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Transmission through two-dimensional tight-binding lattices
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A methodology of transmission through two-dimensional tight-binding lattices is presented. The theory is
formulated in terms of matrix algebra and the relationships between the matrices are examined in detail. The
features specific to tight-binding systems are contrasted to those for more general transmission problems.
lllustrative examples are given to indicate the wide applicability of the methodology.
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[. INTRODUCTION ing channels to the lgfiight). These vectors are related by
the equation

We consider here the problem of two-dimensional trans-
mission through a materid, which forms part of a larger a) [T1 T2\(q
composite system, by “sandwichingB between the other b, - Ty T4)\bi) (1)
two components\; and A, (which may be the same mate-
rial); i.e., we have the system representeddpB-A,. We  WhereT is the transfer matrix and current conservation im-
are not specific about the composition of the materials or th@lies that
identity of the transmitted particle, as the formalism is gen- N . . .
eral enough to treat a variety of different situations. For ex- a a—b b=a a—bb. 2
ample, possible applications include electronic transmissio . - .
through a Penrose tilifg® or Fibonacci latticé, possibly in Equation(1) can be regarded as definiag andb; in terms
the presence of a magnetic fi€ldOther possibilities O:Ia* ﬁndb" If I_Eq. (2 ('js to hold for ?Ill\éecéors Sfi.t'Sfy'I:g th
involve the generalization of previous one-dimensional work]gI )’é e_r:j cerftall:n czon_ ftions mufst Od.b y wrmngrt] € rrl]g t
on neutron or atom polarization through periddior and side o q(_ .) In terms ofg andb, we see that the
quasiperiodit® magnetic lattices. In the work presented hereappropnate conditions on the submatricesTiare
we confine ourselves to the case whéjeand A, are the
same material.

For a stationary state of the composite system, with defi-
nite energyk, the transmission through any part of the sys-
tem must be conserved. The measure of transmission us ; ; ; ;
here is a direct analogy with the widely used definition for%qjttlng Eq.(3) into matrix form gives
one-dimensional problems, but in certain examples, particu- TF TH\V/T. T | 0
larly where the transmission is small, this necessitates very( 3 ( ! 2) :< )
high precision. This is considered in detail in the Appendix Ts T4/ 10 I
where the reasons are elucidated, but the calculations pre-
sented here are sufficiently precise to overcome this problem. _ T T2>
Since transmission is an important property for the stationary T, T4
states of the composite systems considered, we have chosen
to calculate this directly, rather than to use other measures (4)
which average over different channels Corresponding to dlf’rhe right-hand side of Ec[4) leads to the additional condi-
ferent energies and consequently to different stationaryions
states.

a,

Il. GENERAL THEORY >

ar
For a stationary state of the composite system it is re-
quired that the current througd be conserved. The general <— e_
problem of multichannel scattering has been considered by by
Imry,® and can be represented schematically as in Fig. 1. The
vectorg(b,) contains the amplitudes of the incoming chan-  FIG. 1. A schematic diagram of two-dimensional scattering
nels from the lefiright) and similarlyb,(a,;) those of outgo- through subsystem B.
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(TyT{ = ToT3)=1=(T, T4 —TsT3),

(ToTy = T1T3)=0=(TsT; —T,T). )

Equationg5) have also been derivéut in a different way

by Imry® and Pichard® Specializing to the case where we
only have outgoing amplitudes on the right-hand side, i.e.
b,=0, Eqg. (1) leads to

b=—T, 'Tsa=ra (6)
and
a=(T,-T,T,'T)a=ta, (7)

where the matricesandt are called the reflection and trans-
mission matrices, respectively. Equati@@®) reduces to the
normalization condition

a'a=a a+bb. (8)

Using Egs. (6)—(8) together motivates the definitions of
transmission and reflection coefficients, namely,

a|+t+ta|

T= a.|+a| l (9)
" +ra

p= aiar—a{ (10

with 7+ p=1. We note as an aside that the relati¢8jsand
(5) can be used to rewrite the transmission matrix as

t=(T;) L (11)

[ll. TIGHT-BINDING TRANSMISSION

We now look at the situation of specific interest here,

namely, two-dimensional tight-binding systems. The details

of the analysis of the tight-binding systems usedA¢r B,
and A, are given in the Appendix, but essentially we take
each subsystem to be finite, of lendihn they direction and

B also to be finite of lengtiM in the x direction. The atoms
are numbered so that the atomsByfake up a rectangular
arraym=1---M, n=1---N. We take the subsysterq to be
periodic in thex directionm<1 and similarlyA, periodic in
the x directionm>M. The assumptions outlined in the Ap-
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with

P=S;'Q 'RQS,, (15)

where the matrixR connects the coefficients of the wave
function at the two interfaces of subsyst&with the other
subsystems,

(16)

17

andSis a diagonal matrix whosen(n) element is sin{¢).

A casual comparison of Eq14) with Eq. (1) might sug-
gest thatP acts as a transfer matrix that satisfies relati@)s
and(5), and thatu andB obey a current conservation law of
the form of Eq.(2). But surprisingly this is not the case. The
reason for this lies in the form of the tight-binding coeffi-
cients and specifically the presence of the rsi#)(factors
therein. This affects the incoming and outgoing currents in
subsystenB. Specifically, the outgoing current on the right
is constructed from Eq.13) as a sum of terms of the form
sirf(n¢)|uy/2. Similarly, the incoming and outgoing currents
on the left are constructed from E(L2) as sums of terms
siré(ng) and sif(ne)|B,|% respectively; i.e.,

> sir(ng)|uy|>=2 sif(ng)— D, sirf(ne)|B,|2

(18

Equation(18) can be written more compactly by defining an
inner product

(xly)=x"s"Sy (19
so Eq.(18) becomes
(ulu)=(1]1)—(B[B). (20)
As an aside, we mention that we could define
a=Su, b=SB and a=S1 (21

so that Eq.(20) then reduces to Eq2) with b,=0. Conse-
quently the matrixQ 'RQ does act as a transfer matfix
satisfying Eqs(3) and (5).

If we write P in terms of NX N matrices as

pendix lead to wave function coefficients for the subsystem

A, in the form

c(m,n)=sin(n¢)(eM?+B,e” ™),

for some reald and ¢, whose values are restricted by the

m<0 (12

boundary conditions, and the assumption of outgoing waves

in the subsystend, leads to a similar form:

c(m,n)=sin(ng)D,e™M’, m>M. (13

Writing u,=D,e'™*2)? and combining thei,, and theB,, in
vectorsu and B, respectively, we deduce in the Appendix
that

19

Py Pz)
P= (22
( P3 P4
then the relationshipgl4) can be solved to give
u=(Py—P,P, 'P3)1=pl, (23)
B=-P,P;1=q1, (24)

wherep and g are the new transmission and reflection ma-
trices[analogous to Eqg6) and(7)], and with

utu+BTB=1"1=N. (25
The transmission and reflection coefficients are now given
by
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FIG. 2. The transmissio(solid line) and reflectiondashed ling

for the lattice of identical atoms as the tight-binding parameter

varies.

+

1*p*pl utu
YT N 8
1"g*ql B'B
P=—1F ] TN (27)
From Eq.(15) it can be seen that
P,=S TS, i=1,234, (28

where again thé;’s do not satisfy the relation&) and(5).
The analogous relationships that are satisfied byPifeecan
be found by substituting Eq28) into Egs.(3) and (5), to
obtain equations such as

p; S°P;— P3S?P3=5,

P, S?°P,— P, S?P3=0, (29

etc. Using Eq.28) in Eq. (23), it is easy to show that the

analog of Eq(11) is
p=(P1)* (30)

(providedT, is symmetrig. It can be noted that Eq30) is
typically more convenient for calculations than is E2Q3).

IV. ILLUSTRATIVE EXAMPLES AND CONCLUSIONS
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FIG. 3. The transmissiofsolid line) and reflectiondashed ling
for a periodic lattice as the tight-binding parameter on one type of
site @, varies and the equivalent parameter on the other sites is
fixed so thata;=0.

largely vanished £=~0.045). As|a| increases furthery
drops off to 0.

As a second example, we take the lattice to be periodic,
but with different atoms on adjacent sites, so thaiternates
betweena; anda,. We takea; =0 and varya, while tak-
ing all other parameters to have their values of Fig. 2. The
variation of 7 and p with «, is shown in Fig. 3, keeping
a1=0. The results are mostly similar to those of Fig. 2 with
perfect transmission whes,= @, =0, and thenr decreases
as|a,| increases. The graph is asymmetric abeyt=0 be-
cause the band structure is not symmetric about the {Eoint
=0.

Aperiodic systemdNe now discuss how the theory can be
applied to aperiodic lattices. It is straightforward to apply the
theory of the last section to a Fibonnacci lattioe any simi-
lar rectangular latticewhere the sites are occupied by atoms
a andb according to a deterministic but aperiodic prescrip-
tion but it is much more difficult to treat nonrectangular lat-
tices such as the Penrose tiling.

For the Penrose tiling the construction of the lattice is
complex and we discuss how a rectangular lattice can be
obtained using the technique of renormalizatibiwe first
give a small example in detail to illustrate the method and
then examine a larger example more briefly. A small section
of a Penrose tiling is shown in Fig(a and we follow the
convention of Uedat al* where the site of the atom is at the

Numerical examplesie illustrate the methodology with center of the rhombi. Atom§l1) and (12) interact with at-
a couple of simple examples. First we look at the case of @ms(01) and(02), respectively, in regio®, and atomg31)
periodic lattice of identical atoms. The tight-binding param-and(32) interact with(41) and(42), respectively, im, . We
etera is varied whileg is kept equal to 1. (For a detailed have two different rhombi(“fat” rhombi and ‘“thin”
analysis of the tight-binding model used, see the Appehdix.rhombi, representing the two types of atom in regi®nbut

The size of the lattice is determined by takiNg=6 andM
=10. We chooseap= 7/7 and within the leads we take;
=0 andB;=1 and choose the periodicity so that 67/7.
Then the energy of the particle B5=0. Figure 2 shows the

the arrangement is not rectangular. However, the theory of
renormalization can be used to construct a rectangle. To il-
lustrate this we note that the standard tight-binding model
equations for this system are

variation of r andp with . Whena =0 (to match the energy

E), perfect transmission is observed, as it should siAce (a1—E)cy1+ B(CiatCa1) + BoCo1=0, (313
—B—A, is now an homogeneous material. g increases,

the transmission drops off quite rapidly, Esis no longer (@1—E)Ciot B(C11tCr) + BoCo2=0, (31b)
aligned with the band center, but is still within the band.

When |a|=4, E is aligned with a band edge and has (ap—E)Cy1+ B(Cipt+ CoytCyyt+C30)=0, (310
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(41)

(31)

(01) (1)

21)

42)

02) (12)

(a) FIG. 5. A lattice arranged in a Penrose tiling with the atoms at
the centers of the rhombi. The shaded rhombi on the edges denote
those connected to leads.

@ and B,=8—8;. (34)

1) (11) (31)

Similarly we can adjust the other equations in E81)

. 2 @ ) and co_nsequently we have a rectangular t|ght-b|nd|ng system
for which our theory may be appligdee Fig. 4b)]. Note

(b) that the connections between the central region to the outer

regions are unaltered in this scheme. If renormalization is
carried out for these atoms the consequent interface condi-
tions would be far more complicated.

We now illustrate a larger example of a piece of Penrose
tiling in Fig. 5 where the darker shaded rhombi are those that
are connected to leads. This too can be renormalized into a
rectangular lattice, although we omit the algebraic details
because they involve a set of 34 equatiffios the 23 rhombi
(@2=E)Capt B(Cart Ca1) + BoCar=0. (318  ghown and %e 12 leaysThis can (E)e renormalized so that

Here the atoms at the center of the rhombi are numbered 8¢ leads and the 12 connecting, dark shaded, rhombi on the
in Fig. 4a) and the values o for the generally different left and right edges are renormalized to one rectangle apiece,
atoms in the “fat” and “thin” rhombi are denoted by,  While the center group of 11, light shaded, rhombi is renor-
anda,, respectively. The parametgrdiffers from 3, since mal?zeq to a column of 6 rectangleg. The re_sult of the renor-
the latter is used for the interaction between rediand the ~Malization is a &5 rectangular latticincluding the leads
other two outer regions. to which the theory of the previous section can be applied.

These five equations can be reduced to four by the process
of renormalization by eliminating,; from Eq. (31¢. We
have

FIG. 4. (a) A small section of fat and thin rhombi, arranged in a
Penrose tiling, with atoms at the centres of the rhortii A rect-
angular lattice, formed from Fig.(8 after renormalization; the
atoms are at the centers of the rectangles.

(a1 —=E)Cg1+ B(Caot Co1) + BoCar1=0, (310

CONCLUSIONS

In conclusion we have constructed a methodology to cal-
culate transmission through a subsystem when the composite
system is in a stationary state. We have confined our work to
) ) ) two-dimensional tight-binding lattices, and analyzed in detail
and we can substitute into the other equations so that fofe relationships between the submatrices of the “transfer”

Co1= (a,—E) (C1pFC13t+Cayt+C30) (32

example(318 becomes matrix. Applications to various systems will be the subject of
— future work.
aCy1+ BoCiot B1(Cart C3p) + BoCo1=0, (33
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APPENDIX (E—apye(m,n)=plc(m+1n)+c(m—1n)+c(mn+1)

In this appendix we present the analysis of the tight- +e(mn—1)] (A7)
binding model used for each of the three materials consid-
ered and develop the mathematical analysis leading to Eq8f
(12—(17). In a tight-binding model we have discrete values

of the amplitudes of the wave function and the corresponding c(m+1n)=—Spc(m,n)—c(m,n+1)—-c(mn—-1)

Hamiltonian contains diagonal elements and interactions be- —c(m—1,n),
tween neighboring atoms.
The wave function for the tight-binding model for the m=1---M, n=1---N, (A8)
subsystem#\, andA, is obtained by solving the equation
where
ac(m,n)+ B4 c(mn+1)+c(mn—21)+c(m+1n) _
S, _(amn E) (A9)
+c(m—1,n)] LR
=Ec(m,n). (A1) Equation(A8) can be rewritten in a more convenient vector

form by defining
This equation describes a two-dimensional rectangular lattice
of identical atoms so that;, the diagonal terms in the y(m)=[c(m,1),c(m,2)---c(m,N)]". (A10)
Hamiltonian, are identical and the off-diagonal elements 'ePThen we can write
resenting interactions with the four neighboring atoms are all

B1. This equation needs to be supplemented by boundary p(m+1) Y(m)
conditions and we choose the lattice so that it is periodic in (m) )_ RIM| y(m— 1))1 (A11)
the x direction and finite in the direction. We also need to ) o
consider the conditions necessary to match these regiof¢hereR(m) is the (2N) X (2N) matrix given by
with the regionB in which different assumptions are made in G i
the tight-binding model. A solution of EqAL) is R(m)=( (m) ) (A12)
I 0
— almoing
c(m,n)=¢e'""% (A2) and
for any reald and ¢ and with
y ¢ s, -1 0 . . o
E=a;+2B,coq¢)+2B,c0g06). (A3) -1 -Sp, -1 0 . 0
Other solutions with the santecan be obtained using 6 or G(m) =
—¢ instead of6 and ¢ and the general solution is a linear
combination of all possibilities. Here we consider regidn
to bem=0, the regiorB to bem=1---M, and the regioi, '
to bem>M with n=1---N in all regions. The condition that : : . 0 -1 —Sm
the wave function is finite in thg direction is imposed to (A13)
model a “wire” and, in regionA,, leads to a wave function Subsequently, we can connect the right and left edges of the
in the form lattice by writing
c(mn)=sin(ng)(e™+B,e '™, m=0, (Ad) (w(M+1>>: —( wm) (A1)
Y(M) $(0))’
where
where
sif(N+1)¢]=0 A5 —
"l )?] (A5) R=R(M)R(M—-1)---R(2)R(1). (A15)

which implies that we may takep=qw/(N+1),

—1.--N. The periodicity in thex direction form<1 is im- We note thaR(1) andR(M) could be modified to allow the

B across the interface to differ from that in the lattice but for

posed by choosing=27u/M, v=0,£1,%2,.... Asimilar g 50 o presentation, we take them to be the same. Attaching
analysis can be made for the wave function in the redipn subsystenB to A, on the left is accomplished by taking
but here, in our model, we impose an additional boundary

condition to ensure that we only have outgoing waves in this z/;(l)) ( #(0) )
subsystem. This leads to #(0) =R(0) w(—1))" (A16)
c(m,n)=sin(ng)D,e™’, m>M. (A6)  whereR(0), through Eq.(A7), has some obvious replace-

ments ofa,, and B8 by a; and 8, whenm<1. Similarly,
The constantd3,, and D, need to be chosen to match the attachingB to A, is done by taking
wave function for the inner region, subsystddn For this
central subsysterB, the wave function coefficients are given ( H(M+2)

by the standard tight-binding difference equation Y(M+1) (AL7)

(,//(M+1))

=R(M+1)( W(M)
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Putting Egs(A16) and (A17) together with Eq(A14) gives

Y(M+2)| [ %(0)
(¢(M+1>>‘R( ¢<—1>)' (A18)
where
R=R(M+1)RR(0). (A19)

Note that the components g{ M +2), (M +1), 4(0), and
(—1) are the coefficients(m,n) with the forms given by
Egs.(12) and(13). Now we define

U= Dnei(M+2)0

so from Eq.(13) we get

(A20)

c(M+2n)=sin(ng)u,, c(M+1n)=sinne)ue '’.

(A21)
Equation(12) with m=0,—1 gives
c(0n)=sin(n¢)(1+B,),
c(—1n)=sin(ng)(e '’+B,e'’). (A22)
Thus Eq.(A18) can be written in matrix form as
u 1
Qs O) =RQ$(B), (A23)
whereB=(B;,B,,...,.B\)", etc.,
| |
Q:<|ei0 |ei0)' (A24)
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S 0

and S is a diagonal matrix whosé,n) element is sinfe).
Thus Eq.(A23) can be written as

ol=#la).

P=5S'Q 'RQS.

These relationships are then used in the analysis in Sec. Ill.
One computational point should be mentioned. Suppose the
real eigenvalues of the symmetric mat@{m) in Eq. (A13)

are given byg;(i=1---N). Then the eigenvalues &(m) in

Eq. (A12) occur in pairs of the form

g+ Vgl —4

2

(A26)

where

(A27)

\i= (A28)
showing thaR(m) is symplectic. If g;| <2 for alli, then the

\; are all complex with unit modulus. In this case the matrix
multiplications of Eq.(A15) can be carried out without dif-
ficulty for any size of lattice. But ifg;|>2 for somei then

the matrix elements oR in Eq. (A15) increase rapidly in
size with increasindgVl. The computation of EQ§A18) and
(A19) is consequently more susceptable to numerical error
and it is advisable to use very high precision. Here we used
MAPLE, so that many of the computations can be done sym-
bolically.
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