
PHYSICAL REVIEW B 1 NOVEMBER 2000-IIVOLUME 62, NUMBER 18
Role of spin-dependent interface scattering in generating current-induced torques
in magnetic multilayers

Xavier Waintal, Edward B. Myers, Piet W. Brouwer, and D. C. Ralph
Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, New York 14853

~Received 16 May 2000!

We present a calculation of current-induced torques in metallic magnetic multilayers derived from the
spin-dependent transmission and reflection properties of the magnetic layers. A scattering formalism is em-
ployed to calculate the torques in a magnetic-nonmagnetic-magnetic trilayer, for currents perpendicular to the
layers, in both the ballistic and diffusive regimes.
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I. INTRODUCTION

Stacks of alternating ferromagnetic and nonmagn
metal layers exhibit giant magnetoresistance~GMR!, be-
cause their electrical resistance depends strongly on whe
the moments of adjacent magnetic layers are parallel or
tiparallel. This effect has allowed the development of n
kinds of field-sensing and magnetic memory devices.1 The
cause of the GMR effect is that conduction electrons
scattered more strongly by a magnetic layer when their s
lie antiparallel to the layer’s magnetic moment than wh
their spins are parallel to the moment. Devices with mome
in adjacent magnetic layers aligned antiparallel thus hav
larger overall resistance than when the moments are alig
parallel, giving rise to GMR. This paper discusses the c
verse effect: just as the orientations of magnetic mome
can affect the flow of electrons, a polarized electron curr
scattering from a magnetic layer can have a reciprocal ef
on the moment of the layer. As proposed by Berger2 and
Slonczewski,3 an electric current passing perpendicula
through a magnetic multilayer may exert a torque on
moments of the magnetic layers. This effect which is kno
as ‘‘spin transfer,’’4 may, at sufficiently high current dens
ties, alter the magnetization state. It is a separate mecha
from the effects of current induced magnetic fields. Expe
mentally, spin-current-induced magnetic excitations such
spin-waves,5–8 and stable magnetic reversal,7,8 have been ob-
served in multilayers, for current densities greater than7

A/cm2.
The spin-transfer effect offers the promise of new kin

of magnetic devices,11 and serves as a new means to exc
and to probe the dynamics of magnetic moments at
nanometer scale.12 In order to controllably utilize these ef
fects, however, it is necessary to achieve a better quantita
understanding of these current-induced torques. Sloncze
has presented a derivation of spin-transfer torques usin
one-dimensional ~1D! WKB approximation with spin-
dependent potentials,3 but his calculations only take into ac
count electrons which are either completely transmitted
completely reflected by the magnetic layers. For real mat
als the degree to which an electron is transmitted throug
magnetic/nonmagnetic interface depends sensitively on
matching of the band structures across the interface.13,14 It is
the goal of this paper to incorporate such band structure
PRB 620163-1829/2000/62~18!/12317~11!/$15.00
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formation together with the effect of multiple reflections b
tween the ferromagnetic layers, into a more quantitat
theory of the torques generated by spin-transfer. This co
be done using the formalism of Brataaset al.15 which is
based on kinetic equations for spin currents. Instead
choose to employ a modified Landauer-Bu¨ttiker formalism,
in which we model the ferromagnetic layers as generali
spin-dependent scatterers. The calculations are carried
for a quasi-one-dimensional geometry, for which we der
formulas for the torque generated on the magnetic lay
when a current is applied to the system, for either ballistic
diffusive nonmagnetic layers. The main difference betwe
our approach and Ref. 15 is that in our case, scattering in
normal layer is phase coherent, whereas Ref. 15 assu
phase relaxation. However, in the case of a diffusive norm
metal layer and for a large number of transverse modes,
two approaches would give the same answer.

The paper is organized as follows. In Sec. II, we pres
an intuitive picture~adapted from Refs. 2,3! of how spin-
dependent scattering of a spin-polarized current produc
torque on a magnetic element. Section III is devoted to
introduction of the scattering matrix formalism for the spi
flux. This formalism is then used in Sec. IV to calculate t
torque in a ferromagnet-normal-ferromagnet (FNF) system
where the normal part is disordered~diffusive!. Section V
contains a discussion of the results. Details of our calcula
are presented in Appendix A. In Appendix B, we derive t
torque for anFNF system where transport in the norm
layer is ballistic, rather than diffusive.

II. PHYSICAL IDEA

In this section we will present a simple intuitive picture
the physics behind the spin-transfer effect. The connec
between current-induced spin-transfer torques and the s
dependent scattering that occurs when electrons pass thr
a magnetic-nonmagnetic interface can be illustrated m
simply by considering the case of a spin-polarized curr
incident perpendicularly on a single thin ferromagnetic lay
F, as shown in Fig. 1. The layer lies in they-z plane, with its
magnetic moment uniformly pointed in the1z direction, and
we assume that the current is spin-polarized in thez-x plane
at an angleu to the layer moments. The incoming electro
can therefore be considered as a coherent linear super
tion of basis states with spin in the1z direction @amplitude
12 317 ©2000 The American Physical Society
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12 318 PRB 62WAINTAL, MYERS, BROUWER, AND RALPH
cos(u/2)# and2z direction@amplitude sin(u/2)#. For this ini-
tial discussion we will assume that the layer is a perfect s
filter, so that spins aligned with the layer moments are co
pletely transmitted through the layer, while spins aligned
tiparallel to the layer moment are completely reflected. F
incident spins polarized at an angleu, the average outgoing
current will have the relative weights cos2(u/2) polarized in
the 1z direction and transmitted to the right and sin2(u/2)
polarized in the2z direction and reflected to the left. Con
sequently, both of the outgoing electron spin fluxes~trans-
mitted and reflected! lie along thez axis, while the incoming
~incident! electron flux has a component perpendicular to
magnetization, along thex axis, with magnitude proportiona
to sinu. This x component of angular momentum must
absorbed by the layer in the process of filtering the sp
Because the spin-filtering is ultimately governed by thes-d
exchange interaction between the conduction electrons
the magnetic moments of the layer, the angular momentu
imparted to the layer moments and produces a torque
them. This exchange torque,16 which is proportional to the
electron current through the layer and to sinu, is in the di-
rection to align the moments with the polarization of t
incident spin current.

The symmetry of this model precludes any generation
torque from the spin filtering of a current of unpolarize
electrons. To generate the effect, then, a second ferrom
netic layer is needed to first spin polarize the current, see
2. In that case, spin angular momentum is transferred f
one layer to the flowing electrons and then from the electr
to the second layer. However, the torques on the two lay
are not equal and opposite, as spin angular momentum
ried by the electrons can also flow away from the layers
infinity, see Fig. 2.

The presence of this second layer has the additional e
of allowing for multiple scattering of the electrons betwe
the two layers, which gives rise to an explicit asymmetry
the torque with respect to current direction. This asymme
is an important signature which can be used to distingu
spin-transfer-induced torques from the torques produced
current-generated magnetic fields. To see how the asym
try arises, consider the ferromagnet–normal-met
ferromagnet (FNF) junction shown in Fig. 2. It consists o

FIG. 1. Schematic of exchange torque generated by spin fi
ing. Spin-polarized electrons are incident perpendicularly on a
ideal ferromagnetic layer. Spin filtering removes the componen
spin angular momentum perpendicular to the layer moments f
the current; this is absorbed by the moments themselves, gener
an effective torque on the layer moments.
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two ferromagnetic layersFa andFb , with moments pointing
in directionsm̂a andm̂b , separated by a normal metal spac
N. Normal metal leads on either side of the trilayer inject
initially unpolarized current into the system. When the cu
rent enters the sample from the left@Fig. 2~a!#, electrons
transmitted throughFa will be polarized alongm̂a . As long
as the normal metal spacer is smaller than the spin-diffus
length ~100 nm for Cu!, this current will remain spin-
polarized when it impinges onFb and will exert a torque on
the moment ofFb in a direction so as to alignm̂b with m̂a .
Repeating the argument forFb , we find that the spin of the
electrons reflected from layerFb is alignedantiparallel to
m̂b , and, hence in turn, exerts a torque on the moment ofFa

trying to align m̂a antiparallel withm̂b . ~Subsequent mul-
tiple reflections of electrons betweenFa andFb can serve to
reduce the magnitudes of the initial torques, but they do
eliminate or reverse them, as the electron flux is redu
upon each reflection.! If there were no anisotropy forces i
the sample, the net result would be a pinwheel-type mot
with both moments rotating in the same direction@clockwise
in Fig. 2~a!#, as described previously by Slonczewski.3 When
the current is injected from the right, the directions of t
torques are reversed: Now the flow of electrons exert
torque onFa trying to align its moment parallel withm̂b ,
while it exerts a torque onFb so as to force the moment i
layer Fb antiparallel withm̂a .

In Refs. 3 and 7, the layerFa was taken to be much

r-
in
f

m
ing

FIG. 2. Qualitative picture of asymmetry of spin-transfer torq
with respect to current bias in aFNF junction. For left-going elec-
trons ~a!, initially polarized by a magnetic layerFa , the moments
of layer Fb experience a torque so as to align them with layerFa .
The electron current reflected from layerFb , in turn, exerts a
torque on layerFa so as to antialign it with the moment of laye
Fb . Subsequent reflections between the layers reduce but do
eliminate this torque. If the current is reversed~b! the overall sign
of the torque is reversed, encouraging the moment of layerFb to
align antiparallel with layerFa .
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PRB 62 12 319ROLE OF SPIN-DEPENDENT INTERFACE SCATTERING . . .
thicker thanFb , so that intralayer exchange and anisotro
forces will hold the orientation ofm̂a fixed. In that case, one
is only interested in the torque onFb , which serves to align
m̂b either parallel or antiparallel with the fixed momentm̂a
depending on the current direction. This asymmetric curr
response has been employed in both a point-con
geometry7 and in a thin-film pillar geometry8 to switch the
moments inFNF trilayers from a parallel to an antiparalle
configuration by a current pulse in one direction, and th
from antiparallel to parallel by a reversed current. F
weakly interacting layers, either orientation can be stable
the absence of an applied current, so that the resistance
sus current characteristic is hysteretic, and the devices
function as simple current-controlled memory elements.

Often, the transport properties of magnetic multilayers
described using ‘‘two-current’’ models,9 in which one as-
sumes that the effects of spin-polarized currents can be
scribed completely in terms of incoherent currents of spin
and spin-down electrons. Normally, only the cases of pur
parallel or purely antiparallel magnetic layers are conside
and the spin currents are conserved upon passing thro
each normal-metal–ferromagnet interface. In this case th
can be no current-induced torque on either magnetic laye
is important to recognize that such two-current models
not appropriate to calculate current-induced torques for
more general case of arbitrary tilt angle between the m
ments in a magnetic multilayer, as the simple example
cussed in this section demonstrates. Tilting of the spin ax
an essential point of the physics,10 and this must be describe
in terms of a coherent sum of spin-up and spin-down ba
states. In the general case, the spin flux is not conse
upon passing through a magnetic layer, so that a torqu
applied to each magnetic layer. As our calculation will sh
explicitly, this is a simple consequence of different transm
sion amplitudes for the spin-up and spin-down compone
of the electron flux.

III. SPIN FLUX AND TORQUE IN THE SCATTERING
APPROACH

Treating the ferromagnetic layers as perfect spin filt
provides important qualitative insights into spin transfer, b
for a complete qualitative and quantitative picture, a m
general approach is required. In this section, we introduc
scattering matrix description of theFNF junction which al-
lows us to deal with nonideal~magnetic and nonmagnetic!

layers. Our goal is to relate the torquetWb exerted on layerFb
by an unpolarized incident electron beam to the scatte
properties of the layers. Although we shall restrict our fo
mulas to theFNF junction ~see Fig. 3!, our method is appli-
cable for an arbitrary array of magnetic-nonmagnetic laye

We first introduce the spin fluxJW in the x direction ~the
direction of current flow!:

JW~x!5
\2

2m
ImE dydzFf†~x!sW

]

]x
f~x!G , ~1!

wheref(x) is a spinor wave function andsW the vector of
Pauli matrices
y
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f~x!5S f↑~x!

f↓~x!
D , sW 5S sx

sy

sz

D .

Note that although Eq.~1! bears close formal analogy to th
particle current, no local equation of conservation can
written for the spin flux, since in general, the Hamiltonia
~of the itinerant electrons! does not conserve spin. Specifi
cally, the magnetic layers can act as sources and sinks of
flux, so that the spin flux on different sides of aF layer can
be different. When the angleu is 0 orp ~typical situation for
GMR!, the commutativity between the Hamiltonian and t
~electron! spins is restored~in the absence of spin-flip sca
tering!. It should be stressed that the Hamiltonian of the f
system~electrons plus local moments of the ferromagn
plus the environment! does commute with the total spin
Therefore the spin lost by the itinerant electrons has to
gained by the other parts of the system.

A. Definition of the scattering matrices

Figure 3 shows theFNF junction where~fictitious! per-
fect leads~labeled 0, 1, 2, and 3! have been added in betwee
the layersF andN and between theF layers and the electron
reservoirs on either side of the sample. The introduction
these leads allows for a description of the system using s
tering matrices. In the perfect leads, the transverse degre
freedom are quantized, givingNch propagating modes at th
Fermi level, whereNch;A/lF

2 , A being the cross section
area of the junction andlF the Fermi wave length. Expand
ing the electronic wave function in these modes, we c
describe the system in terms of the projectionC i ,L/R of the
wave function onto the left~right! going modes in regioni.
The C i ,L/R are 2Nch-component vectors, counting theNch
transverse modes and spin. The amplitudes of the wave f
tion in two neighboring ideal leads are connected through
scattering matricesSb , Sa , andSN , that relate amplitudes o
outgoing modes and incoming modes at the layer~see for
example Ref. 17 for a review of the scattering matrix a
proach!,

S C3L

C2R
D 5SbS C3R

C2L
D , ~2a!

FIG. 3. Schematic of the setup used for the definition of
scattering matrices of theF andN layers. The two layersFa andFb

are ferromagnetic layers whose magnetic moment is oriented
shown in the bottom of the figure. The layerN is a nonmagnetic
metal spacer. Amplitude of left and right moving propagati
waves are defined in fictitious ideal leads 0, 1, 2, and 3 between
layers and between the layers and the reservoirs.
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S C1L

C0R
D 5SaS C1R

C0L
D , ~2b!

S C2L

C1R
D 5SNS C2R

C1L
D . ~2c!

The scattering matricesSb , Sa , andSN are 4Nch34Nch uni-
tary matrices. We decomposeSb into 2Nch32Nch reflection
and transmission matrices

Sb5S r b tb8

tb r b8
D , ~3!

with similar decompositions ofSa andSN . Normalization is
done in such a way that each mode carries unit current.
to the spin degree of freedom, the reflection and transmis
matrices can be written in terms of fourNch3Nch blocks:

r b5S r b↑↑ r b↑↓
r b↓↑ r b↓↓

D , ~4!

where the subscripts↑,↓ refer to spin up and down in th
z-axis basis.

The scattering matrix of the magnetic layers depends
the angleu the moments may make with thez axis. The
matrix Sa(u) is related toSa(u50) through a rotation in
spin space:

r a~u!5Rur a~0!R2u , r a8~u!5Rur a8~0!R2u ,

ta~u!5Ruta~0!R2u , ta8~u!5Ruta8~0!R2u , ~5!

where

Ru5S cos
u

2
2sin

u

2

sin
u

2
cos

u

2

D ^ 1N . ~6!

The nonmagnetic metallic layer will not affect the sp
states, i.e.,r N↑↓5r N↓↑50 andr N↑↑5r N↓↓ .

We need to keep track of the amplitudes within the s
tem in order to calculate the net spin flux deposited into e
magnetic layer. Therefore, we define 2Nch32Nch matrices
G i

L/R and L i
L/R( i 50,1,2,3) so that we may express all th

C i ,L/R as a function of the amplitudes incident from the tw
electrodes~regions 0 and 3!:

S C iL

C iR
D 5S G iL L iL

G iR L iR
D S C0L

C3R
D ~7!

with the convention thatG0L5L3R51 andG3R5L0L50. In
order to calculate the torque exercised on layerFb for a
current entering from the left, we need the matrixG2L . To
simplify the notations in the rest of the paper, we write

V[G2L . ~8!

The matrixV relatesC2L to the incoming amplitudesC0L
coming from the right. To calculate it, we putC3R50, then,
using Eq.~2!, we get the equations
ue
on

n

-
h

C1L5ta8C0L1r aC1R ,

C1R5tnC2R1r n8C1L ,

C2L5r nC2R1tn8C1L ,

C2R5r b8C2L ,

C3L5tb8C2L , ~9!

from which we obtain

V5
1

12r nr b8
tn8

1

12r atnr b8~12r nr b8!21tn82r ar n8
ta8 . ~10!

B. Spin flux response

Let us now connect our system to two unpolarized el
tron reservoirs on its two sides, as shown in Fig. 4. In eq
librium, the modes in the reservoirs are filled up to the fer
level eF . We want to calculate the spin current that is ge
erated when the chemical potential in the left~right! reser-
voir is slightly increased bydm3(dm0). The spin currentJW i is
the difference of the left going and right going contribution
For each of the regioni 50,1,2,3, we find from Eqs.~1! and
~7!

]JW i

]m0
5

1

4p
Re@TrsW G iRG iR

† 2TrsW G iLG iL
† # ~11!

and

]JW i

]m3
5

1

4p
Re@TrsW L iRL iR

† 2TrsW L iLL iL
† #. ~12!

Derivation of Eqs.~11! and~12! proceeds analogously to th
derivation of the Landauer formula for the conductance.18

C. Torque exercised on layerF b

If the spin flux on both sides ofFb ~regions 2 and 3! is
different, then angular momentum has been deposited in
layer Fb . This creates a torquetWb on the moment of the
ferromagnet

tWb5JW32JW2 . ~13!

Settingdm052eV0, we have

]tWb

]V0
52

e

4p
Re Tr2Nch

@SW VV†#, ~14!

with

FIG. 4. TheFNF junction is connected to two reservoirs.
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SW 5sW 2tb9
†sW tb82r 8b

†sW r b8 . ~15!

This equation can be simplified further if the spin-trans
effect is due entirely to spin filtering~as argued by
Slonczewski3! as opposed to spin-flip scattering of electro
from the magnetic layers. That is, if we assume thatr b↑↓
5r b↓↑5r a↑↓(u50)5r a↓↑(u50)50, then

]tb
x

]V0
52

e

2p
Re TrNch

@~V↑↑V↓↑
† 1V↑↓V↓↓

† !

3~12r b↑↑8 r b↓↓8† 2tb↑↑8 tb↓↓8† !#. ~16!

We will comment briefly in the conclusion of this pap
about the physical implications of including the off-diagon
spin-flip terms, as well.

We note that, as there is no spin flux conservation in t
system, ]JW i /]m3 can be different from2]JW i /]m0 and,
hence, there can be a nonzero spin flux even when the ch
cal potentials are identical in the two reservoirs. The ex
tence of a zero-bias spin flux and the resulting torques re
the well-known itinerant-electron-mediated exchange in
action ~also known as the RKKY interaction! between two
ferromagnetic films separated by a normal-metal spacer.
interaction can in fact be understood within a scatter
framework.19–22 The zero-bias torque has to be added to
finite-bias contribution@given by Eq.~16!#. Since the former
is typically a factorNch

21 smaller and vanishes upon ensemb
averaging~see Sec. IV and Ref. 17!, we henceforth neglec
the zero-bias contribution to the torque and restrict our at
tion to the bias induced torque, for which we have

]tWb

]V0
52

]tWb

]V3

up to a correction of orderNch
21 .

IV. AVERAGING OVER THE NORMAL LAYER

Via Eq. ~16!, the torque on the moments of the ferroma
netic layersFa and Fb not only depends on the scatterin
matricesSa andSb of these layers, but also of the scatteri
matrix SN of the normal metal layer in between. If the no
mal layer is disordered,tWa andtWb depend on the location o
the impurities; ifN is ballistic the torque depend sensitive
on the electronic phase shift accumulated inN. In general,
sample to sample fluctuations of the torque will be a fac
Nch

21 smaller than the average.17 Hence, ifNch is large (Nch

.103 in the experiments of Ref. 7!, the torque is well char-
acterized by its average. In this section, we average oveSN
for the case whereN is disordered. The case of ballisticN is
addressed in Appendix B. After averaging, the zero-bias s
transfer current, corresponding to the RKKY interaction d
scribed above, vanishes, and only the torque caused by
electron current remains. Because all effects of quantum
terference in theN layer will disappear in the process o
averaging~to leading order in the number of modesNch), the
results we derive are unchanged if the reflection and tra
mission matrices include processes in which the energy
the electron changes during scattering,15 in addition to the
r

l

is

i-
-
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r-
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elastic processes normally considered in scattering ma
calculations.

A. Averaged torque

The scattering matrix of the normal layer can be writt
using the standard polar decomposition:23

Sn5S U 0

0 V8
D S A12T iAT

iAT A12T
D S U8 0

0 VD , ~17!

where U, V, U8, and V8 are 2Nch32Nch unitary matrices
andT is a diagonal matrix containing the eigenvalues oftntn

† .
SinceSN is diagonal in spin space, we find thatU, U8, V,
andV8 are block diagonal:

U5S u 0

0 uD , U85S u8 0

0 u8
D , ~18!

and similar definitions forv and v8. In the isotropic
approximation,17,23 the Nch3Nch unitary matricesu, u8, v,
andv8 are uniformly distributed in the groupU(Nch). @The
outer matrices in Eq.~17! thus mix the modes in a ergodi
way while the central matrix contains the transmission pr
erties of the layer, which determine the average conducta
of N.#

We want to average Eq.~16! over both the unitary matri-
ces andT. A diagrammatic technique for such averages h
already been developed in Ref. 24 and can be used to ca
late ^]tWb /]V0& in leading order in 1/Nch. It is a general
property of such averages that the fluctuations are a facto
order Nch smaller than the average. This justifies our sta
ment above, that the ensemble averaged torque is suffic
to characterize the torque exerted on a single sample. De
of the calculation are presented in Appendix A.

The resulting expression for^]tWb /]V0& can be written in
a form very similar to the one for Eq.~16! if one uses a
notation that involves 434 matrices. To be specific, to eac
2Nch32Nch matrix A appearing in Eqs.~16! and ~10!, we
assign a 434 matrix Â as

Â5
1

Nch
TrNch

@A^ A†#, ~19!

where TrNch
means that the trace has been taken in each

Nch3Nch blocks, orin extenso

Â5
1

Nch
TrNchS A↑↑A↑↑

† A↑↑A↑↓
† A↑↓A↑↑

† A↑↓A↑↓
†

A↑↑A↓↑
† A↑↑A↓↓

† A↑↓A↓↑
† A↑↓A↓↓

†

A↓↑A↑↑
† A↓↑A↑↓

† A↓↓A↑↑
† A↓↓A↑↓

†

A↓↑A↓↑
† A↓↑A↓↓

† A↓↓A↓↑
† A↓↓A↓↓

†

D .

~20!

We also defineSŴ by

SŴ 5TrNchS SW ↑↑ SW ↓↑ SW ↑↓ SW ↓↓
0 0 0 0

0 0 0 0

SW ↑↑ SW ↓↑ SW ↑↓ SW ↓↓

D . ~21!
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The average over the transmission eigenvaluesT follows if
we note that the average of a function is the function of
average, to leading order in 1/Nch.17 Thus the average overT
amounts to the replacement

t̂ n5
gN

Nch
14 and r̂ n5S 12

gN

Nch
D 14 , ~22!

wheregN is the conductance of the normal layer and14 is the
434 unit matrix. Using these ‘‘hat’’ matrices, the result h
now the simple form

K ]tWb

]V0
L 52

e

4p
Re Tr4@SŴ V̂#, ~23!

where@compare to Eq.~10!#,

V̂5
1

12 r̂ nr̂ b8
t̂ n8

1

12 r̂ at̂ nr̂ b8~12 r̂ nr̂ b8!21 t̂ n82 r̂ ar̂ n8
t̂ a8 . ~24!

Equation~23! is the main result of this paper. In the a
sence of spin-flip scattering, it reduces to

K ]tb
x

]V0
L 52

e

2p
Re@~V̂3,11V̂3,4!

3TrNch
~12r b↑↑8 r b↓↓8† 2tb↑↑8 tb↓↓8† !#. ~25!

The same formalism can be used to calculate the con
tanceg of the system using the Landauer formula. One g

^g&5
Nche

2

h
@ t̂1,18 1 t̂1,48 1 t̂4,18 1 t̂4,48 #, ~26!

t8 being the total transmission matrix

t85tb8V. ~27!

We would like to note that, while our theory started fro
a fully phase coherent description of the FNF trilayer,
cluding the full 4Nch34Nch scattering matrices of theFN
interfaces, the final result can be formulated in term o
34 parameters, represented by the matricesr̂ a and r̂ b8 (2
316 parameters in case of spin-flip scattering!. Such a re-
duction of the number of degrees of freedom was also fo
by Brataaset al.,15 although their starting point is an hybri
ferromagnetic-normal metal circuit with incoherent nod
This confirms the statement at the beginning of this sect
that for a diffusive normal-metal spacer all effects of qua
tum interferences are washed out.17 The difference between
our approach and the one of Ref. 15 is important in the c
of the ballistic normal layer, see Appendix B.

B. Symmetries

Before we proceed with a further analysis of Eq.~23!, we
identify the different symmetries of the torque. Due to t
conservation of current, the total torque deposited on the
system is antisymmetric with respect to current direction

]tWb

]V0
1

]tWa

]V0
52F ]tWb

]V3
1

]tWa

]V3
G . ~28!
e

c-
ts

-

d

.
n,
-

se

ll

Equation~28! holds before averaging. But, as pointed out
Sec. III, equality for each of the torquestWa andtWb separately
holds only after averaging,

K ]tWb

]V0
L 52K ]tWb

]V3
L ; ~29!

sample to sample fluctuations of]tWb /]V0 and2]tWb /]V3 of
relative order 1/Nch are in general different. Thus, forNch
@1, our calculation can be used to compute the linear
sponse of the torque to a small bias voltage

tWb5K ]tWb

]V0
L ~V02V3!. ~30!

In our geometry, whereFa andFb are in thex-z plane, the
only nonzero component of the torque istb

x . The torque
vanishes when the moments are completely aligned or a
aligned~all the matrices are diagonal in spin space and the
fore nox component of the spin can be found!. Around these
two limits, the torque is symmetric in respect to the ang
(u→2u andp2u→p1u). There is no symmetry betwee
u and p2u. In addition, the two layers are not equivale
and exchanging the scattering matrices ofFa and Fb also
changes the torque.

C. Discussion of some limiting cases

Equation~23! can be simplified in some particular case
Let us start with the simplest case of ideal spin filters, so t
majority ~minority! spins are totally transmitted~reflected!
by either layer. Equation~23! then reduces to

K ]tb
x

]V0
L 52

e

4p

gNsinu

31cosu
52

h

4pe
^g&

tanu/2

2
, ~31!

where^g& is the average magnetoconductance, see Eq.~26!,

^g&5
e2

h
gN

4 cos2u/2

31cosu
. ~32!

Equation~31! reproduces a result of Slonczewski.3 As ex-
pected, for left-going electrons (V0,0) the torque is posi-
tive, so it acts to align the moment of the magnetic layerFb
toward the one ofFa , see Sec. II.

Let us now consider the case of weaks-d exchange cou-
pling, i.e., when the scattering coefficients depend o
weakly on spin. We continue to assume that no spin-
scattering occurs in the ferromagnetic layers. We definega
andgb as the average conductance per spin of the two lay
~in unit of e2/h). Then, the conductance ofFa alone isga
1dga and ga2dga for, respectively, the majority and mi
nority spins, which defines the spin scattering asymme
dga . In that case, we get to lowest nontrivial order indga
anddgb :
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^g&5
2e2

h S gNgagb

gagb1gN@ga1gb22~gagb /Nch!#
1

gN
2dgadgbcosu

$gagb /Nch1gN@ga1gb22~gagb /Nch!#%
3D ~33!

and

K ]tb
x

]V0
L 52

e

2p

gN
2dgadgb

2sinu

2~12gb /Nch!$gagb1gN@ga1gb22~gagb /Nch!#%
2

. ~34!
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.
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This last formula shows the following
~i! The torque is always non zero for arbitrary small sp

scattering asymmetry. This proves the statement in Sec
that multiple reflections between theF layers, fully taken
into account here, cannot completely eliminate the torqu

~ii ! The torque is not symmetric with respect to inte
changing the layerFa and Fb , in contrast to the conduc
tance. If one changesdga to 2dga , the sign of the torque is
reversed. However,̂]tb

x/]V0&}dgb
2 , so if one changesdgb

to 2dgb , the sign of the torque is unchanged. The sign
the torque on a ferromagnetic layer therefore depends
whether the other layer is a positive or negative polarizer,
not on the sign of filtering for the layer experiencing t
torque. We have verified that this is true also in the gene
case. This point explains why the two layers can not
treated on an equal footing.

~iii ! We see thatgN appears through its square. Indeed,
order for some spin to be deposited in the layerFb , some
left going electrons have to be reflected byFb and exit the
system from the right hand side. Therefore these electr
cross the normal layer at least twice and this leads to
factorgN

2 . On the other hand the conductance is linear ingN .
Therefore in order to maximize the torque deposited per c
rent, one has to use the cleanest possible normal m
spacer.~This statement is true in this limit of weak filtering
but not in general, see Sec. V.! Note that in the previous cas
~perfect spin filtering! the torque is proportional togN in-
stead of the expectedgN

2 . Indeed, in that case, once the ele
tron has been reflected by the layerFb , it cannot go through
Fb which works as a perfect wall for it. Therefore curre
conservation implies that it goes out of the system throu
the right. ForgN!Nch, the torque is actually proportional t
gN

2 for arbitrary spin asymmetry~except perfect filtering!,
and one gets

K ]tb
x

]V0
L }gN

2sinu, gN!Nch, ~35!

the factor of proportionality being a complicated function
the transmission probabilities of the layers.

V. APPLICATION TO CURRENT-DRIVEN SWITCHING
OF MAGNETIC DOMAINS

In this section, we consider the general solution Eq.~23!
for the spin-transfer torque. We first address strongly po
izing systems and then calculate torques for scattering
rameters more appropriate for the transition metal trilay
that can be studied experimentally. As the trilayer devi
II,

f
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are primarily current-driven, we calculate the torque per u
of currentI,

tb
x

I
5K 1

g

]tb
x

]V3
L .

The torque per unit current is measured in units ofh/2pe.
Equation~31! of the previous section gives the torque p

unit current for the case that both layersFa andFb are per-
fect polarizers. The main feature of this system is that thu
dependence of the torque is not of a simple sinu form, and
that the torque per unit current diverges atu50. In Fig. 5,
we look at what happens when one of the layers (Fb) is a
nearly perfect polarizer while the other one is not. Althou
the divergence atu5p is regularized,tb

x/I remains sharply
peaked nearu5p. This is relevant for the critical curren
needed to switch the magnetization ofFb from u5p to u
50. Recall that the switching of the domains follows from
competition between the spin-transfer torque on the one h
and restoring forces from local fields, anisotropy, exchan
coupling, etc.~The competition between these forces h
been considered phenomenologically in Refs. 8,25 usin
phenomenological Landau-Lifschitz-Gilbert equation.! The
torques foru close to 0 andp determine the critical current
to overturn a metastable parallel~antiparallel! alignment of
the moment inFa andFb . Hence the critical current shoul
be different atu50 andu5p.

FIG. 5. Torque per unit current for the case whereFb is a nearly
perfect polarizer (utb↑u250.999,utb↓u250.001) and Fa is not
(uta↑u250.3uta↓u250.01) ~solid line!. The dashed line shows th
case of perfect polarizers, see Eq.~31!. Torque per unit current is
measured in units ofh/2pe.
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In Fig. 6, we consider the same system as in Fig. 5~one
perfectly polarizingF layer, one partially polarizing layer!,
but as a function of the conductance of the normal layergN
for anglesu close to 0. We find that switching the two laye
has a drastic effect on the torque, even at a qualitative le
Interestingly, in the case whereFa is the nearly perfect laye
~dashed line in Fig. 6!, a maximum of the torque is found fo
gN /Nch!1, i.e., in that case, a dirty metal spacer would g
a higher torque~per unit of current! than a clean one.

At this stage, it is interesting to compare our theory to t
of Ref 3. In this work the WKB approximation was used, a
the electrons at theFN interfaces are either totally transmi
ted or reflected. For nonperfect polarizers, only a fraction
the channels27 act as perfect filters while the others perfec
transmit both the minority and majority spins. However, th
situation is different from having non perfect transmissi
probabilities T↓ ,T↑ per channel. In particular, havin
^T↓&Nch channels that do not filter and (12^T↓&)Nch perfect
filters is not equivalent toNch channels that all partly trans
mit the minority spins with probabilitŷT↓&. This situation is
illustrated in Fig 7. The latter scenario is supported byab
initio calculations.13,14 Moreover, for a disordered norma
metal spacer, multiple scattering from impurities mixes
channels and the notion of two type of channels beco
superfluous. In that case, the torque is described by Eq.~23!
in all cases. The torque found in the second case can
significantly smaller than under the assumption of Ref. 3

We can also compare our model to the work of Berge2

While the theories of Berger and Slonczewsi3 have much in
common, Berger does invoke inelastic spin-flip scattering
a way that Slonczewski does not.~Slonczewski’s theory uti-
lizes only spin-filtering, without spin-flip scattering.! This
effect can in principle be treated in our model, by includi
the off-diagonal spin-flip reflection and transmission amp
tudes that we have thus far neglected. We shall commen
some of the implications in the conclusion. We suspect t

FIG. 6. Derivative of the torque per unit current with respect
u at u50 as a function ofgN , in units ofh/2pe for the case where
Fb is a nearly perfect polarizer (utb↑u250.999,utb↓u250.001) andFa

is not (uta↑u250.3uta↓u250.01) ~solid line!, and for the opposite
setup, Fa is a nearly perfect polarizer (uta↑u250.999,uta↓u2

50.001) whileFb is not (utb↑u250.3utb↓u250.01) ~dashed line!.
l.

t

f

ll
e

be
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the differing treatments of this aspect of the physics m
explain why Slonczewski and Berger predict slightly diffe
ent forms for the current-induced torques.

In our theory, the scattering matrices of the ferromagne
layers appear as free input parameters. However, it is in p
ciple possible to calculate them from first principle calcu
tions for specific materials. Such an approach has been ta
in Refs. 13,14 and the results can be used to give so
estimates of torques that can be expected in realistic syst
In Fig. 8, we compare the Co-Cu-Co system considered
the experiment of Ref. 7 with the Fe-Cr-Fe system. In
latter, the minority spins have a larger transmission proba
ity than the majority ones, explaining the opposite sign of
torque.

VI. CONCLUSION

We have developed a theory for the spin-transfer-indu
torques on the magnetic moments of a ferromagnet-norm
ferromagnetFNF trilayer system caused by a flowing cu
rent. Our theory deals with the effects of multiple scatteri
between the layers using the scattering matrices of
ferromagnet–normal-metal interfaces as input paramet
We consider both the cases of a diffusive and ballistic n
mal metal spacer. Remarkably, in the diffusive case,
high-dimensional scattering matrices of theFN interfaces
only appear through the reduced 434 tensor products of Eq
~19! which greatly reduces the number of degrees of freed
of the theory~see also Ref. 15!. This reduction of the numbe
of degrees of freedom allows us to make qualitative pred
tions about the role of the interface transparency, norm
metal resistance, etc., without detailed knowledge of the
croscopic details of the system. However, for quantitat
predictions, inclusion of the microscopic parameters in o
theory, e.g., fromab initio calculations13,14 is still needed.

FIG. 7. Torque per unit current as a function ofu. The solid line
shows the case where the minority spin are transmitted with p
ability ^T↓&520% for all the channels. The dashed line shows
case where the minority spins are transmitted with probabi
^T↓&51 for 20% of the channels, 0 otherwise~theory of Ref. 3!.
The majority spin are totally transmitted in both cases. Inset: sa
system,dtb

x/Idu at u50 as a function of̂T↓& for the two different
models. Torque per unit current is measured in units ofh/2pe.
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Having a complete theoretical description of the curre
induced switching of magnetic domains inFN multilayers as
a final goal, the theory here can be regarded as being
intermediate step. On the one hand, microscopic inpu
needed for the scattering matrices of theFN interfaces, as
explained above. On the other hand, the output of our the
the current-induced torques, needs to be combined with
storing ~hysteretic! forces in a more phenomenologic
theory that describes the dynamics of the magnetic mome
Such a theory involves anisotropy forces and informat
about the mechanism by which the torque is exerted~spin
wave excitation, local exchange field!—issues which are stil
subject of debate.2,3,26,28

In this paper, we have focused on the effects of ‘‘sp
filtering’’ as the mechanism for current-induced torque, i.
the difference in the transmission and reflection probabili
for electrons with spins parallel and antiparallel to the m
ments of the ferromagnetic layers@the diagonal terms in the
matrices for the reflection and transmission amplitudes,
~4!#. A different source of spin-dependent scattering, wh
we have not considered in detail, but which is included
our formalism, is that of spin-flip scattering—the of
diagonal terms in Eq.~4!. Its effect can be twofold. In the
normal spacer, it would decrease the effective polarizat
and therefore the torque. However, in the ferromagnet,
rate of spin-flip scattering might be asymmetric with resp
to minority and majority spins, and therefore spin-flip sc
tering may also be an additional source of torque. As
number of degrees of freedom involved is much larger th
for spin filtering only, a realistic model for the scatterin
matrices in the ferromagnets would be a necessary sta
point for a theory that would include the effect of spin-fl
scattering. We leave such a theory, as well as a stud
phase coherence between the majority electrons and min
electrons reflection processes, for future works.

FIG. 8. Torque per unit current as a function ofu for two dif-
ferent realistic systems. The solid line shows the Co-Cu-Co trila
(uta↑u250.73,uta↓u250.49,utb↑u250.68,utb↓u250.29). The dashed
line shows the Fe-Cr-Fe trilayer (uta↑u250.48,uta↓u250.59,utb↑u2

50.30,utb↓u250.50). In both casesgN5Nch has been assumed. Th
thick layer is assumed to be semi-infinite while for the thin lay
only the interface properties have been taken into account. Num
cal values are obtained from Ref. 13. Torque per unit curren
measured in unit ofh/2pe.
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APPENDIX A: DERIVATION OF EQ. „23…

In this appendix, we describe the calculation of Eq.~23!
step by step. First, we substitute the expression~10! for V
into Eq. ~14!, and then formally expand the resulting equ
tion in powers of the reflection matricesr a , r b , r n, andr n8 .
Using the polar decomposition Eq.~17! for the reflection and
transmission matricesr n , tn , tn8 , andr n8 of the normal layer,
we get a sum of many terms, each of which is of a fo
where contributions fromN are alternated with those ofFa
andFb . Writing spin indices explicitly~summation over re-
peated indices is implied!, we can write those terms as

TrNch
SW i j ~AjkaBklb•••hCsm!~Fnm

† v†
•••d†Epn

† g†Dip
† !,

~A1!

whereA,B,C,D,E,FP$r a ,ta ,r b ,r b8 , . . . % refer to the layer
Fa and Fb while a,b,g,d,h,vP$uiATv,uA12Tu8, . . . %
refer to the normal layer.

We are now ready to do the average of Eq.~A1! over the
matricesu, u8, v, andv8 using the diagrammatic techniqu
of Ref. 24.~In leading order inNch these integrals reduce t
the application of wick theorem.! Doing so, each of the
a,b, . . . , has to be put incorrespondence with one of th
g†,d†, etc. To leading order inNch, only the ladder diagram
survives, in which a5g,b5d,h5v, . . . , and hence, A
5D,B5E,C5F, . . . . Thus, after averaging, we get term
such as

TrNch
@SW i j #

1

Nch
TrNch

@AjkAip
† #a

1

Nch

3TrNch
@BklBpn

† #b•••c
1

Nch
TrNch

@CsmCnm
† #,

~A2!

where a,b,c, . . . , stands for either (1/Nch)Tr T or
(1/Nch)Tr(12T). To leading order inNch, the average over
T can now be done by simply replacinga,b,c, . . . , by their
average valuegN /Nch or 12gN /Nch wheregN is the average
conductance~per spin! of the normal layer, in units ofe2/h.

Finally, denotingl5( i , j ) and m5(k,p), let us now in-
troduce 434 matricesÂ,B̂,Ĉ, . . . , that are defined as

Âlm5
1

Nch
TrNch

@AikAjp
† #, ~A3!

andSŴ is defined as

SŴ lm5dkpTrNch
SW j i . ~A4!

In term of these new matrices, eq.~A2! now reads as a
simple matrix product:

Tr4SŴ ÂâB̂b̂•••ĥĈ, ~A5!
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with â,b̂,ĥ, . . . P$gN /Nch,12gN /Nch%. Equation ~A5! is
formally equal to the expansion ofV @see Eq.~A1!# except
that we are now dealing with ‘‘hat’’ matrices. Therefore, w
can now resum all the terms of the expansion and get
~23!.

APPENDIX B: BALLISTIC NORMAL LAYER: A
PEDESTRIAN APPROACH

If N is very clean, and the interfaces are very flat, it
reasonable to assume that the electrons propagate ba
cally inside the normal layer. The different modes will not
mixed in that case, and the electron wavefunction only pi
up a phase factoreikiL whereL is the width ofN andki the
momentum of channeli. For a sufficiently thick normal laye
~i.e., L@lF), small fluctuations ofki lead to an arbitrary
change in the phase factor, and it is justified to considereikiL

as a random phase and to average over it. This is diffe
from the case of a disordered metal spacer, where the a
age involves unitary matricesu,u8, . . . , that mix the chan-
nels, see Eq.~17!. In the case wherer a↓ ,r a↑ , . . . , arepro-
portional to the identity matrix~i.e., the reflection amplitude
do not depend on the channel!, the ballistic model reduces t
the disordered model of Eq.~23! for gN5Nch.

The reflection matrices ofN being zero, the matrixV
reads

V5eikiL
1

12e2ikiLr ar b8
ta8 . ~B1!

Neglecting spin-flip scattering, denotingz5e2ikiL, and
choosingr a115r a↑ ,r a225r a↓ , . . . , wherer a↑ ,r a↓ , . . . , are
diagonal matrices, one gets after some algebra

]tb
x

]V0
~z!52

en

4p
Tr Re

A~z!

zuD~z!u2
sinu, ~B2!

whereA(z) andD(z) stand for

A~z!5~12tb↑8 t8b↓* 2r b↑8 r 8b↓* !@ uta↑8 u2~12zrb↓8 r a↓!

3~z2r 8b↑* r a↓* !2uta↓8 u2~12zrb↓r a↑!~z2r 8b↑* r a↑* !#,

~B3!

D~z!512zFcos2
u

2
~r a↑r b↑8 1r a↓r b↓8 !

1sin2
u

2
~r a↓r b↑8 1r a↑r b↓8 !G1z2r a↓r a↑r b↓8 r b↑8 .

~B4!

A similar formula can be written for the conductanceg(z):
ing
q.

sti-

s

nt
er-

g5
e2

h
Tr

B~z!

zuD~z!u2
, ~B5!

with

B~z!5uta↑8 u2utb↑8 u2cos2
u

2
~12zra↓r b↓8 !~z2r a↓* r 8b↓* !

1uta↑8 u2utb↓8 u2sin2
u

2
~12zra↓r b↑8 !~z2r a↓* r b↑8* !

1uta↓8 u2utb↑8 u2sin2
u

2
~12zra↑r b↓8 !~z2r a↑* r b↓8* !

1uta↓8 u2utb↓8 u2cos2
u

2
~12zra↑r b↑8 !~z2r a↑* r b↑8* !.

~B6!

Taking the average over the phases now amounts to cou
integration forz:

^ f &5
1

2p i R dz

z
f ~z!, ~B7!

where the integration is done along the unit circle. The res
is then given by the sum of the poles that are inside the
circle. The two poles ofD(z) are outside the unit circle
while the two polesz1 and z2 of z2D(1/z) are inside the
circle. They are given by

zi5
1

2
cos2

u

2
~r a↑r b↑8 1r a↓r b↓8 !1sin2

u

2
~r a↓r b↑8 1r a↑r b↓8 !

1
1

2
~21! iFcos4

u

2
~r a↑r b↑8 2r a↓r b↓8 !212 cos2

u

2
sin2

u

2

3@r b↓8 r b↑8 ~r a↑2r a↓!21r a↓r a↑~r b↑8
21r a↓

2 !#

1sin4
u

2
~r a↓r b↑8 2r a↑r b↓8 !2G1/2

. ~B8!

The averaged torque and conductance are then simply g
by

K ]tb
x

]V0
L 52

en

4p

sinu

z12z2
TrS A~z1!

D~z1!
2

A~z2!

D~z2! D ~B9!

and

g5
e2

h

1

z12z2
TrS B~z1!

D~z1!
2

B~z2!

D~z2! D . ~B10!

In the case where all the channels are not identical, th
results can be generalized by introducing ak dependence of
the different transmission-reflection amplitudes.
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