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Transmission through two-dimensional tight-binding lattices
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A methodology of transmission through two-dimensional tight-binding lattices is presented. The theory is
formulated in terms of matrix algebra and the relationships between the matrices are examined in detail. The
features specific to tight-binding systems are contrasted to those for more general transmission problems.
Illustrative examples are given to indicate the wide applicability of the methodology.
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I. INTRODUCTION

We consider here the problem of two-dimensional tra
mission through a materialB, which forms part of a larger
composite system, by ‘‘sandwiching’’B between the othe
two componentsAl and Ar ~which may be the same mate
rial!; i.e., we have the system represented byAl-B-Ar . We
are not specific about the composition of the materials or
identity of the transmitted particle, as the formalism is ge
eral enough to treat a variety of different situations. For
ample, possible applications include electronic transmiss
through a Penrose tiling1–3 or Fibonacci lattice,4 possibly in
the presence of a magnetic field.5 Other possibilities
involve the generalization of previous one-dimensional w
on neutron or atom polarization through periodic6 or
quasiperiodic7,8 magnetic lattices. In the work presented he
we confine ourselves to the case whereAl and Ar are the
same material.

For a stationary state of the composite system, with d
nite energyE, the transmission through any part of the sy
tem must be conserved. The measure of transmission
here is a direct analogy with the widely used definition
one-dimensional problems, but in certain examples, part
larly where the transmission is small, this necessitates v
high precision. This is considered in detail in the Append
where the reasons are elucidated, but the calculations
sented here are sufficiently precise to overcome this prob
Since transmission is an important property for the station
states of the composite systems considered, we have ch
to calculate this directly, rather than to use other measu
which average over different channels corresponding to
ferent energies and consequently to different station
states.

II. GENERAL THEORY

For a stationary state of the composite system it is
quired that the current throughB be conserved. The gener
problem of multichannel scattering has been considered
Imry,9 and can be represented schematically as in Fig. 1.
vectoral(br) contains the amplitudes of the incoming cha
nels from the left~right! and similarlybl(ar) those of outgo-
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ing channels to the left~right!. These vectors are related b
the equation

S ar

br
D5TS al

bl
D5S T1 T2

T3 T4
D S al

bl
D , ~1!

whereT is the transfer matrix and current conservation i
plies that

al
1al2bl

1bl5ar
1ar2br

1br . ~2!

Equation~1! can be regarded as definingar andbr in terms
of al andbl . If Eq. ~2! is to hold for all vectors satisfying Eq
~1!, then certain conditions must hold. By writing the rig
hand side of Eq.~2! in terms ofal and bl we see that the
appropriate conditions on the submatrices inT are

~T1
1T12T3

1T3!5I 5~T4
1T42T2

1T2!,

~T2
1T12T4

1T3!505~T1
1T22T3

1T4!. ~3!

Putting Eq.~3! into matrix form gives

S T1
1 2T3

1

2T2
1 T4

1 D S T1 T2

T3 T4
D 5S I 0

0 I D
5S T1 T2

T3 T4
D S T1

1 2T3
1

2T2
1 T4

1 D .

~4!

The right-hand side of Eq.~4! leads to the additional condi
tions

FIG. 1. A schematic diagram of two-dimensional scatteri
through subsystem B.
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~T1T1
12T2T2

1!5I 5~T4T4
12T3T3

1!,

~T2T4
12T1T3

1!505~T3T1
12T4T2

1!. ~5!

Equations~5! have also been derived~but in a different way!
by Imry9 and Pichard.10 Specializing to the case where w
only have outgoing amplitudes on the right-hand side, i
br50, Eq. ~1! leads to

bl52T4
21T3al5ral ~6!

and

ar5~T12T2T4
21T3!al5tal , ~7!

where the matricesr andt are called the reflection and tran
mission matrices, respectively. Equation~2! reduces to the
normalization condition

al
1al5ar

1ar1bl
1bl . ~8!

Using Eqs. ~6!–~8! together motivates the definitions o
transmission and reflection coefficients, namely,

t5
al

1t1tal

al
1al

, ~9!

r5
al

11ral

al
1al

~10!

with t1r51. We note as an aside that the relations~3! and
~5! can be used to rewrite the transmission matrix as

t5~T1
1!21. ~11!

III. TIGHT-BINDING TRANSMISSION

We now look at the situation of specific interest he
namely, two-dimensional tight-binding systems. The det
of the analysis of the tight-binding systems used forAl , B,
and Ar are given in the Appendix, but essentially we ta
each subsystem to be finite, of lengthN in they direction and
B also to be finite of lengthM in the x direction. The atoms
are numbered so that the atoms ofB make up a rectangula
arraym51¯M , n51¯N. We take the subsystemAl to be
periodic in thex directionm,1 and similarlyAr periodic in
the x directionm.M . The assumptions outlined in the Ap
pendix lead to wave function coefficients for the subsyst
Al in the form

c~m,n!5sin~nf!~eimu1Bne2 imu!, m<0 ~12!

for some realu and f, whose values are restricted by th
boundary conditions, and the assumption of outgoing wa
in the subsystemAr leads to a similar form:

c~m,n!5sin~nf!Dneimu, m.M . ~13!

Writing un5Dnei (M12)u and combining theun and theBn in
vectorsu and B, respectively, we deduce in the Append
that

S u
0D5PS 1

BD ~14!
.,

,
s

s

with

P5S1
21Q21RQS1 , ~15!

where the matrixR connects the coefficients of the wav
function at the two interfaces of subsystemB with the other
subsystems,

Q5S I I

Ie2 iu IeiuD , ~16!

S15S S 0

0 SD , ~17!

andS is a diagonal matrix whose (n,n) element is sin(nf).
A casual comparison of Eq.~14! with Eq. ~1! might sug-

gest thatP acts as a transfer matrix that satisfies relations~3!
and~5!, and thatu andB obey a current conservation law o
the form of Eq.~2!. But surprisingly this is not the case. Th
reason for this lies in the form of the tight-binding coef
cients and specifically the presence of the sin(nf) factors
therein. This affects the incoming and outgoing currents
subsystemB. Specifically, the outgoing current on the rig
is constructed from Eq.~13! as a sum of terms of the form
sin2(nf)uunu2. Similarly, the incoming and outgoing curren
on the left are constructed from Eq.~12! as sums of terms
sin2(nf) and sin2(nf)uBnu2, respectively; i.e.,

(
n

sin2~nf!uunu25(
n

sin2~nf!2(
n

sin2~nf!uBnu2.

~18!

Equation~18! can be written more compactly by defining a
inner product

^xuy&5x1S1Sy ~19!

so Eq.~18! becomes

^uuu&5^1u1&2^BuB&. ~20!

As an aside, we mention that we could define

ar5Su, bl5SB and al5S1 ~21!

so that Eq.~20! then reduces to Eq.~2! with br50. Conse-
quently the matrixQ21RQ does act as a transfer matrixT
satisfying Eqs.~3! and ~5!.

If we write P in terms ofN3N matrices as

P5S P1 P2

P3 P4
D ~22!

then the relationships~14! can be solved to give

u5~P12P2P4
21P3!15p1, ~23!

B52P4
21P315q1, ~24!

wherep and q are the new transmission and reflection m
trices @analogous to Eqs.~6! and ~7!#, and with

u1u1B1B51115N. ~25!

The transmission and reflection coefficients are now giv
by
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t5
11p1p1

111
5

u1u

N
, ~26!

r5
11q1q1

111
5

B1B

N
. ~27!

From Eq.~15! it can be seen that

Pi5S21TiS, i 51,2,3,4, ~28!

where again thePi ’s do not satisfy the relations~3! and~5!.
The analogous relationships that are satisfied by thePi ’s can
be found by substituting Eq.~28! into Eqs. ~3! and ~5!, to
obtain equations such as

p1
1S2P12P3

1S2P35S2,

P2
1S2P12P4

1S2P350, ~29!

etc. Using Eq.~28! in Eq. ~23!, it is easy to show that the
analog of Eq.~11! is

p5~P1* !21 ~30!

~providedT1 is symmetric!. It can be noted that Eq.~30! is
typically more convenient for calculations than is Eq.~23!.

IV. ILLUSTRATIVE EXAMPLES AND CONCLUSIONS

Numerical examples. We illustrate the methodology with
a couple of simple examples. First we look at the case o
periodic lattice of identical atoms. The tight-binding para
etera is varied whileb is kept equal to 1. ~For a detailed
analysis of the tight-binding model used, see the Append!
The size of the lattice is determined by takingN56 andM
510. We choosef5p/7 and within the leads we takea1
50 andb151 and choose the periodicity so thatu56p/7.
Then the energy of the particle isE50. Figure 2 shows the
variation oft andr with a. Whena50 ~to match the energy
E!, perfect transmission is observed, as it should sinceAl
2B2Ar is now an homogeneous material. Asuau increases,
the transmission drops off quite rapidly, asE is no longer
aligned with the band center, but is still within the ban
When uau54, E is aligned with a band edge andt has

FIG. 2. The transmission~solid line! and reflection~dashed line!
for the lattice of identical atoms as the tight-binding parametea
varies.
a
-

.

.

largely vanished (t5'0.045). As uau increases further,t
drops off to 0.

As a second example, we take the lattice to be perio
but with different atoms on adjacent sites, so thata alternates
betweena1 anda2 . We takea150 and varya2 while tak-
ing all other parameters to have their values of Fig. 2. T
variation of t and r with a2 is shown in Fig. 3, keeping
a150. The results are mostly similar to those of Fig. 2 w
perfect transmission whena25a150, and thent decreases
as ua2u increases. The graph is asymmetric abouta250 be-
cause the band structure is not symmetric about the poinE
50.

Aperiodic systems. We now discuss how the theory can b
applied to aperiodic lattices. It is straightforward to apply t
theory of the last section to a Fibonnacci lattice~or any simi-
lar rectangular lattice! where the sites are occupied by atom
a andb according to a deterministic but aperiodic prescr
tion but it is much more difficult to treat nonrectangular la
tices such as the Penrose tiling.

For the Penrose tiling the construction of the lattice
complex and we discuss how a rectangular lattice can
obtained using the technique of renormalization.11 We first
give a small example in detail to illustrate the method a
then examine a larger example more briefly. A small sect
of a Penrose tiling is shown in Fig. 4~a! and we follow the
convention of Uedaet al.4 where the site of the atom is at th
center of the rhombi. Atoms~11! and ~12! interact with at-
oms~01! and~02!, respectively, in regionAl and atoms~31!
and~32! interact with~41! and~42!, respectively, inAr . We
have two different rhombi~‘‘fat’’ rhombi and ‘‘thin’’
rhombi!, representing the two types of atom in regionB, but
the arrangement is not rectangular. However, the theory
renormalization can be used to construct a rectangle. To
lustrate this we note that the standard tight-binding mo
equations for this system are

~a12E!c111b~c121c21!1b0c0150, ~31a!

~a12E!c121b~c111c21!1b0c0250, ~31b!

~a22E!c211b~c121c211c311c32!50, ~31c!

FIG. 3. The transmission~solid line! and reflection~dashed line!
for a periodic lattice as the tight-binding parameter on one type
site a2 varies and the equivalent parameter on the other site
fixed so thata150.
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~a12E!c311b~c321c21!1b0c4150, ~31d!

~a22E!c321b~c311c21!1b0c4250. ~31e!

Here the atoms at the center of the rhombi are numbere
in Fig. 4~a! and the values ofa for the generally different
atoms in the ‘‘fat’’ and ‘‘thin’’ rhombi are denoted bya1
anda2 , respectively. The parameterb differs fromb0 since
the latter is used for the interaction between regionB and the
other two outer regions.

These five equations can be reduced to four by the pro
of renormalization by eliminatingc21 from Eq. ~31c!. We
have

c215
2b

~a22E!
~c121c111c311c32! ~32!

and we can substitute into the other equations so that
example~31a! becomes

āc111b2c121b1~c311c32!1b0c0150, ~33!

where

ā5~a12E!2
b2

~a22E!
, b152

b2

~a22E!

FIG. 4. ~a! A small section of fat and thin rhombi, arranged in
Penrose tiling, with atoms at the centres of the rhombi.~b! A rect-
angular lattice, formed from Fig. 5~a! after renormalization; the
atoms are at the centers of the rectangles.
as

ss

or

and b25b2b1 . ~34!

Similarly we can adjust the other equations in Eq.~31!
and consequently we have a rectangular tight-binding sys
for which our theory may be applied@see Fig. 4~b!#. Note
that the connections between the central region to the o
regions are unaltered in this scheme. If renormalization
carried out for these atoms the consequent interface co
tions would be far more complicated.

We now illustrate a larger example of a piece of Penro
tiling in Fig. 5 where the darker shaded rhombi are those t
are connected to leads. This too can be renormalized in
rectangular lattice, although we omit the algebraic deta
because they involve a set of 34 equations~for the 23 rhombi
shown and the 12 leads!. This can be renormalized so tha
the leads and the 12 connecting, dark shaded, rhombi on
left and right edges are renormalized to one rectangle api
while the center group of 11, light shaded, rhombi is ren
malized to a column of 6 rectangles. The result of the ren
malization is a 635 rectangular lattice~including the leads!
to which the theory of the previous section can be applie

CONCLUSIONS

In conclusion we have constructed a methodology to c
culate transmission through a subsystem when the comp
system is in a stationary state. We have confined our wor
two-dimensional tight-binding lattices, and analyzed in de
the relationships between the submatrices of the ‘‘transf
matrix. Applications to various systems will be the subject
future work.
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FIG. 5. A lattice arranged in a Penrose tiling with the atoms
the centers of the rhombi. The shaded rhombi on the edges de
those connected to leads.
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APPENDIX

In this appendix we present the analysis of the tig
binding model used for each of the three materials con
ered and develop the mathematical analysis leading to
~12!–~17!. In a tight-binding model we have discrete valu
of the amplitudes of the wave function and the correspond
Hamiltonian contains diagonal elements and interactions
tween neighboring atoms.

The wave function for the tight-binding model for th
subsystemsAl andAr is obtained by solving the equation

a1c~m,n!1b1@c~m,n11!1c~m,n21!1c~m11,n!

1c~m21,n!#

5Ec~m,n!. ~A1!

This equation describes a two-dimensional rectangular la
of identical atoms so thata1 , the diagonal terms in the
Hamiltonian, are identical and the off-diagonal elements r
resenting interactions with the four neighboring atoms are
b1 . This equation needs to be supplemented by bound
conditions and we choose the lattice so that it is periodic
the x direction and finite in they direction. We also need to
consider the conditions necessary to match these reg
with the regionB in which different assumptions are made
the tight-binding model. A solution of Eq.~A1! is

c~m,n!5eimueinf ~A2!

for any realu andf and with

E5a112b1 cos~f!12b1 cos~u!. ~A3!

Other solutions with the sameE can be obtained using2u or
2f instead ofu and f and the general solution is a linea
combination of all possibilities. Here we consider regionAl
to bem<0, the regionB to bem51¯M , and the regionAr
to bem.M with n51¯N in all regions. The condition tha
the wave function is finite in they direction is imposed to
model a ‘‘wire’’ and, in regionAl , leads to a wave function
in the form

c~m,n!5sin~nf!~eimu1Bne2 imu!, m<0, ~A4!

where

sin@~N11!f#50 ~A5!

which implies that we may takef5qp/(N11), q
51¯N. The periodicity in thex direction form,1 is im-
posed by choosingu52pv/M , v50,61,62,... . A similar
analysis can be made for the wave function in the regionAr
but here, in our model, we impose an additional bound
condition to ensure that we only have outgoing waves in
subsystem. This leads to

c~m,n!5sin~nf!Dneimu, m.M . ~A6!

The constantsBn and Dn need to be chosen to match th
wave function for the inner region, subsystemB. For this
central subsystemB, the wave function coefficients are give
by the standard tight-binding difference equation
-
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~E2amn!c~m,n!5b@c~m11,n!1c~m21,n!1c~m,n11!

1c~m,n21!# ~A7!

or

c~m11,n!52Smnc~m,n!2c~m,n11!2c~m,n21!

2c~m21,n!,

m51¯M , n51¯N, ~A8!

where

Smn5
~amn2E!

b
. ~A9!

Equation~A8! can be rewritten in a more convenient vect
form by defining

c~m!5@c~m,1!,c~m,2!¯c~m,N!#T. ~A10!

Then we can write

S c~m11!

c~m! D5R~m!S c~m!

c~m21! D , ~A11!

whereR(m) is the (2N)3(2N) matrix given by

R~m!5S G~m! 2I

I 0 D ~A12!

and

G~m!5S 2Sm1 21 0 . . 0

21 2Sm2 21 0 . 0

. . . . . .

. . . . . .

. . . . . .

. . . 0 21 2SmN

D .

~A13!

Subsequently, we can connect the right and left edges of
lattice by writing

S c~M11!

c~M ! D5R̄S c~1!

c~0! D , ~A14!

where

R̄5R~M !R~M21!¯R~2!R~1!. ~A15!

We note thatR(1) andR(M ) could be modified to allow the
b across the interface to differ from that in the lattice but f
ease of presentation, we take them to be the same. Attac
subsystemB to Al on the left is accomplished by taking

S c~1!

c~0! D5R~0!S c~0!

c~21! D , ~A16!

whereR(0), through Eq.~A7!, has some obvious replace
ments ofamn and b by a1 and b1 when m,1. Similarly,
attachingB to Ar is done by taking

S c~M12!

c~M11! D5R~M11!S c~M11!

c~M ! D . ~A17!
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Putting Eqs.~A16! and~A17! together with Eq.~A14! gives

S c~M12!

c~M11! D5RS c~0!

c~21! D , ~A18!

where

R5R~M11!R̄R~0!. ~A19!

Note that the components ofc(M12), c(M11), c~0!, and
c~21! are the coefficientsc(m,n) with the forms given by
Eqs.~12! and ~13!. Now we define

un5Dnei ~M12!u ~A20!

so from Eq.~13! we get

c~M12,n!5sin~nf!un , c~M11,n!5sin~nf!une2 iu.
~A21!

Equation~12! with m50,21 gives

c~0,n!5sin~nf!~11Bn!,

c~21,n!5sin~nf!~e2 iu1Bneiu!. ~A22!

Thus Eq.~A18! can be written in matrix form as

QS1S u
0D5RQS1S 1

BD , ~A23!

whereB5(B1 ,B2 ,...,BN)T, etc.,

Q5S I I

Ie2 iu IeiuD , ~A24!
S15S S 0

0 SD , ~A25!

and S is a diagonal matrix whose~n,n! element is sin(nf).
Thus Eq.~A23! can be written as

S u
0D5PS 1

BD , ~A26!

where

P5S1
21Q21RQS1 . ~A27!

These relationships are then used in the analysis in Sec
One computational point should be mentioned. Suppose
real eigenvalues of the symmetric matrixG(m) in Eq. ~A13!
are given bygi( i 51¯N). Then the eigenvalues ofR(m) in
Eq. ~A12! occur in pairs of the form

l i5
gi6Agi

224

2
~A28!

showing thatR(m) is symplectic. Ifugi u,2 for all i, then the
l i are all complex with unit modulus. In this case the mat
multiplications of Eq.~A15! can be carried out without dif-
ficulty for any size of lattice. But ifugi u.2 for somei then
the matrix elements ofR̄ in Eq. ~A15! increase rapidly in
size with increasingM. The computation of Eqs.~A18! and
~A19! is consequently more susceptable to numerical e
and it is advisable to use very high precision. Here we u
MAPLE, so that many of the computations can be done sy
bolically.
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