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We develop a time-dependent mean-field approach, within the time-dependent variational principle, to
describe the superfluid-insulator quantum phase transition. We construct the zero-temperature phase diagram
both of the Bose-Hubbard model~BHM!, and of a spin-S Heisenberg model~SHM! with theXXZ anisotropy.
The phase diagram of the BHM indicates a phase transition from a Mott insulator to a compressibile superfluid
phase, and shows the expected lobelike structure. The SHM phase diagram displays a quantum phase transition
between a paramagnetic and a canted phases showing as well a lobelike structure. We show how the BHM and
the quantum phase model~QPM! can be rigorously derived from the SHM. Based on such results, the phase
boundaries of the SHM are mapped to the BHM ones, while the phase diagram of the QPM is related to that
of the SHM. The QPM’s phase diagram obtained through the application of our approach to the SHM,
describes the known onset of the macroscopic phase coherence from the Coulomb blockade regime for in-
creasing Josephson coupling constant. The BHM and the QPM phase diagrams are in good agreement with
quantum Monte Carlo results, and with the third-order strong-coupling perturbative expansion.
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I. INTRODUCTION

Phase transitions induced by thermal or quantum fluc
tions have been studied in various mesoscopic systems.
amples are Josephson junction arrays~JJA’s!,1 granular,2 and
short-length superconductors.3 Such systems have two differ
ent critical temperaturesT1 and T0 (T0,T1). Below T1,
they possess finite domains in which the electrons form
Cooper pairs: In each domain the condensate is describe
the Cooper pairs’ wave functionc j5DeiF j (D5uc j u beeing
related to the pair density! and the system is globally resis
tive because of the absence of phase coherence betwee
Cooper pairs.4 Below T0, the system may reach the macr
scopic phase coherence~global superconductivity!.

If the characteristic energy scale of the system is m
smaller thanuDu, one can regard the Cooper pairs as tr
bosons5 and the global superconducting phase transition
be studied by analyzing the critical behavior of strongly c
related bosonic models on a lattice.6,7 These exhibit two
characteristic energy scales: the hopping amplitudet which
accounts for the boson kinetic energy, and the Coulomb
pulsionU which is the electrostatic energy expense to ma
bosons spatially close. The Bose-Hubbard model~BHM! can
describe the energetic competition betweent andU. The glo-
bal superconducting phase transition is controlled by the
tio t/U which is a measure ofquantum effects. For t!U, the
strong quantum fluctuations ofF j prevent the system from
reaching the phase coherence for any value of the temp
ture. The conditiont@U entails the classical regime: Th
system undergoes a phase transition at a finite value of
peratureT0 that belongs to theD-dimensionalXY model’s
universality class. BelowT0 the system is superfluid, while
aboveT0 it becomes resistive. If the Coulomb interaction
PRB 620163-1829/2000/62~2!/1224~14!/$15.00
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comparable with the kinetic energy then quantum fluct
tions makeT0 vanish, and drive the (T050) superconductor-
insulator~SI! phase transition. The latter has been studied
great detail both experimentally8 and theoretically.6 The su-
perfluid phase is characterized by off-diagonal-long-ran
order signaled by a nonvanishing order parameterC
5^eiF i& ~macroscopic quantum phase coherence!. The insu-
lating phase is incompressible and it is characterized byC
50. In particular, due to the dimensional crossover, the
phase transition belongs to (D11)-XY model’s universality
class for commensurate bosons’ densities, whereas
mean-field-like away from such values.7

We recall that the number of bosonsnj ~at each sitej ) is
standardly considered to be canonically conjugated withF j .
This establishes a competition between the quantum fluc
tions of nj , and those ofF j ’s.9

In a recent paper10 we formulated a time-dependent mea
field theory ~TDMFT! of the BHM in order to investigate
some aspects of the physical scenery just described. The
MFT was based on factorizing slow/fast dynamics describ
by an effective form of the BHM Hamiltonian. The latte
was derived within the time-dependent variational princip
~TDVP! procedure, and relied on a picture of the syste
quantum state in terms of Glauber coherent states. In
approach the Hamiltonian degrees of freedom identified
construction with the parameterszj (t)—t is the real
time—of coherent statesuzj&, that is the expectation value
(^zj uaj uzj&) of the operatorsaj (aj

1) describing at each sitej
the destruction~creation! of bosons.11

We revealed that quantum effects concerning the com
tition between the Coulomb term and the hopping term
embodied in the time dependence of the coherent-state
rameterszj (t). The TDMFT involves a time-dependent,lo-
1224 ©2000 The American Physical Society
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cal order parameter which is assumed to represent the slo
varying part ofzj , and plays the same role ofc j . In Ref. 10,
we have shown thatc j has a time-independent amplitud
which is the analog ofD, and a time-dependent phase whi
is the analog ofF j . In particular, the phase’s quantum flu
tuations were described in terms of phase’s time fluctuatio

The phase transition is signaled by a qualitative variat
of the time behavior of the local superconducting order
rameter. In spite of the approximations involved by t
TDMFT, indeed our phase diagram shows a good agreem
with quantum Monte Carlo~QMC! simulations13 and strong-
coupling perturbative expansion~SCPE!.14

The purpose of this paper is to extend the TDMFT of t
BHM developed in Ref. 10 both to the spin-S Heisenbe
Model ~SHM! and to the quantum phase model~QPM! for
constructing their zero-temperature phase diagrams.15 To this
end we establish a rigorous mapping between the SHM,
BHM and the QPM based on the Holstein-Primakoff realiz
tion and the Villain realization of the spin algebra. In pa
ticular, we shall see that the existence of such a mappin
crucial to construct the phase diagram for the QPM wit
the TDMFT of the SHM. In this case, in fact, the explic
representation of the Hamiltonian in terms of coherent sta
is problematic16 due to the Euclidean algebraic structure
the QPM’s degrees of freedom.

In outline, the paper is organized as follows. In Sec. II,
introduce the three models we deal with, we illustrate so
basic aspects of their algebraic structure, and describe
qualitative phase diagrams. Based on the TDMFT, we c
struct in Sec. III the SHM’s phase diagram. The latter will
shown to describe the SI transition only in some interval
external magnetic fields. The discussion developed here
concern the SHM’s phase diagram only for magnetic field
that range. The full description of the SHM’s phase diagr
will be reported elsewhere.17 In Sec. IV we employ the pro-
gram developed in Appendix A to recover the BHM pha
diagram from the SHM one, and to obtain the quantum
sephson model’s phase diagram from the SHM phase bo
aries. In Sec. V we give our conclusions and further rema
Appendix A is devoted to a procedure following which bo
the BHM and the QPM are obtained from the SHM. In A
pendix B we apply the TDVP method to work out the sem
classical BHM Hamiltonian and its dynamical equation
Then we formulate the TDMFT and employ it to constru
the BHM’s phase diagram. After reviewing the basic pro
erties of spin-generalized coherent states,18 the TDVP
method is implemented in Appendix C for the SHM. In A
pendix D we derive the phase dynamics of the QPM a
perturbation of the SHM minimum energy configurations

II. THE MODELS

A convenient starting point for introducing models th
exhibit the SI phase transition is the BHM.1 It represents a
boson gas of identical charges hopping through
D-dimensional lattice whose Hamiltonian reads

HBH5(
j

@U~nj21!2m#nj2
t

2 (
^ i , j &

~ai
†aj1aj

†ai !, ~1!

where the operatorsniªai
†ai count the number of bosons a

the sitei, and the annihilation and creation operatorsai ,ai
†
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obey the canonical commutation relations@ai ,aj
†#5d i j . The

set $1,aiai
†ni% is the basis generating at each site

Heisenberg-Weyl algebrah4. Also, the parameterst,U of
Eq. ~1! are the hopping amplitude and the strength of
onsite Coulomb repulsion, respectively, while the chemi
potentialm fixes the average number of bosons in each s

The phase diagram of the BHM has been studied th
oughly by means of mean field7 and variational19 approaches
as well as perturbative14 and quantum Monte Carlo13 tech-
niques. At t/U50, the minimum energy configuration i
characterized by an integer numbern of bosons at each site
and a finite energy gapm52U for the creation of particle-
hole excitations. This reflects the Mott insulator~MI ! behav-
ior of such a phase which entails a vanishing compressibi
The MI regime survives~except for the degeneration poin
with m52nU) whent/U.0, inside extendedlobesattached
to intervalsI (n)5@2(n21)U,2nU# of the m/U axis in the
t/U2m/U plane. Elsewhere, in the phase plane, the sys
exhibits a superfluid character, both compressible and in
pendent from the filling.

At the lobe boundary the appearence of the superfluid
is announced by the vanishing of the energy gap between
states corresponding ton ~or n21) andn11 ~or n) particles
~or holes!. Also, at the critical points the varianceS2(F) of
the phase of the superconducting order parameter is red
so muchas the quantum coherence can take place. Ind
the F i ’s quantum fluctuation survives also in the superflu
phase and they are rigorously vanishing@S i

2(F)50# only in
the classical limit t/U→`. These two features characteriz
the whole MI-SF phase boundary as well as the onset of
superfluid state.

The QPM is deeply related to the BHM. It is largely em
ployed for the description of quantum JJA’s in which th
phasesF i of the superconducting order parameter are
namically relevant, the fluctuations of the modulusD being
negligible at low temperatures. Since among the islands
nanofabricated samples no Ohmic current flows and qu
particle tunneling is actually negligible, the QPM Ham
tonian defined as

HQP5(
i , j

QiVi j Qj2
EJ

2 (
^ i , j &

cos~F i2F j !, ~2!

with QiªNi2Nx , can capture the physics of JJA’s. In E
~2!, Ni counts the number of Cooper pairs which make
island deviate from the neutrality state with respect to
background charge. The standard assumption that phase
erators F i are canonically conjugated toNi ’s, namely
@F i ,Nj #52eid i j , requires coherently that theNi eigenval-
ues must range from2` to 1`. The Coulomb interaction is
described by the matrixVi , j54e2(C21) i , j , whereCi , j is the
inverse of the capacitance matrix. In the sequel we will
sume Vi , j5Vd i , j with V[4e2C0

21, where C0 is the self-
capacitance. The external voltageVx8Nx /V enters via the
induced chargeeNx , and fixes the average charge on ea
island. The phase diagram of the QPM is similar to BHM
one ~see Refs. 20,21!. The MI lobes are attached to the in
terval I (N0)5@(N021/2)V,(N011/2)V#, where the average
number of Cooper pairs isN08 int(Nx). The degeneration
points atEJ /V50 areNx5N0/2. Outside the lobes the sys
tem is globally coherent and exhibits a superfluid charac
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1226 PRB 62LUIGI AMICO AND VITTORIO PENNA
The argument usually employed to map the BHM
QPM is heuristic: In the limit of large average number
boson per site the bosonic field may be represented aaj

.Anje
iF j , aj

†.e2 iF jAnj (F j being Hermitian!, where the
operatorsnj8Nj2Nx have negligible fluctuations, and pla
the role of Cooper pairs’ density. The QPM is recover
through the identificationsNx[m/( jUi , j and EJ[nt (n is
the average boson density!. Since the fluctuations ofnj are
underestimated in the QPM the superfluid region is sma
than the BHM one.

It is worthwhile noting how a rigorous reading of th
mapping leads to severe inconsistencies.16 These are mainly
due to the boundness from below of bosonic number op
tors nj that makes extremely complex the problem of defi
ing the Hermitian phases canonically conjugated tonj .22

Nevertheless, the QPM can be defined in a consistent
since the operatorsNiª2 i ]F i

, and exp(6iFi) with F i an
Hermitian phaseare employed in formula~2!.

The difficulties involved in mapping the BHM into th
QPM in a direct way can be circumvented by using a th
~spin! model as a bridge connecting the first ones. To t
end we first describe the standard way to relate anisotr
spin-1/2 Heisenberg model with the physics of the SI tran
tion, then we introduce the spin-S model that will be em-
ployed in the sequel.

At very low temperature, few charge states are import
if on-site Coulomb repulsions are very large. If the gate vo
age is tuned close to a degeneracy, two charge states
island actually suffice to represent the relevant phys
Therefore, thehard core BHM is equivalent to a spin-1/2
Heisenberg model~see Ref. 23! the model Hamiltonian of
which is represented in terms of su~2! operatorsSi

z ,Si
1 ,Si

2

in the fundamental representation. SubstitutionsSi
z→ni

21/2, Si
1→ai

1 , andSi→ai allow one to recover the hard
core BHM from the spin-1/2 Heisenberg model.

The zero-temperature phase diagram of the spin
Heisenberg model has been investigated in Refs. 23
within the mean-field approximation. This shows the pr
ence of a phase transition between paramagnetic/Ne´el phases
in which ^Si

z&Þ0 and^Si
6&50, and acantedstate in which

^Si
z&5^Si

6&50.
Such magnetic orderings have a counterpart in the BH

phases: the canted state~long-range order in̂Si
x& and ^Si

y&)
indicates superfluidity in the BHM; the paramagnetic/Ne´el
phases~long-range order in̂ Si

z&: u^Si
z&uÞ0) correspond to

the MI’s ~the role ofm is played by the Heisenberg mod
external magnetic fieldh). The representation in terms of th
~anisotropic! spin-1/2 Heisenberg model cannot work for t
soft core BHM, this involving, in general, more than tw
charge states .

We propose the spin-S XXZHeisenberg model~denoted
so far by SHM! as a model capable of describing the phys
of the SI phase transition when more than two charge st
are involved. In this case the Hamiltonian has the form of
anisotropic spin-1/2 Heisenberg model, but~the representa
tion index! S.1/2. It reads

HS5(
i

~Si
z1S!@U~Si

z1S21!2h#

2
ES

2 (
^ i , j &

~Si
1Sj

21Sj
1Si

2!, ~3!
d
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where we have taken into account only the on-site interac
alongz. In Appendix A we describe a procedure which ma
the SHM onto the BHM and the QPM.

III. TDMFT OF THE SHM

In this section we construct the phase diagram repres
ing the SI phase transition for the SHM and compare it w
that of the BHM represented in Figs. 1 and 2. We develo
construction, the main steps of which are very similar to
TDMFT of the BHM depicted in Appendix B; thus we wil
sketch them without comment when the analogy with
TDMFT of the BHM is evident.

The semiclassical SHM model is achieved by project
Hamiltonian~4! on the su~2! coherent states~see Appendix
B!, thereby obtaining

HS5(
i

~ULi
z2h* !Li

z2
ES

2 (
^ i , j &

~Li* L j1L j* Li !1C,

~4!

where h*ªh2U(2S21), and Cª( iS@h* 1U(S21/2)#.
The semiclassical equations of motion obtained within
TDVP method25 read

i\L̇ j5@U~2L j
z12S21!2h#L j1ESL j

z (
i P( j )

Li . ~5!

Equations~5! are not integrable, since the constants of m
tion available are just two, namely thez component of the
total angular momentumLz5( jL j

z and the energy itself. The
TDMFT decoupling simplifies Eq.~5! through the approxi-
mation

LiL j* 'MiL j* 1LiMj* 2MiMj* , ~6!

which ensues from (Li2Mi)(L j* 2Mj )'0 and entails
^L j&t5Mj on long-time scales@compare with Eqs.~B7! and
~B8!#. The order parameter is defined as

FIG. 1. The phase diagram of the BHM forD51. The error
boxes are the QMC results ofBatrouni et al.in Ref. 13. The dashed
lines are the result of the SCPE. Relatively to the first lobeni

51), Eq. ~B24! gives (tc /U)50.5. QMC gives (tc /U)50.43
60.002 and the SCPE (tc /U)50.43. For (ni53), QMC and SCPE
give (tc /U)50.2 and (tc /U)50.18, respectively. Our theory give
(tc /U)50.16.
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M[
1

Ns
(

j
^L j&t . ~7!

When Eq.~6! is inserted in Eq.~4! together with the unifor-
mity condition Mj[M; j , Hamiltonian ~4! reduces to a
sum of on-site terms:HS→( jHj , where

Hj5const1~ULi
z2h* !Li

z

2
qES

2
~MjL j* 1Mj* L j2uM j u2!. ~8!

The equations of motion derived from Eq.~8! simplify to

i\L̇ j5~2UL j
z2h* !L j2qESL j

zMj ~9!

and imply thatLz is no longer a constant of motion. In ana
ogy to the BHM case of Appendix B, implementing th
phase-locking conditionf j2a j5$0,p% on L j5uL j ueif j and
Mj5uM j ueia j , (f j ,a jP@0,2p#) successfully restores th
basic featuredLz/dt50. Due to Eqs.~9! the phasesf j obey
the equation

2\L j ḟ j5~2UL j
z2h* !L j2qESL j

zMj . ~10!

We examine first the spin dynamics related to the param
neticlike phase. Such a phase is identified by^Sj

z&, sharply
peaked at one of its spectral valuesm: S2(Si

z)!1; this con-
dition ~due to the uncertainty principle! induces strong quan
tum fluctuations ofSj

x andSj
y which suppress the ferromag

netic order in thex2y plane. Semiclassically,S2(Si
z)!1

translates inL j
z5m.

Within our scheme, the conditionL j
z5m, ; j follows

from the requantization procedure26,27 of the actionlike vari-
ables L j

z ~notice that $L j
z ,f j%5d i j /\), and entails uL j u

5AS22m2. Since Eq. ~10! is solved by f j5tr6 /\
1f j (0), then

Mj56
UD1r6

qESL j
z L j . ~11!

FIG. 2. The phase diagram of the BHM forD52 ~continuous
curve!. The error box indicates the QMC tricritical point obtaine
by Krauth and Trivediin Ref. 13. Forn51, (tc /U)50.25 while
QMC gives (tc /U)50.24460.002 and SCPE provides (tc /U)
50.272.
g-

We have parametrized the external magnetic field
Dªh* /U22m. The parameterr1(r2) is related to the
choice (f j2a j )50 @(f j2a j )5p#. The order parameter

M5
1

Ns
ei tr6 /\(

j
M je

if j (0)

has a vanishing~long! time averagêM &50, because of the
time-dependent phase factorei tr6 /\. Such a phase factor for
bids the breaking of the so~2! rotational symmetry of the
SHM in the xy plane. Thus, the oscillating behavior ofM j
identifies the paramagnetic phase. Notice that the condi
^M &50 can be realized also forMjÞ0: As in the case of
the TDMFT of the BHM, the TDMFT of the SHM can de
scribe the paramagnetic phase forES.0.

The frequenciesr6’s play the role of time correlation
length governing the phase transition. The observations
Appendix A as to the criticality of BHM can be extended
model~3!: As expected, the critical exponentsz andn fulfill
the same Eq.~B16!. The latter is left unchanged by the pro
cedure mapping the SHM onto the BHM and QPM. Hen
this suggests that the same Eq.~B16! governs the criticality
of the QPM.

Equation ~11! play the role of the self-consistent equ
tions of the TDMFT: They serve to eliminate the order p
rameter from the energy~8!. The energy of the paramagnet
phase reads

Em~h,ES ;r!52U~D1m1S!~m1S!

2
2qESm2r62UD

2qESm2 @UD1r6#~S22m2!.

~12!

The conditionh* /U22m50 (D50) identifies the degen
eration points at which the canted phase reachs the
ES /U50. The points on such an axis correspond to sta
solutions of the equation of motions~9! which are obtained
throughr650. Such a condition is the simplified form o
the low-frequency dynamics in the canted state.

Now, we consider the fixed points of the dynamical equ
tions ~9! that identify the canted phase. In such a case
self-consistent equations read

Mj5
h* 22UL j

z

qESL j
z

L j . ~13!

The calculation of the energy minimimum of the cant
phase is considerably simplified by applying the change
variable

pj5
h* 22UL j

z

qESL j
z

, ~14!

which implies that the self-consistency equation can be w
ten as

Mj5pjAS22S h*
qESpj12U D 2

. ~15!

After noting that the order parameterMj is a monotonic
~increasing! function of pj we are allowed to eliminate the
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1228 PRB 62LUIGI AMICO AND VITTORIO PENNA
order parameter from the energy~8! then minimizing it with
respect topj . The energy reachs its minimum value atpj
51 which corresponds to

~Lz!min5
h*

qES12U
[L0 , ~16!

where the indexj has been dropped since the uniformity
the solution. We point out that settingpj51 in Eq. ~13!
implies Mj5L j on which the TDMF decoupling is based
The minimum energy is

Emin5U
S

2
2

~h1qSES1U !2

2~qES12U !
. ~17!

Energy~17! gives the known~see Ref. 24! classical value of
the energy minimum~up to the constantUS/2, see Appendix
B!. Thus we conclude that the static solutions of Eq.~9!
correspond to the classical canted phase.

Now we employ the energy~12! to obtain the phase
boundaries between the paramagnetic and the canted ph
The curves representing them-phase boundary are identifie
by implementing the so~2! symmetry breaking through th
limits r6→0 and the vanishing of the energy gapsEm
2Em61 @compare with Eqs.~B21! and ~B22!#. In particular,
Em5Em11 provides the equation

U

2qES
D2

2 2r mD21sm50, ~18!

where D2ªh/U22(m1S)<0, and r mªm(m11)/(1
12m), smª@2(m1S)11#(112m)r 1

2/S2. A second equa-
tion is derived fromEm5Em21 whereD2 must be replaced
by D1ªh/U22(m1S)12>0. As in the bosonic case, th
upper~lower! root issued fromEm5Em21(Em115Em) gives
the phase boundaries

h1

U
52~m1S21!2

qESm~m11!

U~2m11!

3F211A12
2U

qESS2 ~2m11!@2~m1S!11# G ,
~19!

h2

U
52~m1S!2

qES~m11!~m12!

U~2m13!

3F212A12
2U

qESS2 ~2m13!@2~m1S!13# G .
~20!

We study the phase diagram~19!, ~20! for m,21/2. Such a
restriction guarantees that the canted phase propagates
ES /U50 at the degeneration pointsD50 for any value of
m,21/2 ~otherwise the paramagnetic lobes meet one e
other atD50, but atES /UÞ0). This feature is a common
property of the phase diagrams which describes the SI t
sition. The above condition selects values of the exter
magnetic fieldh in the range22U,h,(S23/2)U. Such a
limitation will be relaxed in a forthcoming paper.17 Figure 3
shows the phase diagram of the SHM forS510. We note
ses.

p to

h

n-
al

that the coordinates (ES /U) tr of the tricritical points~the
cusps of the lobes! are not monotonic as a function ofm ~see
also Fig. 5!. In the lower part of the phase diagram the
decreasemonotonically~increasingm starting from its mini-
mum value2S,h522 in Fig. 3! up to a critical value ofm
at which they are almost independent onm ~we call the ‘‘in-
version region’’ such a portion of the SHM phase diagram!.
In the lower part of the phase diagram, the shape of lobe
asymmetric. Instead, within the inversion region, the lob
are almost symmetric around odd-integer values ofm1S.
IncreasingS makes especially wide the inversion region.
such a region we can assume the effects of theLz’s dynamics
independent onm. For larger values ofm (ES /U) tr increases
monotonically with m. Figure 5 shows the nonmonoton
behavior of the tricritical points for various values ofS. In

FIG. 4. The phase diagram of the one dimensionalS-XXZ
model forS510 andS515. The lobes are obtained form ranging
in @2S, – 1#; in the figure,n5m1S ranges in@1,4#. We note that
the SF phase is enlarged for increasingS.

FIG. 3. The phase diagram of the SHM forD51 andS510.
Inside the lobes the ground state is paramagnetic. Elsewhere
system is in a canted phase. The lobes are obtained form ranging
from m52S ~corresponding to22,h/U,0 in the figure! to m
51 ~the upset lobe!. The coordinatesES /U of the first two lobes’
~corresponding to the22,h/U,2 lobes! tricritical points de-
crease; they are ‘‘almost’’ constant for 0,h/U,4 ~named ‘‘inver-
sion region’’ in the text!. The SF phase is progressively reduced
increasingm ~i.e., such that 4,h/U,16).
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line with the mapping developed in Sec. III, in the next se
tion we show that the SHM phase diagram contains
BHM ~QPM! phase diagram in the lower~inversion! region.

IV. FROM THE SHM TO THE BHM
AND QPM PHASE DIAGRAM

In this section we apply the results of Sec. III to constru
the phase boundaries of both the BHM and the QPM fr
the phase diagram of the SHM.

We first recover the BHM phase diagram as a limiti
case of the phase boundaries~19!, ~20! for S@1, a→0. The
latter allows one to expand the energy of the paramagn
phase~12! in power ofa; upon relating the parametersES , h
with t, m as in Appendix A, we find that the energy of th
paramagnetic phase~12! reduces to the form

Em~h,ES ;r6!5En~m,t;r6!2nF112
r61U~d11!

qt G
3@r61U~d11!#a1O@a2#. ~21!

Such a formula shows that, at the zeroth order ina, Em
matches the on-site energy in the Mott phase~B17!. In Fig. 6
we compare the phase diagram of the BHM with the SH
phase diagram worked out using the energy~12! for S555.

Similarly, we can obtain the phase diagram of the QP
by taking the limitS,m@1, b2!1 of the phase boundarie
~19!, ~20!. As pointed out previously, we recall that a cohe
ent states picture of QPM is not yet available in terms
coherent states ofe(2) @which is the algebra of the QPM
microscopic degrees of freedom, see Eq.~A3!#.16 Hence, the
direct application of the TDMFT, which relies on the cohe
ent states description of the Hamiltonian operators, canno
implemented in a direct way. The mapping outlined in A
pendix A is crucial to bypass such difficulties. It allows,
fact, to construct the QPM phase diagram within the SH
lobelike structure provided the values ofm/S remain inside a
suitable range~see below!. As stated in Appendix A, the

FIG. 5. The behavior of the tricritical points (ES /U) tr as func-
tion of n for different values ofS. We note that the region in which
(ES /U) tr is almost constant~named inversion region in the tex!
becomes wider for increasingS. Within this region the SHM’s dy-
namics can be considerd as pure phase dynamics. This behav
named ‘‘QPM-like behavior’’ in the text.
-
e

t

tic

f

be
-

condition S@umu together with the identificationsU[V,
Nx[h* /2U, andEJ[S2ES(12b2) recast the SHM Hamil-
tonian in the QPM form~see Appendix C!. Correspondingly,
the phase boundaries take the form

Nx
65

2m71

2
1

qb

USFEJ7AEJ
218

UEJ

q
S2b~12b! G .

~22!

We note that, for sufficiently largeS, small changes ofm
leave the parameterb almost unaltered. This is sufficient t
make the SHM phase diagram periodic inNx . The curves
~22! give a qualitatively correct QPM phase diagram for a
b2!1. We fix b in Eq. ~22! to reproduce quantitatively the
QMC phase diagram. Figures 7 and 8 show the phase
gram of the SHM model forS555. The paramagnetic
phases of the SHM turn in to the Coulomb blockade of
Cooper pairs. The canted state reveal the macroscopic p
coherence of the QPM.

r is

FIG. 6. The phase diagram of the BHM compared with t
phase diagram of the SHM forS555. The two phase diagram
coincide considering the zeroth order ina in formula ~21! with t
52SES andh5m.

FIG. 7. The phase diagrams of the SHM forS555 and b
50.17 in D51. The errorbars are the result of the QMC simu
tions of the QPM of Ref. 36.
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V. CONCLUSIONS

In this paper we have been concerned with two differ
aspects of the SI transition. The former is the algebraic st
ture that characterizes the main models exhibiting the
phase transition. The latter is the development of the tim
dependent mean-field theory~TDMFT! for the spin S
Heisenberg model withXXZ anisotropy~SHM! that gener-
alizes the approach previously elaborated for the Bo
Hubbard model~BHM!. Remarkably, such a theory appea
to be applicable to a large class of spin models.

The analysis of Appendix A concerning the algebra
framework in which the SHM is constructed, indicates th
the correct way to map the SHM on the BHM is given by t
Holstain-Primakoff realization of spin operators. Instead,
quantum phase model~QPM! is related to SHM through Vil-
lain’s realization of the spin operators. Thanks to the tra
parent geometric meaning of such realizations35,27 both the
BHM and the QPM can be issued from the SHM by cons
ering the appropriate sectors of the spin spectrum. To s
marize: the BHM Hamiltonian emerges in the limiting ca
of spin vectors close to the south pole of the spin sph
while the QPM behavior is found for spin vectors around
sphere equatorial plane.

The TDMFT have been presented in an extensive wa
Appendix B, where it is used to investigate the BHM and
SI phase transition. Such a theory is based on combining
time-dependent variational principle~TDVP!, the coherent
state picture of the model quantum dynamics, the Eins
requantization procedure, and a time-dependent genera
tion of the mean-field decoupling.

The central assumption in our theory is that atT50, time
dependence of the semiclassical variableszi(t) represents
the analog of the quantum fluctuations of operatorsai .

Although Eqs. ~B5! ~the semiclassical counterpart o
Heisenberg’s equations foraj ’s! have been simplified to de
scribe an on-site dynamics concerningzj ’s, they furnish a
consistent description of the system’s quantum phase tra
tions. This is due to the semiclassical requantization pro
dure @see Eq.~B14!#, on the one hand, and on the time d
pendence characterizing the phase of the supercondu
order parameter, on the other. The latters make the or

FIG. 8. The phase diagrams of the SHM forS555 and b
50.17 and forS5100 andb50.22 inD52. The boxes are a resu
of QMC simulation of Ref. 37.
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parameter phase the main responsible in driving the SI t
sition. Within the TDMFT, we have established a relati
between the dynamical behavior of the~local! superconduct-
ing order parameter and the macroscopic phases exhibite
the BHM. The Mott phase has been shown to be charac
ized by time fluctuations of the phase of the superconduc
order parameter, whereas the superfluid phase is relate
the static solutions of the~mean-field! equations of TDVP.
The energy minimum coincides with the classicalt/U@1
superfluid case.

Below, we compare the ordinary MFA~mean-field ap-
proximation! with the TDMFT. The first comment in order i
that the time-independent MFA of the BHM~Refs. 7,29!
describes the SI phase transition by means of the suppres
of the amplitudeof the order parameter. The quantum flu
tuations of the phase of the superconducting order param
play no role in the standard MFA. Moreover, the MI phase
characterized by an on-site energy where the hopping t
does not contribute.

The main difference between TDMFT and the stand
MFA stands in the dynamical content of the definition of t
superconducting order parameter: Within the TDMFT, t
SF phase is suppressed by the~order parameter’s! phase’s
time fluctuations just as phase quantum fluctuations des
macroscopic quantum coherence. Also, in the MI phase o
the time average of the local parametersc j is vanishing
~along large time scale!. This does not imply thatc j is
strictly zero inside the insulator as it happens in the stand
MFA. The good agreement with quantum Monte Carlo sim
lations and strong-coupling perturbative expansion confir
a posteriori that the superfluid phase is almost classic
Quantum fluctuations are strong in the insulating phase; t
drive the SI phase transition, and are negligible in the sup
fluid phase, except in the regions very near to the ph
boundaries.

Based on the introduction of the spin coherent states
formed in Appendix C, the TDVP effective picture of qua
tum dynamics and the TDMFT of Appendix B have be
extended to the SHM in Sec. III. Our analysis has reveale
quantum phase transition between a paramagnetic an
canted phase. The phase diagram exhibits a lobelike st
ture. Inside the lobes the phase is paramagnetic; elsew
the system is in a canted state. The energy in the ca
phase~represented by the stationary solutions of the eq
tions of motions! coincides with the known classical energ

We point out how the ordinary MFA@linearization of the
xy exchange term in Eq.~3!# leads to study the reduce
~on-site! Hamiltonian in the su~2! enveloping algebra@due to
the (Sz)2 term# which prevents one from diagonalizing th
Hamiltonian for genericS.30 Studying the spectrum of Eq
~3! for sufficently highS ~which is done in the present pape!
is in fact very problematic since the~matrix! Hamiltonian
has a rank increasing withS. The classical analysis we hav
developed avoids such a problem and captures the lobe
structure of the SHM phase diagram.

The SHM’s phase diagram contains the BHM’s a
QPM’s ones. Using the strategy developed in Appendix
we have recovered the BHM energy as well as its ph
diagram. As we pointed out previously, implementing t
TDMFT to the QPM is problematic since the semiclassi
description of the model in terms of thee(2) coherent states
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is not available. Nevertheless, the phase diagram of the Q
has been obtained as an appropriate limit~see Appendix A
and IV! of the SHM phase diagram@the lobe structure is
~locally! periodic aroundm for changesm1Dm such that
Dm/S!m/S#. This picture appears to be consistent with t
QPM form assumed by the SHM~effective! Hamiltonian
close to its ground-state configuration~see Appendix D!, and
suggests that possibly the~purely quantum! SHM can be
reduced to the QPM form as well.

Other perspectives are opened by the present study.
First, the tools we used to map the SHM on the BHM a

the QPM show how the enveloping algebra characteriz
the BHM and QPM have common root in the envelopi
algebra of the SHM. The mapping between these models
be seen ascontractionprocedure31 of the enveloping alge-
bras underlying the BHM, SHM, and QPM.32 This suggests
the fact that the universality class might be preserved
contraction.

Second, since the equations of motion~of the BHM and
the SHM! obtained by the TDVP have been consider
within the simplified form entailed by TDMFT, the dynam
cal approach refined out the TDMFT should imply a mo
accurate description of the superconducting order param
dynamics as well as a better understanding of the lo
temperature regime. As to this point, other improveme
can be achieved by constructing trial wave functions able
account more accurately the microscopic physical proce
~see Ref. 19!. Finally, the TDMFT succeeds in capturing th
main features of the quantum phase diagram of a rather l
class of models. Promising applications of the TDMFT
other systems are expected due to its feasible character

ACKNOWLEDGMENTS

The authors would like to thank L. Casetti, U. Eckern,
Falci, R. Fazio, R. Franzosi, G. Giaquinta, R. Maciocco,
Osterloh, M. Rasetti, and S. Sharov for valuable discussio
L.A. acknowledges financial suppport from EU TMR Pr
gram~ERB 4061 PL 95–0670!, and the warm hospitality o
the Theoretical Physics II in Augsburg. V.P. expresses
gratitude to the Schro¨dinger Institute in Wien, where part o
this work was done, for supporting his visit as well as to t
MURST for financial support within SINTESI Project.

APPENDIX A: MODEL MAPPING

In this appendix we give proof of the equivalence b
tween the SHM, BHM, and QPM. The key operation of su
a mapping consists in studying the model~3! for sufficiently
high values of representation indexS, and in using the
Holstein-Primakoff realization~HPR! and the Villain realiza-
tion ~VR! of the spin algebra.

1. From the SHM to the BHM

We rewrite spin operators in Hamiltonian~3! by means of
the HPR of the spin algebra su~2!
M

d
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ter
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e
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Si
15A2Sai

†A12ni /~2S!,

Si
25~Si

1!†,

Si
z5ni2S, ~A1!

and note how, in view of the formulas of Appendix C, th
eigenvalues of the secular equation for thei th spin (Si

z

1S)umi ,S&5(mi1S)umi ,S& ranging in $0, . . . ,2S% identi-
fies with the eigenvalues ofni . Consistently, the spin state
umi ,S& coincide with the number operator eigenstatesuni& up
to the reparametrizationni5mi1S.

The conditionni /S[(mi1S)/S5a!1 allows one to ob-
tain Hamiltonian ~1! from Eq. ~3!. In particular, the
xy-exchange term of Eq.~3! gets in the hopping term of Eq
~1! with the hopping amplitudet52(12a)SES→2SES for
S→`, and ni finite. In the same limit, the spectrum ofSi

z

1S[ni ranges in$0, . . . ,̀ % thus reproducing the spectrum
of bosonic operatorsni . The z-antiferromagnetic term and
the coupling with the external magnetic field term becom
the Coulomb interaction and chemical potential terms,
spectively (h5m).

Also, sincea[(mi1S)/S (a has to be viewed as a
order of magnitude independent on the site labeli ), the
above limit corresponds quantum mechanically to select s
states close to lowest weight vectoruS,2S& of the algebra
sui(2) ~see Ref. 33! at thei th site. In this respect, we reca
that, within the HPR,uS,2S&5u0&, whereai u0&50.

The effect of takinga!1 is illustrated by means of the
semiclassical spin vectorLW ~defined in Appendix C! lying on
a sphere of radiusS. Such a limit leads to select those vecto
neighboring to the south pole of the sphere. Consisten
spin-coherent statesuj i& @see definition~C1!#, that pertain to
the Hilbert space of bosons within the HPR, can be shown
tend to the bosonic onesuzi& for a→0 @see Eq.~B2!#, while
the same limit makes the spin vectors on the sphere coinc
via stereographic projection, with the points of the south p
tangent plane.34 These are in bijective correspondence w
the complex numberszj labeling the bosonic coherent state
In fact, formulas~C3!,~C4! clearly show thatL j

z→2S is
achieved for negligibleuj j u2 which also entailsL j* →2Sj j ,
L j→2Sj j* . This in turn leads to the identificationszj*
[L j* /A2S5A2Sj j , zj[L j /A2S5A2Sj j* , and makes coin-
cide brackets~C7! with brackets~B6!. Hence the limit de-
scribed above for the Hamiltonian operators is consiste
reproduced at the classical level. We see in Sec. VI that
SHM phase diagram matches the BHM phase diagram
a→0.

2. From the SHM to the QPM

We write the spin operators in Hamiltonian~3! by means
of the Villain realization of su~2!.35 This is based on the
formulas

Sj
15eif jA~S11/2!22~Sj

z11/2!2,

Sj
25~Sj

1!†. ~A2!
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Such operators fulfil the su~2! commutation rules provided
the action-angle operatorsSj

z , f j , satisfy the e~2! commu-
tators

@Sl
z ,e6 if j #56d j ,le

6 if j , @eif j ,e2 if l#50. ~A3!

The QPM ~2! is obtained as a limiting model from Hami
tonian ~3! when considering the first order inb5umi u/S!1
for S@1. The ferromagnetic part of Eq.~3! reduces to the
Josephson term with couplingEJ[(S11/2)2ES(12b2)
which in the limitS→` becomesEJ[S2ES . As in the case
of a, the parameterb5umi u/S must be regarded as a sit
independent order of magnitude. Consistently, the spect
of Si

z will range from2` to 1` thus reproducing the spec
trum of the unbounded operatorNi in Eq. ~2!. The rest of
Hamiltonian ~3! maps to the charging term of Eq.~2! pro-
vided V[U, and Nx5@h1U(122S)#/2U. It results HS
→HQP1C0, whereC052(U1h)2/4U.

Geometrically,b!1 amounts to selecting vectors neig
boring the equatorialxy plane of the semiclassical sphere
radiusS. This is well illustrated via formulas~C3!, ~C4! that
provide uj i u221!1(uLi

zu!S) as a counterpart of the abov
condition b!1. Consistently, the sphere equation (Li

z)2

1uLi* u25S2 shows thatuLi* u2.S2. Since both the Josephso
coupling and the hopping amplitude contain the factorES ,
the formulaEJ5tS/2 holds for 1!S,a!1, b!1. ThusS
plays the role of the boson densityn ~see Sec. II!. We point
out that the effective hopping coupling in the BHM is r
duced by a factorSwhen compared with the Josephson co
pling in QPM; consistently, the SF region of the BHM
phase diagram is smaller than the SF region of the QP
one.

We note how, when considering the perturbative dyna
ics around the ground-state configuration of the SHM~see
Appendix C!, one obtains a QPM-like behavior~that is, hav-
ing a pure phase’s dynamics! without performing the limit
S→`. We see that the phase diagram of the QPM is
tained forb2!1.36

APPENDIX B: THE TDMFT OF THE BHM

In this appendix we apply the TDVP~see Refs. 25 and 18
for a general review! to the quantum dynamics of Hami
tonian ~1!, and implement the TDMFT for the BHM.

1. Time-dependent mean-field theory

The initial step of the TDVP method amounts to finding
solution of the Schro¨dinger problem (i\]t2H)uC&50 by
approximating the exact~unknown! solution uC& through a
macroscopic stateuF& whose time evolution is imposed t
obey the weaker form of Schro¨dinger’s equation̂ Fu( i\]t
2H)uF&50. Upon settinguF&5exp(iS/\)uZ& one obtains

Ṡ5 i\^Zu]tuZ&2H~Z!, ~B1!

@H(Z)[^ZuHuZ&#, which represents the key equation of t
approach.

The building blocks of Hamiltonian~1! are operators of
the Ns-site Heisenberg-Weyl algebrah4(Ns)5$I ,ai ,ai

† : i
PL%, Ns is the number of sites of the latticeL, but actually
belongs to the enveloping algebraA of W(Ns) because of
m

-

’s

-

-

the quadratic termsnj
2 . This motivates the choiceuZ&ª

^ j uzj& as the trial macroscopic state, entailing

uF&[eiS(t)/\
^ i uzi&, ~B2!

where the statesuzi& are the Glauber coherent states fulfillin
the secular equationai uzi&5zi uzi& for the boson lowering
operatorai , at each sitei. In this case the effective Lagrang
ian ~B1! becomes

Ṡ@Z#5 i\(
i

1

2
~ z̄i żi2zG izi !2H~Z!, ~B3!

where H(Z)5^ZuHuZ&—the semiclassical model Hamil
tonian — is given by

H5(
i

~Uuzi u22m!uzi u22
t

2 (
^ i , j &

~ z̄izj1 z̄jzi !. ~B4!

The equations obtained variationally from Eq.~B3!

i\ żi52mzi12Uzi uzi u22
t

2 (
j P( i )

zj ~B5!

account for the dynamics of variables~expectation values!
zi5^zi uai uzi&. Equations~B5! describe a Hamiltonian flow in
that they can be equivalently obtained through the stand
formulasi\ żj5$zj ,H%, where the Poisson brackets

$ f ~Z,Z̄!,g~Z,Z̄!%5
1

i\ (
j

S ] f

]zj

]g

] z̄j

2
]g

]zj

] f

] z̄j
D , ~B6!

specifically, $zk ,z̄j%5dk j / i\ have replaced the basic com
mutators@ai ,aj

†#5d i j within the TDVP semiclassical frame
work. Equations~B5! are not integrable, since the onl
known constant of motion, apart from the energy, isN
5( i uzi u2, i.e., the semiclassical version of the total partic
number N5( ini . The presence of the nonlinea
U-dependent term prevents one from decoupling them in
dual lattice space.

The TDMFT procedure is, in a sense, the analog in
dynamical contest of the mean-field approximation~MFA!
usually employed in statistical mechanics and is based o
well known microscopic picture of superfluids illustrate
e.g., in Ref. 37. It leads to simplifying the structure of Eq
~B5!. We set at each sitezi5c i1h i , wherec i is a slow
variable, whereash i is a fast oscillating term which de
scribes the high-frequency part of the dynamics taking pl
on the hopping interaction time scale. Also, we assume
(zi2c i)( z̄j2c̄ j )5h i h̄ j'0. Thusc j[^zj&t when the time
scalet is larger than that of thebj ’s (^d&t denotes the time
average!. Such time averages coincide with statistical av
ages~in the Gibbs ensemble! under the ergodic assumption
The onset to the~macroscopically! ordered phase reflects th
presence in the system of stable, slowly varying compone
of the lattice dynamics corresponding to thec j ’s. This means
that any zj is strongly attracted to its average valuec j
~namely that the collection ofc j ’s defines the dynamica
system’s attractor!. Dynamical regimes where the long scal
time behavior ofzj is not described by an asymptotic slow
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varying functionc j is related with the disordered phases
the system. The above considerations imply the TDMF
coupling

zi z̄j[~zi2c i !~ z̄j2c̄ j !1c i z̄j1c̄ j zi2c i c̄ j

'c i z̄j1c̄ j zi2c i c̄ j . ~B7!

The dynamical scenery just depicted leads thus naturall
defining

C[
1

Ns
(

j
^zj&t ~B8!

as the macroscopic order paramenter revealing when o
issues from the the lattice dynamics. Using formula~B7! in
H modifies the kinetic term as follows:

t

2 (
^ i , j &

~ z̄izj1 z̄jzi !→
qt

2 (
i

~ z̄ic i1c̄ izi2uc i u2!, ~B9!

wherec j[c i for j P( i ) ~smoothing condition!. The result-
ing Hamiltonian reduces to the decoupled formHm f
5( jHj , where

Hj5Uuzj u42muzj u22
qt

2
~ z̄jc j1c̄ j zj2uc j u2!, ~B10!

and exhibits a dimensionality dependence entering via
numbers of nearest neighborsq. The ~decoupled! equations
of motion ensuing fromHm f read

i\ żi52mzi12Uzi uzi u22
qt

2
c i . ~B11!

When compared with the exact ones, Eq.~B5!, they imply
the relationqc i'( j P( i )zj consistently leading to an identit
once the time average is carried on and the smoothing
ditions is used. A further effect coming from the lineariz
tion ~B9! consists in the fact that the total particle numb
N5( i uzi u2 does not have any longer vanishing Poiss
brackets withHm f . Restoring such a basic feature is pe
formed by consideringzj with an appropriate time depen
dence. To this purpose we look for solutions of Eqs.~B11!
whereu j ,x j , the phases of

zj5uzj ueiu j , c j5uc j ueix j , ~B12!

respectively, obey the phase-locking condition (u j2x j )
5$0,p%. Then N is constant due to the fact thatduzj u2/dt

5 iqt(zj c̄ j2 z̄jc j )/250. Moreover, the further condition
duc j u/dt50 consistently makesHm f constant as expecte
for the total energy.

Due to Eq.~B11!, the phaseu obeys the equation

2\uzj uu̇ j5~2Uuzj u22m!uzj u2s
qt

2
uc j u, ~B13!

wheres56, depending on how the phase-locking constra
is implemented. In spite of its simplicity, such an equation
able to characterize both the MI phase and the superfl
phase in terms of phase dynamics.

We examine first the dynamics related to the MI. In th
case,c j must have a zero time average along macrosco
f
-

to

er

e

n-

r
n
-

t
s
id

ic

time scales. Such a behavior occurs when the uniform fill
conditionsnj5n, for all i ~we identify here number operator
nj ’s with their integer spectral values! is inserted in Eq.
~B13! by setting

uzj u25nPN. ~B14!

Such a substitution is the natural consequence of the req
tization process26,27 of the actionlike variablesuzj u2 ~notice
that $uzi u2,u j%5d i j /\) strongly requested from the pur
quantum character of the MI. Att/U50, where the system is
integrable~since it reduces to a set of uncoupled, nonline
oscillators! indeedu j and uzi u2 represent the pairs of action
angle variables of the system. For small values oft/U such a
feature is still true as a consequence of the fact that
nonlinear oscillators are weakly interacting in the MI regim
Hence, in the spirit of Einstein’s requantization procedu
~see Ref. 26!, their orbits are still homotopic to those of th
integrable case which entails againuzj u25n.

Equation~B13! is easily showed to be solved byu j (t)
5l6t/\1u j (0), with l6 defined through

uc j u86
2An

qt
~l62Ud!. ~B15!

Here we have parametrized the chemical potential ad
5m/U22n, and l2 (l1) is related to the choiceu j2x j
5p (u j2x j50) ~notice that the indexj does not labell6

since the request̂zj&t[c j (t) leads to uc j u5An at each
site!. In the present theory, the frequenciesl6 play the role
of time correlation length governing the phase transition. O
theory gives l65UAn(m2mc) for fixed t and l6

5quc i u/2(t2tc) for fixed m (mc andtc are the critical values
of m and t). Upon defining the critical exponentsz andn as
in Ref. 7, we argue that28

zn51. ~B16!

By replacing in the reduced Hamiltonian~B10! the value of
uc i u provided by Eq.~B15!, the energy of the MI reads

En~m,t;l6!5nF 2

qt
~l61Ud!21U~d2n!22l6G ,

~B17!

where the subscriptn reminds us that the fillingn is ac-
counted for. The oscillating behavior of C
5(ei tl6/Ns)( jc je

iu j (0), having a vanishing long-time aver
age, identifies the MI. This, in fact, implies that the gau
symmetry breaking expected in the SF phase cannot
place. Notice that the ordinary~time-independent! MFA can-
not describe the MI fort.0, since the hopping term of th
reduced Hamiltonian is canceled by the vanishing of the
der parameter,c50. Within our scheme, instead, the cond
tion ^C&t50 can be realized also forcÞ0. The degenera-
tion points selected bym/U52n @i.e., d50 in I (n)# are
extreme limiting points for which the superfluid phase
extended up tot/U50. They will be identified with the
meeting points of the lobe boundaries. Such points cha
terize a static phase due tol650 @see Eq.~B13#. We inter-
pret the stationarity which distinguishes the solutions of
semiclassical equation of motion as the trait characteriz
the SF phase in whichS2(u)50 ~classical SF!. This is but
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the oversimplified version of the low-frequency dynam
expected in the SF phase that should correspond to the
dition S2(u)!1.

Let us consider the fixed points of dynamical equatio
~B11! that, as we concluded above, identify the classical
phase. Such solutions~the trivial caseżj50 due tozj5c j
50 is excluded! allow us to recast Eq.~B11! in the form
c j52@(2Uuzj u22m)/qt#zj making c j a function ofzj . In-
sertingc j (zj ) in Eq. ~B10! reduces the energy associated
the HamiltonianHj to

e~m,t,zj !5uzj u2F 2

qt
~m22Uuzj u2!21m23Uuzj u2G .

~B18!

The quantitye(m,t,zj ) is the on-site energy accounting fo
the absence of dynamics. The limitl6→0, in fact, shows
that En(m,t;l6)→e(m,t,zj ) providedn5uzj u2. The lowest
value of energy~B18! and the valuez* involved for zj are
obtained by minimization. They are given by

e* 52Uuz* u452
~m1qt/2!2

4U
, ~B19!

uz* u25
~m1qt/2!

2U
, ~B20!

respectively. The phase ofz* can be set to zero since th
gauge symmetry-breaking characterizing the ground-s
configuration. It is worth noting that insertinguz* u in the
expressionc j (zj ) implies thatc j[zj so that the minimum
energy configuration naturally fulfills the consistency con
tion on which our TDMFT is based.

Now, we employ the expression~B17! for the on-site en-
ergy to construct the BHM’s phase diagram. In the SF pha
the states withn andn11 ~adding a particle!, as well as the
states withn21 andn ~adding a hole! must be degenerate
The curves representing then-lobe boundary are identified
by implementing both gauge symmetry breaking through
limits l6→0 and the vanishing of the energy gapsEn
2En61. In other words we require

lim
l1→0

~En2En11!50 ~d,0!, ~B21!

lim
l2→0

~En212En!50 ~d.0!. ~B22!

For solving Eqs.~B21! and~B22! we introduce the variable
d65m/U22n1(161). By inserting d1>0 (d2<0) in
Eq. ~B21! @~B22!#, and definingr 5qt/4U, one gets the qua
dratic equationsd6

2 12rd62(2n71)50, that furnish the
pair of two-branched curves

m6

U
52n21712

qt

4U F17A11
8U

qt
~2n71!G .

~B23!

The lower branchm1(t) and the upper onem2(t) constitute
the boundary encircling thenth lobe. The substitution o
m2(t) andm1(t) in Eqs.~B21! and~B22!, respectively, pro-
vides the on-site energy values involved in the two cas
namely En21(m1 ,t)5En(m1 ,t)5Un(n21) and En(m2 ,t)
n-

s
F

te

-

e,

e

s,

5En11(m2,t)5Un(n11). The two branches are, therefor
separated by an energy gap. Thus, the lobe tips are sing
points of the energy. Their coordinates, obtained impos
m2(t)5m1(t), reads

tc5U/qn ~B24!

and m(tc)/U52n212(1/2n). The values oftc obtained
within the present theory, can be compared with QMC a
SCPE~Ref. 14! ~Figs. 1 and 2!. Contrary to the result ob-
tained in Ref. 14, our phase diagram has a concavity in
pendent of the dimensionality. In 1D we find a good agre
ment with QMC and SCPE. Upon recalling that o
construction relied on Eq.~B11!—this incorporates the time
dependent mean-field approximation—it is important to n
that the concavity of lobes inD>2 might be improved by
implementing the requantization process directly on the E
~B5!.

2. Remarks on the SF ground state

As to the effectiveness of the approach just illustrat
two important observations are in order. The first is that o
finding Eqs.~B19! and ~B20! concerning the ground-stat
configuration is remarkably confirmed by two other proc
dures. The other concerns the macroscopic phase at the p
transition@see Eqs.~B27! and ~B28!#.

The minimum energy of the SF phase can be calcula
from Eq. ~B4!. It represents the exact value of the BH
ground-state energy in the classical limitt/U@1. The mini-
mum energy is readily obtained by rewriting first the ho
ping terms as (z̄izj1 z̄jzi)5uzi u21uzj u22uzj2zi u2, and by
noticing then that the choicezl5j for each site entails the
lowest value of the hopping term since the only positi
contributionuzj2zi u2 vanishes on each bond. Upon minimi
ing the resulting expression of the energy

H* 5NsF ~Uuju22m!uju22
tq

2
uju2G , ~B25!

by setting dH* /duju50, one obtainsuju2[(m1qt/2)/2U
that matches exactly Eq.~B19!: The ground-state energ
~B18! coincides with the minimum of the exact~semiclassi-
cal! energy. Our approximation scheme thus reproduces
correct value ofj as well as the corresponding value of th
ground-state energy.

The ground-state energy eigenvalue can also be obta
once the Hamiltonian operator~1! is linearized via the stan
dard procedurenj

2'2nnj2n2, which is realiable fort@U.
This yields the diagonalized Hamiltonian

HBH.2UNsn
21(

k
@2Un2m2tg~k!#bk

1bk ,

~B26!

when the operatorsbk5Ns
21/2S jaj exp@ik̃j# of the k modes

are used. We have introducedg(k)5S r cos(kr) (r P@1,D# on
a D-square lattice! where kr is the r th component ofkW .
Hamiltonian~B26! clearly shows that its lowest eigenvalu
is obtained through the depletion of any modekÞ0 ~boson
condensation in the state withk50). As a consequence o
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the consistency condition̂n&[n(⇒N5Nsn), once more
the energy is minimized byn[(m1qt/2)/(2U).

A comparison with the quantum ground-state energy
known exactly in the caset/U50—is important as well. For
m/UPI (n) the eigenvalues ofHBH with integer filling n
5N/Ns , E($nj%)5S j@Unj

22(m1U)nj # reach their min-
imun valueE* 52UNsn

2 for nj5n andm/U52n21. The
on-site energye* 52Uuz* u4 @see Eq.~B20!# is found to
attain exactly its quantum counterpartE* /Ns52Un2 in the
limit t/U→0, m/U→2n, namely at the point ofI (n) repre-
senting its top.

The second observation pertains to the actionS that rep-
resents the phase of the macroscopic stateuF&. It raises a
special interest since it is itself a macroscopic quantity a
thus is viable to experimental observations. In the followi
we compareS with Sm f ~i.e., S in our TDMFT! as well as
Sm f in the MI with Sm f in the SF.

When Eqs.~B5! are inserted in Eq.~B3! thenṠ reduces to

Ṡ5US j uzj u4, ~B27!

where the explicit form ofzj (t) is known only once Eqs
~B5! have been really solved.

Inserting Eqs.~B11! instead of Eq.~B5! in Eq. ~B3!, and
replacingH with its mean-field versionHm f , involves

Ṡm f5S j@Uuzj u41t~ z̄jc j1c̄ j zj !22tuc j u2#. ~B28!

If zj'c j , then Ṡm f and Ṡ have essentially the same form
Such macroscopic quantities may actually coincide at
low-temperature regime if the dynamics of bothHm f andH
have solutions characterized byuzj (t)u2'const. Within the
present TDMFTṠm f[Ṡ since the conditionh i h̄ j'0 implies
zj'c j ; furthermore,uzj (t)u is strictly time independent.

In the MI the requantization rule~B14! must be used. The
frequencyṠm f is obtained from Eq.~B28! by inserting Eq.
~B14!. Sm f reads as

Ṡm f5UNsn
2. ~B29!

A transition that changes the filling fromn to (n11) in-
volves a change of the phase frequency amounting
UNs(2n11). The action density in the superfluid pha
readsṠm f5UNsuzu4, which compared with the correspond
ing formula~B29! shows that the frequency is not quantize
In the SF phase transitions between different configurati
~different values of the filling! occur continously.

APPENDIX C: SPIN-COHERENT STATE PICTURE
OF XXZ MODEL

Spin-coherent states~SCS! uj& are defined as

uj&ªDS~j!ejS1
uS,2S&, ~C1!

whereS1 is the raising operator of the angular momentu
algebra su~2! generated bySz , Sx5(S11S2)/2, and Sy
5(S12S2)/2i which fulfill the standard commutators

@Sz,S6#56S62, @S1,S2#52Sz . ~C2!
d

e

to

.
s

DS(j)81/(11uju2)S represents a normalizing facto
whereasuS,2S&, the so-called maximum weight vector, sa
isfies the equationS2uS,2S&50. The action ofS6

S6uS,m&5A~S7m!~S6m11!uS,m61&

is represented on the standard basis$uS,m&;umu,S% the vec-
tors of which obey the secular equationSzuS,m&5muS,m&.
Making explicit the action ofS1 in Eq. ~C1! supplies the
spanned form

uj&5DS~j! (
m52S

S

Cm~S!jm2SuS,m&

of uj&, with Cm(S)8A(2S)!/(S2m)!(S1m)!. Based on
such a formula, one is able to calculate the expectation
ues

Lz5^Sz&5S
uju221

uju211
, ~C3!

L* 5^S1&5S
2j

uju211
, ~C4!

where^d&8^juduj&, and therefore to reconstruct the sphe
equation (Lz)21(Lx)21(Ly)25S2, where L5Lx2 iL y

5(L* )* for the classic spin (Lx,Ly,Lz). Such an equation
in turn, can be viewed as the classic counterpart of the~quan-
tum! Casimir equation (Sz)21(Sx)21(Sy)25S(S11) for
(Sx,Sy,Sz) in terms of the SCS picture and illustrates t
semiclassical content thereof. Upon introducing the mac
scopic wave function

uF&8eiS/\uj&, ~C5!

where the trial stateuj&•5 ^ i uj i& anduj i& is the SCS for the
i th spin (Si

x ,Si
y ,Si

z), then one easily constructs the TDV
semiclassical dynamics relative to spin Hamiltonian~3!

HS52h(
i

~Si
z1S!1U(

j
~Sj

z1S!~Sj
z1S21!

2
ES

2 (
^ i , j &

~Si
1 Sj

21Sj
1 Si

2!,

~now assumed to be constituted by spins withS.1/2), by
proceeding along the same lines as Appendix A. The res
ing HamiltonianHSª^juHSuj& reads

HS52h* (i
L i

z1U(
i

@~121/2S!~Li
z!21S/2#

2(
i

S@US1h* #2
ES

2 (
^ i , j &

~Li* L j1L j* Li !,

~C6!

whereh* 5h2U(2S21), and we have used the fact tha
via a nontrivial calculation, one finds^(Sz)2&5(1
21/2S)(Li

z)21S/2. Furthermore, stationarizing the actionS
5*dt^ju( i\] t2HS)uj& provides the equations of motion fo
the variablesLi* , Li @see Eqs.~5!#, whereLi

z is depending on



x

d

e

t
t

m
he
ex

a

-

en
ion
of

r

to-

1236 PRB 62LUIGI AMICO AND VITTORIO PENNA
Li , Li* via the constraint introduced above for the spin e
pectation value components (Li

z)21uLi u2[S2. Once the
brackets

$A,B%5(
j

~11uj j u2!2

2Si\ F ]A

]j j

]B

]j j*
2

]B

]j j

]A

]j j*
G ~C7!

have been defined, one can easily check that$L j* ,L j%
52L j

z/ i\, $L j
z ,L j* %5L j* / i\, and $L j

z ,L j%52L j / i\ consis-
tently with Eq. ~C2!, while the dynamical equations issue
from the TDVP can be recovered as well fromHS . Equiva-
lently, the alternative form of the above Lie-Poisson brack

$A,B%5
1

\ (
j

F ]A

]f j

]B

]L j
z
2

]B

]f j

]A

]L j
zG ~C8!

can be reconstructed from Eq.~C7! when expressingLi ’s as

Li5AS22~Li
z!2eif i ~C9!

through the action-angle variablesf i , Li
z . This fact states a

the classical level the equivalence between the HPR and
VR introduced in Sec. III.

APPENDIX D: LOCAL PHASE DYNAMICS
OF THE SHM HAMILTONIAN

This appendix is devoted to calculating explicitly the for
assumed by the spin Hamiltonian in the proximity of t
ground-state configuration in order to show how weakly
cited states mimic the dynamics of the~classic! phase model.
Upon recalling that the ground-state configuration is char
terized by
C
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L0[h* /~2U1qES!, f i5f j ,

at each sitej, considering the approximation

L jLi* 1LiL j* .2g cos~f i2f j !

3F12
L0

g
~Pi1Pj !2 f ~Pi ,Pj !G ,

wherePj5L j
z2L0 , g5S22L 0

2, and

f ~Pi ,Pj !ªF L 0
2

2g2
~Pi2Pj !

21
Pi

21Pj
2

2g G ,

leads to rewriting spin Hamiltonian~4! as

HS.C1(
i

~UPi
21UL 0

22h* L0!

2gES(
^ i , j &

f ~Pi ,Pj !2gES(
^ i , j &

cos~f j2f i !.

~D1!

Decouplingf (Pi ,Pj ) from the cosine term in the latter for
mula relies on the fact that (f j2f i)

23 f (Pi ,Pj ) is fourth
order. The resulting model exhibits the QPM structure ev
if, within the present approximation scheme, the condit
uPj u!L0 only concerns the spin dynamics. The geometry
the sphere~the spin configuration space! is involved instead
when one imposesb5umu/S!1 (m is the quantum numbe
corresponding toL0) in order to make explicit the~local!
cylinderlike geometry characterizing the QPM in the equa
rial region.
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