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Fractional vortices in the XY model with p bonds

R. V. Kulkarni,1,2,* E. Almaas,1 K. D. Fisher,1 and D. Stroud1
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2Department of Physics, University of California at Davis, Davis, California 95616
~Received 8 May 2000!

We define a new set of excitations in theXY model which we call ‘‘fractional vortices.’’ In the frustrated
XY model containingp bonds, we make the ansatz that the ground state configurations can be characterized by
pairs of oppositely charged fractional vortices. For a chain ofp bonds, the ground state energy and the phase
configurations calculated on the basis of this ansatz agree well with the results from direct numerical simula-
tions. Finally, we discuss the possible connection of these results to some recent experiments by Kirtleyet al.
@Phys. Rev. B51, R12 057~1995!# on high-Tc superconductors where fractional flux trapping was observed
along certain grain boundaries.
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I. INTRODUCTION

The classicalXY Hamiltonian is one of the most studie
models in statistical physics. In its usual, unfrustrated fo
it is written

H5(̂
i j &

Ji j @12cos~f i2f j !#, ~1!

wheref i is a phase variable on thei th site (0<f,2p), the
sum runs over distinct pairŝi j &, andJi j is the energy of the
coupling between sitesi and j. In the ferromagnetic, neares
neighbor case,Ji j vanishes except between nearest-neigh
sites and all theJi j ’s are equal to a single positive constantJ.
In this case, for spatial dimensionalityd>3, there is a phase
transition to a ferromagnetic state at a critical temperatu
with conventional critical phenomena. Ifd52, there is in-
stead the Kosterlitz-Thouless-Berezinskii phase transition
which pairs of oppositely charged integer vortices unbind
a finite temperatureTKTB .1 The classicalXY model has been
found to describe a wide variety of systems with comp
scalar order parameters, including bulk superconductor
d53, superconducting films, Josephson junction arrays
d52, and superfluid He4 films.2

Recently, theXY model with antiferromagneticbonds,
i.e., with bond strengthsJi j ,0 ~also calledp bonds!, has
received much attention,3–9 in particular due to its possible
relevance to high-Tc superconductors and other experimen
systems.10–12Specifically, if we consider the grain bounda
between two high-Tc superconductors with suitable misor
entation of the crystalline axes, then the resulting Joseph
coupling across the boundary can have the coupling en
Ji j ,0.7 This is a consequence of thedx22y2 symmetry of the
order parameter in many high-Tc materials. Such grain
boundary interfaces have lately been studied in a variety
experiments and in several geometries. These experim
have led to interesting results, such as the observation o
trapping of half-integer and also other fractional flu
quanta.13–15These results can be explained using models
volving p bonds.9,16–20 Similar models involvingp bonds
have also been developed to explain such phenomena a
paramagnetic Meissner effect,8 also observed in samples o
high-Tc superconductors.
PRB 620163-1829/2000/62~18!/12119~11!/$15.00
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A key concept in understanding the effects ofp bonds is
‘‘frustration.’’ Consider, for example, theXY model on a
square lattice with only the nearest-neighbor couplings n
vanishing. If a plaquette has an odd number of bonds,
plaquette is frustrated, in the sense that no choice of an
in the four grains making up the plaquette can simul
neously minimizeall the bond energies. Thus, a singlep
bond will cause the two plaquettes adjoining thatp bond to
become frustrated. In aline of p bonds, only the two pla-
quettes at the end of the line will become frustrated. Beca
of the frustrated plaquettes, it is nontrivial to find the grou
state of theXY model withp bonds. In this paper, we wil
show, both numerically and by analytical arguments, t
these ground states are characterized by certain spatial p
configurations which we call fractional vortices. We will als
derive an expression for the interaction energy of two fr
tional vortices in theXY model.

The rest of the paper is organized as follows. In Sec.
we define the fractional vortices and calculate the interac
energy of a bound pair of fractional vortices for theXY
model. In Sec. III, we study the ground state ofXY lattices
containing a singlep bond, twop bonds, and a string ofp
bonds. In each case, using a variational ansatz for
ground-state configuration, we find that there is a criticap
bond strength, above which the ground state contains pai
oppositely charged fractional vortices. To check these
sults, we directly calculate the ground-state energy of th
lattices using a numerical relaxation technique based on
equations of motion for overdamped Josephson junctio
We find that both the ground-state energy and the criticap
bond strength, predicted by the variational approach, ar
excellent agreement with the numerical results. Finally,
Sec. IV, we discuss the possible relevance of these nume
results to experiments carried out in systems containingp
junctions, such as high-Tc superconductors containing gra
boundaries and tricrystals, as recently studied by Kirt
et al.13–15

II. FRACTIONAL VORTICES IN THE UNFRUSTRATED
XY MODEL

Consider the Hamiltonian~1! for anXY model defined on
a square lattice withN3N sites. If all the nearest-neighbo
12 119 ©2000 The American Physical Society
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couplings are equal, this may be written

H5J(̂
i j &

@12cos~f i2f j !#. ~2!

Hereafter, we shall use units such thatJ51. The phase
angle, f i , at point (xi ,yi) due to a fractional vortex o
chargeq at point (x0 ,y0) is definedto be

f i~x0 ,y0 ,q!5q3tan21S yi2y0

xi2x0
D . ~3!

For q51, we recover the standard configuration for an in
ger vortex. This definition can be seen as a generalizatio
the concept of half-vortices introduced by Villain21 for the
same model. Note that, while for the integer vortex the bo
angles change continuously, the fractional vortex case
characterized by a branch cut, across which the bond an
are discontinuous.

This singularity leads to several other distinctions b
tween integer and fractional vortices. For example, the
ergy associated with a single integer vortex is proportiona
ln(N). In the thermodynamic limit, this is a weak divergen
which makes the KTB vortex-antivortex unbinding transiti
possible. By contrast, the energy of an unbound fractio
vortex is }N, since the number of bonds along the bran
cut is }N. Thus, it is energetically unfavorable at all tem
peratures to create isolated fractional vortices. But a bo
pair of fractional vortices with chargesq and 2q is much
less expensive energetically, because then the branch c
restricted to the line joining the two charges: the total ene
should be proportional to the separation of the fractional v
tices. For fixedq and large enough separations, this energ
always larger than that of a pair of oppositely chargedinte-
ger vortices, whose energy varies as the logarithm of th
separation. Nevertheless, for fixed separation, it is alw
possible to find a non-integerq such that that the energy o
the fractional vortex pair is less than the corresponding
ergy for the integer vortices. In the following, we deriv
expressions for the energy of a bound pair of fractional v
tices in theXY model, and compare them to numerical r
sults obtained by calculating the energy explicitly for the
configurations.

We first consider a bound pair of integer vortices
charge61 located at (x0 ,y0) and (x1 ,y1). The standard KT
expression for the energy of the pair is obtained by appro
mating the Hamiltonian as

H;
1

2 (̂
i j &

~f i2f j !
2. ~4!

For the phase configuration, we usef i5f i(x0 ,y0 ,11)
1f i(x1 ,y1 ,21), wherex12x05n andy12y050 ~in units
of the lattice constanta). Substituting this configuration into
Eq. ~4! gives the Kosterlitz-Thouless formula for the intera
tion energy,EKT , of two oppositely charged integer vortice

EKT~n!52pF ln n1
p

2 G . ~5!

In Fig. 1, we compare this expression to the energy of a
of oppositely charged integer vortices, computed using
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same phase configuration but the exactH. The discrepancy
arises from the expansion of the cosine factor, which is
accurate for the bonds closest to the vortices. This inaccu
is remedied by a making a core correction, i.e., by calcu
ing the contribution from the bonds on the perimeter of t
plaquettes surrounding the vortices exactly, rather than b
quadratic expansion. For largen, the core-correction energy
Ec(n), is approximately given by

Ec~n!5p2281
122p2

2n2
1

81p2

16n4
. ~6!

As can be seen from Fig. 1, the numerically calculated
ergy is well approximated byEKT(n)1Ec(n).

Next, we calculate the energyE(q,n) of a pair of frac-
tional vortices6q, separated by a distancen in the x direc-
tion, as shown schematically in Fig. 2. Note thatE(1,n) is

FIG. 1. Calculated energy of a bound pair of integer vortices
a function of separationn, in units of J. Full curve: numerically
exact results. Dot-dashed curve: KT approximation@Eq. ~5!#. Aster-
isks: KT approximation plus core correction.

FIG. 2. Schematic drawing of a bound pair of fractional vortic
arranged parallel to thex axis. For this configuration, the vortice
are separated by three plaquettes.f iu andf i l are the phases at th
two ends of bonds in the shaded region~region A!; the angleu i ,A in
the text is defined byu i ,A[f iu2f i l . Core corrections are calcu
lated only for the bonds denotedC1 andC2, as discussed in the text
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PRB 62 12 121FRACTIONAL VORTICES IN THEXY MODEL WITH p BONDS
simply the interaction energy of a pair of integer vortices,
just discussed. The phase configuration of this pair is t
given by f i5f i(x0 ,y0 ,q)1f i(x1 ,y1 ,2q), where x12x0
5n and y12y050. We now divide the bonds into two
groups:~A! those intersected by the line segment joining
two vortex centers; and~B! the remaining bonds. Le
EA(q,n) andEB(q,n) be the corresponding energy contrib
tions to E(q,n) coming from these two groups of bond
Thus E(q,n)5EA(q,n)1EB(q,n). To obtain E(q,n) we
proceed as follows.

~1! We calculateEA(1,n), using the quadratic expansio
for the cosine.EA(1,n) is simply the contribution to the tota
energy of a bound pair of integer vortices arising from t
bonds along the branch cut. Note that there aren bonds in
region A. Once EA(1,n) is known, we get EB(1,n)
5EKT(n)2EA(1,n).

~2! We obtainEB(q,n) by noting that, in the quadratic
approximation,EB(q,n)5q2EB(1,n).

~3! Finally, we determineEA(q,n) by directly evaluating
it using the full expression for the cosine, not the quadra
expansion. This is necessary, because the bond angles
gion A are not small for arbitraryq.

We now use the outlined procedure to obtainE(q,n).
Step 1. Let u i ,A(1,n)[f iu2f i l denote thei th bondangle

~cf. Fig. 2! in region A forq51. For the two-vortex configu-
ration,u i ,A(1,n) is given by

u i ,A~1,n!52F tan21S 1

2i 21D1tan21S 1

2n22i 11D G . ~7!

Using the quadratic approximation, the corresponding ene
contributionEA(1,n) is given by

EA~1,n!5
1

2 (
i 51

n

u i ,A
2 ~1,n!. ~8!

Using the approximation: tan21@1/(2i 21)#;1/(2i 21) for
i>2, we find

EA~1,n!5
p2

2
1S p

2
1

2

2n21D 2

1
2

n
@g12 ln 22222n#

1
2

n
cS n2

1

2D2c8S n2
1

2D ,

EB~1,n!5EKT~n!2EA~1,n!, ~9!

where c(x) and c8(x) are the Digamma function and it
derivative,g is Euler’s constant, andEKT~n! is given by Eq.
~5!.

Step 2. Using the results of step 1 and Eq.~5!, we get

EB~q,n!5q2 @2p ln n1p22EA~1,n!#. ~10!

Step 3. The next step is to calculateEA(q,n). Bond angles
in regionA are given by

u i ,A~q,n!5q @2p2u i ,A~1,n!#. ~11!

Correspondingly, the energyEA(q,n) is given by

EA~q,n!5(
i 51

n

„12cos@u i ,A~q,n!#…. ~12!
s
n

e

c
re-

y

Since the bond-angleu i ,A(q,n) is not small for an arbitrary
q, we cannot expand the cosine term only to second or
But for any q, the differenceu i ,A(q,n)2un/2,A(q,n) is a
small parameter for anyi>2. Expanding the cosine term i
Eq. ~12! to second order in this parameter, we obtain
expression forEA(q,n). This expression can be summe
and eventually gives

EA~q,n!5~n22!F ~12cosan!1
8q2

n2
cosan1

4q

n
sinanG

12H 12cosFqS 3p

2
2

2

2n21D G J
2F4q2

n
cosan1q sinanG3 (

m52

n21

um,A~1,n!

1
q2

2
cosan (

m52

n21

um,A
2 ~1,n!, ~13!

(
m52

n21

um,A~1,n!52g2414 ln 212cS n2
1

2D , ~14!

(
m52

n21

um,A
2 ~1,n!5p21

4

n
~g12 ln 22222n!

1
4

n
cS n2

1

2D22c8S n2
1

2D , ~15!

an5qS 2p2
4

nD . ~16!

Adding up the contribution from the two regions, we fi
nally get the required expression for the energy of a bou
pair of fractional vortices. As noted earlier, the core corre
tions must be included to attain high numerical accuracy
the present case, it is sufficient to include these correcti
only for the bonds labeled C1 and C2 in Fig. 2, using the
procedure outlined earlier. This approximation is equival
to extending region A to include bonds C1 and C2 . Corre-
spondingly the core-corrected total energy is given by

E~q,n!5EA~q,n!1EB~q,n!2q2uc
212 @12cos~quc!#,

~17!

where

uc5
p

2
2

2

2n11
. ~18!

Expressions~17! and ~18! are compared to the results o
numerical computation in Figs. 3~a! and 3~b!; agreement be-
tween the two is excellent. On the basis of this agreem
which is equally good for all values ofq and n which we
have considered, we present this result as a good analy
expression for the interaction energy between two fractio
vortices in the unfrustratedXY model on a square lattice
This result is a generalization of the integer vortex exci
tions proposed by Kosterlitz and Thouless.
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12 122 PRB 62R. V. KULKARNI, E. ALMAAS, K. D. FISHER, AND D. STROUD
For largen, we can further simplify the above expressio
by dropping terms ofO(1/n) and smaller in Eq.~17! to get

E~q,n!5~n22! @12cos~2pq!#12 lnn@pq22q

3sin~2pq!#1
3

4
p2q212F12cosS 3pq

2 D G .
~19!

III. FRACTIONAL VORTICES IN THE XY MODEL WITH
p BONDS

The fractional vortex configurations introduced in the p
vious section provide a natural way of characterizing
ground state of theXY model containingp bonds. In this
section, we implement this description by making a var
tional guess for the ground-state configuration using fr
tional vortices. We then compare our variational results w
those obtained by numerically relaxing to the ground-st
configuration, and find excellent agreement. In the follow

FIG. 3. Energy of a bound pair of fractional vortices in an u
frustratedXY lattice as obtained numerically (*) and from the an
lytical approximation, Eq.~17! ~full line!, for ~a! fixed charge,q
50.8, as a function of separation; and~b! fixed separation,n550,
as a function of charge.
-
e

-
-

h
e

subsections, we will focus on obtaining the critical bo
strength,lc , above which the ferromagnetic ground-sta
solution becomes unstable, and the ground-state config
tion contains bound pairs of fractional vortices. For the ca
of one and twop bonds, we also compare our results
those from previous studies by Vannimenuset al.3 Note that
in these calculations, in which the goal is to calculate
threshold bond strength above which the ferromagn
ground state becomes unstable rather than the absolute
gies as a function ofl, it is unnecessary to include the co
corrections. Hence,lc can be calculated analytically as dem
onstrated below. The ground-state configuration and ene
for l.lc do need the core corrections for greatest accura
We obtain them numerically using our variational guess a
discuss them in the subsequent section.

A. One p bond

We first consider the case of a singlep bond, i.e., a single
antiferromagnetic bond in a host of ferromagnetic bonds.
before, we take the bond strength of the ferromagnetic bo
to equal unity, and we denoted the strength of the antife
magnetic bond byl(l>0). The problem is to obtain the
ground-state configuration and energy for arbitrary streng
l, of thep bond.

To solve this problem, we make a variational guess
the ground-state configuration: it is the phase configura
corresponding to a bound pair of fractional vortices
strength6q, located at the centers of the two plaquett
adjacent to thep bond. The charge,q, is a variational pa-
rameter with respect to which the ground-state energy
minimized for a givenl.

The total energy of this configuration discussed above
readily obtained using the procedure of the previous sect
suitably corrected for the fact that we have ap bond instead
of a ferromagnetic bond. The angle difference across thp
bond is given byup5qp. Then, using Eqs.~8! and~10!, we
get

EB~q!5
1

2
q2p2, ~20!

while from Eq.~12! we find

EA~q!511l cos~qp!. ~21!

Adding these two terms gives the total energy of the confi
ration. Minimizing this energy with respect toq yields the
condition

qp5l sin~qp!. ~22!

For l<1, the ground-state configuration corresponds
q50: all the phases are perfectly aligned. Forl.1, the
ground-state configuration corresponds to a bound pai
fractional vortices with charges6q obtained by solving Eq.
~22!. Thus, the ferromagnetic ground state is unstable ab
a critical bond-strength valuelc51. The same value ha
been obtained previously by workers using differe
approaches.3,4
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B. Two p bonds

We now consider the case of two parallel, adjacentp
bonds. As before, our variational guess for the ground s
is the configuration corresponding to a bound pair of fr
tional vortices; we take these to be located as shown in
4~a!. The corresponding total energy is again calculated
ing the procedure outlined in Sec. II. Using Eqs.~8! and~10!,
the energy contributionEB(q) is

EB~q!5q2H 2p ln 21p22Fp2 12 tan21~1/3!G2J . ~23!

Using Eq.~12!, we get

EA~q!5212l cos$2q@3p/42tan21~1/3!#%. ~24!

Adding these two contributions gives the total energy, wh
is to be minimized with respect toq for a given l. This
procedure gives the critical valuelc50.563, which is in
good agreement with the exact valuelc5p/221, obtained
by Vannimenuset al.3

Next, we consider the case of two parallel, but nonad
centp bonds, as shown in Fig. 4~b!. Taking the bond center
to have the coordinates (0,0) and (m,n), we calculate the

FIG. 4. Schematic plot of three configurations, each contain
p bonds~full lines!, which are~a! parallel and adjacent,~b! parallel
and nonadjacent, and~c! perpendicular and nonadjacent. Als
shown are the corresponding locations of the fractional vor
charges for the variational configurations.
te
-
g.
s-

h

-

energy using the variational procedure described above
vortex charges as shown. For large separation between
bonds (Am21n2@1), this procedure gives

EB~q!5q2 @2p222amn2~p2amn!
2# ~25!

and

EA~q!5212l cos@q~p1amn!#, ~26!

where

amn5
m22n2

~m21n2!2
. ~27!

Minimizing the total energy gives the critical bond streng
as

lc5
122amn /p

112amn /p
. ~28!

Similarly, for two nonadjacentperpendicularp bonds
@Fig. 4~c!#, we find

EB~q!5q2 @2p222bmn2~p2bmn!
2# ~29!

and

EA~q!5212l cos@q~p1bmn!#, ~30!

where

bmn5
2mn

~m21n2!2
. ~31!

In this case, the critical bond strength is

lc5
12bmn /p

11bmn /p
. ~32!

These results are identical to those obtained previously
Vannimenuset al. using a different approach.3 The agree-
ment lends support to our hypothesis that the ground-s
configuration of such systems can be characterized by a
of fractional vortices~in the cases considered here, a set
only two oppositely charged fractional vortices!. Besides
having the merit of simplicity, our approach also eas
yields the ground-state configuration and energy for arbitr
l. Moreover, our procedure can be used to obtain the gro
state even when the separation between the bonds is
large. In particular, for two parallel bonds such thatm5n
51, our variational procedure yields the surprising res
that lc51 for this configuration. The same result was o
tained in a numerical study done by Gawiecet al.5 Finally,
our variational ansatz can readily be generalized to longep
bond chains, as we shall see in the next section.

C. Chains of p bonds

Next, we consider chains ofp bonds of lengthn>3. In
this case, we make the variational ansatz that the gro
state consists ofn/2 or (n11)/2 pairs of oppositely charge
fractional vortices for even or oddn, arranged as shown in
Fig. 5. As before, we proceed by calculating the contribut
to the total energy from regions A and B. However, the p

g

x
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cedure outlined in Sec. II has to be generalized to inclu
many pairs of fractional vortices. Since the details are s
nificantly different from that outlined in Sec. II, we briefl
describe the generalized procedure below.

~1! We consider the case in which all charges have m
nitude unity. The total energy of this configuration is giv
simply by the KT expression

EKT522p(
j ,k

qjqk ln~njk!1p2(
j

qj
2 , ~33!

wherenjk is the distance between the chargesqj andqk , and
the second sum runs over all the individual charges, eac
which has magnitude unity. This result is obtained by usin
small-angle expansion for the contribution from each bo
angle differenceub , and summing those contributions
give

EKT5
1

2 (
b

~ub!2. ~34!

The bond angleub is, in turn, decomposed as

ub5(
k

qkuk,b , ~35!

where k labels the position of the charges anduk,b is the
contribution toub from a charge of unit magnitude atk.

~2! Next, we consider the case in which the charges
fractional (uqu,1). The bonds can still be divided int
classes A and B as discussed earlier. In the case of fracti
charges, the bond-angle differences in region B are
given by Eq.~35!. Correspondingly, the energy contributio
from bonds in region B is

EB5
1

2 (
b

B

ub
25

1

2 (
b

A1B

ub
22(

b

A

ub
2 , ~36!

where(b
B and (b

A denote sums over all bonds in region
and in region A.

~3! Finally we calculate the energyEA , using suitable
expressions for the bond angles in region A, as obtai
from the multi-vortex configuration but without making th
small angle expansion.

To minimize the resulting total energy, which is a fun
tion of all the qk’s, we used two procedures:~i! Powell’s

FIG. 5. Schematic plot of the assumed variational configura
containingm pairs of fractional charges, for a chain ofp bonds
~solid line segments! of length 2m.
e
-

-

of
a
-

re

al
ill

d

multidimensional direction set method,22 and ~ii ! a genetic
algorithm.23 Both methods successfully converged to t
same minimum energy and configuration, from which w
deduced the critical bond strength,lc , for various values of
n. Figure 6 shows our results forlc(n). As can be seen from
the main part of the figure, it fits very well to the approx
mate expressionlc'1.16/n. A consequence of this 1/n de-
pendence is: if the system has a finite concentration op
bonds randomly distributed in the lattice, then in the therm
dynamic limit lc→0. This behavior follows from the fac
that, in the thermodynamic limit, there is always a fin
probability of having an arbitrarily large chain lengthn, and
hence an arbitrarily smalllc .

We now look at the variations in the bond angles alo
the p bond chain as a function of chain length,n, and bond
strength,l ~for l.lc). First, we discuss the variation wit
fixed bond strength, takingl51. Figure 7 shows the ratio o
the bond angles,u i , along the chain~not including the cen-
tral bond! to the bond angle across the firstp bond,u1, as a
function of position along the chain for various cha
lengths. A number of features deserve mention. First, fo
chain of lengthn52m, the ratio of the bond angles,u i /u1,
for i ,m is independent ofm. Second, since the bond-ang
distribution is symmetric, we only need to look at the bon
in the range 1< i<m. Third, the bond angles increase mon
tonically as one moves along the chain from its edges to
center, i.e., asi increases from 1 tom. The inset shows the
variation of u1 with chain length forl51. Note that with
this choice ofl, the bond angles saturate quickly: they a
roughly constant over the ‘‘interior bonds,’’ such thati>3.
Furthermore, this constant value~approximated by the cen
tral bond angle! approachesp as the chain lengthn in-
creases.

Figure 8 shows how the bond angles,u i , vary with bond
strength,l, for a fixed chain length (n520). As already seen
in the previous figure,u i rapidly tends to saturate towards i
central value with increasingi. Moreover, the central bond
angle quickly increases from 0 top as l increases forl

n

FIG. 6. Critical bond strengthlc as function of chain length, for
a chain ofp bonds of lengthn. Open circles and full curve: nu
merical results. Asterisks and dashed curve: analytical approxi
tion, lc51.16/n.
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.lc . Thus, we can ‘‘tune’’ the central bond angle to a
desired fraction ofp by appropriately adjustingl.

Although the underlying variables are theu i ’s, it is of
interest to mention corresponding trends in the fractio
charges. For smalll, these charges decrease monotonica
with increasingi, so that the largest charges reside at
ends of the chain. For largerl, charges comparable in mag
nitude to those at the ends appear away from the ends.

D. Numerical check of variational procedure

To check our variational approach, we have carried ou
independent minimization to calculate the ground-state
ergy of the system containingp bonds,24 without making
any assumptions about the presence or absence of fract
vortices. To carry out this minimization, we imagine that t

FIG. 7. Ratio ofi th bond angle,u i , to the first bond angleu1,
plotted as a function of i for chain lengths n
55(n), 15(h), 25(*), and 35(s). The bond strength isl51.
Inset: variation ofu1 with chain lengthn, for l51.

FIG. 8. Thei th bond angle,u i , plotted as a function ofi for
bond strengthsl50.5,1.0,1.5, and 2.0 . The chain length,n, is
taken to be 20.
l
y
e
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i j th bond is actually an overdamped Josephson junction c
necting nodesi and j. The current flowing through that bon
from nodei to nodej is then

I i j 5I c,i j sin~f i2f j !1
\

2eRi j

d

dt
~u i2u j !, ~37!

and the sum of these currents must equal the total exte
current,I i

ext, fed into nodei:

(
b

I i j 5I i
ext, ~38!

where I c,i j is the critical current of the junction betwee
grainsi and j, andRi j is the corresponding shunt resistanc
These equations can be put into dimensionless form u
the definitionsi i j [I i j /I c andgi j [R/Ri j , whereI c andR are
a convenient normalizing critical current and shunt res
tance, and introducing the natural time unitt[\/(2eRIc).
Combining these equations yields a set of coupled ordin
differential equations which is easily reduced to matrix fo
and solved numerically, as described by many previo
investigators.25 For our work, we employed a fourth-fifth or
der Runge-Kutta integration with variable time step.

For present purposes, we are interested, not in exami
the dynamical properties of arrays withp bonds, but rather
in finding the minimum-energy configuration of such array
To that end, we have simply iterated this set of coup
equations of motion, withno external current, allowing the
phases to evolve until they reach a time-independent c
figuration. As has been shown by previous workers, t
configuration will correspond to a local minimum-energ
state of the corresponding Hamiltonian H
52(^ i j &(\I c; i j /2e)cos(fi2fj). We then compare the resul
ing configuration and energy with those predicted by
fractional vortex variational ansatz for the ground state.

To make the comparison as straightforward as possi
we made the simplifying assumptionRi j 5R for all Joseph-
son junctions, whether 0 orp. We took i c,i j 51 for all nor-
mal junctions, andi c; i j 52l for all p junctions. Since no
external current is to be applied to the system, we carry
these calculations using square arrays of junctions with p
odic boundary conditions in both directions.

Each simulation begins with phases randomized at e
grain. The system is then relaxed according to the Eqs.~37!
and ~38! for an interval of 50–100t. We then evaluate the
final energy, as well as the phase difference,u i j , across each
p junction. Once equilibrium is reached for a givenl, we
increment or decrementl, and the system is allowed to rela
again without rerandomizing the phases. Even quite la
arrays (50350 plaquettes! relax quite quickly using this pro-
cedure, except near the critical point, but care must be ta
to avoid taking data from simulations in which the system
trapped in a metastable state. We have used arrays ran
from 10310 plaquettes to 50350, and occasionally as larg
as 70370 to examine convergence of equilibrium values.

Figures 9 and 10 show the the exact ground-state en
and correspondingq for the case of a singlep bond in a host
of normal bonds, as calculated by this numerical proced
The results are also compared to the total energy obta
from a ground-state configuration corresponding to a pai



n
we

as
al
th
nt
s

a
s-
a
nd
st
re

the

of
nal

es.
wn

ave
nd
e
es
that
xi-
c-

d

-

12 126 PRB 62R. V. KULKARNI, E. ALMAAS, K. D. FISHER, AND D. STROUD
bound fractional vortices of charge6q, calculated numeri-
cally. As shown in the figures, the agreement is excelle
thereby indicating that the ground-state energy is indeed
characterized by a bound pair of fractional vortices.

Figures 11 and 12 show a similar comparison for the c
of two p bonds. Once again, the results obtained numeric
from the RSJ equations for both the total energy and
bond angle across thep bonds, are in excellent agreeme
with those found from the fractional vortex ansatz, sugge
ing that the ground state, in the case of twop bonds, is again
well characterized, over a range ofl, by a pair of oppositely
charged fractional vortices.

Finally, we briefly discuss the accuracy of our variation
approximation for the ‘‘wave function,’’ i.e., the phase di
tribution in the ground state. As is well known, a variation
wave function may give an excellent value for the grou
state energy, but a less accurate picture of the ground
configuration. In particular, our variational approach igno

FIG. 9. Bond angle,u, as function of bond strengthl for a
single p bond obtained using~a! fractional-charge variational an
satz (*) and~b! numerical simulations~solid line!.

FIG. 10. Total energy as function ofl for a singlep bond
obtained using~a! variational ansatz (*) and~b! numerical simula-
tions ~solid line!.
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the spin-wave degrees of freedom in characterising
ground state of the frustratedXY model, but it is possible
that they may be required to get an accurate description
the phase distribution. To test the accuracy of our variatio
phase distribution, we have compared it to the exact~numeri-
cal! phase distribution in the ground state in several cas
The difference between the two configurations is sho
graphically in Fig. 13 for the case of twop bonds. As can be
seen, the difference between the variational and exact w
functions is almost always less than 2 –3 % of the bo
angle at thep junction. We have looked at the results for on
and twop bonds for varying bond strengths, and in all cas
considered the discrepancy is small. Thus, we conclude
the phase distribution as well as the energy is well appro
mated by our variational ground state involving only fra
tional vortices.

IV. SUMMARY AND POSSIBLE SIGNIFICANCE

The original motivation for this work was to studyp
bonds in relation to the experiments of Kirtleyet al.13–15 on
p-grain boundariesin high-Tc superconductors. Sigrist an

FIG. 11. Same as Fig. 9 but for two adjacentp bonds.

FIG. 12. Same as Fig. 10 but for two adjacentp bonds.
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Rice6 have shown that the Josephson coupling across a g
boundary between twod-wave superconductors can have
ther sign, depending on their crystallographic orientatio
thereby giving rise to the possibility ofp-grain boundaries.
Of course, in the present model, we are treating not ap-grain
boundary, but rather a string ofp bonds in the discreteXY
model. Nevertheless, we argue that this string could
viewed as a crude model of such a grain boundary. It
been argued that even so-called ‘‘single-crystal’’ high-Tc su-
perconductors can be effectively represented as an arra
superconducting grains weakly interacting via the Joseph
coupling between them.26 The typical lattice spacing for the
high-Tc materials in such a model has been quoted to be
large as 1 mm. Thus, the chain ofp bonds in our model can
be taken as representing the coupling of grains acros
p-grain boundary, and the length of the chain will depend
the dimensions of the grain boundary, and the interpreta
of the effective lattice spacing.

Now we turn to a summary of the experiments. The r
evant experiments fall into two categories. In the tricrys
experiments, the intersections of three grain boundaries
‘‘tricrystal point’’ were studied.14,15 At special orientations
of the grain boundaries, these experiments found that a
quantum of flux is trapped around the tricrystal point—
result that has been interpreted as verifying thed-wave sym-
metry of the superconducting order parameter. In the tricr
tal geometry, observing a trapped half-flux quantum can t
be explained by the fact that one of the grain boundaries
be taken to be ap boundary.9,17 In the second class of ex
periments, a triangular~or a hexagonal! single-crystal super-
conductor was inserted into a single crystal superconduc
host of the same material, but with crystal axes misorien
with respect to those of the inclusion. In these systems, K
ley et al.13 have found evidence offractional ~not half-
integer! flux entrapment. These results have be
interpreted27 as evidence that the superconducting order
rameter violates time-reversal symmetry, either in the bulk

FIG. 13. Graphical representation of the difference between
variational phase configuration~two oppositely charged fractiona
vortices! and the numerically obtained ground state phase confi
ration for the casel510,Np52 ~string of two adjacent parallelp
bonds!. The phase difference, as a fraction of the bond angle ac
thep junctions, is shown on a gray scale given at the right edge
the diagram. A 70370 lattice is considered and alternate strip
along the y axis represent vertical and horizontal bonds. Thp
bond string is shown in the center of the figure.
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at an interface. Indeed, recent experiments have repo
fractional flux entrapment even in the absence ofp-grain
boundaries,28 possibly supporting the existence of an ord
parameter which violates time-reversal symmetry.

If, in the triangular inclusion, only one of the three boun
aries is ap boundary, the two ‘‘zero’’ boundaries will have
little effect on the arrangement of the order parame
phases, and can reasonably be ignored. Similarly, in the
crystal, if only one of the three grain boundaries is ap
boundary, this boundary would correspond to a semi-infin
chain of p bonds, while the other two ‘‘zero’’ boundarie
can again be ignored in the model. Thus, a finite chain op
bonds may be suitable for modeling the triangular inclusio
and the extrapolation for long chain lengths is relevant
the tricrystal experiments.

Next, we speculate about the relationship of our results
the observed trapping of non-half-integers of flux in triang
lar inclusions. The trapped flux is usually related to the ph
difference across the grain boundary by the followi
argument,7 which we restate to apply to our geometry. Co
sider a closed integration contourC ~of radius r @a) cen-
tered at one end of the grain boundary, and passing thro
the grain boundary. We wish to consider the flux enclosed
this loop. The path is taken to be deep inside the grains
that the Meissner effect dictates that the supercurrent den
j50. Sincej}“f2(2p/F0)A, wheref is the phase of the
superconducting wave function,F05hc/(2e) is the super-
conducting flux quantum, andA is the vector potential, it
follows that

“f5
2p

F0
A. ~39!

Now let C5C11C2, whereC1 is the part of the contour no
including the grain boundary. In the approximation th
C2 can be taken to be infinitesimally short, the integ
*C2A•dl;0. In addition, we have*C2“f•dl 5Df, the
phase discontinuity across the grain boundary. But alsof
must be continuous aroundC, modulo 2p. Combining all
these conditions with Eq.~39!, we find that

Df52pn2
2p

F0
F, ~40!

wheren is an integer andF is the flux enclosed by theentire
contour. Thus the flux enclosed byC is related to thephase
defectacross thep junction in the loop. In particular, ifDf
is anon-half-integer fractionof 2p in the ground state, then
the flux enclosed will also correspondingly be fraction
Hence, a non-half-integer fractional flux is correlated with
phase jump across the grain boundary which is a non-inte
fraction of p.

Our results show thatDfÞp for an interior bond in a
finite chain ofp bonds. In factDf can be ‘‘tuned’’ to be any
fraction ofp by simply varying the strength of the bonds fo
any finite chain length. Thus, a necessary condition for
occurrence of a non-half-integer flux quantum is indeed s
isfied. But this result still does not demonstrate that the
trapped vortices correspond to non-half-integer flux quan
because our calculations do not include the magnetic fie
induced by the currents near thep-grain boundary. These
fields will changeA, and hence, the phase arrangement its

e

u-

ss
f



et
he

s
se
,
n

ID
th
-
g

as
se
pl
ti
k

e

ce

s
r

-

on

th

n-

de

ng

in

ov
tin

pi

ed
-

ain
-

that
a

ice
ic
ole

ce,

r-
n

the
r-
nds

rain

12 128 PRB 62R. V. KULKARNI, E. ALMAAS, K. D. FISHER, AND D. STROUD
to some extent. Thus we cannot rigorously infer the magn
flux when these inductive effects are omitted from t
calculations.29

Although our present calculations do not include the
inductive effects, it is still instructive to look at the pha
distribution as if Eq.~40! were valid anyway. In particular
let us try to model the flux configuration obtained by sca
ning thep-grain boundary using an idealized square SQU
We take the flux through the SQUID to be the same as
through the corresponding contourC as described above. Ac
cording to the argument just given, the flux passing throu
the SQUID is therefore proportional to the sum of the ph
jumps D5( iDf i around the SQUID contour, across tho
bonds for which the phase has a discontinuity. In our sim
fied model for the flux through the SQUID, these discon
nuities occur across the two bonds where the contour, ta
counterclockwise around the SQUID, intersects thep-grain
boundary or its extension along thex axis.

In order to make a reasonable connection to the exp
mental geometry, we estimate the lattice spacinga in our
model using

EJ5I cF0 /c5a2 JcF0 /c, ~41!

whereEJ is the Josephson coupling energy between adja
grains,I c is the associated intergranular critical current,Jc is
the macroscopic critical current density set by the Joseph
effect coupling, anda is the lattice spacing of the granula
array.

Using the experimental estimates forEJ andJc ~see Ref.
13!, we estimatea51.1 mm, which is in agreement with the
typical value for these materials.26 Since the triangular inser
tions are roughly 20mm in length~for each side!, we have
looked at the results for ap bond chain of length 20 lattice
spacings, with the SQUID diameter also taken to corresp
to the experimental diameter. In Fig. 14~a!, we showD as
calculated for ap bond chain of lengthn520 and strength
l50.25, and a SQUID of diameterd510. In Fig. 14~b!, we
show the same for a chain of lengthn540. We note that for
a fixed bond-strength,D becomes more concentrated near
chain ends with increasing chain lengthn. Furthermore, we
can also makeD more localized near the chain ends by i
creasingl, as shown in Fig. 14~b!.

The profile of D, shown in Fig. 14~a!, strikingly re-
sembles theflux profilemeasured in Ref. 13 across one si
of a triangular insertion. In view of this similarity, it would
be interesting to see if the changes we see with bond stre
and chain length are also found experimentally.~Experimen-
tally, the strength of the bonds can be changed by vary
the misorientation angles of the inclusions.! If inductive ef-
fects do not change the qualitative picture presented ab
then these experiments would provide evidence suppor
the interpretation of the grain boundary as a string ofp
bonds.

We also comment on the fact that Kirtleyet al.13 were
able to reproduce their measured flux configuration with
certain arrangement of fractional magnetic charges. Our
ture suggests one way of understandingwhy this modeling
works. The key is that the flux distribution is closely relat
to thegauge-invariantphase jump (Dg i j ) across the bound
ary, given by
ic
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Dg i j 5Df i j 2~2p/F0!DAi j , ~42!

where i , j label sites connected by a bond across the gr
boundary, andDAi j andDf i j are the corresponding discon
tinuities in the vector potential and the phase across
bond. A nonzeroDg i j can therefore be attributed either to
nonzeroDf i j or a nonzeroDAi j ~or a combination of both!.
In our calculations, we have assumed a nonzeroDf i j and
take DAi j 50 across the branch cut. The opposite cho
(DAi j Þ0,Df i j 50) corresponds to a fractional magnet
monopole, since the vector potential of a magnetic monop
changes discontinuously across a branch cut.30 Since the
physical quantity is the gauge-invariant phase differen
these pictures are equivalent.

In summary, we have introduced a set of ‘‘fractional vo
tex ’’ excitations in theXY model, and have derived a

FIG. 14. The calculated phase jump,D, which corresponds to
the flux measured by a SQUID of size 10310 lattice spacings, for
a chain ofp bonds of lengthn and bond strengthl. Thex coordi-
nate denotes the position of the center of the SQUID relative to
leftmostp bond.D is defined to be the sum, taken in the counte
clockwise direction, of the phase discontinuities across those bo
intersected by the perimeter of the SQUID, which are eitherp
bonds in the grain boundary, or lie along the extension of the g
boundary along the6x direction. ~a! n520; l50.25. ~b! n540;
l50.25 ~full curve! and 1.0~dashed curve!.
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PRB 62 12 129FRACTIONAL VORTICES IN THEXY MODEL WITH p BONDS
expression for the interaction energy of a bound pair of fra
tional vortices. Furthermore, we have studied the grou
state of theXY model on a two-dimensional lattice contain
ing p bonds. For strings ofp bonds of any length, we find
that there exists a minimum bond strength, above which
ground state can be characterized by pair~s! of oppositely
charged fractional vortices. We have verified this ansatz
carrying out independent numerical simulations for th
ground-state configuration of this system. Finally, we ha
discussed the possible connection between these calcula
and the trapped fractional flux quanta, which are observ
near grain boundaries in high-Tc superconductors.
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