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Pseudoe expansion of six-loop renormalization-group functions of an anisotropic cubic model
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Six-loop massive scheme renormalization group functions ofl-a3)-dimensional cubic moddl]. M.
Carmona, A. Pelissetto, and E. Vicari, Phys. Rev6B 15 136(2000] are reconsidered by means of the
pseudoe expansion. The marginal order parameter components nuleR.862+ 0.005 as well as critical
exponents of the cubic model are obtained. Our estiate3 leads in particular to the conclusion that all
ferromagnetic cubic crystals with three easy axis should undergo a first-order phase transition.

I. INTRODUCTION the stable fixed point of a field theory is a necessary but not
a sufficient condition for a model to exhibit a second-order

Progress in the qualitative understanding and the quantihase transition. If the parameters of an microscopic Hamil-
tative description of critical phenomena to a great extent watonian are mapped in the plain of the LGW Hamiltonian
achieved by the ideas of renormalization gréRi®) theory!  couplings to a point which lies outside the domain of attrac-

Only global features of a many-body system such as thdion of the stable fixed point, the Hamiltonians will flow
range of interparticle forces, the space dimensionaljtps Wy to infinitely large values of couplings. Such a behavior
well as the dimensiom and the symmetry of an order pa- might serve as evidence of a weak first-order phase transition

: o d this is confirmed in some experimefgee Ref. 3, and
rameter were suggested to be responsible for long dlstan%}erences therein If N.<3 for a d=3 ferromagnet, the

step the role of the relevant parameters in microscopic Ham'[1eW cubic fixed point governing the critical regime appears

o , '0 be inaccessible from the initial values of couplings which
|Iton|a_ns of various nature was represe_nted a_dequately b(\’forrespond to the ferromagnetic ordering with three easy
effective Hamiltonians used in field theories. While already

. . . . . Y Zaxis. It appears that. is very close taN=3 and the critical
vector field theory with an isotropic rotationally symmetrical exponents in both regimes are indistinguishable experimen-

order parameter allowed unified and correct description of gly n order to calculate the value dF, within field theory
large spectrum of critical phenomena, an extension of theogne has to treat a complex model of two couplings. This is
ries is of special interest since in real substances anisotropigfifferent from a Heisenberg-likdl-component ferromagnet
are always presefitFor instance, in cubic crystals one ex- with weak guenched disorder, where the Harris criterion an-
pects the spin interaction to react to the lattice structuregwers the question about the type of critical behatior.
(crystalline anisotropy suggesting additional terms in the  The description of the crossover and the precise determi-
Hamiltonian, invariant under the cubic group. The anisotropynation of its numerical characteristics has been a challenge
breaks rotational symmetry of the Heisenberg-like ferromagfor many RG studies of the anisotropic cubic model. High
net and makes the order parameter to point either alongrders of perturbation theory were obtained for this model in
edges or along diagonals of a cube. The corresponding fielguccessive approximations eithefsirexpansion with dimen-
theory is defined by a Landau-Ginzburg-WilsghGW)  sional regularization in the minimal subtractiofMS)
Hamiltonian with two¢* terms ofO(N) and cubic symme- schem@ or within the massivel=3 schemé. The expres-

try and can exhibit a second order phase transition characteflons are available now in the five-loband in the six-loop
ized either by spherical or cubic critical exponents. Varying@PProximations,respectively. However, divergent properties
the number of components of the order parambter new of the series did not allow their straightforward analysis and

crossover phenomenon between these two scenarios takedled :c:or t_het appllcat|o|n IOft VdaT'O‘]:S r;asummatlon _p%oce—
olace at the marginal valu, ures. For instancey, calculated in five-loop: expansio

In the framework of RG theory the critical point corre- yielded _depending ‘on the resummation procediNe

— 7 _ 9 _ 8 : _
sponds to the stable fixed point of the RG transformatibm. =2.958, N.=2.855, and N.=2.875)." Alternative ap

; CT . : roaches on the basis of the expansion lead toN.
a model with competing fixed points the study of domains 0£2.97(6)(Ref. 8 and toN, = 2.950%° On the other hand the

their attraction as well as the crossover phenomenon is 8 ssived =3 scheme RG functions extended for arbitrhry
fundamental problem for universality comprehension. Apar&0 four loopst! yieldedN_ = 2.89(2) (Ref. 11 (see Ref. 8 for
’ (o] . . .

from the academic interest the determinatioNefcan lead 5 1ocent extended review of theoretical determinatioN 9f

to decisive conclusions about phase transition order in a Cefrpege results suggest that the most reliable theoretical esti-
tain class of cubic crystals. For instandes 3 cubic crystals  15te isN,<3.

with three easy axis should undergo either a second or a However, recent MC simulatiofsquestioned the values
weak first-order phase transition provided is greater or  for N obtained so far. There, considering the finite size cor-
less than 3’ This argumentation states that the existence ofections of a cubic invariant perturbation term at the critical
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O(N)-symmetric point, the eigenvalues; of the stability In the present study we reconsider RG functions of the
matrix were extracted. From the estimaie=0.0007(29) a model (1) as they are obtained within massive fixde-3
value ofN.=3 was concluded. This disagreement as well aschemé&’

the crucial influence of the value ®f. on the order of the

phase transition makes an implementation of an alternative_ Bu(U.v) U 2.4 (190+41IN) , 400 uv
method for calculation oN. to be hardly overrated. Re- u - 4T3V 7 (8+N)? U g1 8+N
cently the massivel=3 scheme RG functions of the cubic

model were extended to five-loop ordfeand very recently 92

the six-loop seriéswere obtained. The traditional analysis of + ﬁ;UZJF BN+ 4B, @
these series, including an information on large order behav-

ior of the RG functiong yielded N.=2.894). However let B,(u,v) u 4 (370+23N)

us note that the most accurate estimates of the critical expor ——— =1- 12575 —v+ 55 —————— 2

nents of ad=3 O(N)-symmetric ¢* model in a massive (8+N)

field theoretical RG scheme are based on a pseuepan- 832 uv 308

4 _02+B5}3LA)+ o +B(UeLA)’

H H 4,15 _
sion techniqué®®Up to our knowledge the last method has + 81 87N 729

never been applied to the cubic modélTherefore the main

aim of the present paper is to apply the pseddexpansion 3

to the up-to-date most precise massive scheme RG fufiction

of the cubic model. 8 (2+N) , 16 w 8 L. @
The setup of the article is as follows. After a brief con- Yo(Uv) =57 (8+N)2u te18rN 7297 T Ve

sideration of the model and renormalization procedure, we
present the pseudo-expansion folN, and discuss its prop- +---+ yEfLA), 4)
erties. Applying Padand PadeBorel analysis we obtain pre-
cise estimates o, and compare the result with the corre-  _ (2+N)u 1 (2+N) 4uv
sponding e-expansion. Finally we evaluate the critical — Yg2(Uv)=————+ 702 u?—

= . i i 8+N 3 (8+N)? 3(8+N)
exponents of a=3 cubic system belonging to the new uni-

versality class for different values &f> N, and discuss the 2, —an —6LA)
weakly diluted Ising model casé=0. — o5ty ety )
27 ¢ ¢
Il. PSEUDO-& SERIES AND NUMERICAL RESULTS where 34 . ?(szA) denote the three-loop contributions

obtained in Ref. 20, the four-loop, the recent five-loop and
the very recent six-loop contributions obtained in Refs. 11,
13, and 8, respectively. Furthermore, the large-order behav-
N ) ior was established for the RG functiof®—(5) which al-
S 2 lowed the application of the refined resummation procedure
= "Da) based on Borel transformation with conformal mappgirig.
N this way a convergent sequence of approximations\foas

] well as critical exponents within the cubic universality class

We start from ad=3 effective LGW Hamiltonian with
two couplings at terms of spherical and cubic symmetry:

N
1 u
H(so>=f d3R[521 [1Va+mygll+ 57

(1) were obtained.

One possible way of analysis of the massive RG functions
whereg,(R) are components of a baNecomponent vector (2)—(5) consists in solution of a system of equations for the
field; uy>0, v, are bare couplingsm? is a squared bare (resummedl 8 functions(2),(3)
mass being a linear function of temperature. The vicinity of a

critical point corresponds to a long-distance behavior of the Bu(u*,v*)=0,
model (1), while ultraviolet divergences of the theory are . s
dealt with by means of an appropriate renormalization By(u*,v*)=0 (6)

proceduré. In particular, the renormalization of the bare 5 get numerical values of a stable fixed point coordinates
couplings leads tg3,(u,v) and B,(u,v)—the so-calledd  ;* ,* Then these numerical values are substituted (rdo
functions; a renormalization ofme bare field and square-ﬂel%ummed series fory functions (4),(5) which lead to the
insertion produces ,(u,v) and y42(u,v)—the so-calledy  numerical values for critical exponents. As a result the final
functions. All these functions depend on renormalized couerrors for the critical exponents are the sum of the errors of
plingsu andv.*® The critical behavior of the model is deter- the series for exponents and of the errors coming from
mined by the infrared stable fixed pount,v*. Itis given by  u* ,u*. To avoid such errors accumulation it is standard now
the condition that bott functions are zero and all the real in the analysis of field theories with one coupftftd®to use
parts of the stability matrix eigenvalues are positive. The pait pseudc: expansiort® Here, we will apply the pseude-
correlation function critical exponeng and the correlation expansion for a cubic modél).” The procedure is defined
length critical exponent are obtained via the relationg  in the following way. Let us introduce the functions
=7v,(U*,0%), v=2—y 2(u*,v*)— y4(u*,v*). The
correction-to-scaling exponeat is given by the largest sta-
bility matrix eigenvalue in the stable fixed point.

2
Bu(u,v,7)=—u T—U—§U+...
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u Padetable (obtained in Ref. ¥ In particular, mere summa-
By(U,v,7)=—v| 7= 128+_N_v +ee (7 tion of several first terms leads now to diverging result

where the “pseud@’ auxiliary parameterr has been intro-

duced into the3-functions(2),(3) instead of the zeroth order - 4 2.667 3627 1952 —5.7727

term.  Obviously, BU(H,U)E/J’_U(U,U,TZ_ 1), ﬁv(u,u)_ 2 3128 2893 2972 0O
=p,(u,v,7=1). Then a fixed point coordinates are obtained

as series inr. The series for the stable fixed point coordi- 4589 2792 2958 0 0 (12)
natesu* (7),v* (7) are then substituted into serigd,(5) for —~1.286 3.068 0 0 0

vy functions leading to the pseudo-expansion for critical 15.540 0 0 0 0

exponents. In the resulting series the expansion parameter
collects contributions from the loop integrals of the same

order coming from both the series @f and y functions. Here, the approximantg0/2], [0/4] have poles close ta

Finally, one putsr=1. In such a way one gets a self- _ _ _ : ;
. . 4 . =1 (at ,=2.3, 7,=0.9) respectively, and thus are unreli-
consistent perturbation theory and avoids cumulation of er- @tr 72 ) P y

L . ) able.
rors originating from different steps of calculation. . : . . o
With the above described method we obtain the marginal In order to take into consideration possible factorial diver

valueN. and the critical exponents in the cubic universality gence of the p;eud@—expan§|on(8), as a nex.t step we
class for the modell). The series foN, reads apply to the serie$8) the PadeBorel resummation proce-

dure. The Pad@orel resummation of the initial sumN,(7)

N.=4—4/37+0.29042005%— 0.18967704° consists of the following stepdi) construction of Borel-
. 5 Leroy image ofN(7); (ii) its extrapolation by a rational
+0.19951035" - 0.22465156°. (8)  padeapproximant M/N](t); and (iii) definition of a re-

re i i % —1)tF]

One notes that at least up to the presented number of loopd!MedNG{7) by the integration/gdtexp(-ttIM/N](#t),
the series does not behave as an asymptotic one with facty1€rep is an arbitrary parameter entering the Borel-Leroy
rial growth of coefficients. This can be seen by considering dmage: One possibility to fixp is to require fastest conver-

Padetable (9) for N, series(8) gence of the resulting values, given by the diagonal approx-
¢ imant resummation similar to Padmalysis(9). However,
4 3 20158 2.8411 28922 28294 the convergence of these values appears to be almost inde-

pendent ofp. On the other hand, approximants possessing

2.0643
2.6667 2.9051 2.8711 2.8638 0 poles on the positive real axis are considered as unreliable

2.9571 2.8423 2.8616 2.8616 0 0 and we can equally well choogeto provide a minimal num-
. ber of such divergent approximants. For instance,gfer4
2.7674 2.8646 2.861
6 8646 8616 0 0 0 the imaginary part is smaller then 18 in the “bad” [ 1/4]
2.9669 2.8613 0 0 0 0 and[3/2] approximants and therefore can be neglected. Pro-
2.7423 0 0 0 0 0 cessing the serie@®) for p=4 as described we obtain the

9) results presented in E¢L2). Here, one encounters only one

] ] unreliable approximanf1/2] which is again denoted with
Here, a result of an approximaivl/N] is represented as an gmall numbers. This analysis yieldN, = 2.862+0.005,

element of a matrix with usual notation. The approximantSyhere error bar stems from the maximal deviation between

[0/4] and[1/2] have poles at values af of the order 1(at  the six and the five-loop results for arbitranpetween 0 and
points 7;,=3.7 and7,=1.1, respectivelyand thus the esti- 1q

mates ofN. on their basis are considered as unreligtiey

are noted in the table by small numbershe values in the
first column of the table are merely the sums of the corre- 1 4 30353 2.9245 2.8634 2.8763 2.8361
sponding number of terms in the expansi@ and do not 7173
diverge. However, the most prominent property of the table 2.6667 2.8995 2.8737 2.8685 0

is the perfect convergence of the values within main diago- | 2.9571 2.8461 2.8595 2.8631 0 0
nals. In particular, the six-loop result of thi&/2] and the

[2/3] approximants and the five-loop result[&/2] approx- 27674 2.8617 28645 0 0 0
imant coincide within the fourth digit and lead to an estimate | 2.9669 2.8641 0O 0 0 0
N.=2.8616. Though the next order terms in E§) could 27423 0 0 0 0 0

spoil such convergence, it is worth to compare the pseudo- - 12

expansion8) for N with corresponding:-expansion series
which is one loop order shorter
B ) 3 It is obvious that other values of interest such as fixed
Ne=4-2¢+2.58847559°—5.87431189 point coordinates and critical exponents can also be obtained
+16.82703902%. (10) within the pseude expansions. For instance, for different
values ofN we obtain the following expressions for the criti-

The obvious worse convergence properties of the séti@ds cal exponentsy of the susceptibility,» of the correlation
lead to a corresponding bad convergence of the values in tHength, andw of the correction-to-scaling



12198 R. FOLK, YU. HOLOVATCH, AND T. YAVORSKII PRB 62

TABLE I. Our data for the critical exponents of the cubic mo@akt column in comparison with other
results. See the text for a full description.

N Ref. 22 Ref. 8 Ref. 11 Ref. 24 Ref! 8 This study
v 1.3746+-0.0020 1.377(6) 1.3775 1.385®@.0050 1.390(12) 1.3870.001
3 v 0.69970.0024 0.701(4) 0.6996  0.704®.0040 0.706(6)  0.7050.001
o  0.8061(Ref. 23 0.799(14) 0.7786  0.78330.0054  0.781(4)  0.7770.009
y 1.4208+0.0030 1.419(6) 14028 1.40#4.0030 1.405(10) 1.4160.004
4 v 0.7225+0.0022 0.723(4) 0.7131  0.715®.0050  0.714(8)  0.7190.002
® 0.790(8) 0.788%0.0090 0.781(44) 0.7770.002
y 1.4305+0.0040 1.4076 1.4170.006
5 v 0.7290+0.0016 0.7154 0.7260.004
® 0.773:0.003
v 1.4322+0.0040 1.4082 1.4170.009
6 v 0.7301+0.0016 0.7157 0.7180.003
® 0.771x0.005
vy 1.422(6) 1.4074  1.40680.0030 1.404(10) 1.4070.008
8 v 0.723(2) 0.7153  0.71480.0035 0.712(6)  0.7150.003
® 0.786(6) 0.795%0.0150 0.775(88) 0.7790.009
v 1.3993+0.0020 1.399(8) 1.39620.0040 1.396(14) 1.3950.006
© v 0.7108:0.0010 0.711(2) 0.70940.0030  0.708(8)  0.7G80.001
® 0.802(18) 0.7986:0.0200 0.790(18)  0.7750.020

¥,_,=1+2/97+0.10157666° + 0.03325297°+ 0.02024452*+ 0.00312386° + 0.00905558°,
¥,_,=1+1/47+0.11188272°+0.03494088°+ 0.01575673"* — 0.00023288°+ 0.00322125°,
y,_=1+4/157+0.1131486%°+0.03107333%+ 0.00939269" — 0.00376555°— 0.00055733°,
y,_,=1+1/37+0.06675812°+0.00726155° — 0.00746706" — 0.00082309° — 0.00713623°,
v, _,=1/2+1/97+0.05383664”+0.01993814%+0.01227945" + 0.00300477°+ 0.00535272°,

v, _,=1/2+1/87+0.05902778°+0.0207473%°+0.01004792* + 0.00133632°+ 0.00248012°,

(13
v, =L12+2/15r+ 0.0596470%%+ 0.01877086°+ 0.0068856%*— 0.00041386° + 0.0006089%°,

v, =1/2+1/67+0.03612254%+0.00709205°— 0.00142535" + 0.00103317°— 0.00285768°,

o, =T 0.39042829%+ 0.29428918°— 0.25565542* + 0.31134025° — 0.43957722°,

N=

o, =T 0.36419753%+0.24511892°— 0.20419925* + 0.2187443%°—0.27962773°,

N=

o, =T 0.3512914&*+0.21196053°—0.16985912* + 0.17369321°— 0.19948859°,

N=

o, =T 0.42249657%+0.3451314%%— 0.32006198"* + 0.44947688°— 0.6784217°.

One can determine the cubic model critical exponents of thaults similar to Eqs(9)—(12)]. The error bars for the critical
new universality class on the basis of the expansi@gsin exponents given in the Table | were obtained from the maxi-
the same manner as for the expansi®nof N.. However, mal deviation between the six- and the five-loop results
the expansions for the combinationyldnd 1~ —1 appearto among all deviations for the parametervalue O<p=<10.

have better convergence properties and all values are of-he error bars within the pseudoexpansion are typically
tained on their basis. The Padmd PadeBorel analysis lead much smaller than those based on other methods. The reason
to the critical exponents values as they are given in the tablis that 3 andy functions contribute in a self-consistent way

| in the last columrhere, we do not show intermediate re- into the pseude- expansion series for critical exponents.
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To compare our results we represent in the Table | thdoe treated by means of PaBerel or Chisholm-Borel re-
values obtained from the five-loapexpansiofiby means of summationgsee, e.g., Refs. 10,13 8T he first of the stated
a modified Borel summatiéf and of the Borel transforma- Mmethods was recently applied to study the five-loop RG
tion with conformal mappinj(the corresponding citation in functions of RIM:* The analysis allowed the authors to ob-
the table is primed Critical exponents from the four-loop tain th<=T five-loop estlmates for the RIM crl_tlcal exponents.
fixed massived=3 scheme with an application to the RG Extending the analysis of Ref. 13 to the six-loop order re-

. , . veals the wide gap between five- and six-loop fixed point
functions of Paddorel resummatiott and the results from coordinates. This leads to an inconsistency of the six-loop

the six-loop RG functions resummed by Borel transformas 1yes of critical exponents compared with the five-loop re-
tion with conformal mapplnﬁ are given in the table. Re- gylts of Ref. 13. However, the analytical solution of a toy
cently, the modified PadBorel resummatioff has been d=0 RIM showed its free energy to be Borel summable
applied to the six-loop RG functiofsof the cubic model. provided that resummation is done asymmetrically: resum-
These data are also displayed in the table. ming first the series in the couplingand subsequently the
The error bars for the values of the Refs. 8 and 24 werseries inv.*° The corresponding resummation applieddto
obtained from the condition of the resulting stability in suc- =3 RIM massive scheme RG functions allowed precise de-
cessive approximation orders. However, the numerical valutermination of the critical exponents.
of the fixed point coordinates were substituted into the ex-
pansions for they functions (4),(5). To this end the most
reliable numerical values of the stable fixed point coordi- In the present paper we studied the critical properties of a
nates were substituted into the resummedunctions and cubic model associated witlh* terms of spheric and cubic
then an optimal value of the fit parameter in modified Padesymmetry of the LGW Hamiltonian. In particular, we were
Borel resummatioff and two fit parameters in the conformal interested in the crossover betwe@(N)-symmetric and cu-
mapping procedufewere chosen. The deviations betweenbic behavior which occurs at a certain vald of order
five- and six-loop results obtained within the resummationParameter components number. Recently, fiveand
procedure with optimal fit parameter value gave the error SiX-|OOp8 order RG functions were obtained for the cubic
interval. To complete the list, we show the valuewffor ~ model within massived=3 schemé. We applied the
N=3 obtained in Ref. 23 on the basis of Borel transforma-pseudoe expansiot® to their analysis. This method is
tion involving knowledge on RG functions large-order be-known as a standard one for ti@(N)-symmetric model
havior. Let us note that for finite values Mfour data fory ~ analysis and leads to the most accurate values of critical
and v interpolate the results of the minimal subtract®h exponents® Here, to our knowledge, it has been applied to
and the massive scherffe® though the values are closer to the cubic model for the first tim¥.
the last. On the other hand, our method gives smaller values The pseude: expansion forN. appears to have much
for w in comparison with other methods. We note as wellbetter convergence properties then the corresponelieg-
that passing from the four-lodpto the six-loog* approxi-  pansion[see Padéables(8) and (10)]. This provides very
mation in frames of a massiwi=3 approach shifts the nu- good convergence of its Padealysis(9). The last together
merical values of critical exponents towards our data. with the refined Pad8orel analysis yields the best estimate
In the limit N—o the critical properties of the cubic Nc=2.862:0.005 of the paper. Our conclusioN <3
model reconstitute those of the annealed diluted Isingneans in particular, that all ferromagnetic cubic crystals with
modef® where Fisher renormalization for critical exponentsthree easy axis should undergo a first-order phase transition.
holds?® In particular, based on the recent RG estimates for We obtained the values of cubic model critical exponents
the critical exponents of the pure Ising modek0.109  in the new universality class in pseudaxpansions with the
+0.004, v=0.6304=0.0013,y=1.2397+0.0013%° one ob-  results given in Table I. In thél—cc limit our data repro-
tains the values'=0.708+0.005, y=1.391+ 0.008 for the duce the critical behavior of an annealed weakly diluted
Ising model with annealed disorder. The last values agreing modef® TheN— 0 limit, corresponding to a quenched
very well with our results of the last row of the Table |. Weakly diluted Ising model] however, does not yield reli-
Moreover, they are in very good agreement with other dat@ble results in pseudds expansion. Within a traditional
of the table. =3 massive technique the resummation of the RG functions
It is worth noting here that the RG series for the cubicby means of the convenient PaBerel analysis reveals a
model allow to reconstitute the functions which describe thegap between five- and six-loop fixed point coordinates. This
Ising model with the other type of randomness. By substitudeads to an inconsistency of the obtained critical exponents
tion N=0 one reconstitutes the weakly diluted quenchedvalues compared to the declared in Ref. 13. Let us note,
Ising modeI(RIM)_27 In this case, however, the pseuslo- however, that recently reliable values have been obtafned
expansion inr degenerates into dr expansion for the same by a resummation method which treats the couplings of the
reasons as the expansion for the RG functions degeneratesRIM model asymmetrically?
into a \/e expansiorf’ Moreover, our calculation show that
an expansion in/7 is numerically useless as this was shown
for & expansior?:1%%This can be regarded as an evidence We acknowledge useful discussions withzéb Sznajd
of the Borel nonsummability of the RIM RG functions. Since and Maciej Dudziski and thank Konstantin Varnashev for
the asymptotic properties of the series still are not provertommunicating his resuft prior to publication. This work
despite of noticing their divergent charactgf’ the RG  has been supported in part by $@rreichische Nationalbank
functions of RIM as series in renormalized couplings used talubilaumsfonds” through Grant No. 7694.
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