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Nonhomogeneous magnetic order in superconductor-ferromagnet multilayers
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We study the possibility of a nonhomogeneous magnetic order@cryptoferromagnetic~CF! state# in hetero-
structures consisting of a bulk superconductor and a ferromagnetic thin layer, due to the influence of the
superconductor. The exchange field in the ferromagnet may be strong and exceed the inverse mean free time.
An approach based on solving the Eilenberger equations in the ferromagnet and the Usadel equations in the
superconductor is developed. We derive a phase diagram between the cryptoferromagnetic and ferromagnetic
states and discuss the possibility of an experimental observation of the CF state in different materials.
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I. INTRODUCTION

Recently, the interest in experiments on superconduct
ferromagnet (S/F) hybrid structures has grown rapidly. Suc
structures show the coexistence of these two compe
types of ordering but their mutual influence is still a contr
versial point.1–6 In these experiments, the multilayers co
tained strong ferromagnets such as Fe or Gd with the C
temperature up to 1000 K and superconductors with tra
tion temperatures not exceeding 10 K, such as Nb or V.

Naturally, in most theoretical works only the influence
the ferromagnet on the superconductivity ofS/F systems
was considered.7–9 One may argue that a modification of th
magnetic ordering would need energies of the order of
Curie temperature, which is much larger than the superc
ducting transition temperatureTc . Therefore, any change o
the ferromagnetic order would be less energetically favora
than the destruction of the superconductivity in the vicin
of the ferromagnet.

This simple argument was questioned in a recent exp
mental work,10 where Nb/Fe bilayers were studied using d
ferent experimental techniques. Direct measurements u
the ferromagnetic resonance showed that in several sam
with thin ferromagnetic layers (10215 Å) the average mag
netic moment started to decay at the superconducting tra
tion temperatureTc . The measurements were possible on
in a limited range of the temperatures belowTc and the
decrease of the magnetic moment in this interval reac
10% without any sign of a saturation. As a possible exp
nation of the effect, it was assumed in Ref. 10 that the
perconductivity affected the magnetic order causing a
mainlike structure.

A possibility of a domainlike magnetic structure in pre
ence of superconductivity was first suggested by Ander
and Suhl long ago.11 They argued that a weak ferroma
netism of localized electrons should not destroy the sup
conductivity in the conduction band. Instead, it may beco
more favorable energetically to build a domain structu
called the cryptoferromagnetic state.11 Later this state was
investigated in detail for small concentrations of the ma
PRB 620163-1829/2000/62~17!/11872~7!/$15.00
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netic moments both theoretically and experimentally~for re-
view see, e.g., Ref. 12!.

At the same time, any competition of the ferromagne
ordering and superconductivity is hardly possible in a b
material if the concentration of the magnetic moments
high because in this case the superconductivity is imme
ately destroyed. The effect of the magnetic moments sho
be somewhat reduced if they are distributed not everywh
in the bulk but are concentrated in certain regions of
sample. TheS/F multilayers can be an example of such
system.

In this paper, we investigate theoretically the possibil
of a cryptoferromagneticlike~CF! state inS/F bilayers with
parameters corresponding to the structures used in
experiments.1–6,10 The magnetic moments in the ferroma
netic materials such as Fe or Gd used in these works
quite strong and therefore one cannot apply directly
proaches developed previously.12 However, such a study is
very important because it may allow to clarify the questi
about the cryptoferromagnetic state in the experiment10 and
to make predictions for otherS/F multilayers. The large
magnetic energies involved make the problem quite n
trivial and demand development of new approaches.

To the best of our knowledge, the possibility of a nonh
mogeneous magnetic order in multilayers was conside
only in Ref. 13. However, although the authors of Ref.
came to the conclusion that a first order phase transition f
the homogeneous ferromagnetic state to the domain
structure~DS! state due to the interaction with the superco
ductor may occur, the results obtained can hardly be used
quantitative estimates. For example, they assumed that
period of the structureb had to be not only much smalle
than the size of the Cooper pairj̄, but also thanj̄ATc /h,
whereh is the energy of interaction of conduction electro
with the localized magnetic moments. These assumptions
not suitable for strong ferromagnets such as Fe or Gd
addition, the authors of Ref. 13 used as a boundary condi
the continuity of the superconducting order parameterD and
of its derivative at theS/F boundary. In order to use thi
condition one had to assume that the electron-electron at
11 872 ©2000 The American Physical Society
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PRB 62 11 873NONHOMOGENEOUS MAGNETIC ORDER IN . . .
tion was the same in the superconductor and ferromag
which is definitely not the case for Fe/Nb or Gd/Nb stru
tures used in the experiments.1–6,10

In contrast, we present here a microscopic derivation
the phase diagram valid for realistic parameters of the pr
lem involved. Our consideration is based on writing t
Eilenberger equations14 for the ferromagnetic material an
the Usadel15 equations for the superconductor. Of cour
these equations are modified to include spin variables. In
action of the magnetic moments with spins of electrons
Cooper pairs is the most important in the case involved.
will consider here a CF state with a magnetic moment t
rotates in space. In the absence of a strong anisotropy
state is more favorable than the domain structure of Ref.
For such a cryptoferromagnetic state, spin variables do
separate in the Eilenberger and Usadel equations. The th
ness of the ferromagnet is assumed to be small and thi
lows us to perform calculations explicitly. We will show th
the phase transition between the CF and ferromagnetic~F!
phases is of second order and the period of the structub
goes to infinity at the critical point. The restrictions we u
explicitly are consistent with the parameters in Ref. 10 a
can be written as

d!jF5v0 /h, Tc!h!e0 , ~1!

whered is the thickness of the ferromagnetic layer,v0 and
«0 are the Fermi velocity and Fermi energy. Even in suc
strong ferromagnet as iron,jF is of the order 10 Å. For
weaker ferromagnets such as Gd,jF is considerably larger
and the inequalities~1! can be fulfilled rather easily. The
phase diagram we derive below allows us to make defi
predictions about a possibility of the cryptoferromagne
state in different materials.

II. THE MODEL

We consider anS/F bilayer assuming that the superco
ductor occupies the half spacex.0, while the ferromagnetic
film is located in the region2d,x,0, as shown in Fig. 1.
The Hamiltonian describing the system is chosen in the
lowing form:

H~g!5H82gE
2d,x,0

drCa
1~r !@h~r !s#abCb~r !1HM ,

~2!

where

H85H01H int ~3!

FIG. 1. Geometry of theF/S system. The magnetization of th
F layer is parallel to theS/F interface, i.e., perpendicular to th
plane of the figure.
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contains the one-particle electron energyH0 ~including inter-
action with impurities! and the interaction between the co
duction electronsH int . We assume thatH int has the form

H int52l0E
x.0

Ca
1~r !Cb

1~r !Cb~r !Ca~r !dr ~4!

which means that there is no interaction between the cond
tion electrons in the ferromagnet. We assume thatl0.0
such that without the ferromagnet one would have a conv
tional superconductor withs pairing.

The second term in Eq.~2! describes the interaction of th
conduction electrons with the exchange field of the magn
moments in the ferromagnet, whereg is a constant that will
be put to 1 at the end.h is the exchange field ands
5(sx ,sy ,sz) is the vector containing the Pauli matrices
components. According to the geometry described aboveh is
nonzero in the region2d,x,0. Writing Eq.~2! we neglect
influence of the localized moments on the orbital motion
the conduction electrons since the exchange interaction is
dominant Cooper pair breaking mechanism for the probl
involved.

This can be rather easily understood for the geome
used. If the magnet is in the ferromagnetic state and
exchange magnetic fieldh is directed along the interface, th
corresponding vector potentialA in the superconducting re
gion is a constant and can be removed by a gauge tran
mation of the superconducting order parameterD. At the
same time, in the ferromagnet one may consider the in
ence of the exchange field on the electron spins only. T
situation cannot change if the cryptoferromagnetic state
formed unless the period of the oscillations of the magne
moment is very small.

The last termHM in Eq. ~2! describes the interaction be
tween the localized moments in the ferromagnet. Of cou
this interaction can be very complicated and to determin
one should know a detailed band structure and different
rameters of interaction. Such calculations would be too co
plicated for the present study and we write the termHM
phenomenologically.

Our aim is to obtain an expression for the free energy
the system for different magnetic structures in theF layer.
To determine the contribution of an inhomogeneous ali
ment of magnetic spins to the total energy we use the limi
a continuousmaterial and replace the spins by classical v
tors. We want to study here structures with magnetic m
ments directed parallel to the interface between the fe
magnet and superconductor. A perpendicular componen
the magnetization would induce strong Meissner current
the superconductor, which would require greater additio
energy.

Therefore, we write the energyHM of a nonhomogeneou
structure in the continuum limit as

HM5E J@~“Sx!
21~“Sy!21~“Sz!

2#dV, ~5!

where the magnetic stiffnessJ characterizes the strength o
the coupling between the localized moments in theF layer
andSi ’s are the components of a unit vector which is para
to the local direction of the magnetization. WritingS5(0,
2sinQ,cosQ) and minimizing the energyHM we obtain the
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11 874 PRB 62F. S. BERGERET, K. B. EFETOV, AND A. I. LARKIN
equationDQ50. We consider only the solutions of th
equation that are of interest for us:

~a!Q50, ~b!Q5Qy. ~6!

The solution ~a! in Eq. ~6! corresponds to theF state,
whereas the solution~b! describes a CF state with a hom
geneously rotating magnetic moment. The wave vector
this rotation is denoted byQ. The magnetization is chosen t
be parallel to the FS interface. With all these assumptions
magnetic energyVM ~per unit surface area! is given by

VM5JdQ2. ~7!

The corresponding energy of theF state equals zero. Assum
ing thatT is close toTc one can determine the lowering o
the superconducting energy due to the suppression of
superconductivity in theS layer. Not very close to the inter
face, at distances exceedingj̄;Aj0l , wherej05v/Tc is the
coherence length in the clean limit andl is the mean free
path ~the dirty limit is considered here!, one can use the
Ginzburg-Landau equations. The proper solution for the
der parameterD(r ) describing the loss of the supercondu
ing energy can be written in the form16–18

D~x!5D~T!tanhS x

A2j~T!
1CD , ~8!

whereD(T)5A8p2/7z(3)utuTc[D0t1/2 is the value of the
order parameter in the bulk superconductor,j(T)
5ApD/8Tcutu21/2 is the characteristic scale of the spat
variation ofD(r ), D is the diffusion coefficient in the super
conductor, andC is a constant. The solution~8! is valid at
distances exceedingj̄. At the distances of the order ofj̄ one
needs to solve quasiclassical equations, which we will de
in the next section.

At the moment, we simply write the lowering of the s
perconducting energy for a given constantC. Substituting
D(x), Eq. ~8!, into the Ginzburg-Landau free energy fun
tional and integrating overx we evaluate the decrease of th
superconducting energy at theF/S interface per unit surface
area as~Ref. 17!

VS5
Ap

6A2
utu3/2~21K !~12K !2, ~9!

whereK5tanhC. The influence of the ferromagnet on th
superconductivity is determined by the parameterK that will
be found by minimizing the total energy.

The contributionVM /S of the second term in Eq.~2! to the
total energy has still to be determined. Differentiating t
function V(g)

V~g!52T lnFTr expS 2
H~g!

T D G ,
whereH(g) is given by Eq.~2!, one reduces the derivativ
of free energy to an averaged Green function. Then, rec
structing the free energy one obtains the following expr
sion for VM /S :
f

e

he

r-

l

e

n-
-

VM /S52 ipTn0(
v

E
0

1

dgE d3r ~hs!ab^gba&0 . ~10!

Heren0 is the density of states and^ĝ&0 is the quasiclassica
Green function averaged over all directions of the Fermi
locity. Its definition will be given in the next section. Onc
we know ĝ we can calculateVM /S using expression~10!. In
the next section we derive the equations for the Green fu
tions.

III. QUASICLASSICAL EQUATIONS

In this section we derive from Eq.~2! the appropriate
Eilenberger equations14 for the quasiclassical Green func
tions in the superconductor and the ferromagnet and t
matching conditions. In theS layer one can simplify the
problem considering the ‘‘dirty limit’’l !j0, wherel is the
mean free path andj05v/Tc is the coherence length of th
superconductor in the clean limit, which allows to use mo
simple Usadel equations.15 The condition l !j0 is usually
fulfilled for real superconductors and this allows to use
final results for a quantitative description of a wide numb
of experiments. If we assume thatutu!1, t5(T2Tc)/Tc ,
the Usadel equations can be linearized.

Writing the Usadel equations in the ferromagnet is n
always a good approximation because the exchange eneh
in realistic cases is not necessarily smaller than 1/t tr , where
t tr the mean free time, and so one should write in this reg
the Eilenberger equations. At the end one should match
solutions of all the equations using proper boundary con
tions.

First, we introduce microscopic Green functions. Sin
we are dealing with a nonhomogeneous magnetic struct
the spin flips cannot be excluded and therefore average
the form ^Ca(r ,t)Ca(r 8,t8)& or ^Ca

1(r ,t)C2a(r 8,t8)&,
wherea5↑,↓, are not necessarily zero. So, we introduce
434-matrix Green functionǦv(r ,r 8)

Ǧ5S Ĝ 2F̂

F̂1 2Ĝ1D ,

whereĜ andF̂ are the normal and anomalous matrix Gre
functions in spin space, respectively, i.e.,

Ĝ5S G↑↑ G↑↓
G↓↑ G↓↓

D , F̂5S F↑↑ F↑↓
F↓↑ F↓↓

D .

The matrix Green functionǦv(r ,r 8) satisfies the Gorkov
equations that can be written in the spin̂ particle-hole
space in the form

@2 ť3]t2j~ p̂!1Ď~r !2gV̌~r !2Š imp#Ǧ~x,x8!5d~x2x8!,
~11!

where ť i , i 51,2,3, are Pauli matrices in the particle-ho
space,j(p̂)5p̂2/2m2m, Ď5 ť1^ isyD(r ), V̌5Re@h(r )s#

^ 1̌1Im@h(r )s# ^ ť3 and D is the pair potential, which
should be determined self-consistently by
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PRB 62 11 875NONHOMOGENEOUS MAGNETIC ORDER IN . . .
D~r !5l0T(
n

F ↑↓~r ,r ,v!, ~12!

wherel0 is the constant of the electron-electron interactio
As we have mentioned,l050 and henceD50 in the ferro-
magnet. At the same time,h50 in the superconductor. Th
term i Š imp in Eq. ~11! describes the scattering by impuritie

Subtracting from Eq.~11! its complex conjugate and us
ing the assumption that the quasiclassical Green functioǦ
varies slowly as a function of (r1r 8)/2 one can derive in the
usual way the Eilenberger equation14 that can be written in a
matrix form as

@$vť32 i Ď1 igV̌1 i Š imp%,ǧ#1v0¹ rǧ50, ~13!

wherep0 andv0 are the momentum and velocity at the Fer
surface andǧ is the quasiclassical Green function, defined

ǧ~r ,pF!5S ĝ 2 f̂

f̂ 1 2ĝ1D 5
i

pE djǦ~r ,pF!.

For a short range interaction one can consider impuritie
the self-consistent Born approximation, which givesŠ imp5

2 i /2t^ǧ&0, where^•••&0 denotes averaging over the Ferm
velocity. Equation~13! should be complemented by the no
malization conditionǧ251̌. This condition follows as usua
from the fact thatǧ2 is also a solution of Eq.~13!.

Although Eq.~13! contains all the information, its solu
tion is rather complicated. At the same time, t
experiments10 are performed not far from the supercondu
ing transition temperatureTc . Moreover, calculations nea
Tc are considerably simpler and so we concentrate on
region.

NearTc , the anomalous functionsf̂ and f̂ 1 are small and
ĝ'sgn(v). This allows us to linearize equations forf̂ and
f̂ 1 in the ferromagnetic region2d,x,0 and in the region
of the superconductor limited by the inequalities 0,x

!j(T). Finding in this region the solution forf̂ and using
the self-consistency equation~12! we can find the order pa
rameterD(x) and match this function with the expression f
D(x), Eq. ~8!, valid for distancesx@ j̄. This allows the pos-
sibility to determine the coefficientC and calculate the en
ergy V, Eqs.~9!, ~10!.

Such a procedure is simple conceptually but in prac
very complicated. We did not manage to carry out the c
culations for an arbitrary thickness of the ferromagnet. Ho
ever, one can expect the cryptoferromagnetic state in
layers only (d!jF), where, fortunately, one can find th
solution explicitly.

In the limit Tc!h, the off-diagonal component~1,2! in
the particle-hole space of Eq.~13! in the region2d,x,0 is
written as

v0¹ f̂ 52 iV̂ f̂ (F)1 i f̂ (F)V̂* 2
sgn~v!

t
~ f̂ (F)2^ f̂ (F)&!,

V̂5h~x!sz exp~ iQysx!, ~14!
.

i
y

in

-

is

e
l-
-
in

whereh is the strength of the exchange field in theF layer
and Q denotes the wave vector of the cryptoferromagne
state.

For thin ferromagnetic layers, the functionf̂ varies slowly
between the boundaries. Assuming thatd!v0 /h we can re-
late the values of the functionf̂ (F)(v0 ,r ) at the interface, i.e.,
at x502 to the values at the boundary to the vacuum ax
52d, using the Taylor expansion

f̂ (F)~v0 ,r02r d!' f̂ (F)~v0 ,r0!2d]x f̂ (F)~v0 ,r0!, ~15!

where r05(0,y,z) and r d5(2d,y,z). Applying general
boundary conditions19 to the problem involved we conclud
that for a perfectly transparent interface the functionf̂ is
continuous at the interface. Assuming a specular reflectio
the boundary with the vacuum (x52d) we write the follow-
ing boundary condition for the functionf̂ :

f̂ (F)~vx ,r02r d!5 f̂ (F)~2vx ,r02r d!. ~16!

Using Eqs.~14!–~16! and the continuity off̂ at r5r0 the
problem is reduced to the solving of the Usadel equation
the superconductor with the following effective bounda
condition at the interface between the superconductor
the ferromagnet

hD~]x1d]y
2! f̂ 0~r0!1 i sgn~v!d~2V̂ f̂ 01 f̂ 0V̂* !r0

50,
~17!

whereh5v0
F/v0

S and f̂ 0 is the zero harmonics of the functio

f̂ in the superconductor. When deriving Eq.~17! we used the
fact that the Usadel equation is applicable in theS layer at
distances down to the mean free pathl and extrapolated its
solution to the interface. We also neglected the contribut
of anglesu,dh/v0 to the averagêf̂ &0, whereu is the angle
betweenv0 and thex axis, i.e.,vx5v0 cosu. Only the first
two spherical harmonicsf̂ (s)' f̂ 01v0f̂1 were kept in the deri-
vation. With this assumption one can derive from Eq.~13!
the Usadel equation in the spin^ particle-hole space

2D¹ r~ ĝ0¹ rĝ0!1@vt̂32 i D̂~r !1 iV̂~r !,ĝ0~r ,v!#50,
~18!

ĝ152t tr ĝ0¹ rĝ0 . ~19!

Hereĝ0 andv0ĝ1 are the first two spherical harmonics of th
function ĝ5ĝ01v0ĝ1.

Using the fact thatt5(Tc2T)/Tc!1 one can linearize
the Usadel equation. The off-diagonal component~1,2! in the
particle-hole space of Eq.~18! can be written in the standar
form

D¹2 f̂ 022uvu f̂ 022D~x!sy50. ~20!

Equation~20! is sufficiently simple that one can find th
solution using the boundary condition, Eq.~17!. This allows
us to calculate the total energy and find the coefficientC in
Eq. ~8!. Minimizing the energy inQ we can determine the
boundary in parameter space of the cryptoferromagn
state. Such calculations will be performed in the next sect



th
an

an
a

th

t

lu
ri-
c

-

-

r

ergy

g
of

r.
a

re-

the

t
for

.

This
lose
ve

he
ul-

he
ctor

11 876 PRB 62F. S. BERGERET, K. B. EFETOV, AND A. I. LARKIN
IV. CRYPTOFERROMAGNETIC STATE

With the above preparation we are in a position to find
solution of the equations derived in the previous section
calculate the energy. The general solution of Eq.~20! with
the boundary condition, Eq.~17!, and using Eq.~14! for V̂
can be written as

f̂ 0~r ,v!5av~x!sxe
2 isxQy1bv~x!isy , ~21!

where

av~x!5Cv expS 2AQ21
2uvu

D
xD ,

bv~x!5 i
D~x!

uvu
1Bv expS 2A2uvu

D
xD .

Equation~21! is applicable at distances much smaller th
j(T), where the solution forD can be approximated by
linear function@see Eq.~8!#. Substituting Eq.~21! into Eq.
~12! one can find a rather complicated dependence of
order parameterD(x) on x. Matching this solution with the
function determined by Eq.~8! is generally speaking no
simple.

Fortunately, the exponentially decaying part of the so
tion given by Eq.~21! does not give a considerable cont
bution to D(x). One can check using the self-consisten
equation, Eq.~12!, that the relative correction toD(x) com-
ing from the exponentially decaying part of Eq.~21! is of the
order (lnvD /Tc)

21, wherevD is the Debye frequency, allow
ing its neglect. The coefficientsCv andBv can be now de-
termined from Eq.~17! and we obtain

Bv5
i

uvu
h2DD8~0!AD~DQ212uvu!24h2d2D~0!

h2DA2uvu~DQ212uvu!14h2d2
,

~22!

Cv5
2hdhD

v

D~0!A2uvu
D

1D8~0!

h2DA2uvu~DQ212uvu!14h2d2
. ~23!

The conditionǧ251 allows us to find the functiong which
gives, on substitution into Eq.~10! finally the energyVM /S .
Introducing the dimensionless parameters

a2[
2h2d2

DTch
2

, q2[
DQ2

2Tc
, Ṽ[

V

nFD0
2
A2Tc

D
~24!

and using Eq.~8! we obtain

ṼM /S5
p

2
F3/2,1K

2utu1A2F2,1K~12K2!utu3/2

1p21F5/2,1~12K2!2utu2, ~25!

where

Fm,l5h
4a2

p3/22m (
n.0

an
2m@Aan~an1q2!1a2#2 l , ~26!
e
d

e

-

y

an5p(2n11) andnF is the density of states in the ferro
magnet.

The total energy is given byṼ5ṼM1ṼS1ṼM /S , Eqs.
~7!, ~9!, ~25! and is a function of two parameters,K and q,
that should be determined from the conditions]Ṽ/]K

5]Ṽ/]q50. The parameterq is in fact the order paramete
for the cryptoferromagnetic state. Close to the CF-F transi-
tion this parameter is small and one can expand the en
ṼM /S , Eq. ~25!, in q2. As concerns the valueK0 at the
minimum, it can be found near the transition minimizin
ṼM /S at q50. As a result, the first terms of the expansion
the energyṼ in q2 near the CF-F transition can be written as

Ṽ'Ṽs~K0!1ṼM /S~K0 ,q50!

2
q2

2 Fp2 F3/2,2K0
2utu1A2F2,2K0~12K0

2!utu3/2

1p21F5/2,2~12K0
2!2utu222lG

q50

1
q4

4 Fp2 H3/2K0
2utu

1A2F2K0~12K0
2!utu3/21p21H5/2~12K0

2!2utu2G ,
~27!

where we have defined

Hm5
4a2

p3/22m (
n.0

1

an
m F 1

~an1a2!2
1

1

2~an1a2!3G .

Since 0,K0,1 the term proportional toq4 is positive,
which means that the CF-F transition is of the second orde
This is in contrast to the conclusion of Ref. 13, where
domain structure appeared with a finite period, which cor
sponded to a first order transition. The parameterl in Eq.
~27! is

l[
Jd

nA2TcD
3

7z~3!

2p2
. ~28!

According to the Landau theory of phase transitions
transition from the ferromagnetic state (q50) to the crypto-
ferromagnetic state (qÞ0) should occur when the coefficien
in the second-order term turns to zero. The phase diagram
the variablesh andJ, Eqs.~24!, ~28!, is represented in Fig. 2
The curves are plotted for different values ofutu. The func-
tion Ṽ(q) has only one minimum atq0 continuously going
to zero as the system approaches the transition point.
demonstrates that the transition is of second order. Not c
to the transition point the characteristic values of the wa
number of the structure are of the order ofQ;j̄21. Figure 2
gives a possibility to determine explicitly the boundary of t
cryptoferromagnetic state for any materials forming the m
tilayers.

V. DISCUSSION

In the previous sections we studied a possibility of t
cryptoferromagnetic state in a ferromagnet-supercondu
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FIG. 2. Phase diagrams (l,a) for different
values ofutu5(Tc2T)/Tc . The area above~be-
low! the curves corresponds to theF ~CF! state.
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bilayer. Matching the solutions of quasiclassical equation
the ferromagnet and superconductor we determined
phase diagram in the vicinity of the superconducting tran
tion for given parameters of the materials forming the s
tem. It is clear from our solution that the transition betwe
the ferromagnetic and the cryptoferromagnetic states is
second order. At the transition point, the wave numberQ
characterizing the magnetic structure is equal to zero.
parameterQ grows smoothly when going into the cryptofe
romagnetic state and its typical value can be of the orde
the inverse size of the Cooper pairj̄21.

Let us make estimates for the materials used in the exp
ment of Ref. 10. The stiffnessJ for materials such as Fe an
Ni is '60 K/Å. The parameters characterizing Nb can
estimated as follows:Tc510 Å, vF51,373108 cm/s, and
l 5100 Å. The thickness of the magnetic layer is of ord
d510 Å, and the exchange fieldh5104 K, which is proper
for iron. Assuming that the Fermi velocities and energies
the ferromagnet and superconductor are close to each o
we obtaina'25 andl;631023. It is clear from Fig. 2 that
the cryptoferromagnetic state is hardly possible in the Fe
structure studied in Ref. 10.

How can one explain the decay of the average magn
moment belowTc observed in that work? In reality, sample
analyzed in Ref. 10 show a quite rough interface between
Nb and Fe layers. Thus, one can expect that there were
lands’’ in the magnetic layers with smaller values ofJ and/or
h. A reduction of these parameters in the Fe/Nb bilayer
not unrealistic because proximity to Nb leads to formation
v.
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,
s.

h-
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e

i-
-

n
of

e

of
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e

r

f
er
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ic

e
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nonmagnetic ‘‘dead’’ layers,4 and can affect the paramete
of the ferromagnetic layers, too. If the cryptoferromagne
state were realized only on the islands, the average magn
moment would be reduced but remain finite, which wou
correlate with the experiment.10 One can also imagine is
lands very weakly connected to the rest of the layer, wh
would lead to smaller energies of a nonhomogeneous st

Another possibility to observe the cryptoferromagne
state would be to use multilayers with a weaker ferromagn
A good candidate for this purpose might be Gd/Nb. T
exchange energyh in Gd is h'103 K and the Curie tem-
perature and, hence, the stiffnessJ is 3 times smaller than in
Fe. So, one can expecta'2.5 andl'231023. Using Fig. 2
we see that the cryptoferromagnetic phase is possible
these parameters. One can also considerably reduce th
change energyh in V12xFex /V multilayers6 by varying the
alloy composition. Hopefully, the measurements that wo
allow us to check the existence of the cryptoferromagne
phase in these multilayers will be performed in the near
ture.
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