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Treatment of the exchange-interaction model by means of the symmetric group

J. Katriel* and G. F. Kventsel
Department of Chemistry, Technion–Israel Institute of Technology, Haifa 32000, Israel

~Received 5 April 2000!

The representation theory of the symmetric group is used to study the spin-S exchange-interaction model of
ferromagnetism within the infinite-range approximation. The 2S order parameters are determined by the row
lengths of the Young diagram that specifies the free-energy extrema. The set of solutions of the order-
parameter equations has been fully explored. Stability analysis shows that one of the solutions represents the
absolute minimum and describes the thermodynamically stable state. This solution coincides with the mean-
field solution due to Chenet al. @Phys. Rev. B46, 8323~1992!#. The other nontrivial solutions correspond to
saddle points in the free-energy surface, with consecutively increasing indices.
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I. INTRODUCTION

The exchange-interaction model is defined by the ma
body Hamiltonian

H52J(̂
i j &

Pi j , ~1!

in which Pi j is the transposition of the indicesi and j and
^ i j & stands for a nearest-neighbor pair. A mean-field tre
ment of this Hamiltonian was proposed by Chen, Gou, a
Chen.1 That treatment, as well as several other treatment
the same Hamiltonian,2–7 is based on the representation
the transpositions in terms of spin operators, in a manner
for spin-12 particles was proposed by Dirac,8 and for particles
of higher spin was developed by Schro¨dinger.9 This repre-
sentation shows that for spin12 the exchange-interactio
model coincides with the Heisenberg Hamiltonian, wher
for higher spins it corresponds to the introduction of ter
involving higher powers of (Si•Sj ). Thus, for a system o
particles with elementary spinS, Chenet al.1 introduce a set
of 4S(S11) order parameters which are the averages of
components of appropriate spin tensor operators. On the
sis of reasonable indications that include an earlier treatm
of the spin-1 case,2 they conjecture these order parameters
have a common temperature dependence. The principa
sult of the mean-field approximation is that forS. 1

2 the
system exhibits a single first-order phase transition. T
conclusion is supported by more sophisticated treatment3,7

In the present paper we investigate the infinite-ran
counterpart of the exchange-interaction model. In severa
lated contexts the equivalence of the mean-field and infin
range treatments had been established. The infinite-rang
proach involves a well-defined approximation of t
Hamiltonian, which is then solved exactly. The order para
eters are uniquely determined as thermal averages of
quantum numbers that specify the energies and degener
of the Hamiltonian. This approach enables the treatmen
Hamiltonians that involve an arbitrarily complicated depe
dence on the order parameters, in a manner that was exp
for higher-order spin Hamiltonians.10,11 Furthermore, it al-
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lows the construction of the full free-energy surface, which
needed for the study of time-dependent phenomena12 and
nonequilibrium properties.

Within the presently proposed treatment of the exchan
interaction model, there is no need to express the Ham
tonian in terms of spin operators. The eigenvalues and
generacies are shown to be related to the characters
dimensions of the irreducible representations of the symm
ric group~Sec. II A!. The relevant quantum numbers are t
row lengths of the Young diagrams that specify these rep
sentations, and the order parameters are the correspon
thermal averages. The maximal number of rows in the
lowed Young diagrams is determined by the value of
elementary spin. The equations satisfied by the 2S order pa-
rameters are derived in Sec. II B and solved in Sec. III A. A
the order parameters bifurcate from the trivial solution a
common temperature, which is a highly degenerate ex
mum of the free energy. A stability analysis shows that o
of the solutions, which coincides with the mean-field so
tion obtained by Chenet al.,1 represents the thermodynam
cally stable ordered state~Sec. III B!. The other solutions are
saddle points with well-defined indices on the free-ene
surface.

II. STATISTICAL MECHANICS
OF THE INFINITE-RANGE EXCHANGE MODEL

A. Group-theoretical preliminaries

The infinite-range exchange-interaction Hamiltonian is

H52
J

N (
i , j

N

Pi j , ~2!

whereN is the number of spins. The operator( i , j
N Pi j con-

sists of all the transpositions of two indices, which form
conjugacy class of the symmetric groupSN . Its eigenvalues
are~up to a normalization factor! equal to the correspondin
irreducible characters. The latter are specified by mean
Young diagramsG[$m1 , m2 , . . . %, where m1>m2>•••

and m11m21•••5N. Particles with an elementary spinS
give rise to irreducible representations whose Young d
grams contain at mostn52S11 rows. The eigenvalues o
12 350 ©2000 The American Physical Society
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the transposition conjugacy class sum corresponding
Young diagrams with at mostn rows are given by13

LG5
1

2 (
i 51

n

m i~m i22i !. ~3!

The dimension of the irreducible representationG is

VG5N!
)
i , j

n

~m i2m j1 j 2 i !

)
i 51

n

~m i1n2 i !!

. ~4!

N identical particles with an elementary spinSgive rise to a
total of (2S11)N states. The irreducible representationG
appears in the space spanned by these states

gS~N,G!5

)
i , j

n

~m i2m j1 j 2 i !

)
i , j

n

~ j 2 i !

times. Thus,(GgS(N,G)VG5(2S11)N.

B. The order-parameter equations

It will be convenient to introduce the reduced row lengt
l i5m i /N, which satisfy( i 51

n l i51. In the thermodynamic
limit the energy per particle obtains the form

eG52
J

2 (
i 51

n

l i
2 . ~5!

The number of states having this energy isgS(N,G)VG . In
the thermodynamic limit the entropy per particle become

sG52k(
i 51

n

l i ln~l i !. ~6!

The reduced row lengths serve as the order parameters.
ferentiating the free energy per particle

aG52
J

2 (
i 51

n

l i
21kT(

i 51

n

l i ln~l i ! ~7!

with respect tolm , we obtain

lm5
1

q
exp~bJlm!, m51,2, . . . ,n, ~8!

where q5( i 51
n exp(bJli). Equation ~8! implies that

exp(bJl1)/l15exp(bJl2)/l25•••5exp(bJln)/ln . Since the
function exp(x)/x, x.0, has a single minimum, it follows tha
the n-order parametersl1 ,l2 , . . . ,ln can have at most two
different values. Since these order parameters are
row lengths of a Young diagram, they must satisfyl15
l25•••5lm[l2 and lm115lm125•••5ln[l1 ,
wherel2>l1 @andml21(n2m)l151#. Here,m can ob-
tain any of the values 1,2, . . . ,n21. The mth solution is
specified by the single order parameterdm5l22l1 that
satisfies the consistency equation
to

if-

he

dm5
exp~bJdm!21

m exp~bJdm!1~n2m!
. ~9!

III. THE PHASE DIAGRAM

A. Solution of the order-parameter equations

We note that the trivial solutiondm50 always exists.
This solution describes the ‘‘isotropic’’ phase, for whic
l15l25•••5ln51/n.

The consistency equation ford1 coincides with the mean
field equation derived by Chenet al.1 For S. 1

2 it yields a
first-order transition. To investigate the whole set of so
tions we find it convenient to write the consistency equati
Eq. ~9!, in the inverted form

kT5
Jdm

lnS 11~n2m!dm

12md D . ~10!

Expanding the right-hand side fordm→0 we obtain dm
.2(T2T0)/T(n22m), where kT05J/n. Thus, all the
equations have a common temperatureT0 at which the non-
trivial solution bifurcates from the trivial solution. Form
,n/2 thedm vs T curve bifurcates towards higher temper
tures, exhibiting a first-order-like behavior. Form.n/2, the
curve ofdm vs T exhibits a monotonic rise upon lowering th
temperature. For evenn ~half-oddS) dn/2 exhibits a critical
behavior, satisfying the mean-field equationd8
5 1

2 tanh(bJ8d8), whereJ852J/n andd85nd/4.
Inspecting the expression for the energy, Eq.~5!, we note

that in the limit T→0,l1→0 andl2→1/m ~since( i 51
n l i

51). Hence, the low-temperature limit ofdm is 1/m.
We now obtain the temperatures of the first-order tran

tions of the solutionsdm.0, m,n/2. From the equations
ml21(n2m)l151 andl22l15dm we obtainl25@1
1(n2m)dm#/n and l15(12mdm)/n. Equating the free-
energy per particle for the solutiondm.0 with that for the
isotropic solution and using Eq.~10! to eliminate the tem-
perature, we obtain

~n2m!S 12
mdm

2 D lnS 1

12mdm
D

5mS 11
~n2m!dm

2 D ln@11~n2m!dm#.

The expression presented was written in such a way that
prelogarithmic coefficients and both logarithms are positi
This transcendental equation happens to have a simple
lytic solution, for which both the prelogarithmic coefficien
and the arguments of the logarithmic functions are equa
one another. Equating either the former or the latter pair,
obtain

dm
c 5

n22m

m~n2m!
.

The temperature at which the isotropic anddm.0 free ener-
gies equalize can be obtained from Eq.~10!, which yields
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Tc~m!5J
n22m

2m~n2m!lnS n2m

m D .

For m51 these expressions coincide with those obtained
Chenet al.1 From the expression for the critical temperatu
we note that the latter is a decreasing function ofm, which
means that the highest temperature transition from the
tropic phase is the transition into the stated1.0. For the
spin S Heisenberg Hamiltonian the classical limitS→`
yields the Langevin instead of the Brillouin function in th
order-parameter equation. We taken→` to mean the clas-
sical limit in the exchange-interaction model, and note tha
this limit Tc→0, which suggests that this model is ‘‘strictl
quantum mechanical,’’ possessing no classical limit.

The solutions of these equations for a system of partic
with elementary spinsS52 are presented in Fig. 1.

B. Thermodynamic significance of the different solutions

To elucidate the nature of the different solutions, o
needs to examine the structure of the free-energy surf
given by Eq.~7!. Since all the solutions are free-energy e
trema, their precise character is determined by the inde
the Hessian matrix. The latter is obtained by differentiat
the free energy twice with respect to then ~dependent! order
parametersl1 ,l2 , . . . ,ln , Eq. ~7!, obtaining ]2a/]lm

2 5
2J1(kT/lm)[am . Denoting the variations in the order pa
rameters byx1 ,x2 , . . . ,xn and recalling the conditionl1
1l21•••1ln51 that implies x11x21•••1xn50, we
obtain, in terms of the (n21)-independent variation
x1 ,x2 , . . . ,xn21, the quadratic form

da5 (
i 51

n21

~a i1an!xi
212an(

i , j

n21

xixj .

The corresponding Hessian matrix is

FIG. 1. Temperature dependence of the various order par
eters forS52. The vertical arrow specifies the first, order pha
transition.
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S a11an an an ••• an

an a21an an ••• an

an an a31an ••• an

A A A � A

an an an ••• an211an

D .

~11!

At this stage it will be convenient to denotean by a0. The
determinant of ther th principal minor of the Hessian matri
is easily shown to be

detr5S )
i 50

r

a i D (
j 50

r
1

a j
.

For the isotropic solutionl i51/n, hencea i52J1nkT
5nk(T2T0). The determinant of ther th minor of the Hes-
sian matrix becomes (r 11)@nk(T2T0)# r , which is positive
for all r whenT.T0, and which alternates in sign, beginnin
with a negative sign for the lowest minor, whenT,T0. It
was already established that the isotropic solution is the
solute minimum forT.Tc(1). In view of the present stabil-
ity analysis it follows that this solution is a local minimum
within the temperature rangeT0,T,Tc(1) and a maximum
below T0.

For the mth solution (dm.0)a15a25•••5am[a2

52J1(kT/l2) and am115am125•••5an[a1

52J1(kT/l1). In this case the determinants of the fir
m principal minors are given by a1a2

r (1/a1

1r /a2); r 51,2, . . . ,m and those of the following minors
are a2

ma1
r 112m@m/a21(r 112m)/a1#; r 5m11,m

12, . . . ,n21. In particular, the determinant of the comple
Hessian matrix becomes

a2
m21a1

n2m21S 2nJ1
kT

l2l1
D .

For T→0, l2→1/m and l1→0. Hence, in this limit
a252J and a1 is positive and very large. Therefore, th
first m minors alternate in sign, beginning with a positiv
sign for the lowest minor, but the remaining minors have
constant sign. Thus, this solution is a saddle point of ind
m21 ~the number of sign alternations of the sequence
determinants of the principal minors!. In particular, the solu-
tion d1.0 is a ~local! minimum. For the solutionsdm
.0,m, bn/2c, the ‘‘spinodal’’ point, at which the order-
parameter curves backwards, can be determined by sol
]T/]dm50 along with the order-parameter equation, E
~10!. One obtainsnJ5kT/l2l1 . Comparing with the ex-
pression for the determinant of the Hessian matrix, we n
that the latter vanishes at the ‘‘spinodal point,’’ allowing th
index of the Hessian matrix to increase by unity at the low
branch of the order-parameter curve relative to the hig
branch. The value of the order parameter at the ‘‘spino
point’’ satisfies ln(l2 /l1)51/n(1/l121/l2) @along with
ml21(n2m)l151#.

In conclusion, the system exhibits only two thermod
namically stable phases. For temperatures higher thanTc(1),
the absolute minimum corresponds to the isotropic pha
and below that temperature the phased1.0 has the lowest

-
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free energy. The free-energy surface exhibits a complex te
perature dependence. Above the highest spinodal temp
ture it has a single~isotropic! minimum. Between that tem-
perature and the highly degenerate bifurcation temperat
T0 it develops a rich manifold of extrema that corresponds
the solutionsdm.0, m,n/2. Finally, atT0 a further set of
extrema emerges, corresponding ton/2<m<n.

The connection between the order parameterd1 and the
total spin of the system requires some consideration. F
spin-12 particles (n52), each Young diagram corresponds
a well-defined total spin,St5(l12l2)/2. Thus, in this case
d1 specifies the temperature dependence of the magne
tion. The situation becomes more involved for higher e
ementary spins, since in these cases each Young diag
corresponds to a set of different total spins, with differe
weights. The solutiond1.0 specifies a Young diagram tha
represents a closed shell plusN85Nd1 particles in a permu-
tationally symmetric state~single-row Young diagram!. One
can show that when the elementary spin isS51, a single-
row Young diagram of lengthN8 gives rise to all the total
spin statesSt5N8,N822, N824, . . . ,0 or 1, each with
weight 1. The average of these total spins~taking into ac-
count their multiplicities 2St11) is easily calculated, and in
the thermodynamic limit~largeN) is equal to2

3 Nd1.

IV. CONCLUSIONS

The exchange-interaction model was investigated in t
infinite-range limit. The significance of the Hamiltonia
within the symmetric group was used to obtain both the e
ergy and the degeneracy in terms of the representation the
of the latter. This approach avoids the transformation of t
Hamiltonian into a polynomial in spin-tensor operators. For
system consisting of particles with an elementary spinS, the
total number of order parameters is equal to 2S. The 4S(S
11) order parameters introduced by Chenel al.1 are the
-
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components of 2S irreducible tensor operators of ranksl
51,2, . . . ,2S, the dynamical content of each one of whic
is, according to the Wigner-Eckart theorem, fully specifi
by a single reduced matrix element. The present treatm
allowed the investigation of all the solutions of the coupl
mean-field equations without any prior assumptions. In fa
it was established that the different order parameters are f
decoupled in the sense that only solutions in which at m
one order parameter is nonvanishing are possible. The s
tion corresponding to the lowest free energy coincides w
that given by Chenet al.,1 exhibiting a first-order transition
The other solutions correspond to saddle points of differ
indices in the free-energy vs order-parameter space.
lowest bSc solutions exhibit a first-order-like temperature d
pendence. In spite of the fact that all of these solutions
the lowest do not correspond to thermodynamically sta
phases, they may well play a significant role in the noneq
librium kinetics of the phase transitions.

The generalization to Hamiltonians involving exchange
several particles is one direction to which the present
proach can be easily applied. This is a consequence of
fact that the degeneracy is not affected by such a modifi
tion of the Hamiltonian~as long as the infinite-range limit i
considered!, and the energy is given in terms of the eige
values of the higher single-cycle conjugacy class sums of
symmetric group. These eigenvalues are well-known poly
mials in the row lengths of the Young diagrams, which
this context serve as the order parameters. It is very lik
that such generalized Hamiltonians can give rise to m
complex phase diagrams, which may involve chains of ph
transitions between different ordered phases and possibl
entrant behavior.
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