PHYSICAL REVIEW B VOLUME 62, NUMBER 18 1 NOVEMBER 2000-I

Treatment of the exchange-interaction model by means of the symmetric group
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The representation theory of the symmetric group is used to study th&spiohange-interaction model of
ferromagnetism within the infinite-range approximation. Ti®d2der parameters are determined by the row
lengths of the Young diagram that specifies the free-energy extrema. The set of solutions of the order-
parameter equations has been fully explored. Stability analysis shows that one of the solutions represents the
absolute minimum and describes the thermodynamically stable state. This solution coincides with the mean-
field solution due to Chest al.[Phys. Rev. B46, 8323(1992]. The other nontrivial solutions correspond to
saddle points in the free-energy surface, with consecutively increasing indices.

[. INTRODUCTION lows the construction of the full free-energy surface, which is
needed for the study of time-dependent phenortfeaad
The exchange-interaction model is defined by the manynonequilibrium properties.

body Hamiltonian Within the presently proposed treatment of the exchange-
interaction model, there is no need to express the Hamil-
tonian in terms of spin operators. The eigenvalues and de-
generacies are shown to be related to the characters and

H= _J% Pij 1) dimensions of the irreducible representations of the symmet-
ric group(Sec. Il A). The relevant quantum numbers are the
row lengths of the Young diagrams that specify these repre-

in which P;; is the transposition of the indicésandj and ~ sentations, and the order parameters are the corresponding

(ij) stands for a nearest-neighbor pair. A mean-field treatthermal averages. The maximal number of rows in the al-

ment of this Hamiltonian was proposed by Chen, Gou, andowed Young diagrams is determined by the value of the

Chen? That treatment, as well as several other treatments oflementary spin. The equations satisfied by tBeofder pa-

the same Hamiltoniafi,’ is based on the representation of rameters are derived in Sec. Il B and solved in Sec. Il A. All

the transpositions in terms of spin operators, in a manner thahe order parameters bifurcate from the trivial solution at a

for spin- particles was proposed by Dirf@and for particles common temperature, which is a highly degenerate extre-

of higher spin was developed by Schiager® This repre- mum of the free energy. A stability analysis shows that one

sentation shows that for spié the exchange-interaction of the solutions, which coincides with the mean-field solu-

model coincides with the Heisenberg Hamiltonian, whereagion obtained by Cheet al.* represents the thermodynami-

for higher spins it corresponds to the introduction of termscally stable ordered stat&ec. lll B). The other solutions are

involving higher powers of §-S;). Thus, for a system of saddle points with well-defined indices on the free-energy

particles with elementary spi Chenet al® introduce a set surface.

of 4S(S+ 1) order parameters which are the averages of the

components of appropriate spin tensor operators. On the ba- II. STATISTICAL MECHANICS

sis of reasonable indications that include an earlier treatment  of THE INFINITE-RANGE EXCHANGE MODEL

of the spin-1 caséthey conjecture these order parameters to

have a common temperature dependence. The principal re- A. Group-theoretical preliminaries

sult of the mean-field approximation is that fé; the The infinite-range exchange-interaction Hamiltonian is

system exhibits a single first-order phase transition. This

conclusion is supported by more sophisticated treatniehts.

N
In the present paper we investigate the infinite-range H:_iE P, 2
counterpart of the exchange-interaction model. In several re- N Y

lated contexts the equivalence of the mean-field and infinite-

range treatments had been established. The infinite-range aghereN is the number of spins. The operafBf_;P;; con-
proach involves a well-defined approximation of thesists of all the transpositions of two indices, which form a
Hamiltonian, which is then solved exactly. The order param-<conjugacy class of the symmetric groBg. Its eigenvalues
eters are uniquely determined as thermal averages of thare(up to a normalization factdrequal to the corresponding
guantum numbers that specify the energies and degeneracigeducible characters. The latter are specified by means of
of the Hamiltonian. This approach enables the treatment ofoung diagramsl'={wu1, us, ...}, where p1=pu,=---
Hamiltonians that involve an arbitrarily complicated depen-and u;+ u,+ - - - =N. Particles with an elementary sp#
dence on the order parameters, in a manner that was explorgile rise to irreducible representations whose Young dia-
for higher-order spin Hamiltoniart$:!! Furthermore, it al- grams contain at most=2S+1 rows. The eigenvalues of
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the transposition conjugacy class sum corresponding to

Young diagrams with at most rows are given b¥?

n

1 ,
AF=§_ Milpi—2i). 3
i=1
The dimension of the irreducible representatloris
H (pi— Mj +j—1i)
Qp= NI - (4)
H (i +n—=i)!

N identical particles with an elementary sg@mive rise to a
total of (2S+1)N states. The irreducible representatibn
appears in the space spanned by these states

L[j (mi—pjtj—i)
gS(Nrr): n

IT -0

i<]

times. Thus=gg(N,I)Qp=(2S+ 1)N.

B. The order-parameter equations
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_ exp(BIom) —
5m_mexp(,8J5m)+(n—m) '

(€)

Ill. THE PHASE DIAGRAM
A. Solution of the order-parameter equations

We note that the trivial solutior5,,=0 always exists.
This solution describes the “isotropic” phase, for which
Ai=A,=---=\,=1/n.

The consistency equation féy coincides with the mean-
field equation derived by Cheet al! For S>3 it yields a
first-order transition. To investigate the whole set of solu-
tions we find it convenient to write the consistency equation,
Eqg. (9), in the inverted form

Jbm
1+(Nn—mM)Sy|
1-mé

kT= (10

Expanding the right-hand side fof,,—0 we obtain &,
=2(T—To)/T(n—2m), where kTo=J/n. Thus, all the
equations have a common temperatlgeat which the non-
trivial solution bifurcates from the trivial solution. Fan
<n/2 the §,, vs T curve bifurcates towards higher tempera-
tures, exhibiting a first-order-like behavior. For>n/2, the

It will be convenient to introduce the reduced row lengthscurve of 5y, vs T exhibits a monotonic rise upon lowering the

\i=ui /N, which satisfy=!"_;\;=1. In the thermodynamic
limit the energy per particle obtains the form

J n
er=—> > \2. (5)
2>

The number of states having this energygigN,[") Q. In
the thermodynamic limit the entropy per particle becomes

spz—kZl A In(A (6)

temperature. For evenm (half-oddS) &,,, exhibits a critical
behavior, satisfying the mean-field equations’
=3tanh(8J'8'), whereJ’' =2J/n and 8’ =né/4.

Inspecting the expression for the energy, Ej, we note
that in the limitT—O\ , —0 and\ _—1/m (since={_ \;
=1). Hence, the low-temperature limit &f, is 1/m.

We now obtain the temperatures of the first-order transi-
tions of the solutionss,,>0, m< n/2. From the equations
mA_+(n—m)A,=1 andA _ =J, we obtain\ _=[1
+(n—m)d,]/n and A .= (1 m5 mw/n. Equating the free-
energy per particle for the solutiof,,>0 with that for the
isotropic solution and using Eq10) to eliminate the tem-

The reduced row lengths serve as the order parameters. Diferature, we obtain

ferentiating the free energy per particle

J n n
ar=—= > N+kTX, A In(\))
231 =1

(7)
with respect to\,,, we obtain
1
)\m=aexrxﬁ.])\m), m=1.2,...n, (8)
where gq=3{_,exp(BJ\;). Equation (8) implies that
exXpBIN)/IN1=exp(BIN)/\,="---=expBI\,)/\,. Since the

function expg)/x, x>0, has a single minimum, it follows that
the n-order parameters;,\,, ...\, can have at most two

(n—m)| 1—

mé, 1
In
2 1-mé,

(n—m) oy,
m| 1+ T)In[lﬂn—m)&m].

The expression presented was written in such a way that both
prelogarithmic coefficients and both logarithms are positive.
This transcendental equation happens to have a simple ana-
lytic solution, for which both the prelogarithmic coefficients
and the arguments of the logarithmic functions are equal to
one another. Equating either the former or the latter pair, we

different values. Since these order parameters are thebtain

row lengths of a Young diagram, they must satigfy=
No=--=Np=A_  and Npi1=Ami2=: - =A,=A,,
where\ _=\_, [andm\A_+(n—m)\ , =1]. Here,mcan ob-
tain any of the values 1,2..,n—1. The mth solution is
specified by the single order parame®f=\_—\, that
satisfies the consistency equation

_ n—2m
™ m(n—m)’

The temperature at which the isotropic afig>0 free ener-
gies equalize can be obtained from Eg0), which yields
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1.0 | a;+ay, ap ap cee an
an ar+ ap an ce ap
0.8+ ap ap azta, --- ap
oser \ ap ap ap s o1t ag
5 (11
04 At this stage it will be convenient to denotg, by «y. The
determinant of theth principal minor of the Hessian matrix
is easily shown to be
0.2
r r 1
det = ( H ai) z —.
0 \ 1 I i=0 =0 aj

1 1
o] 005 0.1 015 02 025 03

KT /9 For the isotropic solutior\;=1/n, hencea;= —J+nkT

=nk(T—Tg). The determinant of theth minor of the Hes-
FIG. 1. Temperature dependence of the various order paransian matrix becomes (+1)[nk(T—Ty)]", which is positive
eters forS=2. The vertical arrow specifies the first, order phasefor all r whenT>T,, and which alternates in sign, beginning
transition. with a negative sign for the lowest minor, wha@r<Ty. It
was already established that the isotropic solution is the ab-
n—2m solute minimum forT>T.(1). In view of the present stabil-

T(m)=J ) . ity analysis it follows that this solution is a local minimum

within the temperature rangg,<T<T(1) and a maximum
below T,,.

For the mth solution $,>0)a;=as=---=ap=a_
Form=1 these expressions coincide with those obtained by= —J+ (KT/\ ) and Ui 1= Qmao= = ap=a
Chenet al! From the expression for the critical temperature=—J+ (kT/\.). In this case the determinants of the first
we note that the latter is a decreasing functiommfwhich ~ m principal minors are given by a,a" (La,
means that the highest temperature transition from the iso+r/«_); r=1,2,... m and those of the following minors
tropic phase is the transition into the statg>0. For the gre a’l‘a'jl’m[m/a_Jr(er1—m)/a+]; r=m+1m
spin S Heisenberg Hamiltonian the classical lim&—c~  1+2 . n—1.In particular, the determinant of the complete
yields the Langevin instead of the Brillouin function in the Hessian matrix becomes
order-parameter equation. We take>~ to mean the clas-
sical limit in the exchange-interaction model, and note that in el neme1 kT
this limit T,— 0, which suggests that this model is “strictly a_ ay (—nJ+ NN )
guantum mechanical,” possessing no classical limit. o

The solutions of these equations for a system of particles o 7,0, \_—1/m and \.—0. Hence, in this limit

n
2m(n—m)|n(

with elementary spin§=2 are presented in Fig. 1. a_=-J anda, is positive and very large. Therefore, the
first m minors alternate in sign, beginning with a positive
B. Thermodynamic significance of the different solutions sign for the lowest minor, but the remaining minors have a

) ) ) constant sign. Thus, this solution is a saddle point of index
To elucidate the nature of the different solutions, oney,_ 1 (the number of sign alternations of the sequence of
needs to examine the structure of the free-energy surfac@eterminants of the principal mindrdn particular, the solu-
given by Eq.(7). Since all the solutions are free-energy ex-ion 5,>0 is a (loca) minimum. For the solutionss,,
trema, their precise character is determined by the index °£0m<[n/2j the “spinodal” point, at which the order-

the Hessian matrix. Thg latter is obtained by differentiatingp(,j1rameter curves backwards, can be determined by solving
the free energy twice with respect to thédependentorder 9T/, =0 along with the order-parameter equation, Eq.

22
parametersky A, ... Ay, EQ. (7), obtaining 9"a/d\n="" (10). One obtainmJ=kT/A_\, . Comparing with the ex-
—J+ (kT/\p) = . Denoting the variations in the order pa- pression for the determinant of the Hessian matrix, we note
rameters byx;,X, ... X, and recalling the condition;  that the latter vanishes at the “spinodal point,” allowing the

tApt---+A,=1 that impliesx; +x,+---+x,=0, We jndex of the Hessian matrix to increase by unity at the lower
obtain, in terms of the r(—1)-independent variations pranch of the order-parameter curve relative to the higher

X1,X2, - . . Xp-1, the quadratic form branch. The value of the order parameter at the “spinodal
point” satisfies Inf_/\.)=1/n(1/\,—1/\_) [along with
n—1 n—1 MA_+(n—m)\,=1].
da= >, (aj+ap)X?+2a, >, XiX; . In conclusion, the system exhibits only two thermody-
=1 i<j

namically stable phases. For temperatures higherThéh),
the absolute minimum corresponds to the isotropic phase,
The corresponding Hessian matrix is and below that temperature the phase-0 has the lowest
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free energy. The free-energy surface exhibits a complex tencomponents of 3 irreducible tensor operators of ranks
perature dependence. Above the highest spinodal tempera1,2, . ..,5, the dynamical content of each one of which
ture it has a singléisotropio minimum. Between that tem- is, according to the Wigner-Eckart theorem, fully specified
perature and the highly degenerate bifurcation temperaturigy a single reduced matrix element. The present treatment
T, it develops a rich manifold of extrema that corresponds tcallowed the investigation of all the solutions of the coupled
the solutionss,,>0, m<n/2. Finally, atT, a further set of ~mean-field equations without any prior assumptions. In fact,
extrema emerges, correspondingf@<m=n. it was established that the different order parameters are fully
The connection between the order parameieand the decoupled in the sense that on_Iy ;olutlons in WhICh at most
total spin of the system requires some consideration. Fopn€ Order parameter is nonvanishing are possible. The solu-
spind particles o= 2), each Young diagram corresponds to Uo7 corresponding to the lowest free energy coincides with
a well-defined total spinS,=(\,—\,)/2. Thus, in this case that given by C_heret al,” exhibiting a flrst-ordgr transition.
s. specifies the temperature dependence of the ma netizT-h(.a othgr solutions correspond to saddle points of different
1 SP o P penc nag fidices in the free-energy vs order-parameter space. The
tion. The situation becomes more involved for higher el-

ementarv spins. since in these cases each Youna diaar lowest| S| solutions exhibit a first-order-like temperature de-
Y spins, 9 g aW@mdence. In spite of the fact that all of these solutions but

corresponds to a set of different total spins, with differentth .
, . o : e lowest do not correspond to thermodynamically stable
weights. The solutiod;>0 specifies a Young diagram that phases, they may well play a significant roie in the nonequi-

represents a closed shell plN$=N g, particles in a permu- librium kinetics of the phase transitions
tationally symmetric statésingle-row Young diagrajn One The generalization to Hamiltonians involving exchange of

can \s{how thd"’.lt when tfh? elim?nt_ary Sp'rs'f’l’ll""tﬁm?l?'l several particles is one direction to which the present ap-
row young diagram ot leng gives nse to all the tota proach can be easily applied. This is a consequence of the

spin hSt?Lte-?-ﬁt: N’ N’ _2,fN ;1—4, e IO Ornsli', each with ¢34 that the degeneracy is not affected by such a modifica-
weight 1. The average of these total spifeking into ac- o of the Hamiltonian(as long as the infinite-range limit is

count their multiplicities &+ 1) is easily calculated, and in considerej and the energy is given in terms of the eigen-

the thermodynamic limitlargeN) is equal toN. values of the higher single-cycle conjugacy class sums of the
symmetric group. These eigenvalues are well-known polyno-
IV. CONCLUSIONS mials in the row lengths of the Young diagrams, which in
The exchange-interaction model was investigated in thdNiS COntext serve as the order parameters. It is very likely
infinite-range limit. The significance of the Hamiltonian that such generqhzed Hamﬂpomans can give rise to more
within the symmetric group was used to obtain both the enpomplgx phase d|agre_1ms, which may involve chains of .phase
ergy and the degeneracy in terms of the representation theofjAnsitions betyveen different ordered phases and possibly re-
of the latter. This approach avoids the transformation of th ntrant behavior.
Hamiltonian into a polynomial in spin-tensor operators. For a
system consisting of particles with an elementary $pithe
total number of order parameters is equal & The 45(S This research was supported by the fund for the promo-
+1) order parameters introduced by Chehall are the tion of research at the Technion.

ACKNOWLEDGMENT

*Email address: jkatriel@tx.technion.ac.il 8P A.M. Dirac, Proc. R. Soc. London, Ser.123 714(1929.
IH.H. Chen, S.C. Gou, and Y.C. Chen, Phys. Rev4® 8323 9E. Schroedinger, Proc. R. Ir. Acad. Sect. A, Math. Astron. Phys.
(1992. Sci. 47, 39 (1941).
2H.H. Chen and P.M. Levy, Phys. Rev. B 4267(1973. 103, Katriel and G.F. Kventsel, Phys. Rev28, 3037(1983; Solid
SH.A. Brown, Phys. Rev. B1, 3118(1985; 40, 775(1989. State Commun52, 689 (1984); Phys. Rev. B30, 2828(1984);
4H.H. Chen and F. Lee, Phys. Rev4B, 10 540(1990); 48, 9456 33, 6360(1986.
(1993. 117 Pawlowska, J. Oliker, G.F. Kventsel, and J. Katriel, Phys. Rev.
5S.C. Gou and H.H. Chen, Phys. Rev4B, 1450(1994. B 39, 7140(1989.
6Y.M. Kao, F. Lee, and H.H. Chen, Phys. Rev. B8, 8192 12G F. Kventsel and J. Katriel, Phys. Rev.3R, 1559(1985.
(1996. B G Macdonald,Symmetric Functions and Hall Polynomials

7Y.C. Chen, Phys. Rev. B7, 5009(1998. 2nd ed.(Clarendon Press, Oxford, 1995



