&jd is caused by the dipole unlocking in th
soliton, and the slower change outside is caused by the anisot
of the flow energy favoringl̂56 x̂.

FIG. 7. Distribution of the vectorl̂ in a one-dimensional soliton
structure forvn50 ~a! and forvnÞ0 in a transverse magnetic fiel
H ~b! ~Ref. 20!. The flow tends to detach the texture from the pla
'H.
Let

y,

is
n-

e

o
e

wall is on the order of the dipole lengthjd . In the absence of
flow the asymptotic directions ofl̂ deviate from the norma
6 x̂ of the wall by an angle that depends on the temperat
When a small flow is applied perpendicular to the wall, t
anisotropy of the kinetic energy}2( l̂•vs)

2 forces the
asymptotic directions ofl̂ to 6 x̂. The calculated structure o
the soliton is presented in Fig. 8.

The second structure we study could be called a dip
locked soliton. The dipole locking means thatd̂(x)' l̂(x)
everywhere. The region wherel̂ varies has finite length only
in the presence of flow. The calculated structure of
locked soliton is presented in Fig. 9.

For both soliton structures the flow makesb deviate from
p/2. When the flow is further increased, the structures
come unstable against unlimited winding around the fl
direction. The critical values ofvn are denoted byvcLS for
locked solitons andvcUS for unlocked solitons. The critica
velocities are plotted in Figs. 5 and 10. The unlocked c
has previously been studied by Vollhardt and Maki5 at T
'Tc using a variational approach. Our calculations give
much lower critical velocity than theirs. We note that th
same process that leads tovcUS also determines the critica

py

FIG. 9. The structure of the locked soliton atT5Tc , H@Hd and
vn50.8vd . The anglesa, b, andf are defined in Eqs.~9! and~10!
and c5p/2. The length scale is purely determined by the flo
velocity, which here is much larger than in Fig. 8.

FIG. 10. The critical velocities of the locked solitonvcLS and the
unlocked solitonvcUS as a function of the magnetic fieldH at tem-
peratureT'Tc . For comparison, we show alsovc1, vc2, and
j c2/r i ~Fig. 4!.
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velocity of a vortex sheet.22,23 The locked soliton has previ
ously been studied only forH50 or Hivs, where the critical
velocity vanishes and only dissipative state exists.3,10–12

In the simulations the lengthL of the computational re-
gion has to be chosen large in comparison tojdvd /vn . The
fast variation in the unlocked soliton sets an upper limit
the discretization length, which was typically chosen
0.1jd . If L is not very long, the correct procedure is to e
tract the critical currentj cLS ~and j cUS) from the numerical
calculation and then find the critical velocity usingvcLS
5 j cLS/r i ~andvcUS5 j cUS/r i).

VI. CONCLUSIONS

We have studied different 1D textures and determin
their stability against 1D perturbations. It is reasonable to
if limiting to 1D perturbations is sufficient to determine th
local stability. Namely, we know at least one situation
3He-A where this is not the case: uniforml̂'Hi x̂. Here the
1D model above gives stability until vc15vc2

5Ald /(r'2r i) ~for H@Hd), but allowing vs to deviate
from the direction of the applied phase difference gives
stability at vn that is by a factor ofAr i /r' lower.9 This
situation differs, however, from the ones studied in the p
vious sections. For a homogeneous texture withH' x̂ there
exists a strict proof that only 1D perturbations are releva4

For helical and soliton textures the 1D model allows a na
ral decay mechanism for the current, and we are not awar
any mechanism that could give a lower critical veloci
Therefore we believe that other than 1D perturbations
unimportant for the helical and soliton textures stud
above, although a strict proof remains open.
tt
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.
-
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.
re

Measurements of the critical velocity are done by Ruu
et al.15 They study 3He-A in a circular cylinder that is ro-
tated around its axis. In the vortex-free container the relev
driving velocity vn5VR, whereV is the angular velocity
and R the radius of the cylinder. BecauseR@jd , the flow
near the cylindrical wall is one dimensional to a good a
proximation. The magnetic field along the axis of the cyli
der corresponds to a transverse field relative to the fl
along the whole perimeter of the cylinder, and thus the c
culations presented above should apply to this case. If
field is perpendicular to the axis, all possible angles ex
between the field and flow. In this case the critical veloc
of the ‘‘uniform’’ texture is determined by the orientatio
H ivs,9 which gives a lower value ofvc2 thanH'vs.

Ruutuet al. find a considerable spread in the critical v
locities. On the one hand, our largest calculated values ovc
correspond to the instability of the helical texture and co
cide relatively well with the largest values observed in t
experiments. On the other hand, the lowest measured cri
velocities can be explained by assuming the presence
dipole-unlocked soliton. Quantitative comparison is given
Ruutuet al.15 The comparison supports the basic assumpt
that the critical velocity in superfluid3He-A indicates an
instability of the bulk, and it depends on the underlying te
ture. The bulk critical velocity is quantitatively better unde
stood in superfluid3He-A than in any other superfluid.
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