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Critical properties of SÌ 1
2 Ising chains with long-range interactions

M. Barati* and A. Ramazani
Department of Physics, Shiraz University, Shiraz 71454, Iran

~Received 23 May 2000!

The phase diagram and critical exponent of the correlation length for an Ising chain with a long-range
interaction in the form of 1/r 11s for S51/2,1,3/2,2 is calculated by the finite-range scaling technique. The spin
dependence of the critical temperature and critical exponentn in the classical and nonclassical regions is also
studied. It is observed that, with a good approximation, the critical exponent of the correlation length is
independent of the magnitude of spin in both the classical and nonclassical regions.
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I. INTRODUCTION

It is well known that the one-dimensional spin mode
with a long-range interaction exhibit an ordered state at
temperatures when the interaction falls off sufficien
slowly. The spin-12 Ising ferromagnet with a long-range in
teraction proportional to 1/r i j

11s (r i j is the distance betwee
spins at sitesi and j ) has been studied extensively. For th
system, the existence of a phase transition at a nonzero
cal temperature is proved for 0,s<1.1,2 In addition, the
critical phenomena in the system exhibit a more complica
behavior than in the system with a short-range interact
The manifestation of such a complication can be obser
clearly in the behavior of the critical exponents in the no
classical region especially at the border ofs51. Therefore
the study of different properties of these systems require
more profound understanding of the critical phenomena.

The critical properties of spin-1
2 systems with a long-

range interaction have been investigated by the series ex
sion method,3 the renormalization group~RG! method in
reciprocal space in the form of an« expansion arounds50.5
~Ref. 4! ands51 ~Ref. 5!, the real-space RG method,6 the
finite-range scaling~FRS! method,7,8 the coherent anomaly
method~CAM!,9 and advanced Monte Carlo simulations.10

There are different interests in the study of the syste
with a long-range interaction. From the fundamental theo
ical point of view, the investigation of such systems lets o
understand the effect of the range of the interaction on
critical properties of these systems. From another poin
view, there are several applications for such systems. It
been shown that critical fluctuations may give rise to lon
range Casimir forces between uncharged particles imme
in a critical fluid.11 It has also been observed that the rand
exchange~Levy-flight! processes can generate effective
teractions which decay algebraically at long distance12

Other related problems deal with spin systems with a lo
range RKKY-like interaction@cos(ar)/ra# which is present in
spin glasses13 and critical phenomena in highly ioni
systems.14 A problem that is of particular interest is thes
51 case. Under this form of interaction (1/r 2), the S51/2
can be mapped onto the spin-1

2 Kondo problem15 and gener-
ally S.1/2 may be related to the higher-spin generalizat
of the Kondo problem.16

In the present work, the FRS method employed by G
PRB 620163-1829/2000/62~18!/12130~5!/$15.00
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mac and Uzelac7,8 is followed and extended to study th
magnetic phase diagram and the correlation length crit
exponentn of a one-dimensional Ising chain with a long
range interaction in the form of 1/r 11s for S51/2,1,3/2,2. In
this investigation, the critical temperature and the critical e
ponentn in the classical (0,s<0.5) and nonclassical (0.5
,s<1) regions are determined for different values ofSand
their behavior with respect to the parameterss and S is
obtained. In addition, the results for the critical exponent
the correlation length in the classical region are compa
with the value of 1/s predicted by the RG method4 and con-
firmed by advanced Monte Carlo results.10

The Hamiltonian of the system under consideration can
written as

H52S22(
i , j

Ji j sisj , ~1!

wheresi52S, . . . ,S andJi j 5J/u i 2 j u11s in which the lat-
tice spacing is one unit. TheS22 factor in the Hamiltonian is
entered as a normalization factor such that the magnitud
the large value of each spin is normalized to 1. The m
idea of this approach is that the true infinite range of
interaction is truncated to theNth first neighbors and the
problem in this finite range is solved exactly with the Ham
tonian of Eq.~1!. Then theN→` behavior of the system is
deduced by using the range scaling relation and an appro
ate extrapolating technique.

The outline of the paper is as follows: the FRS method
briefly explained in Sec. II A, the transfer matrix method f
this case is developed in Sec. II B, and the extrapolat
method is introduced in Sec. II C. In Sec. III, the behavior
the critical temperature and the correlation length critical
ponentn and their dependence on the magnitude of the s
S is investigated. The concluding remarks are given
Sec. IV.

II. THEORY AND METHODS

A. Finite-range scaling

The FRS method has been constructed in analogy w
finite-size scaling ~FSS!,17 with a scaled range o
interaction.7 The basic idea is to truncate the range of t
interaction in the system to a certain range and obtain pre
12 130 ©2000 The American Physical Society
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information about the critical behavior of the true infini
system by using scaling properties.

Let A`(t) be some physical quantity which algebraica
diverges in the vicinity of the critical pointt50 for an infi-
nite long-range system, i.e.,

A`~ t !.A0t2r ~2!

wheret5(T2Tc)/Tc , Tc is the critical temperature,r is the
related critical exponent, andA0 is a constant. Analogous t
the FSS hypothesis, it is assumed that for a large finite ra
N and smallt, AN(t) can be written as

AN~ t !5A`~ t ! f ~N/j`!, ~3!

wheref is a homogeneous function with the following pro
erties:

lim
x→`

f ~x!51, lim
x→0

f ~x!5const3xr/n. ~4!

By applying Eq. ~3! to the correlation lengthj`(t)
5j0t2n, the standard procedure gives the condition for
critical temperature through the fixed point equation

jN~ t* !5~N/M !jM~ t* ! ~5!

and the expression for the correlation length critical ex
nentn,

nN
215 ln@jN8 ~ t* !/jM8 ~ t* !#/ ln~N/M !21, ~6!

wherej8 is the derivative of the correlation lengthj with
respect tot. According to the FSS method,M andN must be
two close integers for better convergency.

It is interesting to note that the critical behavior in th
scaling approach~unlike the FSS approach18! depends essen
tially on the range of the interaction. Therefore, applicabil
of the method in both the mean-field (0,s<0.5) and non-
classical regions (0.5,s<1) is expected.

B. Transfer matrix

Applicability of the FRS method depends on the possib
ity of the exact determination of the results for a finite ran
of interaction. For Ising chains with the interaction truncat
at theNth neighbors, the exact calculation can be obtain
by applying a proper transfer matrix. The Hamiltonian of t
chain can be written as

2bH5(
i 51

L

(
j 51

N

K jsisi 1 j , ~7!

whereK j5S22bJ/ j 11s andL andN are the number of mag
netic sites and the range of interaction, respectively.

In order to set up a proper transfer matrix, the chain
considered as a strip with columns of heightN where each
column, regarding the 2S11 possible states of the spins, ca
be imagined as a system with (2S11)N possible states
which interact only with their nearest neighbors. The trans
matrix for the chain can be written as
ge

e

-

-
e
d
d

s

r

^suTus8&5expH (
k51

N

KkF (
n51

N2k

snsn1k1 (
n51

k

sN1n2ksn8G J ,

~8!

where sn52S, . . . ,S is a member of the state vectorus&
with N components, i.e.,

us&5us1 ,s2 , . . . ,sN&. ~9!

Equation~8! can also be written as a product ofN matrices
Tn , where each matrix would add one more site to t
column,19

T5T1T2•••TN21TN . ~10!

There exists also a simple relation between these one
matrices, i.e.,

UTTn11U5Tn , ~11!

whereTN115T1 andU is the translation operator in a direc
tion perpendicular to the strip as given by

^suUus8&5d~s1 ,sN8 !d~s2 ,s18!d~s3 ,s28!•••d~sN21 ,sN228 !

3d~sN ,sN218 !, ~12!

where UN51 and UN215UT5U21. ThereforeT can be
written as

T5~UTN!N5T̃N, ~13!

where

^suT̃us8&5d~s2 ,s18!d~s3 ,s28!•••d~sN ,sN218 !

3expH (
m51

N

KN112msmsN8 J . ~14!

It is interesting to note that theT̃ matrix has only 2S
11 nonzero elements in each row which reduces the
quired computer memory tremendously. Applying the sta
dard derivation, the correlation length is obtained as

jN5
N

ln~l1 /l2!
5

1

ln~m1 /m2!
, ~15!

wherel1 andl2 are the largest and second-largest eigenv
ues ofT, andm1 andm2 are the largest and second-large
eigenvalues ofT̃, respectively.

A power method can be used for calculatingm1. Then, by
factorizingm1, a similar technique is employed to calcula
m2. Details of the methods have been discussed extensi
in the numerical literature.20

C. Extrapolation procedure

The critical temperature and exponentn, given by Eqs.
~5! and~6!, depend on the selected range of the interactionN.
In order to obtain the correct answer for the true Ising s
tem, a proper method of extrapolation should be employ

From the scaling hypotheses one expects to observ
power-law convergency for a critical behavior of the sam
type. Based on this theory, the FRS is similar to the F
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TABLE I. ~a! The extrapolated values of the critical temperature as a function ofSands. ~b! The critical
temperature convergence exponentxT as a function ofS ands.

~a!

S/s 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1
2 21.6 10.919 7.359 5.5167 4.3579 3.5436 2.9269 2.4299 2.0054 1.
1 14.0 7.32 4.99 3.78 3.026 2.499 2.103 1.789 1.530 1.3
3
2 11 6.03 4.16 3.17 2.55 2.11 1.79 1.535 1.326 1.15
2 9.6 5.4 3.73 2.86 2.30 1.92 1.63 1.40 1.21 1.06

~b!

S/s 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1
2 0.857 1.021 1.132 1.193 1.218 1.217 1.20 1.22 1.90
1 0.88 1.01 1.12 1.19 1.24 1.27 1.32 1.46 2.60
3
2 0.9 1.0 1.1 1.2 1.26 1.31 1.38 1.55 2.3
2 1.0 1.1 1.2 1.2 1.3 1.3 1.4 1.6 2.2
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technique21 and convergency is mainly affected by the lea
ing irrelevant field and the related critical exponenty3,0.
Therefore a power-law convergency forTc andn is used for
large values ofN:

Tc,N5Tc1aNy321/n ~16!

and

nN
215n211b~Tc,N2Tc!N

1/n1cNy35n211b8Ny3, ~17!

wherea, b, b8, andc are constants. Thus, in order to obta
the true critical temperature and the correlation length crit
exponentn, the results forKc,N(51/Tc,N) andnN

21 are fitted
to the form

rN5re1A/Nxr ~18!

in the least-squares approximation~LSA!. Here re and xr

denote the extrapolated quantity and the convergence e
nent, respectively.

It should be noted that the FSS technique is not applica
in the mean-field~MF! region.21 Therefore a fitting based o
Eq. ~18! in this region is quite optional. Here, in the M
region the fitting in the form

rN5B1AS N21

N
D xr

~19!

for n evaluation, as suggested by Glumac and Uzelac,7 is
accepted. The results which have been evaluated through
~19! for S51/2 are in better agreement with the values p
dicted by the RG method.

III. RESULTS AND DISCUSSION

A. Critical temperature

In order to determine the critical temperature for an Is
chain with a long-range interaction by the FRS technique,
have to find the value of the fixed point through Eq.~5!. In
this calculation the limitation of the computer memory f
saving the elements of the transfer matrixT̃ causes a restric
tion on the range of interactionN. For S51/2,1,3/2,2 the
-

l

o-

le

q.
-

e

maximum range of interaction is limited toN520,13,10,9,
respectively. It must be noted that theS51/2 Ising chain has
already been investigated with the FRS technique.8 However,
in order to have a better comparison of the results, thS
51/2 system along with the other systems with higher val
of S was studied with the same degree of accuracy. O
results for S51/2 apart from a few percent discrepan
caused by the different accuracy in the calculation are co
patible with the reported values.

The two largest eigenvalues of the transfer matrix w
calculated with 17 digits and the values of theTc,N could be
determined with an accuracy of 1028J/k. In order to find the
critical temperature for a givenSands, an extrapolation for
five fixed points with a larger interaction range based on
~18! was performed. It should be noted thatTc,N has non-
monotonic behavior fors51 ~the limiting point for the pres-
ence of the phase transition!. Therefore fitting through Eq
~18! in this case is not possible and the fitting is perform
by imposingxT51 in the equation. This restriction does n
have much effect on the final results because of a sm
variation ofTc,Ns. The results for the critical temperatureTc
and convergency exponentxT are presented in Table I.

It must be remarked that the accuracy of the critical te
perature determined by extrapolation depends ons and S.
The maximum possible value of the range of interactionN as
well as the accuracy of the calculations decreases by incr
ing S. In addition, in the FRS method the convergency of t
fixed points is reduced ass decreases and the accuracy in t
extrapolated critical temperature decreases. Thus, the a
racy of the results depends onS and s. In this regard the
significant digits of the data presented in this section w
determined by the change of the maximum range of the
teraction fromN21 to N.

TABLE II. The ratio of Tc /Tc
MF as a function ofS ands.

S/s 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1
2 0.96 0.929 0.885 0.832 0.773 0.711 0.644 0.574 0.4
1 0.97 0.948 0.911 0.868 0.819 0.767 0.713 0.656 0.
3
2 0.97 0.953 0.919 0.879 0.833 0.785 0.734 0.682 0.6
2 0.98 0.955 0.922 0.883 0.839 0.792 0.743 0.694 0.
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TABLE III. ~a! The extrapolated values ofn21 for nN calculated inTce as a function ofS and s. For
comparison, we cite the exact RG results.~b! The convergence exponentxn as a function ofS ands.

~a!

S/s 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

1
2 0.095 0.194 0.289 0.374 0.440 0.481 0.490 0.458
1 0.100 0.196 0.289 0.373 0.439 0.480 0.492 0.474
3
2 0.115 0.206 0.295 0.376 0.440 0.48 0.49 0.486
2 0.126 0.214 0.302 0.380 0.44 0.48 0.50 0.493
Exact RG 0.1 0.2 0.3 0.4 0.5

~b!

S/s 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

1
2 0.94 0.91 0.81 0.70 0.62 0.57 0.56 0.6
1 0.96 0.91 0.83 0.75 0.70 0.68 0.74 1.2
3
2 0.94 0.89 0.83 0.77 0.74 0.76 0.9 1.4
2 0.92 0.88 0.82 0.77 0.76 0.8 0.9 1.5
m
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In order to study the spin dependence of the critical te
perature, the ratioTc /Tc

MF for the range 0.2<s<1 and for
S51/2,1,3/2,2 was calculated.Tc

MF is the mean-field critical
temperature and is given by10

Tc
MF5

2

3

S11

S

J

k
(
n51

` 1

n 11s
5

2

3

S11

S

J

k
j~11s!, ~20!

wherej is the Riemann zeta function. The results are sho
in Table II. It should be mentioned that for a better compa
son, the critical temperature calculation was carried out w
N59 for all values ofS. It is seen from Table II that the ratio
Tc /Tc

MF , as expected, increases withS increasing. However
the process of this approach strongly depends on the valu
s such that the rate of change ofTc /Tc

MF betweenS51/2
andS52 is only 2% fors50.2 and 29% fors51.

B. Critical exponent n

The critical exponent of the correlation lengthnN was
calculated by Eq.~6!. In this calculation, the accuracy of th
-

n
-
h

of

results is reduced to six or five digits because of the requ
differentiation procedure. The errors depend in a com
cated way on the value ofS and s as in the case of the
critical temperature, although the dependence is somew
different from that in Sec. III A. The significant digits of dat
presented in this section have been determined by
method explained in the last section.

From Eq.~17!, one expects to obtain better results forn21

in the nonclassical region if the expansion of Eq.~6! is per-
formed around the extrapolated critical temperatureTce in-
stead ofTc,N . This was processed forS51/2 by Glumac and
Uzelac where a better convergency fornN was observed.8 It
is interesting to note that even in the MF region if thenN is
calculated for the extrapolated critical temperatureTce and
the critical exponentn is evaluated through Eq.~18!, the
results are in good agreement with the predicted values
the RG method.

The results for the inverse of the critical exponent of t
correlation length,n21, are presented in Table III~a! and the
convergence exponentxn in Table III~b!. As is seen from
Table III~a!, the results are in good agreement with the ex
a

13
.15
17
8

TABLE IV. ~a! The extrapolated values ofn21 for nN calculated inTc,N as a function ofS ands. For
comparison, we cite the exact RG results.~b! The convergence exponentxn for the nonclassical region as
function of S ands.

~a!

S/s 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1
2 0.104 0.201 0.292 0.370 0.428 0.465 0.472 0.454 0.380 0.
1 0.108 0.203 0.294 0.373 0.435 0.474 0.487 0.469 0.388 0
3
2 0.11 0.21 0.297 0.376 0.437 0.473 0.491 0.474 0.395 0.
2 0.12 0.21 0.30 0.378 0.44 0.47 0.49 0.475 0.398 0.1

Exact RG 0.1 0.2 0.3 0.4 0.5 0

~b!

S/s 0.6 0.7 0.8 0.9 1

1
2 2.4 2.6 1.6 0.49 0.19
1 0.97 0.9 0.72 0.41 0.21
3
2 0.8 0.8 0.66 0.42 0.23
2 0.8 0.8 0.63 0.41 0.23
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RG prediction in the classical region. The small differen
between the results in the border of the classical and n
classical regions is mainly caused by a poor convergen
originated from the logarithmic term. In the fitting proce
dure, ten points corresponding to the largest values ofN for
S51/2 and five points for the otherS’s were used. Fors
50.9 thenN behave nonmonotonically which makes the fi
ting by Eq.~18! impossible and fors51 the fitting leads to
a negative value for the convergence exponentxn .

As is seen in Table III, the critical exponentn for a fixed
s is almost spin independent in both the MF and nonclas
cal regions. The small deviation for a small value ofs is
caused mainly by the use of different values ofN for differ-
ent values ofS. This observation indicates that the borderlin
between the MF and nonclassical regions is spin indep
dent, and therefore the method of calculation throughTc,N
should be applicable for this determination. The critical e
ponentn was also calculated through the fitting ofnN in Eq.
~18! and Eq. ~19! for 0.5,s<1 and 0,s<0.5, respec-
tively. The results ofn in both regions andxn in the nonclas-
sical region are presented in Tables IV~a! and IV~b!. The
agreement between the two methods of calculation is go
e
n-
y

i-

n-

-

d

evidence of the spin-independent behavior of the critical
ponentn.

IV. CONCLUSIONS

The critical temperature and the correlation length criti
exponent of an Ising chain with a long-range interaction
the form 1/r 11s were calculated forS51/2,1,3/2,2 in the
classical and nonclassical regions by the FRS technique

The spin dependence of the critical temperature was
vestigated by the study of the ratioTc /Tc

MF. It was observed
that the spin dependence of the ratio is more pronounced
large values ofs. Likewise, it was observed that the critica
exponentn is almost independent of the magnitude of t
spin in both the classical and nonclassical regions. This s
ports the prediction of universality for the critical exponentn
for Ising systems with a long-range interaction.
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