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Josephson currents through spin-active interfaces

Mikael Fogelstro¨m*
Institut für Theoretische Festko¨rperphysik, Universita¨t Karlsruhe, D-76128 Karlsruhe, Germany

~Received 5 June 2000!

The Josephson coupling of twoisotropic s-wavesuperconductors through a small, magnetically active
junction is studied. This is done as a function of junction transparency and of the degree of spin-mixing
occurring in the barrier. In the tunneling limit, the critical current shows an anomalousT21 temperature
dependence at low temperatures and for certain magnetic realizations of the junction. The behavior of the
Josephson current is governed by Andreev bound states appearing within the superconducting gap,D, and the
position of these states in energy is tunable with the magnetic properties of the barrier. This study is done using
the equilibrium part of the quasiclassical Zaitsev-Millis-Rainer-Sauls boundary condition for spin-active inter-
faces and a general solution of the boundary condition is found. This solution is a generalization of the one
recently presented by Eschrig@Phys. Rev. B61, 9061 ~2000!# for spin-conserving interfaces and allows an
effective treatment of the problem of a superconductor in proximity to a magnetically active material.
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I. INTRODUCTION

If a superconductor is exposed to magnetically act
impurities1,2 or materials3 the superconducting state is mod
fied. Josephson coupling two superconductors throug
magnetically active barrier may lead to what is known a
‘‘ p ’’ junction,2 a junction for which the ground state has
internal phase shift ofp between the superconductors acro
the barrier. If the barrier is extended to an S/F/S structur
ferromagnetic~F! layer sandwiched between two superco
ductors~S!, the critical current will oscillate as the thicknes
of F is varied.3 Additionally, the critical current will also
depend on the strength of the exchange field in F. The p
cipal reason for this strong dependence of junction proper
is a drastic modification of the local superconducting den
of states in the contact region to the F layer.4 Scattering of a
magnetically active surface or transmission through a fe
magnetic barrier leads to a depairing of the Cooper pairs
the creation of surface or layer Andreev states at ener
within the superconducting gap. There have been an ex
sive experimental effort to explore the physics above by t
neling through magnetic insulator barriers,5,6 by probing the
proximity effect in S/F structures7 and constructing S/F
multilayers8 ~see also references therein!. The problem at
hand is quite formidable since the strength of the excha
energy is for most ferromagnetic materials, like Ni, Co, a
Fe, a sizable part of the Fermi energy (;eV) while super-
conductivity lives on a much smaller energy scale (;meV).
To overcome the difference in energy scales the ferrom
netic layer must be extremely small (&nm) and only re-
cently have supercurrents been reported in S/F/S junct
by Veretennikovet al.9 using weak ferromagnetic alloys fo
the F layer.

To efficiently model the S/F/S junction there are two ma
routes of approach. The first is to assume an extension
ferromagnetic metal, now characterized by a length and
exchange field, separating the two superconductors. Wi
this approach both critical current oscillations3,10 and the ef-
fect of the exchange field on the Andreev bound states11,12

have been studied. The limitation of the approach is that
PRB 620163-1829/2000/62~17!/11812~8!/$15.00
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restricted to small exchange fields, i.e., fields that are co
parable to the superconducting gap. An alternative appro
is to treat the ferromagnetic part as a partially transpar
barrier which transmits the two spin projection
differently.2,4,13,14 Using Bogoliubov–de Gennes equatio
and a WKB approach for the ferromagnetic barrier,14 Joseph-
son current-phase relations15 and quasiparticle tunneling16,17

have been studied for both conventionals-wave and uncon-
ventionald-wave superconductors.

In this paper, I follow the second path making use of t
quasiclassical theory appropriate for describing low-ene
phenomena like superconductivity for which considered
ergies are small compared to the Fermi energyEF .18–20Fer-
romagnetism will enter as a boundary problem for the q
siclassical Green’s functionsĝ(p̂f ,Rs ;«) at a semi-
transparent interface separating two conventionals-wave
superconductors. There is no general restriction of validity
the present work to conventional superconductivity. T
physics revealed in the simplest system proves to be q
rich without adding properties related to an unconventio
pairing state15–17 and therefores-wave superconductivity in
proximity to ferromagnetism should be studied in its ow
right. In Sec. II, a general solution of the quasiclassi
boundary condition, as posed by Millis, Rainer, and Saul13

is given for equilibrium Green’s functions. In Sec. III th
local density of states in proximity to a ferromagnetic ins
lator is discussed. This is an important step in understand
the Josephson coupling between twos-wave superconductor
studied as function of a simple phenomenological two sp
band scatteringŜ matrix. Section IV is devoted to the stud
of the Josephson coupling and maps out regions where
junction is in a normal ‘‘0’’ state and where it switches to th
‘‘ p ’’ state.

II. BOUNDARY CONDITIONS FOR QUASICLASSICAL
PROJECTORS AT SPIN-ACTIVE INTERFACES

Surfaces and interfaces involve energies of orderEF
which in quasiclassical theory18 are integrated out at the on
set. This means that boundary conditions for the quasicla
11 812 ©2000 The American Physical Society
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cal Green’s function at surfaces and interfaces must be p
for the full Green’s function satisfying the Gor’kov equatio
Resulting boundary conditions have then to be energy i
grated into their quasiclassical form.21 Physical properties o
an interface can then be accounted for by a suitably cho
scatteringSmatrix. A boundary condition for partially trans
mitting interfaces was first derived by Zaitsev22 and, inde-
pendently, by Kieselmann.23 The boundary condition wa
later generalized by Millis, Rainer, and Sauls~MRS! to in-
clude spin-active interfaces,13 i.e., interfaces which transmi
and reflect quasiparticles differently depending on the s
projection.

Recently, Eschrig24 used a projector method to solve Za
sev’s boundary condition in general. The projectors,P̌a

(I ) ,
introduced relate to the quasiclassical Green’s function
ǧ(I )52 ip(P̌1

(I )2P̌2
(I )). The superscripts~I! label the side of

the interface, the subscripts6 are directional indices and
finally the ‘‘háčeks’’ denote the Keldysh-matrix structure o
the Green’s function. For a full account on the quasiclass
projectorsP̌a

(I ) and their parametrization, I refer the reader
Eschrig’s original paper24 and in the Appendix I give a brie
review of elements of quasiclassical theory used in this
per. Written in projectorsP̌a

(I ) equations~63!–~66! of MRS
reads

P̌2
(2)

^ Ŝ22P̌1
(2)Ŝ22

†
^ ~P̌2

(2)21̌!5P̌2
(2)

^ Ŝ21P̌2
(1)Ŝ21

†
^ ~ 1̌2P̌2

(2)!,

P̌1
(2)

^ Ŝ22
† P̌2

(2)Ŝ22^ ~ 1̌2P̌1
(2)!5P̌1

(2)
^ Ŝ12

† P̌1
(1)Ŝ12^ ~P̌1

(2)21̌!,

~P̌2
(1)21̌! ^ Ŝ11

† P̌1
(1)Ŝ11^ P̌2

(1)5~ 1̌2P̌2
(1)! ^ Ŝ21

† P̌2
(2)Ŝ21

^ P̌2
(1) ,

~ 1̌2P̌1
(1)! ^ Ŝ11P̌2

(1)Ŝ11
†

^ P̌1
(1)5~P̌1

(1)21̌! ^ Ŝ12P̌1
(2)Ŝ12

†

^ P̌1
(1) . ~1!

Here, the noncommutativê product is a usual matrix prod
uct and a folding of internal energies. The solution of t
system of equations~1! is facilitated by a convenient param
etrization of P̌a in terms of four coherence function
gR,g̃R,gA,g̃A and two distribution functionsxK,x̃K. These
six functions are 232 spin matrices and superscrip
~R,A,K! stand for Retarded, Advanced and Keldysh. The
of functions above obey Riccati-like equations that are ea
to handle than the original quasiclassical matrix equatio24

Especially, they fulfill certain stability criteria when inte
grated for along trajectoriesx. The functionsgR,g̃A andxK

are bounded when integrating the along a traject

@v f(p̂)•x.0# and functionsg̃R,gA and x̃K are bounded in-
tegrating in the opposite direction@v f(p̂)•x,0#.25 Restating
this in context of the interface problem we can always in
grate up to the barrier obtaininggR,g̃A,xK along trajectories
with v f(p̂)•x.0, i.e., along the trajectoriesp̂1 andp̂2, in Fig.
1. Similarly, g̃R,gA and x̃K are integrated stably alon

v f( p̂)•x,0, i.e., p̂1 and p̂2 in Fig. 1. For constructing the
Greens’s function at the surface that fulfills Eqs.~1! we
still need the ‘‘scattered’’ functionsGR,G̃A and XK with
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v f( p̂)•x,0 and G̃R,GA and X̃K with v f(p̂)•x.0. These
functions have to be solved from Eqs.~1!. Using the func-

tions (g i
R ,g̃ i

R ,G i
R ,G̃ i

R), the retarded projectors are con
structed as

P̂1
R ~ p̂1!5S 1

2G̃1
RD ^ ~12g1

R
^ G̃1

R!21
^ ~1 g1

R!,

P̂2
R ~ p̂1!5S 2G1

R

1
D ^ ~12g̃1

R
^ G1

R!21
^ ~ g̃1

R 1!,

P̂1
R ~ p̂2!5S 2g2

R

1
D ^ ~12G̃2

R
^ g2

R!21
^ ~ G̃2

R 1!,

P̂2
R ~ p̂2!5S 1

2g̃2
RD ^ ~12G2

R
^ g̃2

R!21
^ ~1 G2

R!,

and after substitution into Eqs.~1! one finds after some
straightforward algebra that the scattered-out functions
be expressed solely by scattering-in functions as

G1
R5~S11g1

RS̃11
21! ^ R 1r

R 1~S12g2
RS̃12

21! ^ T 1r
R ,

G̃1
R5~S̃11

† g̃1
RS11

†21! ^ R̃1r
r 1~S̃21

† g̃2
RS21

†21! ^ T̃ 1r
R . ~2!

The generalized reflection coefficientsRSp
R are defined as

R1r
R 5S̃11r21

R21
^ @S̃11r21

R212S̃12r22
R21#21,

R̃1r
R 5S11

† r̃12
R21

^ @S11
† r̃12

R212S21
† r̃22

R21#21, ~3!

and corresponding transmission coefficientsT Sp
R 512RSp

R .

The functionsr i j
R and r̃ i j

R are given asr i j
R5S̃i j 2g̃ i

R
^ Si j g j

R

and r̃ i j
R5Si j

† 2g j
R

^ S̃i j
† g̃ i

R . The scattered coherence functio
on side 2 are given by interchanging the side index 1↔2.
Advanced functions are related to the retarded ones by g
eral symmetryĝA5 t̂3(ĝR)†t̂3. The similarity in form of the
final result given in Eq.~2! to the solution of a scattering
problem is not a coincidence as the boundary condition
the quasiclassical Green’s function can also be solved b
direct scattering approach.26

FIG. 1. A schematic picture of the in-scattering trajector

(p̂1 ,p̂2) connected over an interface barrier parametrized by aS

matrix to the out-scattering ones (p̂1 ,p̂2)
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So far no reference to the form of the scatteringS matrix
has been made.S is a scalar in Keldysh space and a matrixS
in particle-hole space, spanned by Pauli-matricest̂ j , with
the form S5S(11 t̂3)/21S̃(12 t̂3)/2 where S̃(p

i
)

5Str(2p
i
).13 For spin-active interfaces the different comp

nents of theS-matrix, Si j in ~2! above, are 232 spin matri-
ces. To proceed further a specificSmatrix is chosen to mode
the magnetic barrier

Ŝ5S S11 S12

S21 S22
D 5S r t

t 2r D exp~ iQs3!, ~4!

wheres j notes the Pauli matrices spanning spin space
parameters (t,r ) are the usual transmission and reflecti
coefficients. TheS matrix ~4! is one of the simplest choice
that allows a variable degree of spin mixing at the interfa
and the spin mixing is parametrized by the spin-mixing an
Q. By this constructionŜ only violates spin conservation
i.e., it does not commute with the quasiparticle spin opera
s. The angleQ will be considered as a phenomenologic
parameter independent of the trajectory direction in this
per, but as shown by Tokuyasuet al. in the appendix of Ref.
27 one can relateQ to the microscopic properties of th
magnetic barrier. In particular, in Ref. 27 anS matrix is
constructed for a magnetically ordered insulating barrier
it is found, as expected, thatŜ depends on the quasipartic
momentum projection parallel to the interface and on ma
rial parameters describing the barrier such as the ave
band gap,Eg , the internal exchange field,hi , and its orien-
tation m̂.

Only the simplest case of an isotropics-wave supercon-
ductor will be considered in this paper using weak coupl
BCS theory. For this, assuming a constant order paramet
spaceD(x)5D, the retarded coherence functions aregR

5g0is2 and g̃R5 is2g̃0 with g052D/(«R1 iV), g̃0

5D* /(«R1 iV), V5AuDu22(«R)2 and «R5«1 id. If, on
the other hand, the effect of proximity to a magnetic mate
on the superconductor is of interest the Riccati equation24

iv f•“RgR12«RgR5gRD̃RgR1Sd
RgR2gRS̃d

R2DR,

iv f•“Rg̃R22«Rg̃R5g̃RDRg̃R1S̃d
Rg̃R2g̃RSd

R2D̃R,
~5!

have to be solved together with a self consistent determ
tion of the order parameterD̂(x) and of the impurity self
energyŜ(x;«) as described in the appendix. In Eq.~5!, DR

5D1Sod
R and D̃R5D̃1S̃od

R are the impurity renormalized
gaps, whileSd

R and S̃d
R are diagonal in Nambu space, an

include both the impurity self energiesS i and the mean fields
Sm. All functions entering are spin matrices, and for t
problems that will be considered in this paper it is sufficie
to parametrize the matrices by two components as, e
(go1g3s3) is2 andis2(g̃02g̃3s3). The bulk values forgR

andg̃R, given above, serve in this case as initial values wh
integrating Eqs.~5!.
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III. ANDREEV BOUND STATES AT AN IMPENETRABLE
MAGNETIC BARRIER

As a first point we return to the half-space model of Tok
yasuet al.,27 a semi-infinite BCS superconductor bounded
a magnetic insulator. The scattering off the insulator is
sumed to be specular with a phase shift acquired differe
at reflection for spin-up and spin-down quasiparticles. Us
the Ŝ matrix above, the coherence functions scattered off
magnetic insulator are given directly by the incoming ones
G5exp(iQs3)g0is2 and G̃5 is2g̃0 exp(iQs3). Using the in-
formation of the scattered coherence functions the Gree
function is given for a trajectory withn̂•p̂f.0 as

ĝR52 ipN̂RS ~11gRG̃R! 2gR

22G̃R 2~11G̃RgR!
D , ~6!

where

N̂R5S ~12gRG̃R!21 0

0 ~12G̃RgR!21D . ~7!

If the trajectory isn̂•p̂f,0, the Green’s function is simply
given by interchangingg→G and G̃→g̃. The effect of the
spin mixing is perhaps best seen in the spin and an
resolved density of states~DOS! right at the barrier. On a
trajectory withn̂•p̂f.0 this quantity is given by the imagi
nary part ofgR(p̂f ,«), the upper left component of Eq.~6! as
described in Eq.~A10!. Assuming a constant order paramet
up to the interface, the local DOS at the interface for spin
quasiparticles,N↑ , can be written as

N↑~ p̂f ,«;Q!5Im F«R cos~Q/2!1V sin~Q/2!

V cos~Q/2!2«R sin~Q/2!
G . ~8!

For spin-down quasiparticlesN↓ reads the same after subs
tution Q→2Q. This density of states has Andreev bou
states inside the gap, i.e., foru«u,D. These states are locate
at «b,↑(↓)56D cos(Q/2), with 1(2) for the spin-up
~-down! branch. It is notable that the DOS~8! has exactly the
same form as the DOS calculated for a S/F/S weak link,
which the angleQ is shown to depend on the thickness
and exchange field in the F-layer.28

The existence of bound states will lead to a reduction
the order parameter amplitude in the vicinity of the magne
interface. This is seen in Fig. 2 in Ref. 27. The pairbreak
occurs gradually as the bound state on either spin branc
tuned towards«b50 with Q→p. At Q5p the order param-
eter is totally reduced at the interface and recovers to its b
value over a distance of orderjo , the zero temperature co
herence length in the superconductor. It turns out that
position in energy of the surface states,«b , is not to sensitive
to a spatial variation in the order parameter. The Andre
bound states would be delta peaks if the superconductor
an infinite mean free path. The presence of impurities in
bulk give rise to a finite life timet which broadens the
Andreev peak. The broadening of the Andreev states is s
sitive to the scattering strength of the impurities. In the m
panels of Fig. 2 the DOS is shown for different values
spin-mixing Q. The surface order parameter is self cons
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FIG. 2. Tunneling density of states for spin-up quasiparticles at an impenetrable magnetically active insulator. The supercond
conventional BCS superconductor with a self-consistently determined order parameter. In the main panelsQ is varied from 0 top in steps
of p/4 going top to bottom and the curves are shifted for clarity. In the left figure the impurity scattering is in the Born limit while
right panel the scattering is taken in the unitary limit. In both cases the scattering rate is chosen to 0.01 in units of 2pTc . In the left inset
in the left figure the DOS is plotted forQ5p but with varying impurity scattering. The dependence of the zero-energy peak width witAG
is plotted in the right inset of the left panel. In the panel to the right the impurity scattering is in the unitary limit. As expected the broa
of the Andreev states is very much suppressed.
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tently determined for each spin-mixing angle. The scatter
rate isG51/2t50.01 in units of 2pTc and corresponds to
mean free pathl mfp550jo . From the literature ond-wave
superconductors it is known that surface bound states
broadened by impurity scattering as;ADG in the Born
limit.29 In the two insets in Fig. 2 the dependence of t
width of the zero energy peak with scattering rate forQ
5p is shown. For small scattering rates indeed theADG
dependence is recovered. If, on the other hand, the scatte
strength of the impurities is in the strong scattering limit t
broadening of the Andreev bound states will be expon
tially small, ;ADGexp@2D/G#.29 The effect of unitary scat-
terers is shown in the figure to the right in Fig. 2.

IV. JOSEPHSON CURRENT-PHASE RELATION AND THE
ENERGY STATE OF THE JUNCTION

Next, let us consider the Josephson current-phase rela
through a magnetically active point contact. Assuming
point contact allows several simplifications. Effects of t
contact itself on superconductivity, i.e., the order parame
profile may be disregarded. This holds true if the cont
radius is taken much smaller than the superconducting co
ence length. Furthermore, spin-neutral surface scatte
alone does not affect an isotropics-wave superconductor an
thus bulk values of the coherence functionsg,g̃ can be used
for the in-scattering ones in the boundary condition~2!. An
additional advantage of the point contact condition is that
results will not depend on the presence of nonmagnetic b
impurities as the current through the point contact depe
only on bulk coherence functions. On the other hand,
point contact itself is fully described by its transmissiont and
degree of spin mixing,Q. The Josephson current through t
contact is calculated as a function of the phase differencef,
between two superconductors by the current formula
g

re

ing

-

on
a

r
t
r-
g

e
lk
s

e

j~f!5eNfE
2`

` d«

8p i
Tr^v f t̂3ĝf

K~ p̂f ,0;«!& p̂f
. ~9!

Here ĝf
K(p̂f ,0;«)5@ ĝf

R(p̂f ,0;«)2ĝf
A(p̂f ,0;«)#tanh(«/2T) is

the equilibrium Keldysh Green function constructed from t
retarded and advanced ones,ĝf

R,A(p̂f ,0;«), at the interface.

Functionsĝf
R,A(p̂f ,0;«) are calculated at the interface so th

boundary condition~2! is fulfilled. The resulting critical cur-
rent of the junctions is characterized by different transp
ency and spin-mixing angle and show a rich variety as s
in Fig. 3. This quantity is defined as the maximum amplitu
of the current reached between a phase difference of 0
p. The sign of the critical current is either positive giving
‘‘0’’ junction or negative signaling a ‘‘p ’’ junction. For ar-
bitrary transmission and spin mixing the analytic express
for the current is not very tractable and numerical analysis
the current-phase relation is more practical. In the two
treme limits of tunneling,t!1, and high transparency,t
.1, the analytical expression is simpler and reveals
physics going on.

Starting with the tunneling limit, the transmitted cohe
ence functionsG,G̃ as given by Eq.~2! are expanded to
leading order in transparencyT5utu2. The expandedG,G̃ are
then put into the expression forĝR, Eq. ~6!, and to first order
in T the resulting current is given as follows:

j ~f;Q!5Tj o sinfE
2`

` d«

4p
@K1~«,Q!1K2~«,Q!#

~10!

where K6(«,Q)5@V cos(Q/2)6« sin(Q/2)#22 tanh(«/2T)
and j o52ev fNfD

2. In general the current is totally governe
by the bound states at«b56D cos(Q/2) and their population
at the given temperatureT. Notable is that for all values o
Q, the current-phase relation is sinusoidal. SettingQ50 re-
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FIG. 3. Critical currents for different transparencies0.01, 0.1, and0.99, left to right, and for a dense sampling of the spin-mixing ang
Q running from 0 top in steps ofp/20. Thick lines are in intervals ofp/4 as a guide for the eye. All currents are scaled with the value
the critical current atT50 andQ50 for the current value ofT. As is seen for all values of transparency,T, the junction may either be a ‘‘0’’
or a ‘‘p ’’ junction depending on the degree of spin mixing. In the low transparency limit and atQ5p the zero-energy bound state gives ri
to a critical current;T21 as seen in the inset of the left most panel. At intermediateQ the junction may switch between the ‘‘0’’ and th
‘‘ p ’’-junction state with temperature. At largerT this switching becomes more abrupt in temperature. Finally, in the high transparency
the switching between ‘‘0’’ and the ‘‘p ’’-junction state is lost andQ defines the junction state for all temperatures.
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produces the usual Ambegaokar-Baratoff expression.30 At
Q5p, «b is a zero-energy bound state and give rise to
‘‘ p ’’ junction with a critical current which increases asT21

with decreasing temperature as shown in the inset in the
Fig. 3. A similar anomaly in the critical current occurs f
d-wave superconductors.31 The difference between th
anomaly in the two types of superconductors is that
d-wave superconductors any concentration of bulk impuri
will give a finite width of the zero energy bound states a
reduce theT21 anomaly. For ans-wave superconductor at
point contact only inelastic scattering processes, pha
breaking impurities or, as shown below, a finiteT can give a
similar broadening and the anomaly is quite robust due
long inelastic ~phase-breaking! scattering times, i.e.
1/2t inel,(phase)!D. Going away fromQ5p, «b moves to fi-
nite energy and the functionsK6(«,Q) acquire double pole
structure at«b . The two poles are slightly shifted and hav
slightly asymmetric magnitude in residues. Given that
residues also are of different sign, they contribute opposi
to the critical current. The separation in energy of the pole
dependent on the imaginary part,d, of the energy«1 id. d
can loosely be interpreted as an inelastic scattering rate
T50 andd→0 it turns out that the ground state of the jun
tion is always a ‘‘0’’ junction except atQ5p. As tempera-
ture and/or thed is increased the region inQ showing a
‘‘ p ’’-state junction increases. This is clearly demonstrated
Fig. 3 where the critical current is plotted as function
temperature. For all but the two largest values ofQ the low-
T critical current is positive.

Sticking to the tunneling limit, the results derived he
can also be obtained using Eqs.~93! and~94! of MRS. What
is crucial to note is that in order to find the bound sta
contribution to the current the Green’s functions must be
ones arrived at in Eq.~6!. This is taking into account the
spatial dependence of the Green’s function at the magn
pinhole, i.e., solving the impenetrable wall problem with t
Ŝ matrix describing the pinhole. If this spatial dependence
a
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At
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is

neglected, and the bulk Green’s functions are used in E
~93! and ~94! of MRS, the resulting Josephson current w
simply have two contributions sin(f6Q), one contribution
for each spin band.

Moving away from the tunneling limit theT21-anomaly
is cut off by the finite value ofT. Instead, the switching
between ‘‘0’’ and ‘‘p ’’ states happens in abrupt jumps in th
critical current. This abruptness is spurious since the curr
phase relation has three zeros between 0 andp and the
change of state from ‘‘p ’’ to ‘‘0’’ occurs without the current
being zero for every phase difference. Instead the junc
has two local minima in energy, at phase differencef50
andp. Right at the switching point the two states are deg
erate and the junction state can be tuned with temperat
This is shown in the inset of the middle Fig. 3 which depic
the junction energy vs phase difference for a junction w
T50.1 and Q53p/4. As seen, between the two energ
minima there is a potential barrier. This barrier is at high
at an intermediate phase 0,f,p where the current through
the junction is zero. As temperature is swept over the swit
ing temperature, which for this junction is atTsw'0.12Tc ,
the energy minimum jumps fromf5p to f50 as tempera-
ture is increased throughTsw and vice versa as the temper
ture is decreased throughTsw . The position in temperature
depends on the two junction parametersT andQ. For larger
transparencies the values of tunable junctions are restri
to a decreasing range inQ just belowQ5p/2.

If the transparency is taken to unity the tunability of th
junction state with temperature vanishes. This is seen fr
the current-phase relation

j ~f;Q!5 j oE
2`

` d«

4p
@J1~f;«,Q!1J2~f;«,Q!#,

~11!
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J6~f;«,Q!5
sin~f6Q!

@V22«21D2 cos~f6Q!#
tanhS «

2TD .

The current is now controlled by interface states located
« i56D cos@(f6Q)/2#, i.e., at a position given by the phas
f but shifted by6Q for the two spin bands as compared
the spin-neutral case. This shows up in the fact that aQ
50 the usual Kulik-Omel’yanchuk~KO! formula is
recovered32 and at finiteQ, Eq. ~11! is a sum of two KO
supercurrents evaluated at phases shifted by6Q. For spin-
mixing anglesQ,p/2 the junction is in the ‘‘0’’ state and a
Q.p/2 in the ‘‘p ’’ state. At Q5p/2 the junction state is
degenerate for every temperature as the current-phase
tion has doubled periodicity.

V. DISCUSSION

In this paper a general solution is derived for the equil
rium part of the Zaitsev-Millis-Rainer-Sauls boundary co
dition describing spin-active interfaces. This solution is t
main result of the paper and will be an important part
further studies of hybrid superconductor-~ferro!magnetic sys-
tems. As an application, the effects of a magnetically ac
barrier, as described by a simple two-parameterŜ matrix, are
studied. In particular, it is shown that spin mixing brin
about Andreev bound states within the superconducting
D. The energy of these states is sensitive to the amoun
spin-mixing imposed by the scattering off the interfac
Comparing with the DOS calculated here and those obta
in the tunneling experiments of Stageberget al.5 it is plau-
sible to conclude that the spin-mixing angle is not that la
but rather in the rangeuQu&p/4 for the materials studied in
the experiment.5 None the less, it is important to note that th
shift seen in the tunneling conductance may be depen
on, and described by, the tunneling barrier properties27 and
thus not directly dependent of the exchange field in the
romagnet probed.6,20 On account of the Josephson coupli
through a magnetically active interface, a small value ofQ
would imply that ‘‘p ’’ junctions are hard to realize at least i
large junctions. To obtain a ‘‘p ’’ junction it is shown thatQ
must exceedp/2 for any range of transparency. On the oth
hand, new experiments are in the making like the magn
Cobalt grains studied by Gue´ron et al.33 These small mag-
netic systems may well prove to offer magnetic scatter
where a largeQ;p is realized. As an example, using ST
techniques, as those performed on the Au point contact
Ref. 34, on small magnetic grains and with superconduc
electrodes, the Josephson physics described in this p
could be probed.
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APPENDIX: QUASICLASSICAL THEORY

Calculations presented in this paper are done within
quasiclassical approximation which is a generalization of
Landau Fermi-liquid theory to include superconduncting18

and superfluid19 phenomena. Quasiclassical theory is an e
pansion in quantities likeT/Tf or 1/jkf , which are usually of
order;102221023 in conventional superconductors. I us
the quasiclassical theory for ap-wave superfluid3He as
worked out by Serene and Rainer19 together with the real-
metal-oriented weak-coupling theory of Alexanderet al.20 to
describe the superconductor in proximity to a magnetica
active material. In this appendix a brief review, or collectio
of the building blocks of quasiclassical theory is given.

Our starting point is the Eilenberger equation

iv f•“Rĝ1@«t̂32Ŝ,ĝ#50 ~A1!

for the 434 matrix propagatorĝ(p̂f ,R;«). Here v f is the
Fermi velocity,p̂f is a point on the Fermi surface, The e
plicit 232-matrix structure of ĝ reflects particle-hole
~Nambu! space. The spin degree of freedom is in the para
etrization into spin scalars,g(p̂f ,R;«), g̃(p̂f ,R;«),
f (p̂f ,R;«), f̃ (p̂f ,R;«), and spin vectors, g(p̂f ,R;«),
g̃(p̂f ,R;«), f(p̂f ,R;«), f̃(p̂f ,R;«) as

ĝ5S g1g•s ~ f 1f•s!is2

is2~ f̃ 2 f̃•s! s2~ g̃2g̃•s!s2
D . ~A2!

In addition to Eq.~A1! the propagator obeys the normaliz
tion conditionĝ2(p̂f ,R;«)52p2. There is some redundanc
in the parametrization of Eq.~A2! which gives the following
symmetries:19

x̃~ p̂f ,R;«!5x~2p̂f ,R;2«* !* , ~A3!

wherex ( x̃) is one of the spin componentsgab or f ab (g̃ab

or f̃ ab) of the Green’s function. Matsubara propagators
obtained by@«→ i«n5 ipT(2n11)#, retarded propagator
by («→«1 id), and advanced propagators by («→«2 id).
Analogous symmetry relations hold for the self-energies.

The self-energyŜ in Eq. ~A1! contains impurity contri-
butions, the Fermi-liquid mean fields and the order param

Ŝ~ p̂f ,R;«!5Ŝ i~ p̂f ,R;«!1Ŝm~ p̂f ,R!1D̂~ p̂f ,R!.
~A4!

The self-consistency equations for the impurity self ene
Ŝ i given one impurity potentialûi and one impurity concen
tration ni is

Ŝ i~ p̂f ,R;«!5ni t̂ i~ p̂f ,p̂f ,R;«!, ~A5!

with the quasiclassicalT matrix equation

t̂ i~ p̂f ,p̂f8,R;«!5ûi~ p̂f ,p̂f8!1Nf^ûi~ p̂f ,p̂f9!ĝ~ p̂f9,R;«!

3 t̂ i~ p̂f9,p̂f8,R;«!& p̂f9 . ~A6!

Nf is the averaged normal state density of states at the F
surface and̂•••& p̂f

denotes a Fermi-surface average. If the
are more than one type of impurity potentials equation~A5!
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will be a sum over the different impurity contributions, eac
with its own density and its ownT matrix. It is important to
bare in mind thatŜ i is in general not diagonal in particle
hole space. The self energyŜm contains the Fermi-liquid
mean-field self energies. It is diagonal in particle-hole sp
and divided into a symmetric (Sm) and an antisymmetric
(Sm) part as

Sm~ p̂f ,R!5T (
«n

^As~ p̂f ,p̂f8!g~ p̂f8,R;«n!& p̂f8 ,

Sm~ p̂f ,R!5T (
«n

^Aa~ p̂f ,p̂f8!g~ p̂f8,R;«n!& p̂f8 . ~A7!

The Fermi-liquid interactionsA(s,a)(p̂f ,p̂f8) are parametrized
by the Fermi-liquid parametersAs and Aa which are phe-
nomenological parameters determined from experime
The order parameterD̂ is split into singletD and tripletD

parts by the singlet and triplet pairing interactionsVs(p̂f ,p̂f8)
andVt(p̂f ,p̂f8), and is calculated as

D~ p̂f ,R!5T (
«n

^Vs~ p̂f ,p̂f8! f ~ p̂f8,R;«n!& p̂f8 ,
e

s.

D~ p̂f ,R!5T (
«n

^Vt~ p̂f ,p̂f8!f~ p̂f8,R;«n!& p̂f8 . ~A8!

The set of equations written above, the Eilenberger eq
tion for ĝ and the equations for the self-energiesŜ, must be
solved self-consistently by iteration together with the app
priate boundary conditions imposed on the propagator. W
ĝ(p̂f ,R;«) determined, physical quantities like the curre
density may be computed

j~R!52eNfT (
«n

^v f~ p̂f !g~ p̂f ,R;«n!& p̂f
. ~A9!

The local density of states resolved for a givenp̂f and a
given spin directione is calculated at real energies as

Ne~ p̂f ,R;«R!52
Nf

p
Im@g~ p̂f ,R;«R!1e•g~ p̂f ,R;«R!#.

~A10!
ys.
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10Z. Radović, M. Ledvij, L. Dobrosavljevic´-Grujić, A.I. Buzdin,
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