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We develop a time-dependent mean-field approach, within the time-dependent variational principle, to
describe the superfluid-insulator quantum phase transition. We construct the zero-temperature phase diagram
both of the Bose-Hubbard mod@HM), and of a spirsS Heisenberg moddlSHM) with the X XZ anisotropy.

The phase diagram of the BHM indicates a phase transition from a Mott insulator to a compressibile superfluid
phase, and shows the expected lobelike structure. The SHM phase diagram displays a quantum phase transition
between a paramagnetic and a canted phases showing as well a lobelike structure. We show how the BHM and
the quantum phase mod@PM) can be rigorously derived from the SHM. Based on such results, the phase
boundaries of the SHM are mapped to the BHM ones, while the phase diagram of the QPM is related to that
of the SHM. The QPM'’s phase diagram obtained through the application of our approach to the SHM,
describes the known onset of the macroscopic phase coherence from the Coulomb blockade regime for in-
creasing Josephson coupling constant. The BHM and the QPM phase diagrams are in good agreement with
guantum Monte Carlo results, and with the third-order strong-coupling perturbative expansion.

[. INTRODUCTION comparable with the kinetic energy then quantum fluctua-
tions makeT  vanish, and drive thel;=0) superconductor-
Phase transitions induced by thermal or quantum fluctuainsulator(Sl) phase transition. The latter has been studied in
tions have been studied in various mesoscopic systems. Egreat detail both experimentaflyand theoretically. The su-
amples are Josephson junction arr@}®\'s),* granular® and  perfluid phase is characterized by off-diagonal-long-range-
short-length superconductotSuch systems have two differ- order signaled by a nonvanishing order parameter
ent critical temperature¥,; and Ty (To<T,). Below Ty, =(e'®) (macroscopic quantum phase coherendée insu-
they possess finite domains in which the electrons form théating phase is incompressible and it is characterizedlby
Cooper pairs: In each domain the condensate is described by0. In particular, due to the dimensional crossover, the SI
the Cooper pairs’ wave functiop;=Ae'®i (A=|y;| beeing  phase transition belongs t®¢1)-XY model's universality
related to the pair densityand the system is globally resis- class for commensurate bosons’ densities, whereas it is
tive because of the absence of phase coherence between thean-field-like away from such valués.
Cooper pairé. Below Ty, the system may reach the macro-  We recall that the number of bosons (at each sitg) is
scopic phase coherengglobal superconductivily standardly considered to be canonically conjugated with
If the characteristic energy scale of the system is muciThis establishes a competition between the quantum fluctua-
smaller than|A|, one can regard the Cooper pairs as truetions ofn;, and those ofIJ,-’s.9
bosons and the global superconducting phase transition can In a recent papéf we formulated a time-dependent mean-
be studied by analyzing the critical behavior of strongly cor-field theory (TDMFT) of the BHM in order to investigate
related bosonic models on a lattité.These exhibit two some aspects of the physical scenery just described. The TD-
characteristic energy scales: the hopping amplituddich ~ MFT was based on factorizing slow/fast dynamics described
accounts for the boson kinetic energy, and the Coulomb reby an effective form of the BHM Hamiltonian. The latter
pulsionU which is the electrostatic energy expense to makevas derived within the time-dependent variational principle
bosons spatially close. The Bose-Hubbard m@BeiM) can  (TDVP) procedure, and relied on a picture of the system
describe the energetic competition betweéandU. The glo-  quantum state in terms of Glauber coherent states. In this
bal superconducting phase transition is controlled by the raapproach the Hamiltonian degrees of freedom identified by
tio t/U which is a measure afuantum effects~ort<U, the  construction with the parameterg(7)—7 is the real
strong quantum fluctuations @b; prevent the system from time—of coherent state|zj), that is the expectation values
reaching the phase coherence for any value of the tempergz,|a;|z;)) of the operatorslj(aj*) describing at each sife
ture. The conditiont>U entails the classical regime: The the destructior{creation of bosons:
system undergoes a phase transition at a finite value of tem- We revealed that quantum effects concerning the compe-
peratureT, that belongs to th®-dimensionalXY model's  tition between the Coulomb term and the hopping term are
universality class. Belowl, the system is superfluid, while embodied in the time dependence of the coherent-state pa-
aboveT) it becomes resistive. If the Coulomb interaction is rametersz;(7). The TDMFT involves a time-depender;
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cal order parameter which is assumed to represent the slowlybey the canonical commutation reIatiQras,ajT]z dij - The
varying part ofz;, and plays the same role ¢f . In Ref. 10,  set {l,a;a/n;} is the basis generating at each site a
we have shown thay; has a time-independent amplitude Heisenberg-Weyl algebrh,. Also, the parameters,U of
which is the analog o\, and a time-dependent phase which Eq. (1) are the hopping amplitude and the strength of the
is the analog ofP; . In particular, the phase’s quantum fluc- onsite Coulomb repulsion, respectively, while the chemical
tuations were described in terms of phase’s time fluctuationgsotential . fixes the average number of bosons in each site.
The phase transition is signaled by a qualitative variation The phase diagram of the BHM has been studied thor-
of the time behavior of the local superconducting order paoughly by means of mean fi€lénd variationdf approaches
rameter. In spite of the approximations involved by theas well as perturbativé and quantum Monte Cardtech-
TDMFT, indeed our phase diagram shows a good agreemefjques. Att/U=0, the minimum energy configuration is
with quantum Monte CarléQMC) simulations® and strong-  characterized by an integer numieof bosons at each site,
coupling perturbative expansid8CPB."* and a finite energy gap=2U for the creation of particle-
The purpose of this paper is to extend the TDMFT of thehole excitations. This reflects the Mott insulatdtl ) behav-
BHM developed in Ref. 10 both to the spin-S Heisenbergor of such a phase which entails a vanishing compressibility.
Model (SHM) and to the quantum phase mod€IPM) for  The MI regime survivesexcept for the degeneration points
constructing their zero-temperature phase diagrams.this  with w=2nU) whent/U>0, inside extendetbbesattached
end we establish a rigorous mapping between the SHM, thg) intervalsl (n) =[2(n—1)U,2nU] of the u/U axis in the
BHM and the QPM based on the Holstein-Primakoff realiza-t/y — /U plane. Elsewhere, in the phase plane, the system
tion and the Villain realization of the spin algebra. In par- exhibits a superfluid character, both compressible and inde-
ticular, we shall see that the existence of such a mapping iﬁendent from the filling.
crucial to construct the phase diagram for the QPM within At the lobe boundary the appearence of the superfluidity
the TDMFT of the SHM. In this case, in fact, the explicit js announced by the vanishing of the energy gap between the
representation of the Hamiltonian in terms of coherent statesiates corresponding to(or n—1) andn+1 (or n) particles
is problemati¢® due to the Euclidean algebraic structure of (or holes. Also, at the critical points the varian&?(®) of
the QPM's degrees of freedom. the phase of the superconducting order parameter is reduced
~ Inoutline, the paper is organized as follows. In Sec. Il, wesg muychas the quantum coherence can take place. Indeed,
introduce the three models we deal with, we illustrate Somghe ¢,’s quantum fluctuation survives also in the superfluid
basp aspects of th§:|r algebraic structure, and describe theﬂhase and they are rigorously vanish[rfgz(tb):O] only in
qualitative phase diagrams. Based on the TDMFT, we CONgyq ¢iassical limit #U— . These two features characterize

struct in Sec. lll the SHM's phase diagram. The latter will be, o \vhole MI-SE phase boundary as well as the onset of the
shown to describe the Sl transition only in some interval of uperfluid state.

external magnetic fields. The discussion developed here will 1,4 QPM is deeply related to the BHM. It is largely em-
concern the SHM's phase diagram only for magnetic field ingjoyeqd for the description of quantum JJA's in which the
th.at range. The full description of the SHM's phase d'agra”bhasesd)i of the superconducting order parameter are dy-
will be drep?rted de_lsexvheﬁ@(.jln SAec. IVwe emﬁloyéLh'\j prho- namically relevant, the fluctuations of the modullisbeing
gram developed in Appendix A to recover the PNas€,aqligible at low temperatures. Since among the islands of

diagram from ﬂ,]e SHM Oone, and to obtain the quantum JOhanofabricated samples no Ohmic current flows and quasi-
sephson model’'s phase diagram from the SHM phase boun

aries. In Sec. V we give our conclusions and further remark%iritécr!edgi?]gzlIgg 's actually negligible, the QPM Hamil
Appendix A is devoted to a procedure following which both
the BHM and the QPM are obtained from the SHM. In Ap- E;
pendix B we apply the TDVP method to work out the semi- Hop=2 QiV;;Q;— > > cog®—d)), (2
classical BHM Hamiltonian and its dynamical equations. b )
Then we formulate the TDMFT and employ it to constructwith Q;:=N;—N,, can capture the physics of JJA’s. In Eq.
the BHM's phase diagram. After reviewing the basic prop-(2), N; counts the number of Cooper pairs which make the
erties of spin-generalized coherent stafeshe TDVP  island deviate from the neutrality state with respect to the
method is implemented in Appendix C for the SHM. In Ap- background charge. The standard assumption that phase op-
pendix D we derive the phase dynamics of the QPM as @&rators ®; are canonically conjugated t®;’s, namely
perturbation of the SHM minimum energy configurations. [, N;1=2eis;;, requires coherently that the; eigenval-
ues must range from o to +o. The Coulomb interaction is
Il. THE MODELS described by the matrix; ;=4e*(C™*); ;, whereC; ; is the
inverse of the capacitance matrix. In the sequel we will as-
sumeV; ;=V§; ; with V=4e°Cy*, whereCy is the self-
acapacitance. The external voltayg=N,/V enters via the
induced chargeN,, and fixes the average charge on each
island. The phase diagram of the QPM is similar to BHM’s
t one (see Refs. 20,21 The MI lobes are attached to the in-
Hgn= 2, [U(nj—1)— u]n;— > > (ala+afa), (1) tervall (Ng) =[(No— 1/2)V, (Ny+ 1/2)V], where the average
. Wy number of Cooper pairs iBly=int(N,). The degeneration
where the operatons; :=a; a; count the number of bosons at points atE;/V=0 areN,=N,/2. Outside the lobes the sys-
the sitei, and the annihilation and creation operatarsal  tem is globally coherent and exhibits a superfluid character.

A convenient starting point for introducing models that
exhibit the Sl phase transition is the BHMt represents a
boson gas of identical charges hopping through
D-dimensional lattice whose Hamiltonian reads
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The argument usually employed to map the BHM on o R -
QPM is heuristic: In the limit of large average number of I 1D-BHM
boson per site the bosonic field may be represented; as st TOMFT— |
=\n;e'®;, af=e ""1yn; (®; being Hermitiaj, where the e
operatorsn;=N; — N, have negligible fluctuations, and play N
the role of Cooper pairs’ density. The QPM is recovered N
through the identificationdl,=u/=;U; ; and E;=nt (n is T
the average boson densitysince the fluctuations af; are Woosr = i
underestimated in the QPM the superfluid region is smaller
than the BHM one. 2 1

It is worthwhile noting how a rigorous reading of this
mapping leads to severe inconsistenéfeshese are mainly L i
due to the boundness from below of bosonic number opera TEE
tors n; that makes extremely complex the problem of defin- T . . . .
ing the Hermitian phases canonically conjugatedn}o22 % o 02 Y 05 06 07
Nevertheless, the QPM can be defined in a consistent way
since the operatorhl;:=—idg, , and expgid®;) with ®; an FIG. 1. The phase diagram of the BHM f@r=1. The error
Hermltlan phasare employeld |n formulaz) boxes are the QMC results Bfatrouni et al.in Ref. 13. The dashed

The difficulties involved in mapping the BHM into the lines are the result of the SCPE. Relatively to the first lobge (
QPM in a direct way can be circumvented by using a third=1), EQ. (B24) gives ¢./U)=0.5. QMC gives {./U)=0.43
(spin) model as a bridge connecting the first ones. To this™0-002 and the SCPE(/U)=0.43. For (1=3), QMC and SCPE
end we first describe the standard way to relate anisotropigve (t./U)=0.2 and {./U)=0.18, respectively. Our theory gives
spin-1/2 Heisenberg model with the physics of the SI transi{tc/U)=0.16.
tion, then we introduce the sp®-model that will be em- ] o .
ployed in the sequel. where we have taken into account only the on-site interaction

At very low temperature, few charge states are importan@longz. In Appendix A we describe a procedure which maps
if on-site Coulomb repulsions are very large. If the gate volt-the SHM onto the BHM and the QPM.
age is tuned close to a degeneracy, two charge states per

island actually suffice to represent the relevant physics. IIl. TDMFT OF THE SHM

Therefore, thehard core BHM is equivalent to a spin-1/2

Heisenberg modelsee Ref. 28the model Hamiltonian of In this section we construct the phase diagram represent-
which is represented in terms of (8 operatorsS?,S" , S~ ing the Sl phase transition for the SHM and compare it with

in the fundamental representation. Substitutiogs—n;  that of the BHM represented in Figs. 1 and 2. We develop a
—-1/2, S"'—a;", andS,—a; allow one to recover the hard- construction, the main steps of which are very similar to the

core BHM from the spin-1/2 Heisenberg model. TDMFT of the BHM depicted in Appendix B; thus we will

The zero-temperature phase diagram of the spin-1/3ketch them Wlthout_ comment when the analogy with the
Heisenberg model has been investigated in Refs. 23,28DMFT of the BHM is evident. _ o
within the mean-field approximation. This shows the pres- The semiclassical SHM model is achieved by projecting
ence of a phase transition between paramagnetit/pleases Hamiltonian(4) on the s(2) coherent statetsee Appendix
in which (S7)#0 and(S")=0, and acantedstate in which ~ B), thereby obtaining
(S0)=(S")=0. .

. . . ) S

Such magnetic orderings have a count_erpftrt in theyBHM s He= z (ULZ—h, )L*— > 2 (L* L+ LJ-* L)+C,
phases: the canted stdteng-range order ifS) and(S')) . ih
indicates superfluidity in the BHM; the paramagneticZNe (4)
phaseglong-range ordgr i(S?): |(SP)|#0) _correspond 10 \here h, :==h—U(25—1), and C:=3,Sh, +U(S— 1/2)].
the MI's (the rolg O_f'“ is played by the Hels_(enberg model the semiclassical equations of motion obtained within the
external magnetic fieltd). The representation in terms of the tpvp method® read
(anisotropi¢ spin-1/2 Heisenberg model cannot work for the
soft core BHM, this involving, in general, more than two o
charge states . ihL;=[U(2L]+2S-1)—h]L;+ELI > Li. (5

We propose the spiB- XX ZHeisenberg modeldenoted e
so far by SHM as a model capable of describing the physicsequations(5) are not integrable, since the constants of mo-
of the Sl phase transition when more than two charge statagon available are just two, namely tlrecomponent of the
are involved. In this case the Hamiltonian has the form of theota| angular momenturi,= =;L? and the energy itself. The
anisotropic spin-1/2 Heisenberg model, lftite representa- TDMFT decoupling simplifies Eq(5) through the approxi-

tion index S>1/2. It reads mation
He=>, (S+9S)[U(S'+S—1)—h] LiLf ~ ML} +LiMf = MM], (6)
I
which ensues from L(i—Mi)(L}‘—Mj)~O and entails
_ E_S to- . ota— L.),=M; on long-time scalegcompare with Eqs(B7) and
> ('S +S's), &) j j

2 00 (B8)]. The order parameter is defined as
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6 ; ; ; ; ; ; ; We have parametrized the external magnetic field as
ZD-BHM A:=h,/U—-2m. The parametep (p_) is related to the
st . choice (p;— aj) =0 [(¢j— @;)=]. The order parameter
4 - M = + i’rp+/ﬁ2 M i (0)
- N_Se - J ]e J
w3 ] has a vanishinglong) time averag€M)=0, because of the
time-dependent phase facef’+ *. Such a phase factor for-
2 . bids the breaking of the $?) rotational symmetry of the
SHM in the xy plane. Thus, the oscillating behavior bf;
Wk . identifies the paramagnetic phase. Notice that the condition
. (M)=0 can be realized also fok1;#0: As in the case of
o the TDMFT of the BHM, the TDMFT of the SHM can de-

0 0.05 0.1 0.15 0z 0.25 03 035 04 scribe the paramagnetic phase Eg>0.

The frequencies.’s play the role of time correlation
length governing the phase transition. The observations of
Appendix A as to the criticality of BHM can be extended to
model (3): As expected, the critical exponerzsind v fulfill
the same Eq(B16). The latter is left unchanged by the pro-
cedure mapping the SHM onto the BHM and QPM. Hence,
1 this suggests that the same EB16) governs the criticality
M= (L), (7) ~ ofthe QPM. |

Ns 4 ) Equation(11) play the role of the self-consistent equa-
tions of the TDMFT: They serve to eliminate the order pa-
rameter from the energyB). The energy of the paramagnetic
phase reads

FIG. 2. The phase diagram of the BHM for=2 (continuous
curve. The error box indicates the QMC tricritical point obtained
by Krauth and Trivediin Ref. 13. Forn=1, (t./U)=0.25 while
QMC gives (./U)=0.244+0.002 and SCPE providest (U)
=0.272.

When Eq.(6) is inserted in Eq(4) together with the unifor-
mity condition M;=MVj, Hamiltonian (4) reduces to a
sum of on-site termsts— X;H;, where

:p)=—U(A+m+S)(m+
H;=const- (UL?—h, )L’ En(N.Esip)=—U(A+m+S)(m+S)

E 20Egm—p. —UA UL+ p.](S— )
- + —m°).
S ML IMD. ® 2qEgm? VATl
: : . — (12
The equations of motion derived from E@) simplify to N . N
The conditionh, /U—-2m=0 (A=0) identifies the degen-
iﬁLj:(ZULjZ_ he)Lj—QEsLIM, (9)  eration points at which the canted phase reachs the axis

Es/U=0. The points on such an axis correspond to static
and imply thatl_, is no longer a constant of motion. In anal- selutions of the equation of motior{8) which are obtained
ogy to the BHM case of Appendix B, implementing the throughp.=0. Such a condition is the simplified form of
phase-locking conditiony;— a;={0,7} onL;=|L;|e'%i and  the low-frequency dynamics in the canted state.
Mj=|M|e', (¢j,a;e[0,27]) successfully restores the  Now, we consider the fixed points of the dynamical equa-
basic featurelL?/dt=0. Due to Eqs(9) the phases); obey tions (9) that identify the canted phase. In such a case the
the equation self-consistent equations read

—hil;=(2ULI—h,)Lj—qEsLIM; . (10 :h*—ZUL]-Z

j=———L;. 13
G -

We examine first the spin dynamics related to the paramag-
neticlike phase. Such a phase is identified(8§), sharply
peaked at one of its spectral values>.?(S?)<1; this con-
dition (due to the uncertainty principlénduces strong quan-
tum fluctuations ofS{ and S which suppress the ferromag-
netic order in thex—y plane. Semiclassically}.?(S") <1 h*—2ULjZ
translates irLj=m. P; T OEL?
Within our scheme, the conditioh?=m, V| follows aEstj

from the requantization proceddfé’ of the actionlike vari-  which implies that the self-consistency equation can be writ-
ables L{ (notice that{L{,¢;}=4;/h), and entails|L;| tenas

The calculation of the energy minimimum of the canted
phase is considerably simplified by applying the change of
variable

: (14)

=S’—m?. Since Eq. (10) is solved by dj=T1p1h h >
+ ¢;(0), then .:.\/2_—*
$;(0) M;=p;j\/S (qESpj+2U) (15)
M-IiM - (11)  After noting that the order parametevt; is a monotonic
. qEgL] (increasing function of p; we are allowed to eliminate the
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order parameter from the ener@) then minimizing it with
respect top;. The energy reachs its minimum value @t
=1 which corresponds to "

16

/

h
* =Lo, (16) 10 -

Z L = —
(L )mln qu"' 2U 1D-SHM

where the inde) has been dropped since the uniformity of 2 >

the solution. We point out that settingj=1 in Eq. (13 >

implies M;=L; on which the TDMF decoupling is based. +f ]
The minimum energy is i

S (h+qSEs+U)? 0

Emin=U 5 = 5Bt 20) (19 2

0 0.‘05 0T1 0.‘15 0?2 e /8.‘25 0f3 0.;35 0j4 0.45

Energy(17) gives the knowr(see Ref. 2¥classical value of )

the energy minimunfup to the constantl S/2, see Appendix FIG. 3. The phase diagram of the SHM fBr=1 and S=10.

B). Thus we conclude that the static solutions of E@). Inside the lobes the ground state is paramagnetic. Elsewhere the

correspond to the classical canted phase. system is in a canted phase. The lobes are obtainedh fanging
Now we employ the energyl?) to obtain the phase from m=—S (corresponding to-2<h/U<0 in the figur¢ to m

boundaries between the paramagnetic and the canted phasgd. (the upset lobe The coordinate€s/U of the first two lobes’

The curves representing thephase boundary are identified (corresponding to the-2<h/U<2 lobeg tricritical points de-

by implementing the €@) symmetry breaking through the Crease; _they_are “almost” constant fOK_(h/U<4 (n_amed “inver-

limits p.—0 and the vanishing of the energy gags sion reglon” in the text The SF phase is progressively reduced for

— &1 [compare with Eqs(B21) and (B22)]. In particular, ~ ncreasingm (i.e., such that 4h/U<16).

Em=Em+ 1 provides the equation

that the coordinatesHg/U),, of the tricritical points(the

cusps of the lobgsare not monotonic as a function of(see

also Fig. 5. In the lower part of the phase diagram they

decreasanonotonically(increasingm starting from its mini-

where A_:=h/U-2(m+3)<0, and rp=m(m+1)/(1  mym value—S,h=-2 in Fig. 3 up to a critical value om

+2m), sp=[2(m+S)+1](1+2m)ri/S?. A second equa- at which they are almost independentrariwe call the “in-

tion is derived from&,,=&n-1 whereA _ must be replaced  version region” such a portion of the SHM phase diagram

by A :=h/U—2(m+S)+2=0. As in the bosonic case, the |n the lower part of the phase diagram, the shape of lobes is

upper (lower) root issued from€, =&y 1(Emr1=En) gives  asymmetric. Instead, within the inversion region, the lobes

u
— 2 —_— fr
quSA_ rmA_+s,=0, (18

the phase boundaries are almost symmetric around odd-integer valuesTof S.
IncreasingS makes especially wide the inversion region. In
he 2(m+S—1)— qEsm(m+1) such a region we can assume the effects ot fhedynamics
U ui2m+1) independent om. For larger values afn (Eg/U),, increases

monotonically withm. Figure 5 shows the nonmonotonic
behavior of the tricritical points for various values &fIn

—1+ \/1— %2(2m+ 1)[2(m+S)+1]

X .
(19 =
sL S net ip-sEw |
h_ q ES( m+1) ( m+2) /__,-——"""""‘M =10 —
U TAMES) T o) K ]
2U r i
X|—1- \/1——2(2m+3)[2(m+5)+3] . =
qEsS 2 2k
20 T e
We study the phase diagrah9), (20) for m<—1/2. Such a .
restriction guarantees that the canted phase propagates up
Es/U=0 at the degeneration points=0 for any value of At [
m< —1/2 (otherwise the paramagnetic lobes meet one eact ———————
other atA=0, but atEg/U+0). This feature is a common 20 oo o0l aots ooz o0% 003 00% o004

property of the phase diagrams which describes the Sl tran-
sition. The above condition selects values of the external F|G. 4. The phase diagram of the one dimensioBaXkXZ
magnetic fieldh in the range—2U<h<(S—3/2)U. Such a  model forS=10 andS=15. The lobes are obtained for ranging
limitation will be relaxed in a forthcoming papéfFigure 3 in[—S,—1]; in the figure,n=m+ S ranges in[1,4]. We note that
shows the phase diagram of the SHM f&+10. We note the SF phase is enlarged for increasiig
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FIG. 6. The phase diagram of the BHM compared with the

FIG. 5. The behavior of the tricritical point€g/U),, as func- ) .
V! icritical pointE/U)y y phase diagram of the SHM fd8=55. The two phase diagrams

tion of n for different values ofS. We note that the region in which o S i )

(Es/U),, is almost constantnamed inversion region in the text coincide considering the zeroth order dnin formula (21) with t

becomes wider for increasir§y Within this region the SHM's dy- =2SEsandh=p.

namics can be considerd as pure phase dynamics. This behavior is

named “QPM-like behavior” in the text. condition S>|m| together with the identification&J=V,
N,=h, /2U, andE;=S?Eg(1— B?) recast the SHM Hamil-

line with the mapping developed in Sec. lll, in the next sec-tonian in the QPM fornm(see Appendix € Correspondingly,

tion we show that the SHM phase diagram contains thehe phase boundaries take the form

BHM (QPM) phase diagram in the lowéinversion region.

IV. FROM THE SHM TO THE BHM Nf=2m+1 aB

[E T \/E2+8E82,8(1—,8)
AND QPM PHASE DIAGRAM 2 us| ™’ J q '(22)
In this section we apply the results of Sec. Il to construct

the phase boundaries of both the BHM and the QPM fro -
the phase diagram of the SHM. nWe note that, for sufficiently larg& small changes om

We first recover the BHM phase diagram as a limiting leave the parametes alm_ost unaltergd._Th_is is sufficient to
case of the phase boundari@$), (20) for S>1, a—0. The make the SHM phase diagram periodicNy. The curves
latter allows one to expand the energy of the paramagnetlgzz) give a qualitatively correct QPM phase diagram for any

; . ; <1. We fix 8 in Eqg. (22) to reproduce quantitatively the
phasg12) in power ofa; upon relating the parametets, h p?<
with t, u as in Appendix A, we find that the energy of the QMC phase diagram. Figures 7 and 8 show the phase dia-

tic phagd?) red to the f gram of the SHM model forS=55. The paramagnetic
paramagnetic phasd2) reduces to the form phases of the SHM turn in to the Coulomb blockade of the

Cooper pairs. The canted state reveal the macroscopic phase
++tU(6+1
P q(t ) coherence of the QPM.

X[p++U(+1)]a+O[a?]. (21)

gm(hvES;Pt)zEn(,U«yt;Pt)_n 1+

Such a formula shows that, at the zeroth orderain &,
matches the on-site energy in the Mott phéB&7). In Fig. 6
we compare the phase diagram of the BHM with the SHM
phase diagram worked out using the eneft) for S=55.
Similarly, we can obtain the phase diagram of the QPM
by taking the limitS,m>1, g?<1 of the phase boundaries *
(19), (20). As pointed out previously, we recall that a coher-
ent states picture of QPM is not yet available in terms of
coherent states a#(2) [which is the algebra of the QPM
microscopic degrees of freedom, see &)].1° Hence, the
direct application of the TDMFT, which relies on the coher-
ent states description of the Hamiltonian operators, cannot b . . . . . . .
implemented in a direct way. The mapping outlined in Ap- 0 05 1 15 2 s 3 35 4
pendix A is crucial to bypass such difficulties. It allows, in 7
fact, to construct the QPM phase diagram within the SHM  FIG. 7. The phase diagrams of the SHM {855 and
lobelike structure provided the valuesrofSremain inside a =0.17 inD=1. The errorbars are the result of the QMC simula-
suitable rangegsee below As stated in Appendix A, the tions of the QPM of Ref. 36.
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- parameter phase the main responsible in driving the Sl tran-

2p-gem 1 sition. Within the TDMFT, we have established a relation
o ggg | between the dynamical behavior of tllecal) superconduct-

ing order parameter and the macroscopic phases exhibited by
the BHM. The Mott phase has been shown to be character-
ized by time fluctuations of the phase of the superconducting
order parameter, whereas the superfluid phase is related to
the static solutions of thémean-field equations of TDVP.

The energy minimum coincides with the classitAl>1
superfluid case.

Below, we compare the ordinary MFAmean-field ap-
proximation with the TDMFT. The first comment in order is
that the time-independent MFA of the BHNRefs. 7,29
. . 25 describes the Sl phase transition by means of the suppression

Eat of the amplitudeof the order parameter. The quantum fluc-

FIG. 8. The phase diagrams of the SHM f6=55 and 8 tuations of the phase of the superconducting order paramgter

=0.17 and forS= 100 and3=0.22 inD =2. The boxes are a result play no role in the standard MFA. Moreover, the MI phase is

of QMC simulation of Ref. 37. characterized by an on-site energy where the hopping term
does not contribute.
V. CONCLUSIONS The main difference between TDMFT and the standard

MFA stands in the dynamical content of the definition of the
In this paper we have been concerned with two differensuperconducting order parameter: Within the TDMFT, the
aspects of the Sl transition. The former is the algebraic strucSF phase is suppressed by tleeder parameterjsphasés
ture that characterizes the main models exhibiting the Stime fluctuations just as phase quantum fluctuations destroy
phase transition. The latter is the development of the timemacroscopic quantum coherence. Also, in the MI phase only
dependent mean-field theoryTDMFT) for the spin S  the time average of the local parametefs is vanishing
Heisenberg model witlXXZ anisotropy(SHM) that gener-  (along large time scale This does not imply thaty; is
alizes the approach previously elaborated for the Bosestrictly zero inside the insulator as it happens in the standard
Hubbard mode[BHM). Remarkably, such a theory appears MFA. The good agreement with quantum Monte Carlo simu-
to be applicable to a large class of spin models. lations and strong-coupling perturbative expansion confirms
The analysis of Appendix A concerning the algebraica posteriori that the superfluid phase is almost classical:
framework in which the SHM is constructed, indicates thatQuantum fluctuations are strong in the insulating phase; they
the correct way to map the SHM on the BHM is given by thedrive the S| phase transition, and are negligible in the super-
Holstain-Primakoff realization of spin operators. Instead, thefluid phase, except in the regions very near to the phase
qguantum phase modé&DPM) is related to SHM through Vil-  boundaries.
lain’s realization of the spin operators. Thanks to the trans- Based on the introduction of the spin coherent states per-
parent geometric meaning of such realizati3féboth the  formed in Appendix C, the TDVP effective picture of quan-
BHM and the QPM can be issued from the SHM by consid-tum dynamics and the TDMFT of Appendix B have been
ering the appropriate sectors of the spin spectrum. To sumextended to the SHM in Sec. Ill. Our analysis has revealed a
marize: the BHM Hamiltonian emerges in the limiting casequantum phase transition between a paramagnetic and a
of spin vectors close to the south pole of the spin sphereganted phase. The phase diagram exhibits a lobelike struc-
while the QPM behavior is found for spin vectors around theture. Inside the lobes the phase is paramagnetic; elsewhere
sphere equatorial plane. the system is in a canted state. The energy in the canted
The TDMFT have been presented in an extensive way ifphase(represented by the stationary solutions of the equa-
Appendix B, where it is used to investigate the BHM and itstions of motion$ coincides with the known classical energy.
Sl phase transition. Such a theory is based on combining the We point out how the ordinary MFANinearization of the
time-dependent variational principl@DVP), the coherent xy exchange term in Eq(3)] leads to study the reduced
state picture of the model quantum dynamics, the Einsteifion-site Hamiltonian in the s(2) enveloping algebrfdue to
requantization procedure, and a time-dependent generalizére (S?)? term] which prevents one from diagonalizing the
tion of the mean-field decoupling. Hamiltonian for genericS® Studying the spectrum of Eq.
The central assumption in our theory is thalat0, time  (3) for sufficently highS (which is done in the present paper
dependence of the semiclassical varialdgs) represents is in fact very problematic since th@natrix) Hamiltonian
the analog of the quantum fluctuations of operatrs has a rank increasing witB The classical analysis we have
Although Egs. (B5) (the semiclassical counterpart of developed avoids such a problem and captures the lobelike
Heisenberg'’s equations far’s) have been simplified to de- structure of the SHM phase diagram.
scribe an on-site dynamics concernings, they furnish a The SHM'’s phase diagram contains the BHM's and
consistent description of the system’s quantum phase transRPM’s ones. Using the strategy developed in Appendix A
tions. This is due to the semiclassical requantization procewe have recovered the BHM energy as well as its phase
dure[see Eq.B14)], on the one hand, and on the time de- diagram. As we pointed out previously, implementing the
pendence characterizing the phase of the superconductifdMFT to the QPM is problematic since the semiclassical
order parameter, on the other. The latters make the ordedescription of the model in terms of tleé2) coherent states



PRB 62 TIME-DEPENDENT MEAN-FIELD THEORY OF THE . .. 1231

is not available. Nevertheless, the phase diagram of the QPM S = \/Z—SQT [1-n,1(29),
has been obtained as an appropriate liteée Appendix A

and V) of the SHM phase diagrarthe lobe structure is
(locally) periodic aroundm for changesm+Am such that
Am/S<m/S]. This picture appears to be consistent with the
QPM form assumed by the SHNeffective Hamiltonian S'=n;—-S, (AL)
close to its ground-state configuratiee Appendix ), and
suggests that possibly thgurely quantum SHM can be and note how, in view of the formulas of Appendix C, the
reduced to the QPM form as well. eigenvalues of the secular equation for tite spin (S
Other perspectives are opened by the present study.  +S)|m;,S)=(m;+S)|m;,S) ranging in{0, . ..,%S} identi-
First, the tools we used to map the SHM on the BHM andfies with the eigenvalues af, . Consistently, the spin states
the QPM show how the enveloping algebra characterizingm; ,S) coincide with the number operator eigenstdtes up
the BHM and QPM have common root in the envelopingto the reparametrization;=m;+S.
algebra of the SHM. The mapping between these models can The conditionn;/S=(m;+S)/S= <1 allows one to ob-
be seen asontraction procedurd of the enveloping alge- tain Hamiltonian (1) from Eq. (3). In particular, the
bras underlying the BHM, SHM, and QP This suggests XYy-eéxchange term of Eq3) gets in the hopping term of Eq.
the fact that the universality class might be preserved byl) with the hopping amplitudé=2(1— a)SEs— 2SEs for
contraction. S—ce, andn; finite. In the same limit, the spectrum &
Second, since the equations of moti@i the BHM and ~ +S=n; ranges in{0, . . . o} thus reproducing the spectrum
the SHM obtained by the TDVP have been consideredof bosonic operators;. The z-antiferromagnetic term and
within the simplified form entailed by TDMFT, the dynami- the coupling with the external magnetic field term becomes
cal approach refined out the TDMFT should imply a morethe Cpulomb interaction and chemical potential terms, re-
accurate description of the superconducting order parametéPectively (1= ). _
dynamics as well as a better understanding of the low- AIS0, sincea=(m;+S)/S (« has to be viewed as an
temperature regime. As to this point, other improvement®rder of magnitude independent on the site labelthe
can be achieved by constructing trial wave functions able t@PoVve limit corresponds quantum mechanically to select spin
account more accurately the microscopic physical processé$ates close to lowest weight vect@, —S) of the algebra
(see Ref. 18 Finally, the TDMFT succeeds in capturing the SU(2) (see Ref. 3Bat theith site. In this respect, we recall
main features of the quantum phase diagram of a rather larggat, within the HPR|S, - S)=|0), wherea;|0)=0.
class of models. Promising applications of the TDMFT to  The effect of takinge<1 is illustrated by means of the
other systems are expected due to its feasible character. semiclassical spin vectdr (defined in Appendix Clying on
a sphere of radiuS. Such a limit leads to select those vectors
neighboring to the south pole of the sphere. Consistently,
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Falci, R. Fazio, R. Franzosi, G. Giaquinta, R. Maciocco, A.the same limit makes the spin vectors on the sphere coincide,
Osterloh, M. Rasetti, and S. Sharov for valuable discussiong//a Stereographic projection, with the points of the south pole
L.A. acknowledges financial suppport from EU TMR Pro- tangent plané? These are in bijective correspondence with
gram (ERB 4061 PL 95-0670 and the warm hospitality of the complex number; labeling the bosonic coherent states.
the Theoretical Physics Il in Augsburg. V.P. expresses hidn fact, formulas(C3),(C4) clearly show thatL{——S is
gratitude to the Schbnger Institute in Wien, where part of achieved for negligiblé;|* which also entaild — 2S¢,
this work was done, for supporting his visit as well as to theL;—2S& . This in turn leads to the identificationsj’-"
MURST for financial support within SINTESI Project. =L}/\2S=2S¢, z=L/\J2S= 2S¢} , and makes coin-
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APPENDIX A: MODEL MAPPING reproduced at the classical level. We see in Sec. VI that the
SHM phase diagram matches the BHM phase diagram for
In this appendix we give proof of the equivalence be-a—0.
tween the SHM, BHM, and QPM. The key operation of such

S =(s,

a mapping consists in studying the mod® for sufficiently 2. From the SHM to the QPM
high values of representation inde&X and in using the ) ) , o
Holstein-Primakoff realizatiotHPR) and the Villain realiza- We write the spin operators 'nsg'am,"tf?“'@) by means
tion (VR) of the spin algebra. of the Villain realization of s(R).> This is based on the
formulas
1. From the SHM to the BHM Sj+ —el ¥ \/(S-I- 1/2)2— (SJ-Z-I- 1/2)2,

We rewrite spin operators in Hamiltoni@8) by means of B -
the HPR of the spin algebra @) S =(§)" (A2)
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Such operators fulfil the $8) commutation rules provided
the action-angle operatoﬁ?, ¢;, satisfy the €) commu-
tators

[Sf.e ¥]==5;"%, [€%,e'%]=0. (A3)
The QPM(2) is obtained as a limiting model from Hamil-
tonian (3) when considering the first order j=|m;|/S<1
for S>1. The ferromagnetic part of E¢3) reduces to the
Josephson term with coupling,=(S+ 1/2)°Eg(1— 2)
which in the limitS—« becomes ;=S?Eg. As in the case

of a, the parametepg=|m;|/S must be regarded as a site-

LUIGI AMICO AND VITTORIO PENNA

PRB 62

the quadratic termsmjz. This motivates the choic¢z):=
®ilz;) as the trial macroscopic state, entailing

|0)=€""g;|z), (B2)

where the statelg;) are the Glauber coherent states fulfilling
the secular equation;|z))=z|z) for the boson lowering
operatora; , at each sité. In this case the effective Lagrang-
ian (B1) becomes

N B
3[Z]=Iﬁ2i 5(zz—2zz)—H(Z), (B3)

independent order of magnitude. Consistently, the spectrum
of S’ will range from — to + thus reproducing the spec- where #(Z)=(Z|H|Z)—the semiclassical model Hamil-

trum of the unbounded operatdl; in Eq. (2). The rest of
Hamiltonian (3) maps to the charging term of EQ) pro-
vided V=U, and Ny=[h+U(1—-2S)]/2U. It results Hg
—Hgp+ Co, whereCy=—(U+h)?/4U.

Geometrically,8<<1 amounts to selecting vectors neigh-

tonian — is given by

t — —
H=2 Vlzl-mzl*-5 2, (2z+z2). (B4

boring the equatoriaty plane of the semiclassical sphere of The equations obtained variationally from E&3)

radiusS. This is well illustrated via formulaéC3), (C4) that

provide |&|2—1<1(|L7|<S) as a counterpart of the above

condition B<1. Consistently, the sphere equatioh?)?

+|L¥|?=S? shows thatL}|?=S?. Since both the Josephson

coupling and the hopping amplitude contain the fadig,
the formulaE;=tS/2 holds for 1<S,a<1, B<1. ThusS
plays the role of the boson density(see Sec. )| We point

. t
iﬁzi:_MZi+2UZi|Zi|2_§ 2 Z; (BS)
je(i)
account for the dynamics of variablésxpectation valugs
z,=(z;|aj|z). EquationgB5) describe a Hamiltonian flow in
that they can be equivalently obtained through the standard

out that the effective hopping coupling in the BHM is re- formulasifiz;={z; ,H}, where the Poisson brackets

duced by a factoB when compared with the Josephson cou-
pling in QPM; consistently, the SF region of the BHM'’s
phase diagram is smaller than the SF region of the QPM'’s

one.

We note how, when considering the perturbative dynam-

ics around the ground-state configuration of the Skide
Appendix Q, one obtains a QPM-like behavihat is, hav-
ing a pure phase’s dynamjcsithout performing the limit

_ — 1 of o

T\ 9Zj 9z

specifically,{z, Ej}=5kj/ih have replaced the basic com-
mutatorq a; ,ajT] = §;; within the TDVP semiclassical frame-
work. Equations(B5) are not integrable, since the only

S—=. We see that the phase diagram of the QPM is obknown constant of motion, apart from the energy, N5

tained forp?<1.3°

APPENDIX B: THE TDMFT OF THE BHM

In this appendix we apply the TDVRee Refs. 25 and 18
for a general revieywto the quantum dynamics of Hamil-
tonian (1), and implement the TDMFT for the BHM.

1. Time-dependent mean-field theory

The initial step of the TDVP method amounts to finding a

solution of the Schidinger problem i d,—H)|¥)=0 by
approximating the exadunknown solution | W) through a

macroscopic statgP) whose time evolution is imposed to

obey the weaker form of Schiinger's equation(®|(i%d,
—H)|®)=0. Upon setting®)=exp(S/#)|Z) one obtains

S=i#(2|3,12)-H(2), (B1)

=3,|z]?, i.e., the semiclassical version of the total particle
number N=3X;n;. The presence of the nonlinear
U-dependent term prevents one from decoupling them in the
dual lattice space.

The TDMFT procedure is, in a sense, the analog in a
dynamical contest of the mean-field approximatidmFA)
usually employed in statistical mechanics and is based on a
well known microscopic picture of superfluids illustrated,
e.g., in Ref. 37. It leads to simplifying the structure of Egs.
(B5). We set at each site,= ¢+ %;, where; is a slow
variable, whereasy, is a fast oscillating term which de-
scribes the high-frequency part of the dynamics taking place
on the hopping interaction time scale. Also, we assume that
(zi— ) (zj— ;)= mimj=0. Thus ¢;=(z;), when the time
scaler is larger than that of the;’s ((®), denotes the time
average Such time averages coincide with statistical aver-
ages(in the Gibbs ensemblainder the ergodic assumption.
The onset to thémacroscopicallyordered phase reflects the

[H(Z)=(Z|H|Z)], which represents the key equation of the presence in the system of stable, slowly varying components

approach.

The building blocks of Hamiltoniaril) are operators of
the Ng-site Heisenberg-Weyl algebrb,(Ng)={l,a; ,afr i
e A}, Ng is the number of sites of the lattice, but actually
belongs to the enveloping algebyé of W(N,) because of

of the lattice dynamics corresponding to #gs. This means
that any z; is strongly attracted to its average valug
(namely that the collection off;'s defines the dynamical
system’s attractgr Dynamical regimes where the long scale-
time behavior of; is not described by an asymptotic slowly
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varying functiony; is related with the disordered phases oftime scales. Such a behavior occurs when the uniform filling
the system. The above considerations imply the TDMF deeonditionsn;=n, for all i (we identify here number operators
coupling n;'s with their integer spectral valugss inserted in Eq.

_ - . _ (B13) by setting
ZiZJE(Zi_'ﬂi)(Zj—le)*l‘¢i2j+lﬂj2i_$i¢j |Z|2 N 614
i =Ne .

~yizi+ iz — b . B7 L
bzt - iy B7) Such a substitution is the natural consequence of the requan-
The dynamical scenery just depicted leads thus naturally tezation proces¥?’ of the actionlike variablez;|? (notice

defining that {|z|%6;}= 8, /%) strongly requested from the pure
quantum character of the MI. AtU =0, where the system is

P= i E (z)) (B8) integrable(since it reduces to a set of uncoupled, nonlinear
Ng 5 Y777 oscillatorg indeed®), and|z;|? represent the pairs of action-

angle variables of the system. For small valuet/ bf such a
®ature is still true as a consequence of the fact that the
nonlinear oscillators are weakly interacting in the Ml regime.
Hence, in the spirit of Einstein’s requantization procedure
t L qt L (see Ref. 2j their orbits are still homotopic to those of the

> > (zizj+22)— > > (zh+ izi—|wi)?), (BY) integrable case which entails agdin|?=n.

(1) [ Equation(B13) is easily showed to be solved ()

where ;=1 for j e (i) (smoothing condition The result- =N=7/fi+6;(0), with \ .. defined through
ing Hamiltonian reduces to the decoupled forfd,,; Jn

24yn
=XH;, where |¢j|ii?()\i—u(‘>‘). (B15)

as the macroscopic order paramenter revealing when ord
issues from the the lattice dynamics. Using form(B&) in
‘H modifies the kinetic term as follows:

H;= U|Zj|4—M|Zj|2— q?t(?jwjjuajzj_w”?), (B10) Here we have parametrized the chemical potentialdas
=wm/U—2n, and\_ (\;) is related to the choic®,;— x;

and exhibits a dimensionality dependence entering via th& ™ (6;— x;=0) (notice that the index does not labeh .
numbers of nearest neighbags The (decoupledl equations ~ Since the requestz;),=y;(7) leads to|;|=+n at each
of motion ensuing fron¥{,,; read site). In the present theory, the frequencies play the role
of time correlation length governing the phase transition. Our
theory gives A\.=Un(u—pu) for fixed t and \.
=q|¢i|/2(t—t.) for fixed u (u. andt, are the critical values
of u andt). Upon defining the critical exponentsand v as
in Ref. 7, we argue thét

. t
iﬁzi:_,LLZi+2UZi|Zi|2_qE(,/Ii. (Bll)

When compared with the exact ones, EB5), they imply
the relationqi;~ZX; . j)Z; consistently leading to an identity
once the time average is carried on and the smoothing con- zv=1. (B16)

ditions is used. A further effect coming from the lineariza- . o
tion (B9) consists in the fact that the total particle numberBY replacing in the reduced HamiltonidB10) the value of

N=3iz|? does not have any longer vanishing Poisson il provided by Eq(B15), the energy of the Ml reads
brackets withH,,;. Restoring such a basic feature is per-

formed by considering; with an appropriate time depen- E (u,t;x2)=n E(7\i+U5)2+ U(d—n)—2\. |,
dence. To this purpose we look for solutions of E@&11) qt
where 6, ,x;, the phases of (B17)
B o B - where the subscriph reminds us that the filling is ac-
zi=|ze",  g=[yle™, (B12)  counted for. The oscillating behavior of ¥
respectively, obey the phase-locking condition,€y;) = (¢ ™:/Ng) 3 y;€'%i®, having a vanishing long-time aver-

={0,}. Then\ is constant due to the fact thdtzj|2/dt age, identifies th_e MLI. This, in_fact, implies that the gauge
=iqt(szj —?jt//,-)/2=0. Moreover, the further condition symmetry breaking expected in the SF phase cannot take

et : place. Notice that the ordinafyime-independentMFA can-
?cl:b%r'{:iotgl gggfés;ently makesin; constant as expected not describe the MI fot>0, since the hopping term of the

: reduced Hamiltonian is canceled by the vanishing of the or-
Due to Eq.(B11), the phase) obeys the equation der parametery= 0. Within our scheme, instead, the condi-
) qt tion (V) =0 can be realized also fak# 0. The degenera-
—ﬁ|Z]-|0]-=(2U|Z]-|2—,u)|2]-|—S?|l//j|, (B13)  tion points selected byw/U=2n [i.e., §=0 in I(n)] are
extreme limiting points for which the superfluid phase is
wheres= *+, depending on how the phase-locking constraintextended up ta/U=0. They will be identified with the
is implemented. In spite of its simplicity, such an equation ismeeting points of the lobe boundaries. Such points charac-
able to characterize both the Ml phase and the superfluiterize a static phase due xo. =0 [see Eq(B13]. We inter-
phase in terms of phase dynamics. pret the stationarity which distinguishes the solutions of the
We examine first the dynamics related to the MI. In thissemiclassical equation of motion as the trait characterizing
case,; must have a zero time average along macroscopithe SF phase in whicB?(6) =0 (classical SF This is but
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the oversimplified version of the low-frequency dynamics=E, ;(u,,t)=Un(n+1). The two branches are, therefore,

expected in the SF phase that should correspond to the coseparated by an energy gap. Thus, the lobe tips are singular

dition 22(9)<1. points of the energy. Their coordinates, obtained imposing
Let us consider the fixed points of dynamical equationsu_ (t)=w, (t), reads

(B11) that, as we concluded above, identify the classical SF

phase. Such solutionghe trivial casez;=0 due toz;= i, te=U/gn (B24)

=0 is excludedl allow us to recast Eq(B11) in the form and u(t)/U=2n—1—(1/2n). The values oft, obtained

;=2[(2U]z;|?>— w)/qt]z; making ¢; a function ofz; . In- within the ,
. . . present theory, can be compared with QMC and
tsr?ertlngrlf\jil(t?%igmiq.t(()BlO) reduces the energy associated toSCPE(Ref. 14 (Figs. 1 and 2 Contrary to the result ob-
) tained in Ref. 14, our phase diagram has a concavity inde-
2 pendent of the dimensionality. In 1D we find a good agree-
e(pm.t,z)=1z]? —t(,u—2U|zj|2)2+,u—3U|zj|2}. ment with QMC and SCPE. Upon recalling that our
q construction relied on EqB11)—this incorporates the time-
(B18) ) Lo o
dependent mean-field approximation—it is important to note
The quantitye(u,t,z;) is the on-site energy accounting for that the concavity of lobes iD=2 might be improved by
the absence of dynamics. The limit. =0, in fact, shows implementing the requantization process directly on the Egs.
that En(u,t;\ ) —e(u,t,z)) providedn=|z]|? The lowest (B5).
value of energy(B18) and the valuez, involved forz; are

obtained by minimization. They are given by 2. Remarks on the SF ground state
(u+qt/2)? As to the effectiveness of the approach just illustrated,
e, =—Ulz,|*=- —au (B19  two important observations are in order. The first is that our
finding Egs.(B19) and (B20) concerning the ground-state
(u+qt/2) configuration is remarkably confirmed by two other proce-

|z, |2:T’ (B20) dures. The other concerns the macroscopic phase at the phase
transition[see Eqs(B27) and (B28)].
respectively. The phase af, can be set to zero since the =~ The minimum energy of the SF phase can be calculated
gauge symmetry-breaking characterizing the ground-statéom Eg. (B4). It represents the exact value of the BHM
configuration. It is worth noting that inserting, | in the  ground-state energy in the classical lirfiu>1. The mini-
expressiony;(z;) implies thaty;=z; so that the minimum mum energy is readily obtained by rewriting first the hop-
energy configuration naturally fulf|lls the consistency condi-ping terms as zgz]+z,z) |zi|?+|z|*—|z,—z|? and by
tion on which our TDMFT is based. noticing then that the choicg= ¢ for each site entails the
Now, we employ the expressiaB17) for the on-site en- lowest value of the hopping term since the only positive
ergy to construct the BHM'’s phase diagram. In the SF phasesontribution|z;—z /|? vanishes on each bond. Upon minimiz-
the states witm andn+ 1 (adding a particlg as well as the ing the resultmg expression of the energy
states withn—1 andn (adding a holg must be degenerate.

The curves representing threlobe boundary are identified tq
by implementing both gauge symmetry breaking through the H, =Ny (U]¢]>— )| é>~ §|§|2 : (B25)
limits A\.—0 and the vanishing of the energy gapgs
—Ej=1. In other words we require by settingd, /d|&=0, one obtaing £]?=(u+qt/2)/2U
) that matches exactly EqB19): The ground-state energy
lim (E,—En:1)=0 (6<0), (B21)  (B18) coincides with the minimum of the exatgemiclassi-
40 cal) energy. Our approximation scheme thus reproduces the
im (E, ;—E,)=0 (6>0). (B22) correct value oft as well as the corresponding value of the
N0 ground-state energy.

The ground-state energy eigenvalue can also be obtained
For solving Egs(B21) and(B22) we introduce the variables once the Hamiltonian operatét) is linearized via the stan-
6. =w/U—2n+(1%1). By inserting,=0 (5-<0) in  dard procedure’~2vn;—»?, which is realiable fot>U.
Eqg. (B21) [(B22)], and defining =qt/4U, one gets the qua- This yields the diagonalized Hamiltonian
dratic equations52i+2r 6+—(2n¥1)=0, that furnish the

pair of two-branched curves
Hen=—UNg”+ 2> [2Uv—pu—tg(k)Ib by,

[ 8su K
1¥ 1+a(2n+1)} (B26)

(B23)  when the operatorb,=Ng~ Y25 .a; exd kj] of the k modes
The lower branchu , (t) and the upper ong _(t) constitute ~ are used. We have introducg(k) =X, cosf) (re[1D] on
the boundary encircling thath lobe. The substitution of a D-square lattice where k, is the rth component ofk.
n_(t) andu (1) in Egs.(B21) and(B22), respectively, pro- Hamiltonian(B26) clearly shows that its lowest eigenvalue
vides the on-site energy values involved in the two caseds obtained through the depletion of any mdde0 (boson
namely E,, 1(u1,t)=E, (x1,t)=Un(n—1) and E,(u»,t) condensation in the state witt=0). As a consequence of

qt

M+ _
U—Zn—1+1 m




PRB 62 TIME-DEPENDENT MEAN-FIELD THEORY OF THE . .. 1235

the consistency conditiogn)=v(=N=Ng»), once more Dg(¢)=1/(1+|£%)S represents a normalizing factor,

the energy is minimized by=(u+qt/2)/(2U). whereadS,— S), the so-called maximum weight vector, sat-
A comparison with the quantum ground-state energy—isfies the equatio’s™|S,— S)=0. The action ofS*

known exactly in the casgU = 0—is important as well. For

nl/Uel(n) the eigenvalues oHg, with integer filling n S*S,m)=(STm)(Stm+1)|S,m*1)

=N/Ng, E({nj})=3,[Un’—(u+U)n;] reach their min-

imun valueE, = — UNgn? for nj=nandu/U=2n—-1. The

on-site energye, =—U|z,|* [see Eq.(B20)] is found to

attain exactly its quantum counterp&rf /Ns= —Un? in the

limit t/U—0, u/U—2n, namely at the point of(n) repre-

senting its top. s
The second observation pertains to the actfoihat rep- |£)=Dg(&) > Cu(S)E™ 5 S,m)

resents the phase of the macroscopic siéte It raises a m=-5S

special interest since it is itself a macroscopic quantity and

thus is viable to experimental observations. In the followinggf c|r§>:;1 ;glrt:’n CI:am(oSr)1:\é(§§|)e” t(oSc_arlz)!l(a?;tR)a!.e Baei?:t'g: al-
we compareS with Sp¢ (i.e., S in our TDMFT) as well as u uia, : u xp lon v

is represented on the standard bdf&m);|m|<S} the vec-
tors of which obey the secular equati&iS,m)y=m|S,m).
Making explicit the action ofS™ in Eq. (C1) supplies the
spanned form

St in the MI with Sy in the SF. es
When Eqgs(B5) are inserted in E¢B3) thenS reduces to 1€2—1
L,=($)=S—>—, (C3
S=U3, |74, (B27) |¢°+1
where the explicit form ofz;(7) is known only once Egs. . . 2¢
(B5) have been really solved. L*=(S >:S|§|2+1' (C4
Inserting Eqs(B11) instead of Eq(B5) in Eq. (B3), and
replacing with its mean-field versiori,;, involves where(®@)=(¢|@®|¢), and therefore to reconstruct the sphere
equation [?)%+(L¥)?+(LY)?=S?, where L=L*-iLY
Smi=3i[U|z|*+t(zy¢+ 7)) — 2t |?].  (B28)  =(L*)* for the classic spinl{*,LY,L?). Such an equation,

in turn, can be viewed as the classic counterpart ofgoan-

If zj~y;, thenS,; and S have essentially the same form. tum) Casimir equation )+ (S)*+(S’)?=5(S+1) for
Such macroscopic quantities may actually coincide at th€S*,S’,S%) in terms of the SCS picture and illustrates the
low-temperature regime if the dynamics of bdifh,; and<  semiclassical content thereof. Upon introducing the macro-
have solutions characterized kg (7)|?~const. Within the  scopic wave function
present TDMFTS,,;=S since the conditiony; 7;~0 implies D)= eS| £) (5
zj~; ; furthermore,|zj(7)| is strictly time independent. :

In the MI the requantization ruléB14) must be used. The where the trial statgt) - = ®;| &) and|&) is the SCS for the
frequencySy is obtained from Eq(B28) by inserting Eq. ith spin (S°,S',S?), then one easily constructs the TDVP
(B14). S, ¢ reads as semiclassical dynamics relative to spin Hamilton{&@pn

Sme=UNgn?, (B29) He=—h> (S+9)+U> (S+9)(S+S-1)
| J

A transition that changes the filling from to (n+1) in-

volves a change of the phase frequency amounting to _ E_s 2 o st g

UNg(2n+1). The action density in the superfluid phase 2 (S S S,

readsS,=UNq|z|*, which compared with the correspond- _ ,

ing formula(B29) shows that the frequency is not quantized. (NOW @ssumed to be constituted by spins with 1/2), by

In the SF phase transitions between different configuration@rocéeding along the same lines as Appendix A. The result-

(different values of the fillingoccur continously. ing Hamiltonian?{s:=(£|Hs|¢) reads
APPENDIX C: SPIN-COHERENT STATE PICTURE Hs=—h, >, L+UD [(1-1/25)(L)2+95/2]
OF XXZ MODEL ' '
- H ES
Spin-coherent statg$SC9 |£) are defined as _ Z SUS+h, |- - 021') (LFL+LEL),
|£)=Dg(£)efS|S,—9), (cD ()

whereS* is the raising operator of the angular momentumwhereh, =h—U(2S—1), and we have used the fact that,
algebra s(2) generated byS,, S,=(S"+S7)/2, andS, via a nontrivial calculation, one finds((S?)?)=(1
=(S"—S7)/2i which fulfill the standard commutators —1/2S)(L?)?+ S/2. Furthermore, stationarizing the actién
= [dt(¢|(ifid,—Hg)|£) provides the equations of motion for
[$5,S"]=*+S"2, [S",S7]=2S,. (C2)  thevariables [, L; [see Eqs(5)], whereL is depending on
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L;, LY via the constraint introduced above for the spin ex- Lo=h*/(2U+qEs), ¢i=¢;,
pectation value componentsLi)?+|L;|?>=S?. Once the

brackets at each sitg, considering the approximation

oA 9B 9B JA LiL¥ +LiLf =2g cos i — &)

I agr I8 9&T

< @H[g]??
ABI=2 s

Lo
X[ 1= P (Pi+P)—f(P, ,Pj)},

have been defined, one can easily check tfgt,L;} ,
=2LYih, {L? L¥}=L¥/ih, and{L? L;}=—L,/ifi consis- WhereP;=L{-Lo, g=S*~L§, and
tently with Eq.(C2), while the dynamical equations issued

from the TDVP can be recovered as well frdy. Equiva- ¢ _ L ) P’ sz
lently, the alternative form of the above Lie-Poisson brackets (Pi,Py)e= z_gz(P‘ —P) 29 |’

1 dA JB B JA leads to rewriting spin Hamiltonia(#) as

~ 2 2_

can be reconstructed from E@C7) when expressing;’s as HS_C+Ei (UPFHULG=h, Lo)

Li=\S*—(L})%e'? (C9

! ! ~gEs> f(Pi,P)—gEs>, codd—d).

through the action-angle variables, L?. This fact states at g (i)
the classical level the equivalence between the HPR and the (D1)

VR introduced in Sec. Ill. i i .
Decouplingf(P;,P;) from the cosine term in the latter for-

mula relies on the fact that¢(j—¢i)2><f(Pi ,Pj) is fourth
order. The resulting model exhibits the QPM structure even
if, within the present approximation scheme, the condition

This appendix is devoted to calculating explicitly the form |P;|< L, only concerns the spin dynamics. The geometry of
assumed by the spin Hamiltonian in the proximity of thethe spherdthe spin configuration spaces involved instead
ground-state configuration in order to show how weakly ex-when one imposeg=|m|/S<1 (m is the quantum number
cited states mimic the dynamics of theassig phase model. corresponding toly) in order to make explicit thelocal)
Upon recalling that the ground-state configuration is characeylinderlike geometry characterizing the QPM in the equato-
terized by rial region.
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