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Fractional vortices in the XY model with 7 bonds
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We define a new set of excitations in th& model which we call “fractional vortices.” In the frustrated
XY model containingr bonds, we make the ansatz that the ground state configurations can be characterized by
pairs of oppositely charged fractional vortices. For a chaifr dfonds, the ground state energy and the phase
configurations calculated on the basis of this ansatz agree well with the results from direct numerical simula-
tions. Finally, we discuss the possible connection of these results to some recent experiments bgtkattley
[Phys. Rev. B51, R12 057(1995] on highT. superconductors where fractional flux trapping was observed
along certain grain boundaries.

I. INTRODUCTION A key concept in understanding the effectsmobonds is
“frustration.” Consider, for example, th&Y model on a
The classicaXY Hamiltonian is one of the most studied square lattice with only the nearest-neighbor couplings non-
models in statistical physics. In its usual, unfrustrated formyanishing. If a plaquette has an odd number of bonds, that
it is written plaquette is frustrated, in the sense that no choice of angles
in the four grains making up the plaquette can simulta-
neously minimizeall the bond energies. Thus, a singte
H :% Jij[1—cos ¢i—¢))], (1) bond will cause the two plaquettes adjoining thabond to
become frustrated. In Bne of = bonds, only the two pla-
where, is a phase variable on thth site (0< ¢<27), the guettes at the end of the Iine_ vyill becoimie frus.trated. Because
sum runs over distinct paiféj ), andJ;; is the energy of the of the frustrated plaquet_tes, it is nontr|V|aI_ to find the gro_und
coupling between sitéisand]. In the ferromagnetic, nearest- State of thexY model with = bonds. In this paper, we will
neighbor caseJ;; vanishes except between nearest-neighboph®W, both numerically and by analytical arguments, that
sites and all the,;’s are equal to a single positive constdnt these ground states are characterized by certain spatial phase

In this case, for spatial dimensionality>3, there is a phase configurations which we call fractional vortices. We will also
transition to a ferromagnetic state at a critical temperaturec,.ier'vle an .expr_essrllon for th de Imteractlon energy of wo frac-
with conventional critical phenomena. df=2, there is in- t|or_1ra;] vor'ucesf 'Et XY modet. d as foll In Sec. II

stead the Kosterlitz-Thouless-Berezinskii phase transition, in e'rest of the Paper Is organized as follows. In Sec. 1,
which pairs of oppositely charged integer vortices unbind atve define the fractlonal_vortlces gnd calculgte the interaction
a finite temperatur@ g .* The classicaKY model has been €N€'9Y of a bound pair of fractional vortices for ther

found to describe a wide variety of systems with complexM°del- In Sec. lll, we study the ground state>¥ lattices

scalar order parameters, including bulk superconductors ifONt&ining a singler bond, two bonds, and a string o
onds. In each case, using a variational ansatz for the

d=3, superconducting films, Josephson junction arrays i ) . ) . -
d=2, and superfluid Hefilms 2 ground-state configuration, we find that there is a critical

bond strength, above which the ground state contains pairs of
oppositely charged fractional vortices. To check these re-
sults, we directly calculate the ground-state energy of these

I to hiafF duct d oth ; ; IIattices using a numerical relaxation technique based on the
relevance 1o nighr, superconductors and other experimen aequations of motion for overdamped Josephson junctions.

systems:”** Specifically, if we consider the grain boundary We find that both the ground-state energy and the critical

between two highF, superconductors with suitable misori- bond strength, predicted by the variational approach, are in

entation of the crystalline axes, then the resulting Josephso&cellent agreement with the numerical results. Finally, in

coupllr;g a_cr(_)ss the boundary can have the coupling ENerSdec. Iv, we discuss the possible relevance of these numerical
Jij<0." This is a consequence of thig._,> symmetry of the  resyits to experiments carried out in systems containing
order parameter in many highs materials. Such grain- jynctions, such as higfi; superconductors containing grain

boundary interfaces have lately been studied in a variety ofoundaries and tricrystals, as recently studied by Kirtley
experiments and in several geometries. These experimengs 5| 13-15

have led to interesting results, such as the observation of the
trapping of half-integer and also other fractional flux
quantat®>~1°These results can be explained using models in-
volving 7 bonds?'~2° Similar models involvingz bonds
have also been developed to explain such phenomena as the

paramagnetic Meissner effétglso observed in samples of  Consider the Hamiltoniafl) for an XY model defined on
high-T. superconductors. a square lattice wittN X N sites. If all the nearest-neighbor

Recently, theXY model with antiferromagneticbonds,
i.e., with bond strengths;; <0 (also called7 bonds, has

received much attentiott? in particular due to its possible

Il. FRACTIONAL VORTICES IN THE UNFRUSTRATED
XY MODEL
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couplings are equal, this may be written 40.0 . ; .
H=32 [1-cos i~ ¢)]. )
) 30.0 +

Hereafter, we shall use units such thkt1. The phase
angle, ¢;, at point ;,y;) due to a fractional vortex of

chargeq at point Xq,Yq) is definedto be € 200 | Numerical i
B i * Corrected KT
¢i(X0,Yo.0) =X tan M) ) —
Xi - XO i
10.0 +/ J

Forg=1, we recover the standard configuration for an inte-
ger vortex. This definition can be seen as a generalization o
the concept of half-vortices introduced by Vill&infor the

same model. Note thgt, while for the inte_ger vortex the bond_- 0-00_0 100 20.0 30.0 40.0 50.0
angles change continuously, the fractional vortex case is n

characterized by a branch cut, across which the bond angles

are discontinuous. FIG. 1. Calculated energy of a bound pair of integer vortices as

This singularity leads to several other distinctions be-2 function of separatiom, in units of J. FuII_ curve: numerically
tween integer and fractional vortices. For example, the engXact results. Dot-dashed curve: KT approximatigg. (5)]. Aster-
ergy associated with a single integer vortex is proportional tdSks: KT approximation plus core correction.

In(N). In the thermodynamic limit, this is a weak divergence . . .
which makes the KTB vortex-antivortex unbinding transition same phase conflguratl_on but the exactThe d|screpan_cy.
possible. By contrast, the energy of an unbound fractionaf"'S€S from the expansion of the cosine factor, which is in-

vortex is N, since the number of bonds along the branchaccurate for the bonds closest to the vortices. This inaccuracy

cut is «N. Thus, it is energetically unfavorable at all tem- IS remedied by a making a core correction, i.e., by calculat-

peratures to create isolated fractional vortices. But a bounl!9 the contribution _from the bqnds on the perimeter of the
pair of fractional vortices with charges and —q is much plaquett_es surrou'ndlng the vortices exactly, ra;her than by a
less expensive energetically, because then the branch cut adra_tlc expansion. For _Iargethe core-correction energy,
restricted to the line joining the two charges: the total energ <(n), is approximately given by
should be proportional to the separation of the fractional vor-
tices. For fixedq and large enough separations, this energy is _ 12-7° 8+m?
: . - E.(n)=7"—8+ + .

always larger than that of a pair of oppositely chargee- ¢ 2n2 16n4
ger vortices, whose energy varies as the logarithm of their
separation. Nevertheless, for fixed separation, it is alway#s can be seen from Fig. 1, the numerically calculated en-
possible to find a non-integey such that that the energy of ergy is well approximated bfyr(n)+E¢(n).
the fractional vortex pair is less than the corresponding en- Next, we calculate the enerdy(q,n) of a pair of frac-
ergy for the integer vortices. In the following, we derive tional vortices* q, separated by a distancein the x direc-
expressions for the energy of a bound pair of fractional vortion, as shown schematically in Fig. 2. Note tH&tl,n) is
tices in theXY model, and compare them to numerical re-
sults obtained by calculating the energy explicitly for these -
configurations.

We first consider a bound pair of integer vortices of
chargex1 located atXp,Yo) and ,,y1). The standard KT |
expression for the energy of the pair is obtained by approxi-

6

e
T —1

mating the Hamiltonian as T S S L¢iu
1 : ® [
H~5 2 (¢i— )% @ AT B AU S I 5
(i) q 9, -q

For the phase configuration, we usk= ¢(Xy,Yg,*+1) '

+ ¢i(X1,Y1,— 1), wherex;,—Xg=n andy;—y,=0 (inunits ~ i~----" e
of the lattice constard). Substituting this configuration into i

Eq. (4) gives the Kosterlitz-Thouless formula for the interac- |

tion energy Ex, of two oppositely charged integer vortices:

____________________________________________

FIG. 2. Schematic drawing of a bound pair of fractional vortices
arranged parallel to the axis. For this configuration, the vortices
are separated by three plaquett¢s, and ¢;, are the phases at the
two ends of bonds in the shaded regioegion A); the angled; 4 in
In Fig. 1, we compare this expression to the energy of a paithe text is defined by; o= ¢;,— ¢; . Core corrections are calcu-
of oppositely charged integer vortices, computed using théated only for the bonds denot& andC,, as discussed in the text.

Inn+Z . (5)

Ekr(n)=2= >
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simply the interaction energy of a pair of integer vortices, asSince the bond-anglé; A(q,n) is not small for an arbitrary

just discussed. The phase configuration of this pair is then, we cannot expand the cosine term only to second order.

given by ¢;= ¢i(Xo,Yo,d) + ¢i(X1,Y1,—q), wherex,;—Xg But for any g the differenced; o(q,n) — 6,24(d,n) is a

=n and y;—Y,=0. We now divide the bonds into two small parameter for aniy=2. Expanding the cosine term in

groups:(A) those intersected by the line segment joining theEq. (12) to second order in this parameter, we obtain an

two vortex centers; andB) the remaining bonds. Let expression forEa(q,n). This expression can be summed,

EA(q,n) andEg(q,n) be the corresponding energy contribu- and eventually gives

tions to E(g,n) coming from these two groups of bonds.

Thus E(g,n)=EA(q,n)+Eg(q,n). To obtain E(q,n) we

proceed as follows. Ea(g,n)=(n—-2)
(1) We calculateEA(1,n), using the quadratic expansion

8q° 4q
(1—-cosay,) + —Cosa,+ —sinay
n n

for the cosineE,(1,n) is simply the contribution to the total 37 2
energy of a bound pair of integer vortices arising from the +2 l—cos{q(T— m)”
bonds along the branch cut. Note that there ratwonds in

n—-1

region A. Once Ep(1n) is known, we getEg(1n) 4¢?
=Ekt(n) —EA(1n). —{Tcos(yﬁqsinan
(2) We obtainEg(qg,n) by noting that, in the quadratic
approximation Eg(qg,n) =q?Eg(1,n). % n-1
(3) Finally, we determindz,(q,n) by directly evaluating + —-Ccosa, 2 6% Al1,n), (13
it using the full expression for the cosine, not the quadratic 2 m=2 "
expansion. This is necessary, because the bond angles in re-

X 2, Oma(1)

n—1

gion A are not small for arbitrarg. 1

We now use the outlined procedure to obtgift,n). mz=2 Oma(1N)=2y=4+41In2+2¢| n— 5), (14

Step 1Let 6; A(1,n)= ¢, — ¢; denote theth bondangle
(cf. Fig. 2 in region A forg=1. For the two-vortex configu- n—1 4
ration, 6; (1,n) is given by 2 9% A(Ln) =72+ ﬁ(7+2 In2—2—2n)

m=2 '
6 A(1n)=2|tan * 51 +tan ! gy INNC) +4_1$
n

1 1
n—z)—ZIﬂ’(n—E), (15)
Using the quadratic approximation, the corresponding energy
contributionEA(1,n) is given by

4
L0 an=q(27r— ﬁ) (16
Ea(ln)=> > 62a(1n). )

=1 Adding up the contribution from the two regions, we fi-
Using the approximation: tart[ 1/(2i —1)]~1/(2i—1) for  nally get the required expression for the energy of a bound
i=2, we find pair of fractional vortices. As noted earlier, the core correc-
tions must be included to attain high numerical accuracy. In

E. (1= 7 I 2+ 2 +oIn2—9—2 the present case, it is sufficient to include these corrections
A( ,n)—7 2 " on—1 ﬁ[7 n2-2-2n] only for the bonds labeled Cand G in Fig. 2, using the
procedure outlined earlier. This approximation is equivalent
+E¢ . 1 . 1 to extending region A to include bonds, @nd G . Corre-
n 2 2)’ spondingly the core-corrected total energy is given by
Eg(1.n)=Ekr(n)—Ea(1n), €) E(q,n)=EA(q,n)+Eg(q,n)— 0?65 +2[1-cogq6,)],
where (x) and ¢’ (x) are the Digamma function and its (17
derivative,vy is Euler’s constant, anH(n) is given by Eq.  where
(5).
Step 2 Using the results of step 1 and E&), we get ; T 2 19
C:__ .
Eg(g,n)=0g?[27Inn+m2—EA(1n)]. (10) 2 2n+l

Expressiong17) and (18) are compared to the results of
numerical computation in Figs(® and 3b); agreement be-
tween the two is excellent. On the basis of this agreement,

Step 3 The next step is to calculai,(q,n). Bond angles
in regionA are given by

6, A(q,N)=q[27— 6; A(10)]. (11) which is equally good for all values af and n which we
] o have considered, we present this result as a good analytical
Correspondingly, the enerdya(q,n) is given by expression for the interaction energy between two fractional
n vortices in the unfrustrateXY model on a square lattice.
_ This result is a generalization of the integer vortex excita-
Ea(q,n)= 1—cog 6 N D. 12 . :
A(Q.N) 21 ( 16.4@M] (12 tions proposed by Kosterlitz and Thouless.
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subsections, we will focus on obtaining the critical bond
—— analytical * strength,\., above which the ferromagnetic ground-state
60.0 * numerical HHE solution becomes unstable, and the ground-state configura-
tion contains bound pairs of fractional vortices. For the case
of one and twow bonds, we also compare our results to
those from previous studies by Vannimeraisal.® Note that
] in these calculations, in which the goal is to calculate the
threshold bond strength above which the ferromagnetic
ground state becomes unstable rather than the absolute ener-
gies as a function ok, it is unnecessary to include the core
. corrections. Hence\ . can be calculated analytically as dem-
onstrated below. The ground-state configuration and energy
for A\>\. do need the core corrections for greatest accuracy.
We obtain them numerically using our variational guess and
discuss them in the subsequent section.

20.0

0.0
. 50.0

(a) n
A. One & bond

150.0 . . : :
We first consider the case of a singtébond, i.e., a single

— analytical antiferromagnetic bond in a host of ferromagnetic bonds. As

*numerical | before, we take the bond strength of the ferromagnetic bonds
to equal unity, and we denoted the strength of the antiferro-
magnetic bond by\(A=0). The problem is to obtain the
ground-state configuration and energy for arbitrary strength,
\, of the 7 bond.

To solve this problem, we make a variational guess for
the ground-state configuration: it is the phase configuration
corresponding to a bound pair of fractional vortices of
strength = q, located at the centers of the two plaquettes
adjacent to ther bond. The chargeg, is a variational pa-
rameter with respect to which the ground-state energy is
minimized for a given\.

The total energy of this configuration discussed above is
(b) q readily obtained using the procedure of the previous section,

suitably corrected for the fact that we haverdond instead

FIG. 3. Energy of a bound pair of fractional vortices in an un- of a ferromagnetic bond. The angle difference acrossrthe

frustratedXY lattice as obtained numerically (*) and from the ana- hond is given byd, = q. Then, using Eqs8) and(10), we
lytical approximation, Eq(17) (full line), for (a) fixed chargeg get

=0.8, as a function of separation; affy) fixed separationn=>50,
as a function of charge.

1
- . Es(a)= 507, (20
For largen, we can further simplify the above expression
by dropping terms of9(1/n) and smaller in Eq(17) to get
y Pping () aintog while from Eqg.(12) we find
E(q,n)=(n—2)[1—cog27q)]+2 Inn[7g*>—q
Ea(g)=1+\ cogqm). (21
X sin(2 +322+21— 374
sin(2mq)] 2™ d co 2/ Adding these two terms gives the total energy of the configu-
(19 ration. Minimizing this energy with respect myields the
condition
Ill. FRACTIONAL VORTICES IN THE XY MODEL WITH q=A\ sin(q). (22)

7 BONDS

The fractional vortex configurations introduced in the pre- For A<1, the ground-state configuration corresponds to
vious section provide a natural way of characterizing theq=0: all the phases are perfectly aligned. For 1, the
ground state of theXY model containingm bonds. In this ground-state configuration corresponds to a bound pair of
section, we implement this description by making a varia-fractional vortices with charges g obtained by solving Eq.
tional guess for the ground-state configuration using frac{22). Thus, the ferromagnetic ground state is unstable above
tional vortices. We then compare our variational results witha critical bond-strength valug.=1. The same value has
those obtained by numerically relaxing to the ground-statdeen obtained previously by workers using different
configuration, and find excellent agreement. In the followingapproaches?



PRB 62 FRACTIONAL VORTICES IN THEXY MODEL WITH = BONDS 12123

energy using the variational procedure described above with
vortex charges as shown. For large separation between the
bonds (/m?+n?>1), this procedure gives
[ ] ®
q EB(q):qZ[ZWz_zamn_(ﬂ'_a’mn)z] (25
and
@ EA(0) =2+ 2\ cof q(m+ army)], (26
where
o | e m?—n?
q q am”:(m2+ n2)2' (27
Minimizing the total energy gives the critical bond strength
e | e as
i T 1-2anm,/m
= M= T 2l 8
(b)
; Similarly, for two nonadjacenperpendicular = bonds
; [Fig. 40)], we find
: -
E [ ] EB(q):qz[zwz_zﬂmn_(ﬂ'_ﬂmn)z] (29
: and
| .,
: Ea(@)=2+2\ co§q(7+ Bmn) ], (30)
o] e
iq < where
2mn
(© Bmn= (m2+ I"I2_)2 . (31

FIG. 4. Schematic plot of three configurations, each containingn this case, the critical bond strength is
7 bonds(full lines), which are(a) parallel and adjacenth) parallel
and nonadjacent, an€c) perpendicular and nonadjacent. Also 1—Bmnl 7
shown are the corresponding locations of the fractional vortex }\Czl-I—,B—/w' (32
charges for the variational configurations. mn

These results are identical to those obtained previously by
B. Two a7 bonds Vannimenuset al. using a different approachThe agree-

We now consider the case of two parallel, adjacent ment lends support to our hypothesis that the ground-state
bonds. As before, our variational guess for the ground stateonfiguration of such systems can be characterized by a set
is the configuration corresponding to a bound pair of frac-Of fractional vortices(in the cases considered here, a set of
tional vortices; we take these to be located as shown in Figonly two oppositely charged fractional vortigesBesides
4(a). The corresponding total energy is again calculated ushaving the merit of simplicity, our approach also easily
ing the procedure outlined in Sec. Il. Using E(®.and(10),  Yields the ground-state configuration and energy for arbitrary
the energy contributioftg(q) is \. Moreover, our procedure can be used to obtain the ground

state even when the separation between the bonds is not

) , | ., 2 large. In particular, for two parallel bonds such tmatn
Es(q)=0%| 2mIn2+7°—| > +2tan ((1/3)| 1. (23 =1, our variational procedure yields the surprising result
that \;=1 for this configuration. The same result was ob-

Using Eq.(12), we get tained in a numerical study done by Gawietcal.® Finally,

our variational ansatz can readily be generalized to loager
Ea(q)=2+2\ cod2q[3n/4—tan *(1/3)]}. (24  bond chains, as we shall see in the next section.

Adding these two contributions gives the total energy, which

is to be minimized with respect tq for a given\. This C. Chains of  bonds

procedure gives the critical value.=0.563, which is in Next, we consider chains af bonds of lengtth=3. In
good agreement with the exact valng=7/2—1, obtained this case, we make the variational ansatz that the ground
by Vannimenuset al® state consists afi/2 or (n+1)/2 pairs of oppositely charged

Next, we consider the case of two parallel, but nonadjafractional vortices for even or odd, arranged as shown in
cents bonds, as shown in Fig(Hd). Taking the bond centers Fig. 5. As before, we proceed by calculating the contribution
to have the coordinates (0,0) anth,f), we calculate the to the total energy from regions A and B. However, the pro-



12124 R. V. KULKARNI, E. ALMAAS, K. D. FISHER, AND D. STROUD PRB 62

e P 12 | ' ' ' ' ' ]
R . 1

E ------- E"-““E ------ E- ------ E ------------- i- ------ E"""-E“- 1.0 | \ &——o numerical
: : ; : : : : : —_ ! *=-—* k= 1.16/n
: _______ : ______ v [ . | [ :___ 5"

: : : p= ‘

: Lo || @ | ... oo 5 08 &

S NN R SRS ER R R o

: PGy 9 93 i P P 9

A PRy 206

bomoe-e R Bt boo---- AR boo---- S

: : : : ! : ! : g

; : : : ! : ! : £ 04 r

U HPIIEY S U LRI I N S o

FIG. 5. Schematic plot of the assumed variational configuration o2 |
containingm pairs of fractional charges, for a chain af bonds
(solid line segmenjsof length 2m.

0-0 1 1 1 I 1 h
) . ) ] 0 5 10 15 20 25 30
cedure outlined in Sec. Il has to be generalized to include Number of pi-bonds (n)
many pairs of fractional vortices. Since the details are sig-
nificantly different from that outlined in Sec. Il, we briefly ~ FIG. 6. Critical bond strength, as function of chain length, for
describe the generalized procedure below. a chain ofw bonds of lengtn. Open circles and full curve: nu-
(1) We consider the case in which all charges have magmerical results. Asterisks and dashed curve: analytical approxima-
nitude unity. The total energy of this configuration is givention, Ac=1.16A.
simply by the KT expression
multidimensional direction set methé#iand (i) a genetic
23
E = —2m Ao In(ni) + 772 2. 33 algorithm?> Both methods successfully converged to the
KT JZK 9k In(no) 2 9 33 same minimum energy and configuration, from which we
deduced the critical bond strength,, for various values of

wheren; is the distance between the chargeanday, and ‘#1 Figure 6 shows our results far,(n). As can be seen from

the second sum runs over all the individual charges, each e main part of the figure, it fits very well to the approxi-
which has magnitude unity. This result is obtained by using 4 ate expression .~ 1.16h ’A consequence of this i/de-
small-angle expansion for the contribution from each bond- co '

anale differenced.  and summina those contributions to pendence is: if the system has a finite concentrationr of
9 b 9 bonds randomly distributed in the lattice, then in the thermo-

give dynamic limit A\.— 0. This behavior follows from the fact
1 that, in the thermodynamic limit, there is always a finite
EKT=§ z (6p)2. (39 probability of having an arbitrarily large chain lengthand
b hence an arbitrarily smaN..
The bond angld, is, in turn, decomposed as We now look at the variations in the bond angles along

the 7= bond chain as a function of chain length,and bond
strength,\ (for A>\.). First, we discuss the variation with
= ; Akbx,b » (39 fixed bond strength, taking= 1. Figure 7 shows the ratio of
the bond angless,, along the chairinot including the cen-
wherek labels the position of the charges a#fg, is the tral bond to the bond angle across the firstbond, 6,, as a
contribution toé, from a charge of unit magnitude kit function of position along the chain for various chain
(2) Next, we consider the case in which the charges aréengths. A number of features deserve mention. First, for a
fractional (g|<1). The bonds can still be divided into chain of lengthn=2m, the ratio of the bond angles®;/9;,
classes A and B as discussed earlier. In the case of fractionfdr i <m is independent ofm. Second, since the bond-angle
charges, the bond-angle differences in region B are stiltlistribution is symmetric, we only need to look at the bonds
given by Eq.(35). Correspondingly, the energy contribution in the range ¥i<m. Third, the bond angles increase mono-

from bonds in region B is tonically as one moves along the chain from its edges to the
5 A A center, i.e., a$ increases from 1 ton. The inset shows the
1 , 1 ) 5 variation of #; with chain length forn=1. Note that with
EB:§ Eb: o ) Eb: ab_ib: O (36)  this choice of\, the bond angles saturate quickly: they are

roughly constant over the “interior bonds,” such that3.

whereEE and Eﬁ denote sums over all bonds in region B Furthermore, this constant valyapproximated by the cen-
and in region A. tral bond anglg approachesr as the chain lengtn in-

(3) Finally we calculate the energi,, using suitable creases.
expressions for the bond angles in region A, as obtained Figure 8 shows how the bond anglés, vary with bond
from the multi-vortex configuration but without making the strength)\, for a fixed chain lengthr(=20). As already seen
small angle expansion. in the previous figureg; rapidly tends to saturate towards its

To minimize the resulting total energy, which is a func- central value with increasing Moreover, the central bond-
tion of all the g,’s, we used two proceduresi) Powell's  angle quickly increases from 0 te as\ increases fol
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FIG. 7. Ratio ofith bond angleg;, to the first bond anglé,,
plotted as a function of i for chain lengths n

=5(A), 15(), 25(*), and 350). The bond strength ia =1.
Inset: variation off, with chain lengthn, for A=1.
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ijth bond is actually an overdamped Josephson junction con-
necting nodes andj. The current flowing through that bond
from nodei to nodej is then

. o d
lij=1cij Sm((ﬁi_ﬁbj)‘l”ﬁa(ei_aj): (37)
and the sum of these currents must equal the total external
current,| ™, fed into nodei:

}b) =18, (38)
where | ;; is the critical current of the junction between
grainsi andj, andR;; is the corresponding shunt resistance.
These equations can be put into dimensionless form using
the definitions;;=1;; /1. andg;;=R/R;; , wherel . andR are

a convenient normalizing critical current and shunt resis-
tance, and introducing the natural time un#7/(2eR1,).
Combining these equations yields a set of coupled ordinary
differential equations which is easily reduced to matrix form
and solved numerically, as described by many previous
investigator<? For our work, we employed a fourth-fifth or-

>Ac. Thus, we can “tune” the central bond angle t0 any ger Runge-Kutta integration with variable time step.

desired fraction ofr by appropriately adjusting.
Although the underlying variables are thg's, it is of

For present purposes, we are interested, not in examining
the dynamical properties of arrays with bonds, but rather

interest to mention corresponding trends in the fractional, finding the minimum-energy configuration of such arrays.
charges. For small, these charges decrease monotonicallyrq that end, we have simply iterated this set of coupled
with increasingi, so that the largest charges reside at theequations of motion, witmo external current, allowing the
ends of the chain. For largar, charges comparable in mag- phases to evolve until they reach a time-independent con-

nitude to those at the ends appear away from the ends.

D. Numerical check of variational procedure

figuration. As has been shown by previous workers, this
configuration will correspond to a local minimum-energy
state of the corresponding Hamiltonian H
=—=2jj)(fil ¢;ij/2e)cos(é — ¢;). We then compare the result-

To check our variational approach, we have carried out afng configuration and energy with those predicted by the
independent minimization to calculate the ground-state enfractional vortex variational ansatz for the ground state.

ergy of the system containing bonds2* without making

To make the comparison as straightforward as possible,

any assumptions about the presence or absence of fractionse made the simplifying assumptid®¥; =R for all Joseph-
vortices. To carry out this minimization, we imagine that theson junctions, whether 0 ar. We tooki;;=1 for all nor-
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FIG. 8. Theith bond angleg;, plotted as a function off for
bond strengths\=0.5,1.0,1.5, and 2.0 . The chain length, is
taken to be 20.

mal junctions, and.;;=—N\ for all 7 junctions. Since no
external current is to be applied to the system, we carry out
these calculations using square arrays of junctions with peri-
odic boundary conditions in both directions.
Each simulation begins with phases randomized at each
grain. The system is then relaxed according to the E2j®.
and (38) for an interval of 50—108. We then evaluate the
final energy, as well as the phase differentg, across each
7 junction. Once equilibrium is reached for a giveén we
increment or decrement, and the system is allowed to relax
again without rerandomizing the phases. Even quite large
arrays (5 50 plaquettesrelax quite quickly using this pro-
cedure, except near the critical point, but care must be taken
to avoid taking data from simulations in which the system is
trapped in a metastable state. We have used arrays ranging
from 10X 10 plaquettes to 5950, and occasionally as large
as 70< 70 to examine convergence of equilibrium values.
Figures 9 and 10 show the the exact ground-state energy
and corresponding for the case of a singlé bond in a host
of normal bonds, as calculated by this numerical procedure.
The results are also compared to the total energy obtained
from a ground-state configuration corresponding to a pair of
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FIG. 9. Bond angleg, as function of bond strength for a FIG. 11. Same as Fig. 9 but for two adjacenbonds.
single 7 bond obtained usinga) fractional-charge variational an-
satz (*) and(b) numerical simulationgsolid line). the spin-wave degrees of freedom in characterising the
ground state of the frustratedY model, but it is possible
bound fractional vortices of chargeq, calculated numeri- that they may be required to get an accurate description of
cally. As shown in the figures, the agreement is excellentthe phase distribution. To test the accuracy of our variational
thereby indicating that the ground-state energy is indeed welphase distribution, we have compared it to the exactmeri-
characterized by a bound pair of fractional vortices. cal) phase distribution in the ground state in several cases.
Figures 11 and 12 show a similar comparison for the cas&he difference between the two configurations is shown
of two 7 bonds. Once again, the results obtained numericallgraphically in Fig. 13 for the case of twe bonds. As can be
from the RSJ equations for both the total energy and th&een, the difference between the variational and exact wave
bond angle across the bonds, are in excellent agreement functions is almost always less than 2—-3 % of the bond
with those found from the fractional vortex ansatz, suggestangle at ther junction. We have looked at the results for one
ing that the ground state, in the case of twdoonds, is again  and twor bonds for varying bond strengths, and in all cases
well characterized, over a rangeof by a pair of oppositely considered the discrepancy is small. Thus, we conclude that
charged fractional vortices. the phase distribution as well as the energy is well approxi-
Finally, we briefly discuss the accuracy of our variationalmated by our variational ground state involving only frac-
approximation for the “wave function,” i.e., the phase dis- tional vortices.
tribution in the ground state. As is well known, a variational
wave function may give an excellent value for the ground
state energy, but a less accurate picture of the ground state
configuration. In particular, our variational approach ignores  Tne original motivation for this work was to study

bonds in relation to the experiments of Kirtley al.*"1°on

IV. SUMMARY AND POSSIBLE SIGNIFICANCE
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FIG. 10. Total energy as function of for a single = bond bond strength (%)
obtained usinga) variational ansatz (*) an¢b) numerical simula-
tions (solid line). FIG. 12. Same as Fig. 10 but for two adjacenbonds.
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at an interface. Indeed, recent experiments have reported
fractional flux entrapment even in the absencenagrain
boundarie$® possibly supporting the existence of an order
parameter which violates time-reversal symmetry.

If, in the triangular inclusion, only one of the three bound-
aries is asr boundary, the two “zero” boundaries will have
little effect on the arrangement of the order parameter
phases, and can reasonably be ignored. Similarly, in the tri-
crystal, if only one of the three grain boundaries isra
boundary, this boundary would correspond to a semi-infinite
chain of = bonds, while the other two “zero” boundaries
can again be ignored in the model. Thus, a finite chaim of
bonds may be suitable for modeling the triangular inclusions,
and the extrapolation for long chain lengths is relevant for
the tricrystal experiments.

FIG. 13. Graphical representation of the difference between the Next, we speculate about the relationship of our results to
variational phase configuratioftwo oppositely charged fractional the observed trapping of non-half-integers of flux in triangu-
VorticeS and the numerically obtained ground state phase Configurar inclusions. The trapped flux is usua”y related to the phase
ration for the casé.=10N_ =2 (string of two adjacent parallet difference across the grain boundary by the following
bonds. The phase difference, as a fraction of the bond angle acrosérgumenf, which we restate to apply to our geometry. Con-
the 7r junctions, is shown on a gray scale given at the right edge ogider a closed integration conto@ (of radiusr>a) cen-
the diagram. A 7& 70 lattice is considered and alternate stripestered at one end of the grain boundary, and passing through
along th.e y.aXis represent vertical and horizontal bonds. #he the grain boundary. We wish to conside'r the flux enclosed by
bond string is shown in the center of the figure. this loop. The path is taken to be deep inside the grains, so

Rice® have shown that the Josephson coupling across a gra_FHat the_ Me_issner effect dictates that thg supercurrent density
boundary between twd-wave superconductors can have ei-]1=0. Sincej=V ¢—(2m/dg)A, whered is the phase of the
ther sign, depending on their crystallographic orientationssuperconducting wave functio®o=hc/(2e) is the super-
thereby giving rise to the possibility af-grain boundaries. conducting flux quantum, and is the vector potential, it

Of course, in the present model, we are treating notgrain ~ follows that

boundary, but rather a string ef bonds in the discretXY o

model. Nevertheless, we argue that this string could be Vé=—A. (39)
viewed as a crude model of such a grain boundary. It has @,

been argued that even so-called “single-crystal” hithsu-  Now let C=C1+ C2, whereC! is the part of the contour not
perconductors can be effectively represented as an array ﬁfcluding the grain boundary. In the approximation that
superconducting grains weakly interacting via the Josephsofg2 -5n pe taken to be infinitesimally short, the integral
coupling between therf?. The typical lattice spacing for the fc2A-dl~0. In addition, we havefc:Vé-di=A¢, the
high-T. materials in such a model has been quoted to be g§pa5e discontinuity across the grain boundary. But a@lso
large as 1 «m. Thus, the chain ofr bonds in our model can st pe continuous around, modulo 27. Combining all

be taken as representing the coupling of grains across @ese conditions with Eq39), we find that
ar-grain boundary, and the length of the chain will depend on ’

the dimensions of the grain boundary, and the interpretation 2
of the effective lattice spacing. Ap=2mn— -, (40
Now we turn to a summary of the experiments. The rel- 0
evant experiments fall into two categories. In the tricrystalwherenis an integer an@ is the flux enclosed by thentire
experiments, the intersections of three grain boundaries at@ontour. Thus the flux enclosed Iyis related to thephase
“tricrystal point” were studied'*!® At special orientations defectacross ther junction in the loop. In particular, i ¢
of the grain boundaries, these experiments found that a hai$ anon-half-integer fractiorof 27 in the ground state, then
quantum of flux is trapped around the tricrystal point—athe flux enclosed will also correspondingly be fractional.
result that has been interpreted as verifyingdhgave sym-  Hence, a non-half-integer fractional flux is correlated with a
metry of the superconducting order parameter. In the tricrysphase jump across the grain boundary which is a non-integer
tal geometry, observing a trapped half-flux quantum can thefraction of 7.
be explained by the fact that one of the grain boundaries can Our results show thaA ¢+ 7 for an interior bond in a
be taken to be ar boundary’” In the second class of ex- finite chain ofz bonds. In factA ¢ can be “tuned” to be any
periments, a triangulaior a hexagonalsingle-crystal super- fraction of 7 by simply varying the strength of the bonds for
conductor was inserted into a single crystal superconductingny finite chain length. Thus, a necessary condition for the
host of the same material, but with crystal axes misoriente@ccurrence of a non-half-integer flux quantum is indeed sat-
with respect to those of the inclusion. In these systems, Kirtisfied. But this result still does not demonstrate that the the
ley et al'® have found evidence ofractional (not half- trapped vortices correspond to non-half-integer flux quanta,
intege) flux entrapment. These results have beenbecause our calculations do not include the magnetic fields
interpreted’ as evidence that the superconducting order painduced by the currents near thegrain boundary. These
rameter violates time-reversal symmetry, either in the bulk ofields will changeA, and hence, the phase arrangement itself
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to some extent. Thus we cannot rigorously infer the magnetic 3.0 . . . . . . .
flux when these inductive effects are omitted from the
calculations’® 20

Although our present calculations do not include these
inductive effects, it is still instructive to look at the phase
distribution as if Eq.(40) were valid anyway. In particular, 1.0
let us try to model the flux configuration obtained by scan-
ning thesr-grain boundary using an idealized square SQUID. .
We take the flux through the SQUID to be the same as thai3
through the corresponding contaDias described above. Ac- &
cording to the argument just given, the flux passing through
the SQUID is therefore proportional to the sum of the phase
jumps A=3;A ¢; around the SQUID contour, across those 2.0
bonds for which the phase has a discontinuity. In our simpli-
fied model for the flux through the SQUID, these disconti- , , . .

" -3.0
nuities occur across the two bonds where the contour, take: 10 5 0 5 10 15 20 25 30
counterclockwise around the SQUID, intersects thgrain (a site index, i
boundary or its extension along thleaxis.

In order to make a reasonable connection to the experi-
mental geometry, we estimate the lattice spacnim our
model using

A

g
E
3,

-1.0

E;=1.Po/c=a2J.Dylc, (41)

A

whereE; is the Josephson coupling energy between adjacen§
grains,l . is the associated intergranular critical currehtis )
the macroscopic critical current density set by the Josephsog‘c_‘_’
effect coupling, anda is the lattice spacing of the granular
array.
Using the experimental estimates 65 andJ.. (see Ref.

13), we estimate=1.1 um, which is in agreement with the
typical value for these materiad§ Since the triangular inser-

tions are roughly 20um in length(for each sidg we have 30 5 0 10 20 30 40 50
looked at the results for & bond chain of length 20 lattice site index, i

spacings, with the SQUID diameter also taken to correspond

to the experimental diameter. In Fig. (B4 we showA as FIG. 14. The calculated phase jump, which corresponds to

calculated for ar bond chain of lengtim=20 and strength the flux measured by a SQUID of size 4Q0 lattice spacings, for
A=0.25, and a SQUID of diameter=10. In Fig. 14b), we a chain of7r bonds of lengt and bond strength. The x coordi-
show the same for a chain of lengthk=40. We note that for hate denotes the position of the center of the SQUID relative to the
a fixed bond-strengthy becomes more concentrated near theleftmostw bond. A is defined to be the sum, taken in the counter-
chain ends with increasing chain lengthFurthermore, we plockwise direction, of t.he phase discontinuities af:ross tho;e bonds
can also make\ more localized near the chain ends by in- Ntérsected by the perimeter of the SQUID, which are either
creasing\, as shown in Fig. 1d). bonds in the grain bount_jary,_ or lie along t.he extension of the.graln
. . . o boundary along the-x direction. (a) n=20; A =0.25. (b) n=40;

The profile of A, shown in Fig. 14a), strikingly re- \—0.25 (full curve) and 1.0(dashed curve
sembles thdlux profilemeasured in Ref. 13 across one side ' '
of a triangular insertion. In view of this similarity, it would _
be interesting to see if the changes we see with bond strength Ayj=Adij—(2m/Do)AA (42)
and chain length are also found experimentasxperimen-  wherei,j label sites connected by a bond across the grain
tally, the strength of the bonds can be changed by varyingpoundary, and\A;; andA ¢;; are the corresponding discon-
the misorientation angles of the inclusionl.inductive ef-  tinuities in the vector potential and the phase across that
fects do not change the qualitative picture presented abovepnd. A nonzera\ y;; can therefore be attributed either to a
then these experiments would provide evidence supportingonzeroA ¢;; or a nonzerd\A;; (or a combination of both
the interpretation of the grain boundary as a stringmof In our calculations, we have assumed a nonzkeh; and
bonds. take AA;;=0 across the branch cut. The opposite choice

We also comment on the fact that Kirtlest al.™® were (AA;;#0,A¢;;=0) corresponds to a fractional magnetic
able to reproduce their measured flux configuration with anonopole, since the vector potential of a magnetic monopole
certain arrangement of fractional magnetic charges. Our picchanges discontinuously across a branch3¢8ince the
ture suggests one way of understandingy this modeling  physical quantity is the gauge-invariant phase difference,
works. The key is that the flux distribution is closely relatedthese pictures are equivalent.
to thegauge-invarianiphase jump 4 y;;) across the bound- In summary, we have introduced a set of “fractional vor-
ary, given by tex " excitations in theXY model, and have derived an

ij s
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