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Pseudo-« expansion of six-loop renormalization-group functions of an anisotropic cubic model
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Six-loop massive scheme renormalization group functions of a (d53)-dimensional cubic model@J. M.
Carmona, A. Pelissetto, and E. Vicari, Phys. Rev. B61, 15 136 ~2000!# are reconsidered by means of the
pseudo-« expansion. The marginal order parameter components numberNc52.86260.005 as well as critical
exponents of the cubic model are obtained. Our estimateNc,3 leads in particular to the conclusion that all
ferromagnetic cubic crystals with three easy axis should undergo a first-order phase transition.
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I. INTRODUCTION

Progress in the qualitative understanding and the qua
tative description of critical phenomena to a great extent w
achieved by the ideas of renormalization group~RG! theory.1

Only global features of a many-body system such as
range of interparticle forces, the space dimensionalityd, as
well as the dimensionN and the symmetry of an order pa
rameter were suggested to be responsible for long-dista
and abrupt behavior of matter in the critical region. As a fin
step the role of the relevant parameters in microscopic H
iltonians of various nature was represented adequately
effective Hamiltonians used in field theories. While alread
vector field theory with an isotropic rotationally symmetric
order parameter allowed unified and correct description o
large spectrum of critical phenomena, an extension of th
ries is of special interest since in real substances anisotro
are always present.2 For instance, in cubic crystals one e
pects the spin interaction to react to the lattice struct
~crystalline anisotropy!, suggesting additional terms in th
Hamiltonian, invariant under the cubic group. The anisotro
breaks rotational symmetry of the Heisenberg-like ferrom
net and makes the order parameter to point either al
edges or along diagonals of a cube. The corresponding
theory is defined by a Landau-Ginzburg-Wilson~LGW!
Hamiltonian with twof4 terms ofO(N) and cubic symme-
try and can exhibit a second order phase transition chara
ized either by spherical or cubic critical exponents. Varyi
the number of components of the order parameterN a new
crossover phenomenon between these two scenarios
place at the marginal valueNc .

In the framework of RG theory the critical point corre
sponds to the stable fixed point of the RG transformation.1 In
a model with competing fixed points the study of domains
their attraction as well as the crossover phenomenon
fundamental problem for universality comprehension. Ap
from the academic interest the determination ofNc can lead
to decisive conclusions about phase transition order in a
tain class of cubic crystals. For instance,d53 cubic crystals
with three easy axis should undergo either a second o
weak first-order phase transition providedNc is greater or
less than 3.3 This argumentation states that the existence
PRB 620163-1829/2000/62~18!/12195~6!/$15.00
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the stable fixed point of a field theory is a necessary but
a sufficient condition for a model to exhibit a second-ord
phase transition. If the parameters of an microscopic Ham
tonian are mapped in the plain of the LGW Hamiltonia
couplings to a point which lies outside the domain of attra
tion of the stable fixed point, the Hamiltonians will flow
away to infinitely large values of couplings. Such a behav
might serve as evidence of a weak first-order phase trans
and this is confirmed in some experiments~see Ref. 3, and
references therein!. If Nc,3 for a d53 ferromagnet, the
new cubic fixed point governing the critical regime appe
to be inaccessible from the initial values of couplings whi
correspond to the ferromagnetic ordering with three e
axis. It appears thatNc is very close toN53 and the critical
exponents in both regimes are indistinguishable experim
tally. In order to calculate the value ofNc within field theory
one has to treat a complex model of two couplings. This
different from a Heisenberg-likeN-component ferromagne
with weak quenched disorder, where the Harris criterion
swers the question about the type of critical behavior.4

The description of the crossover and the precise dete
nation of its numerical characteristics has been a challe
for many RG studies of the anisotropic cubic model. Hi
orders of perturbation theory were obtained for this mode
successive approximations either in« expansion with dimen-
sional regularization in the minimal subtraction~MS!
scheme5 or within the massived53 scheme.6 The expres-
sions are available now in the five-loop7 and in the six-loop
approximations,8 respectively. However, divergent propertie
of the series did not allow their straightforward analysis a
called for the application of various resummation proc
dures. For instance,Nc calculated in five-loop« expansion7

yielded depending on the resummation procedureNc
52.958,7 Nc52.855,9 and Nc52.87(5).8 Alternative ap-
proaches on the basis of the« expansion lead toNc
52.97(6)~Ref. 8! and toNc52.950.10 On the other hand the
massived53 scheme RG functions extended for arbitraryN
to four loops,11 yieldedNc52.89(2)~Ref. 11! ~see Ref. 8 for
a recent extended review of theoretical determination ofNc).
These results suggest that the most reliable theoretical
mate isNc,3.

However, recent MC simulations12 questioned the value
for Nc obtained so far. There, considering the finite size c
rections of a cubic invariant perturbation term at the critic
12 195 ©2000 The American Physical Society
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12 196 PRB 62R. FOLK, YU. HOLOVATCH, AND T. YAVORS’KII
O(N)-symmetric point, the eigenvaluesv i of the stability
matrix were extracted. From the estimatev250.0007(29) a
value ofNc53 was concluded. This disagreement as well
the crucial influence of the value ofNc on the order of the
phase transition makes an implementation of an alterna
method for calculation ofNc to be hardly overrated. Re
cently the massived53 scheme RG functions of the cub
model were extended to five-loop order13 and very recently
the six-loop series8 were obtained. The traditional analysis
these series, including an information on large order beh
ior of the RG functions,8 yieldedNc52.89(4). However let
us note that the most accurate estimates of the critical e
nents of ad53 O(N)-symmetric f4 model in a massive
field theoretical RG scheme are based on a pseudo-« expan-
sion technique.14,15Up to our knowledge the last method h
never been applied to the cubic model.17 Therefore the main
aim of the present paper is to apply the pseudo-« expansion
to the up-to-date most precise massive scheme RG func8

of the cubic model.
The setup of the article is as follows. After a brief co

sideration of the model and renormalization procedure,
present the pseudo-« expansion forNc and discuss its prop
erties. Applying Pade´ and Pade´-Borel analysis we obtain pre
cise estimates ofNc and compare the result with the corr
sponding «-expansion. Finally we evaluate the critic
exponents of ad53 cubic system belonging to the new un
versality class for different values ofN.Nc and discuss the
weakly diluted Ising model caseN50.

II. PSEUDO-« SERIES AND NUMERICAL RESULTS

We start from ad53 effective LGW Hamiltonian with
two couplings at terms of spherical and cubic symmetry:

H~w!5E d3RH 1

2 (
a51

N

@ u¹wau21m0
2wa

2 #1
u0

4! S (
a51

N

wa
2 D 2

1
v0

4! (
a51

N

wa
4J , ~1!

wherewa(R) are components of a bareN-component vector
field; u0.0, v0 are bare couplings,m0

2 is a squared bare
mass being a linear function of temperature. The vicinity o
critical point corresponds to a long-distance behavior of
model ~1!, while ultraviolet divergences of the theory a
dealt with by means of an appropriate renormalizat
procedure.1 In particular, the renormalization of the ba
couplings leads tobu(u,v) and bv(u,v)—the so-calledb
functions; a renormalization of the bare field and square-fi
insertion producesgf(u,v) and ḡf2(u,v)—the so-calledg
functions. All these functions depend on renormalized c
plingsu andv.18 The critical behavior of the model is dete
mined by the infrared stable fixed pointu* ,v* . It is given by
the condition that bothb functions are zero and all the re
parts of the stability matrix eigenvalues are positive. The p
correlation function critical exponenth and the correlation
length critical exponentn are obtained via the relationsh
5gf(u* ,v* ), 1/n522ḡf2(u* ,v* )2gf(u* ,v* ). The
correction-to-scaling exponentv is given by the largest sta
bility matrix eigenvalue in the stable fixed point.
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In the present study we reconsider RG functions of
model ~1! as they are obtained within massive fixedd53
scheme19

2
bu~u,v !

u
512u2

2

3
v1

4

27

~190141N!

~81N!2
u21

400

81

uv
81N

1
92

729
v21bu

(3LA)1•••1bu
(6LA) , ~2!

2
bv~u,v !

v
51212

u

81N
2v1

4

27

~370123N!

~81N!2
u2

1
832

81

uv
81N

1
308

729
v21bv

(3LA)1•••1bv
(6LA) ,

~3!

gf~u,v !5
8

27

~21N!

~81N!2
u21

16

81

uv
81N

1
8

729
v21gf

(3LA)

1•••1gf
(6LA) , ~4!

ḡf2~u,v !5
~21N!u

81N
1

1

3
v22

~21N!

~81N!2
u22

4uv
3~81N!

2
2

27
v21ḡf2

(3LA)
1•••1ḡf2

(6LA) , ~5!

where bu
(3LA)

•••ḡf2
(6LA) denote the three-loop contribution

obtained in Ref. 20, the four-loop, the recent five-loop a
the very recent six-loop contributions obtained in Refs.
13, and 8, respectively. Furthermore, the large-order beh
ior was established for the RG functions~2!–~5! which al-
lowed the application of the refined resummation proced
based on Borel transformation with conformal mapping.8 In
this way a convergent sequence of approximations forNc as
well as critical exponents within the cubic universality cla
were obtained.8

One possible way of analysis of the massive RG functio
~2!–~5! consists in solution of a system of equations for t
~resummed! b functions~2!,~3!

bu~u* ,v* !50,

bv~u* ,v* !50 ~6!

to get numerical values of a stable fixed point coordina
u* ,v* . Then these numerical values are substituted into~re-
summed! series forg functions ~4!,~5! which lead to the
numerical values for critical exponents. As a result the fi
errors for the critical exponents are the sum of the errors
the series for exponents and of the errors coming fr
u* ,v* . To avoid such errors accumulation it is standard n
in the analysis of field theories with one coupling14,15 to use
a pseudo-« expansion.16 Here, we will apply the pseudo-«
expansion for a cubic model~1!.17 The procedure is defined
in the following way. Let us introduce the functions

bu~u,v,t!52uS t2u2
2

3
v1••• D ,
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bv~u,v,t!52vS t212
u

81N
2v1••• D , ~7!

where the ‘‘pseudo-« ’’ auxiliary parametert has been intro-
duced into theb-functions~2!,~3! instead of the zeroth orde
term. Obviously, bu(u,v)[bu(u,v,t51), bv(u,v)
[bv(u,v,t51). Then a fixed point coordinates are obtain
as series int. The series for the stable fixed point coord
natesu* (t),v* (t) are then substituted into series~4!,~5! for
g functions leading to the pseudo-« expansion for critical
exponents. In the resulting series the expansion paramet
collects contributions from the loop integrals of the sa
order coming from both the series ofb and g functions.
Finally, one putst51. In such a way one gets a sel
consistent perturbation theory and avoids cumulation of
rors originating from different steps of calculation.

With the above described method we obtain the marg
valueNc and the critical exponents in the cubic universal
class for the model~1!. The series forNc reads

Nc5424/3t10.29042005t220.18967704t3

10.19951035t420.22465150t5. ~8!

One notes that at least up to the presented number of lo
the series does not behave as an asymptotic one with fa
rial growth of coefficients. This can be seen by considerin
Padétable ~9! for Nc series~8!

3
4 3 2.9158 2.8411 2.8922 2.8298

2.6667 2.9051 2.0643 2.8711 2.8638 0

2.9571 2.8423 2.8616 2.8616 0 0

2.7674 2.8646 2.8616 0 0 0

2.9669 2.8613 0 0 0 0

2.7423 0 0 0 0 0

4 .

~9!

Here, a result of an approximant@M /N# is represented as a
element of a matrix with usual notation. The approxima
@0/4# and @1/2# have poles at values oft of the order 1~at
points t153.7 andt251.1, respectively! and thus the esti-
mates ofNc on their basis are considered as unreliable~they
are noted in the table by small numbers!. The values in the
first column of the table are merely the sums of the cor
sponding number of terms in the expansion~8! and do not
diverge. However, the most prominent property of the ta
is the perfect convergence of the values within main dia
nals. In particular, the six-loop result of the@3/2# and the
@2/3# approximants and the five-loop result of@2/2# approx-
imant coincide within the fourth digit and lead to an estima
Nc52.8616. Though the next order terms in Eq.~8! could
spoil such convergence, it is worth to compare the pseud«
expansion~8! for Nc with corresponding«-expansion series
which is one loop order shorter7

Nc5422«12.58847559«225.87431189«3

116.82703902«4. ~10!

The obvious worse convergence properties of the series~10!
lead to a corresponding bad convergence of the values in
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Padétable ~obtained in Ref. 7!. In particular, mere summa
tion of several first terms leads now to diverging result

F 4 2.667 3.627 1.952 25.772

2 3.128 2.893 2.972 0

4.589 2.792 2.958 0 0

21.286 3.068 0 0 0

15.540 0 0 0 0

G . ~11!

Here, the approximants@0/2#, @0/4# have poles close tot
51 ~at t152.3, t250.9) respectively, and thus are unre
able.

In order to take into consideration possible factorial div
gence of the pseudo–« expansion~8!, as a next step we
apply to the series~8! the Pade´-Borel resummation proce
dure. The Pade´-Borel resummation of the initial sumNc(t)
consists of the following steps:~i! construction of Borel-
Leroy image ofNc(t); ~ii ! its extrapolation by a rationa
Padé-approximant@M /N#(tt); and ~iii ! definition of a re-
sumedNc

res(t) by the integration*0
`dtexp(2t)tp@M/N#(tt),

wherep is an arbitrary parameter entering the Borel-Ler
image.21 One possibility to fixp is to require fastest conver
gence of the resulting values, given by the diagonal appr
imant resummation similar to Pade´ analysis~9!. However,
the convergence of these values appears to be almost
pendent ofp. On the other hand, approximants possess
poles on the positive real axis are considered as unreli
and we can equally well choosep to provide a minimal num-
ber of such divergent approximants. For instance, forp>4
the imaginary part is smaller then 10210 in the ‘‘bad’’ @1/4#
and@3/2# approximants and therefore can be neglected. P
cessing the series~8! for p54 as described we obtain th
results presented in Eq.~12!. Here, one encounters only on
unreliable approximant@1/2# which is again denoted with
small numbers. This analysis yieldsNc52.86260.005,
where error bar stems from the maximal deviation betwe
the six and the five-loop results for arbitraryp between 0 and
10.

3
4 3.0353 2.9245 2.8634 2.8763 2.8561

2.6667 2.8995 2.7173 2.8737 2.8685 0

2.9571 2.8461 2.8595 2.8631 0 0

2.7674 2.8617 2.8645 0 0 0

2.9669 2.8641 0 0 0 0

2.7423 0 0 0 0 0

4 .

~12!

It is obvious that other values of interest such as fix
point coordinates and critical exponents can also be obta
within the pseudo-« expansions. For instance, for differe
values ofN we obtain the following expressions for the crit
cal exponentsg of the susceptibility,n of the correlation
length, andv of the correction-to-scaling
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g
N53

5112/9t10.10157666t210.03325297t310.02024452t410.00312386t510.00905558t6,

g
N54

5111/4t10.11188272t210.03494088t310.01575673t420.00023288t510.00322125t6,

g
N55

5114/15t10.11314861t210.03107333t310.00939269t420.00376555t520.00055733t6,

g
N5`

5111/3t10.06675812t210.00726155t320.00746706t420.00082309t520.00713623t6,

n
N53

51/211/9t10.05383664t210.01993814t310.01227945t410.00300477t510.00535272t6,

n
N54

51/211/8t10.05902778t210.02074731t310.01004792t410.00133632t510.00248012t6,

~13!
n

N55
51/212/15t10.05964701t210.01877086t310.00688561t420.00041380t510.00060891t6,

n
N5`

51/211/6t10.03612254t210.00709205t320.00142535t410.00103317t520.00285768t6,

v
N53

5t20.39042829t210.29428918t320.25565542t410.31134025t520.43957722t6,

v
N54

5t20.36419753t210.24511892t320.20419925t410.21874431t520.27962773t6,

v
N55

5t20.35129140t210.21196053t320.16985912t410.17369321t520.19948859t6,

v
N5`

5t20.42249657t210.34513141t320.32006198t410.44947688t520.67842170t6.

TABLE I. Our data for the critical exponents of the cubic model~last column! in comparison with other
results. See the text for a full description.

N Ref. 22 Ref. 8 Ref. 11 Ref. 24 Ref. 88 This study

g 1.374660.0020 1.377(6) 1.3775 1.385060.0050 1.390(12) 1.38760.001
3 n 0.699760.0024 0.701(4) 0.6996 0.704060.0040 0.706(6) 0.70560.001

v 0.8061~Ref. 23! 0.799(14) 0.7786 0.783360.0054 0.781(4) 0.77760.009
g 1.420860.0030 1.419(6) 1.4028 1.407460.0030 1.405(10) 1.41660.004

4 n 0.722560.0022 0.723(4) 0.7131 0.715060.0050 0.714(8) 0.71960.002
v 0.790(8) 0.788760.0090 0.781(44) 0.77760.002
g 1.430560.0040 1.4076 1.41760.006

5 n 0.729060.0016 0.7154 0.72060.004
v 0.77360.003
g 1.432260.0040 1.4082 1.41760.009

6 n 0.730160.0016 0.7157 0.71860.003
v 0.77160.005
g 1.422(6) 1.4074 1.406860.0030 1.404(10) 1.40760.008

8 n 0.723(2) 0.7153 0.714360.0035 0.712(6) 0.71560.003
v 0.786(6) 0.795560.0150 0.775(88) 0.77060.009
g 1.399360.0020 1.399(8) 1.396260.0040 1.396(14) 1.39560.006

` n 0.710860.0010 0.711(2) 0.709460.0030 0.708(8) 0.70860.001
v 0.802(18) 0.798660.0200 0.790(18) 0.77560.020
th
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l
xi-
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One can determine the cubic model critical exponents of
new universality class on the basis of the expansions~13! in
the same manner as for the expansion~8! of Nc . However,
the expansions for the combination 1/g and 1/n21 appear to
have better convergence properties and all values are
tained on their basis. The Pade´- and Pade´-Borel analysis lead
to the critical exponents values as they are given in the ta
I in the last column@here, we do not show intermediate r
e

b-

le

sults similar to Eqs.~9!–~12!#. The error bars for the critica
exponents given in the Table I were obtained from the ma
mal deviation between the six- and the five-loop resu
among all deviations for the parameterp value 0<p<10.
The error bars within the pseudo-« expansion are typically
much smaller than those based on other methods. The re
is thatb andg functions contribute in a self-consistent wa
into the pseudo-« expansion series for critical exponents.
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To compare our results we represent in the Table I
values obtained from the five-loop« expansion7 by means of
a modified Borel summation22 and of the Borel transforma
tion with conformal mapping8 ~the corresponding citation in
the table is primed!. Critical exponents from the four-loop
fixed massived53 scheme with an application to the R
functions of Pade´-Borel resummation11 and the results from
the six-loop RG functions resummed by Borel transform
tion with conformal mapping8 are given in the table. Re
cently, the modified Pade´-Borel resummation22 has been
applied24 to the six-loop RG functions8 of the cubic model.
These data are also displayed in the table.

The error bars for the values of the Refs. 8 and 24 w
obtained from the condition of the resulting stability in su
cessive approximation orders. However, the numerical va
of the fixed point coordinates were substituted into the
pansions for theg functions ~4!,~5!. To this end the mos
reliable numerical values of the stable fixed point coor
nates were substituted into the resummedg functions and
then an optimal value of the fit parameter in modified Pa´-
Borel resummation24 and two fit parameters in the conform
mapping procedure8 were chosen. The deviations betwe
five- and six-loop results obtained within the resummat
procedure with optimal fit parameter~s! value gave the erro
interval. To complete the list, we show the value ofv for
N53 obtained in Ref. 23 on the basis of Borel transform
tion involving knowledge on RG functions large-order b
havior. Let us note that for finite values ofN our data forg
and n interpolate the results of the minimal subtraction22,8

and the massive scheme,11,8 though the values are closer
the last. On the other hand, our method gives smaller va
for v in comparison with other methods. We note as w
that passing from the four-loop11 to the six-loop24 approxi-
mation in frames of a massived53 approach shifts the nu
merical values of critical exponents towards our data.

In the limit N→` the critical properties of the cubi
model reconstitute those of the annealed diluted Is
model25 where Fisher renormalization for critical exponen
holds.26 In particular, based on the recent RG estimates
the critical exponents of the pure Ising modela50.109
60.004,n50.630460.0013,g51.239760.0013,15 one ob-
tains the valuesn50.70860.005, g51.39160.008 for the
Ising model with annealed disorder. The last values ag
very well with our results of the last row of the Table
Moreover, they are in very good agreement with other d
of the table.

It is worth noting here that the RG series for the cub
model allow to reconstitute the functions which describe
Ising model with the other type of randomness. By subst
tion N50 one reconstitutes the weakly diluted quench
Ising model ~RIM!.27 In this case, however, the pseudo«
expansion int degenerates into aAt expansion for the sam
reasons as the« expansion for the RG functions degenera
into a A« expansion.27 Moreover, our calculation show tha
an expansion inAt is numerically useless as this was show
for A« expansion.9,10,28This can be regarded as an eviden
of the Borel nonsummability of the RIM RG functions. Sinc
the asymptotic properties of the series still are not pro
despite of noticing their divergent character,29,30 the RG
functions of RIM as series in renormalized couplings used
e
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be treated by means of Pade´-Borel or Chisholm-Borel re-
summations~see, e.g., Refs. 10,13,31!. The first of the stated
methods was recently applied to study the five-loop R
functions of RIM.13 The analysis allowed the authors to o
tain the five-loop estimates for the RIM critical exponen
Extending the analysis of Ref. 13 to the six-loop order
veals the wide gap between five- and six-loop fixed po
coordinates. This leads to an inconsistency of the six-lo
values of critical exponents compared with the five-loop
sults of Ref. 13. However, the analytical solution of a t
d50 RIM showed its free energy to be Borel summab
provided that resummation is done asymmetrically: resu
ming first the series in the couplingu and subsequently the
series inv.30 The corresponding resummation applied tod
53 RIM massive scheme RG functions allowed precise
termination of the critical exponents.32

III. CONCLUSIONS

In the present paper we studied the critical properties o
cubic model associated withf4 terms of spheric and cubic
symmetry of the LGW Hamiltonian. In particular, we we
interested in the crossover betweenO(N)-symmetric and cu-
bic behavior which occurs at a certain valueNc of order
parameter components number. Recently, five-13 and
six-loop8 order RG functions were obtained for the cub
model within massived53 scheme.6 We applied the
pseudo-« expansion16 to their analysis. This method i
known as a standard one for theO(N)-symmetric model
analysis and leads to the most accurate values of crit
exponents.15 Here, to our knowledge, it has been applied
the cubic model for the first time.17

The pseudo-« expansion forNc appears to have muc
better convergence properties then the corresponding« ex-
pansion@see Pade´ tables~8! and ~10!#. This provides very
good convergence of its Pade´ analysis~9!. The last together
with the refined Pade´ Borel analysis yields the best estima
Nc52.86260.005 of the paper. Our conclusionNc,3
means in particular, that all ferromagnetic cubic crystals w
three easy axis should undergo a first-order phase transit3

We obtained the values of cubic model critical expone
in the new universality class in pseudo-« expansions with the
results given in Table I. In theN→` limit our data repro-
duce the critical behavior of an annealed weakly dilut
Ising model.25 TheN→0 limit, corresponding to a quenche
weakly diluted Ising model,27 however, does not yield reli-
able results in pseudo-A« expansion. Within a traditionald
53 massive technique the resummation of the RG functi
by means of the convenient Pade´-Borel analysis reveals a
gap between five- and six-loop fixed point coordinates. T
leads to an inconsistency of the obtained critical expone
values compared to the declared in Ref. 13. Let us n
however, that recently reliable values have been obtain32

by a resummation method which treats the couplings of
RIM model asymmetrically.30
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and M. Dudziński, Phys. Rev. B59, 4176~1999!.

4The Harris criterion@A. B. Harris, J. Phys. C7, 1671 ~1974!#
states that if the heat capacity exponentap of a pure O(N)
model is negative, that is the heat capacity has no divergenc
the critical point, impurities do not affect the critical behavior
the model in the sense that critical exponents remain unchan
under dilution. Only in the caseap.0, the critical behavior of
the disordered model is governed by a new set of critical ex
nents.

5G. ’t Hooft and M. Veltman, Nucl. Phys.B44, 189 ~1972!; G. ’t
Hooft, ibid. B61, 455 ~1973!.

6G. Parisi~unpublished!; G. Parisi, J. Stat. Phys.23, 49 ~1980!.
7H. Kleinert and V. Schulte-Frohlinde, Phys. Lett. B342, 284

~1995!.
8J. M. Carmona, A. Pelissetto, and E. Vicari, cond-mat/99121

~unpublished!.
9B. N. Shalaev, S. A. Antonenko, and A. I. Sokolov, Phys. Lett.

230, 105 ~1997!.
10R. Folk, Yu. Holovatch, and T. Yavors’kii, Phys. Rev. B61,

15 114~2000!.
11K. B. Varnashev, Phys. Rev. B61, 14 660~2000!.
12M. Caselle and M. Hasenbusch, J. Phys. A31, 4603~1998!.
13D. V. Pakhnin and A. I. Sokolov, Phys. Rev. B61, 15 130~2000!.
14J. C. Le Guillou and J. Zinn-Justin, Phys. Rev. B21, 3976~1980!.
15R. Guida and J. Zinn-Justin, J. Phys. A31, 8103~1998!.
16The pseudo-« expansion was introduced by B. G. Nickel, s

citation 19 in Ref. 14.
17On an application of the pseudo-« expansion for models with

several couplings see C. von Ferber and Yu. Holovatch, Eu
-

at

ed

-

5

-

phys. Lett.39, 31 ~1997!; Phys. Rev. E56, 6370~1997!; Physica
A 249, 327 ~1998!; Phys. Rev. E59, 6914~1999!.

18Though a set of resulting RG functions are renormalization
pendent, measurable quantities are universal and do not de
on the renormalization scheme.

19Here, a convenient normalization is used where coefficients of
one-loop contribution at the couplingu for bu and v for bv

equal to 1.
20The three-loop RG functions of ad53 cubic model were first

obtained in A. I. Sokolov, Fiz. Tverd. Tela19, 748~1977! @Sov.
Phys. Solid State19, 433 ~1977!# and then corrected in A. I.
Sokolov and B. N. Shalaev,ibid. 23, 2058 ~1981! @ 23, 1200
~1981!#. The final free of errors expressions were given in
Shpot, Phys. Lett. A142, 474 ~1989!.

21G. A. Baker, B. G. Nickel, M. S. Green, and D. I. Meiron, Phy
Rev. Lett.36, 1351~1976!; G. A. Baker, B. G. Nickel, and D. I.
Meiron, Phys. Rev. B17, 1365~1978!.

22A. I. Mudrov and K. B. Varnashev, Phys. Rev. E58, 5371~1998!.
23H. Kleinert, S. Thoms, and V. Schulte-Frohlinde, Phys. Rev.

56, 14 428~1997!.
24K. Varnashev~private communication!.
25A. Aharony, Phys. Rev. Lett.31, 1494~1973!; V. J. Emery, Phys.

Rev. B11, 239 ~1975!.
26The Fisher renormalization states that critical exponentsn,g,h,

a of an annealed system are determined by thosenp ,gp ,hp , ap

of a pure one via relationsn5np /(12ap),g5gp /(12ap),a
52ap /(12ap),h5hp @M. E. Fisher, Phys. Rev.176, 257
~1968!#.
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