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Critical properties of S>3 Ising chains with long-range interactions

M. Barati* and A. Ramazani
Department of Physics, Shiraz University, Shiraz 71454, Iran
(Received 23 May 2000

The phase diagram and critical exponent of the correlation length for an Ising chain with a long-range
interaction in the form of A" for S=1/2,1,3/2,2 is calculated by the finite-range scaling technique. The spin
dependence of the critical temperature and critical exponéntthe classical and nonclassical regions is also
studied. It is observed that, with a good approximation, the critical exponent of the correlation length is
independent of the magnitude of spin in both the classical and nonclassical regions.

. INTRODUCTION mac and Uzeld® is followed and extended to study the
magnetic phase diagram and the correlation length critical
It is well known that the one-dimensional spin modelsexponentr of a one-dimensional Ising chain with a long-
with a long-range interaction exhibit an ordered state at lowange interaction in the form of /" for S=1/2,1,3/2,2. In
temperatures when the interaction falls off sufficiently this investigation, the critical temperature and the critical ex-
slowly. The sping Ising ferromagnet with a long-range in- Ponenty in the classical (6 o<0.5) and nonclassical (0.5
teraction proportional to £}*7 (r;; is the distance between <¢<1) regions are determined for different valuesSaind

spins at sites andj) has been studied extensively. For this tN€ir behavior with respect to the parametersand S is

system, the existence of a phase transition at a nonzero criffPtained. In addition, the results for the critical exponent of

: . the correlation length in the classical region are compared
cal temperature is proved for<0sc<1.1? In addition, the . .
critical phenomena in the system exhibit a more complicate ir'ﬂetg%;ﬂgsaﬁcleﬁ pl\;icrl:tcéega??:)t?eesﬁlgs methbdnd con-
behavior than in the system with a short-range interaction. e L .
The manifestation of s);ch a complication cag be observeq’ The Hamiltonian of the system under consideration can be

. . " X ritten as
clearly in the behavior of the critical exponents in the non-
classical region especially at the bordercof 1. Therefore
the study of different properties of these systems requires a H= _3*22 Jisis;, (1)
more profound understanding of the critical phenomena. i
The critical properties of spig- systems with a long- s )
range interaction have been investigated by the series expafferesi=-S5, ... ,SandJ;, fg”' —J[77 in which the lat-
sion method the renormalization grouRG) method in tice spacing is one u_nlt. Tk@ factor in the Hamﬂtomap is
reciprocal space in the form of arexpansion around=0.5 entered as a normalization factor such that the magnitude of
(Ref. 4 ando=1 (Ref. 5, the real-space RG meth8dhe the large value of each spin is normalized to 1. The main
finité—range scalingFR.S) method”® the coherent anomaly idea of this approach is that the true infinite range of the
method(CAM),® and advanced I\/ionte Carlo simulatiofs interaction is truncated to thBlth first neighbors and the
There are different interests in the study of the system?ro_blem in this finite range is solved e>§actly with the Hamll-

with a long-range interaction. From the fundamental theoret'-[ond'an czjftI)Eq.(l_). Thﬁn theN— o Ibehav:or_ of thedsystem IS
ical point of view, the investigation of such systems lets one educe ylug;lng t tra]rgnge scaling relation and an appropri-
understand the effect of the range of the interaction on thgte_re;]xtrapcln_ atm%; tﬁc nique. rollows: the ERS method i
critical properties of these systems. From another point of . e outline of the paper Is as follows: the FRS method Is
view, there are several applications for such systems. It had €fly explained in Sec. 1l A, the transfer matrix method for
been shown that critical fluctuations may give rise to Iong-t IS hce:jsg 1S d((ajvelogc_ad Sm Sﬁcc' l: B’S andmth(ra] egtrr?pqlatln?
range Casimir forces between uncharged particles immers et od1s Introduced in Sec. - N SEec. , the be lavior o
in a critical fluid2L It has also been observed that the randond € critical temperature and the correlation length critical ex-
exchange(Levy-flight) processes can generate effective in-ponentr and their dependence on the magnitude of the spin

teractions which decay algebraically at long distariées. S 1S investigated. The concluding remarks are given in

Other related problems deal with spin systems with a Iong-sec' V.

range RKKY-like interactior cos@r)/r®] which is present in
spin glassé$ and critical phenomena in highly ionic Il. THEORY AND METHODS
systems* A problem that is of particular interest is the

=1 case. Under this form of interaction (1), the S=1/2 A. Finite-range scaling

can be mapped onto the spinkondo problen® and gener- The FRS method has been constructed in analogy with
ally S>1/2 may be related to the higher-spin generalizatiorfinite-size scaling (FS9,'” with a scaled range of
of the Kondo problent® interaction’ The basic idea is to truncate the range of the

In the present work, the FRS method employed by Glu4interaction in the system to a certain range and obtain precise
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information about the critical behavior of the true infinite N N-k k

system by using scaling properties. <S|T|s’>:exp{ D K X SeSnikt 2 Snen_kSh ]
Let A..(t) be some physical quantity which algebraically k=1 n=1 n=1

diverges in the vicinity of the critical poirtt=0 for an infi- 8

nite long-range system, i.e., wheres,=—S, ...,S is a member of the state vect{s)

with N components, i.e.,
AL(t)=Aqt™? (2

. » . [9)=Is1,52, ... Sn)- 9
wheret=(T—T.)/T,, T. is the critical temperature, is the } . )
related critical exponent, andj, is a constant. Analogous to Eguation(8) can also be written as a product fmatrices
the FSS hypothesis, it is assumed that for a large finite rangkn. Where each matrix would add one more site to the
N and smalit, Ay(t) can be written as column;

T:T]_Tz' . 'TN*lTN' (10)

) ) ) . There exists also a simple relation between these one-site
wheref is a homogeneous function with the following prop- matrices, i.e.,

An(D)=AL(DF(N/E), ©)

erties:
UTTn+1U:Tnv (13)
H — H — plv
)!l_rgf(x) L Xlﬂf(x) consk . @) whereTy . ,=T; andU is the translation operator in a direc-
tion perpendicular to the strip as given by
By applying Eg. (3) to the correlation lengthé..(t) UIS Y= 8(Sr S')8(Ss.S ) S(Sa.S0) - - - (s s/
=&,t™7, the standard procedure gives the condition for the (SUIS) = 8(51,50) 8(52,51) 8(53,52) (Sn-1:5-2)
critical temperature through the fixed point equation X 8(SN,SN—1) (12
N_ N—-1_T—11-1
t*)=(N/M t* 5 wh_ereU =1 and U™ *=U"'=U"". ThereforeT can be
En(t™)=(N/M)&u(tr) (5 written as
and the expression for the correlation length critical expo- N SN
nentv, T=(UTy)" =T, (13
where
v = IN[E(T)/E, (1) 1/IN(N/M) — 1, (6) B
T|s'y=68(s,,57) 8(S3,S5) - - - 5(Sn,SN_1)
where ¢’ is the derivative of the correlation lengghwith (sTls') 2t 32 NN
respect td. According to the FSS metho®y] andN must be N ,
two close integers for better convergency. Xex 2 KN+1-mSmSN { - (14
It is interesting to note that the critical behavior in this m=1

scaling approactunlike the FSS approath depends essen- . . ~ .
tially on the range of the interaction. Therefore, applicability It i interesting to note that the matrix has only 3

of the method in both the mean-field Gr<0.5) and non- +1 nonzero elements in each row which reduces the re-
classical regions (080<1) is expected. quired computer memory tremendously. Applying the stan-
dard derivation, the correlation length is obtained as

B. Transfer matrix N 1

Applicability of the FRS method depends on the possibil- N NNy /No) Nyl pn)’ (15)
ity of the exact determination of the results for a finite range
of interaction. For Ising chains with the interaction truncatedwherex; andX, are the largest and second-largest eigenval-
at theNth neighbors, the exact calculation can be obtained!€s of T, andx; and u, are the largest and second-largest
by applying a proper transfer matrix. The Hamiltonian of theeigenvalues off, respectively.
chain can be written as A power method can be used for calculatjng. Then, by

factorizing x4, a similar technique is employed to calculate
LN Mo. Details of the methods have been discussed extensively

—BH=2 > K;SSij, (7)  in the numerical literaturé
i=1j=1

whereK;=S"?J/j*"“ andL andN are the number of mag- C. Extrapolation procedure

netic sites and the range of interaction, respectively. The critical temperature and exponent given by Egs.

In order to set up a proper transfer matrix, the chain is(5) and(6), depend on the selected range of the interadtion
considered as a strip with columns of heightwvhere each In order to obtain the correct answer for the true Ising sys-
column, regarding the&+ 1 possible states of the spins, can tem, a proper method of extrapolation should be employed.
be imagined as a system with $21)N possible states From the scaling hypotheses one expects to observe a
which interact only with their nearest neighbors. The transfepower-law convergency for a critical behavior of the same
matrix for the chain can be written as type. Based on this theory, the FRS is similar to the FSS
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TABLE I. (a) The extrapolated values of the critical temperature as a functi®@aofio. (b) The critical
temperature convergence expongptas a function ofSando.

@

Slo 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
z 21.6 10919 7.359 55167 4.3579 3.5436 29269 2.4299 2.0054 1.640
1 14.0 7.32 4.99 3.78 3.026 2.499 2.103 1.789 1.530 1.317
3 11 6.03 4.16 3.17 2.55 2.11 1.79 1.535 1.326 1.154
2 9.6 5.4 3.73 2.86 2.30 1.92 1.63 1.40 121 1.06

(b)
Slo 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

3 0.857 1.021 1.132 1.193 1.218 1.217 1.20 1.22 1.90 1

1 0.88 1.01 112 1.19 1.24 1.27 1.32 1.46 2.60 1

% 0.9 1.0 11 1.2 1.26 131 1.38 1.55 2.3 1

2 1.0 1.1 1.2 1.2 1.3 13 1.4 1.6 2.2 1

techniqué® and convergency is mainly affected by the lead-
ing irrelevant field and the related critical expongmt 0.
Therefore a power-law convergency fbf and v is used for
large values oN:

Ten=Tct+aNs (16)

and
vt = D(To = TONY +eNYs=1" 2+ b'NYs,  (17)

wherea, b, b’, andc are constants. Thus, in order to obtain

the true critical temperature and the correlation length critica

exponenty, the results foK, y(=1/T. y) and v,]l are fitted
to the form

pn=pet AIN (18)

in the least-squares approximatiGbSA). Here p. and x,
denote the extrapolated quantity and the convergence exp
nent, respectively.

It should be noted that the FSS technique is not applicabl
in the mean-fieldMF) region?! Therefore a fitting based on
Eq. (18) in this region is quite optional. Here, in the MF
region the fitting in the form

)’

for v evaluation, as suggested by Glumac and Uzélisc,

N—1

pn=B+A (19

maximum range of interaction is limited t8=20,13,10,9,
respectively. It must be noted that tBe- 1/2 Ising chain has
already been investigated with the FRS technigHewever,

in order to have a better comparison of the results, She
=1/2 system along with the other systems with higher values
of S was studied with the same degree of accuracy. Our
results for S=1/2 apart from a few percent discrepancy
caused by the different accuracy in the calculation are com-
patible with the reported values.

The two largest eigenvalues of the transfer matrix were
calculated with 17 digits and the values of thgy could be
petermined with an accuracy of 180/k. In order to find the
critical temperature for a giveBando, an extrapolation for
five fixed points with a larger interaction range based on Eg.
(18) was performed. It should be noted thgty has non-
monotonic behavior foor=1 (the limiting point for the pres-
ence of the phase transitionTherefore fitting through Eq.
(18) in this case is not possible and the fitting is performed
By imposingxr=1 in the equation. This restriction does not
have much effect on the final results because of a small
Qariation of T, ys. The results for the critical temperaturg
and convergency exponeri are presented in Table I.

It must be remarked that the accuracy of the critical tem-
perature determined by extrapolation dependssoand S
The maximum possible value of the range of interachibas
well as the accuracy of the calculations decreases by increas-
ing S. In addition, in the FRS method the convergency of the
fixed points is reduced as decreases and the accuracy in the
extrapolated critical temperature decreases. Thus, the accu-

accepted. The results which have been evaluated through Ehcy of the results depends @and o. In this regard the
(19) for S=1/2 are in better agreement with the values presjgnificant digits of the data presented in this section were

dicted by the RG method.

Ill. RESULTS AND DISCUSSION

A. Critical temperature

In order to determine the critical temperature for an Ising

determined by the change of the maximum range of the in-
teraction fromN—1 to N.

TABLE II. The ratio of T./TM" as a function oSand¢.

So 02 03 04 05 06 07 08 09 1

chain with a long-range interaction by the FRS technique, we 1

have to find the value of the fixed point through E§). In
this calculation the limitation of the computer memory for

saving the elements of the transfer maffixauses a restric-

0.96 0.929 0.885 0.832 0.773 0.711 0.644 0.574 0.499
0.97 0.948 0.911 0.868 0.819 0.767 0.713 0.656 0.601
0.97 0.953 0.919 0.879 0.833 0.785 0.734 0.682 0.631
0.98 0.955 0.922 0.883 0.839 0.792 0.743 0.694 0.644

N NW = N

tion on the range of interactioN. For S=1/2,1,3/2,2 the
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TABLE Ill. (a) The extrapolated values of ! for vy calculated inT,, as a function ofS and . For

comparison, we cite the exact RG resu(ts. The convergence exponexj as a function ofSand o

@
Slo 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
1 0.095 0.194 0.289 0.374 0.440 0.481 0.490 0.458
1 0.100 0.196 0.289 0.373 0.439 0.480 0.492 0.474
3 0.115 0.206 0.295 0.376 0.440 0.48 0.49 0.486
2 0.126 0.214 0.302 0.380 0.44 0.48 0.50 0.493
Exact RG 0.1 0.2 0.3 0.4 0.5
(b)
So 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
1 0.94 0.91 0.81 0.70 0.62 0.57 0.56 0.65
1 0.96 0.91 0.83 0.75 0.70 0.68 0.74 1.23
3 0.94 0.89 0.83 0.77 0.74 0.76 0.9 1.4
2 0.92 0.88 0.82 0.77 0.76 0.8 0.9 1.5

In order to study the spin dependence of the critical tem+esults is reduced to six or five digits because of the required
differentiation procedure. The errors depend in a compli-

perature, the ratid./T¥" for the range 0.2 o<1 and for
S=1/2,1,3/2,2 was calculate@" is the mean-field critical

temperature and is given By

2S+1J° 1

25+11J

TMF__ _ - _
© 3 S kaiplte 3 S k

whereé is the Riemann zeta function. The results are show
in Table II. It should be mentioned that for a better compari-
son, the critical temperature calculation was carried out wit
N=9 for all values ofS It is seen from Table Il that the ratio
TC/TQ"F, as expected, increases wilincreasing. However,
the process of this approach strongly depends on the value

—&(1+0), (20

o such that the rate of change of/T)'" betweenS=1/2
andS=2 is only 2% forc=0.2 and 29% forw=1.

B. Critical exponent »

The critical exponent of the correlation lengih, was

cated way on the value db and o as in the case of the

critical temperature, although the dependence is somewhat
different from that in Sec. Il A. The significant digits of data
presented in this section have been determined by the

method explained in the last section.

From Eq.(17), one expects to obtain better results for*

in the nonclassical region if the expansion of Eg). is per-
ormed around the extrapolated critical temperafiigg in-
tead ofT . . This was processed f@= 1/2 by Glumac and
zelac where a better convergency fgr was observed It
is interesting to note that even in the MF region if theis
ﬁf\lculated for the extrapolated critical temperatligg and
e critical exponent is evaluated through Eq18), the

results are in good agreement with the predicted values by

the RG method.

The results for the inverse of the critical exponent of the
correlation lengthy %, are presented in Table (#) and the
convergence exponemnt, in Table Ili(b). As is seen from
calculated by Eq(6). In this calculation, the accuracy of the Table lll(a), the results are in good agreement with the exact

TABLE IV. (a) The extrapolated values of ! for vy calculated inT. y as a function ofSand o. For
comparison, we cite the exact RG results. The convergence exponexyj for the nonclassical region as a

function of Sando.

@
Slo 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1 0.104 0201 0292 0370 0.428 0465 0472 0454 0.380 0.13
1 0.108 0203 0294 0373 0435 0474 0487 0469 0.388 0.5
3 011 021 0297 0376 0437 0473 0491 0474 0395 0.17
2 012 021 030 0378 044 047 049 0475 0.398 0.8
Exact RG 0.1 0.2 0.3 0.4 0.5 0
(b)
So 0.6 0.7 0.8 0.9 1
1 2.4 2.6 1.6 0.49 0.19
1 0.97 0.9 0.72 0.41 0.21
3 0.8 0.8 0.66 0.42 0.23
2 0.8 0.8 0.63 0.41 0.23
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RG prediction in the classical region. The small differenceevidence of the spin-independent behavior of the critical ex-
between the results in the border of the classical and norponenty.
classical regions is mainly caused by a poor convergency

originated from the logarithmic term. In the fitting proce-

dure, ten points corresponding to the largest value fir
S=1/2 and five points for the othe®'s were used. Four

=0.9 thevy behave nonmonotonically which makes the fit-
ting by Eq.(18) impossible and forr=1 the fitting leads to

a negative value for the convergence exponent
As is seen in Table lll, the critical exponentfor a fixed

o is almost spin independent in both the MF and nonclass

cal regions. The small deviation for a small value wfis
caused mainly by the use of different values\ofor differ-

ent values ofS This observation indicates that the borderline
between the MF and nonclassical regions is spin indepe

dent, and therefore the method of calculation throdgly

should be applicable for this determination. The critical ex-

ponentry was also calculated through the fitting 1§ in Eq.

(18) and Eq.(19) for 0.5<o<1 and 0<o<0.5, respec-
tively. The results o in both regions and,, in the nonclas-

sical region are presented in Tables(dVand IV(b). The

IV. CONCLUSIONS

The critical temperature and the correlation length critical
exponent of an Ising chain with a long-range interaction in
the form 117 were calculated folS=1/2,1,3/2,2 in the
classical and nonclassical regions by the FRS technique.

The spin dependence of the critical temperature was in-

vestigated by the study of the raffo /TMF. It was observed

that the spin dependence of the ratio is more pronounced for
large values ofr. Likewise, it was observed that the critical
exponentr is almost independent of the magnitude of the

Spin in both the classical and nonclassical regions. This sup-

ports the prediction of universality for the critical exponent
for Ising systems with a long-range interaction.
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