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Josephson currents through spin-active interfaces

Mikael Fogelstron*
Institut fir Theoretische Festkperphysik, UniversitaKarlsruhe, D-76128 Karlsruhe, Germany
(Received 5 June 2000

The Josephson coupling of twisotropic s-wavesuperconductors through a small, magnetically active
junction is studied. This is done as a function of junction transparency and of the degree of spin-mixing
occurring in the barrier. In the tunneling limit, the critical current shows an anomdalodstemperature
dependence at low temperatures and for certain magnetic realizations of the junction. The behavior of the
Josephson current is governed by Andreev bound states appearing within the superconductinggaphe
position of these states in energy is tunable with the magnetic properties of the barrier. This study is done using
the equilibrium part of the quasiclassical Zaitsev-Millis-Rainer-Sauls boundary condition for spin-active inter-
faces and a general solution of the boundary condition is found. This solution is a generalization of the one
recently presented by Eschri§hys. Rev. B61, 9061 (2000] for spin-conserving interfaces and allows an
effective treatment of the problem of a superconductor in proximity to a magnetically active material.

[. INTRODUCTION restricted to small exchange fields, i.e., fields that are com-
parable to the superconducting gap. An alternative approach
If a superconductor is exposed to magnetically actives to treat the ferromagnetic part as a partially transparent
impurities-? or materiald the superconducting state is modi- barrier which transmits the two spin projections
fied. Josephson coupling two superconductors through differently?**#14 Using Bogoliubov—de Gennes equations
magnetically active barrier may lead to what is known as znd a WKB approach for the ferromagnetic bartfedpseph-
“ 7 junction,? a junction for which the ground state has anson current-phase relatidfisand quasiparticle tunnelin'’
internal phase shift ofr between the superconductors acrosshave been studied for both conventiosakave and uncon-
the barrier. If the barrier is extended to an S/F/S structure, ¥€ntionald-wave superconductors.
ferromagnetio(F) layer sandwiched between two supercon-  In this paper, I follow the second path making use of the
ductors(S), the critical current will oscillate as the thickness quasiclassical theory appropriate for describing low-energy
of F is varied® Additionally, the critical current will also phenomena like superconductivity for which considered en-
depend on the strength of the exchange field in F. The prinergies are small compared to the Fermi endfgy'®*°Fer-
cipal reason for this strong dependence of junction propertiegmagnetism will enter as a boundary problem for the qua-
is a drastic modification of the local superconducting densitysiclassical Green’s functionsg(ps,Rs;e) at a semi-
of states in the contact region to the F la§@cattering of a  transparent interface separating two conventiosalave
magnetically active surface or transmission through a ferrosuperconductors. There is no general restriction of validity of
magnetic barrier leads to a depairing of the Cooper pairs anthe present work to conventional superconductivity. The
the creation of surface or layer Andreev states at energigshysics revealed in the simplest system proves to be quite
within the superconducting gap. There have been an extemich without adding properties related to an unconventional
sive experimental effort to explore the physics above by tunpairing staté®*” and thereforeswave superconductivity in
neling through magnetic insulator barriéfspy probing the  proximity to ferromagnetism should be studied in its own
proximity effect in S/F structurdsand constructing S/F right. In Sec. II, a general solution of the quasiclassical
multilayeré (see also references thergiThe problem at boundary condition, as posed by Millis, Rainer, and S&tlls,
hand is quite formidable since the strength of the exchangi& given for equilibrium Green’s functions. In Sec. Ill the
energy is for most ferromagnetic materials, like Ni, Co, andlocal density of states in proximity to a ferromagnetic insu-
Fe, a sizable part of the Fermi energy €V) while super- lator is discussed. This is an important step in understanding
conductivity lives on a much smaller energy scatenfeV).  the Josephson coupling between tswvave superconductors
To overcome the difference in energy scales the ferromagstudied as function of a simple phenomenological two spin-

netic layer must be extremely smalisfm) and only re-  pand scattering matrix. Section IV is devoted to the study
cently have supercurrents been reported in S/F/S junctiongf the Josephson coupling and maps out regions where the

by Veretennikovet al® using weak ferromagnetic alloys for junction is in a normal “0” state and where it switches to the
the F layer. « o state.

To efficiently model the S/F/S junction there are two main
routes of approach. The first is to assume an extension of a BOUNDARY CONDITIONS FOR QUASICLASSICAL
ferromagnetic metal, now characterized by a length and an PROJECTORS AT SPIN-ACTIVE INTERFACES
exchange field, separating the two superconductors. Within
this approach both critical current oscillatidi8and the ef- Surfaces and interfaces involve energies of oréegr
fect of the exchange field on the Andreev bound statés which in quasiclassical theofyare integrated out at the on-
have been studied. The limitation of the approach is that it iset. This means that boundary conditions for the quasiclassi-
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cal Green'’s function at surfaces and interfaces must be posed

for the full Green’s function satisfying the Gor’kov equation. P .
Resulting boundary conditions have then to be energy inte- . , K =1 o RR A R
grated into their quasiclassical fothPhysical properties of BD, 111{%;1{‘ XK BD, 1%;25‘ XK

an interface can then be accounted for by a suitably chosen
scatteringS matrix. A boundary condition for partially trans-
mitting interfaces was first derived by Zait$éwand, inde-
pendently, by Kieselmanft. The boundary condition was
later generalized by Millis, Rainer, and SaulMRS) to in-
clude spin-active interfacés,i.e., interfaces which transmit
and reflect quasiparticles differently depending on the spin o i
projection. PO, yﬁ,ﬁi,wf}{ ) %QRR‘??K
Recently, Eschritf used a projector method to solve Zait- LIy S A
sev’s boundary condition in general. The projectd?),
introduced relate to the quasiclassical Green’s function a
g =—im(P—PY). The superscriptd) label the side of
the interface, the subscripts are directional indices and
finally the “haceks” denote the Keldysh-matrix structure of . =R A K L -
the Green’s function. For a full account on the quasiclassicaf f(P)-X<0 and I', " and X™ with v((p)-x>0. These

projectorsP!) and their parametrization, | refer the reader tof.unctlonsR PlaF:/e LONbs solved from Eq4). L'Jsmg the func-
Eschrig’s original papéf and in the Appendix | give a brief tions (y",¥".I'7.I7), the retarded projectors are con-
review of elements of quasiclassical theory used in this pastructed as

per. Written in projectorg™) equations(63)—(66) of MRS
reads PR(py)=
+(Py

PP @S, P80 (PP —1)=P?e SyPYS] @ (1-P?),

FIG. 1. A schematic picture of the in-scattering trajectories
ﬁ)l,f)z) connected over an interface barrier parametrized by an
matrix to the out-scattering onep;(p,)
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- 2
(1
®P(+)- .Y and after substitution into Eqg1l) one finds after some

straightforward algebra that the scattered-out functions can

Here, the noncommutative product is a usual matrix prod- o7 .
be expressed solely by scattering-in functions as

uct and a folding of internal energies. The solution of the
system of equationgl) is facilitated by a convenient param-

etrization of P, in terms of four coherence functions

YRR A9 and two distribution functions®,x%. These HR_ Bt TRt -1y o Br L (& TRaI-1\ o

six functions are X2 spin matrices and superscripts TR=(S sy YRy, +(Sinssh HeTy. (2
(R,A,K) stand for Retarded, Advanced and Keldysh. The seThe generalized reflection coefficier‘?@p are defined as
of functions above obey Riccati-like equations that are easier

IR=(S1ySSIH @R +(S195S) @ T,

to handle than the original quasiclassical matrix equatfon. RE =S5 1o [Sups = SRy 1178,
Especially, they fulfill certain stability criteria when inte-
grated for along trajectories The functionsyR, 7" andxX RR =8I p% e[Sl p% =Sl pR 171, 3

are bounded when integrating the along a trajectory . o o R
[v:(P)-x>0] and functionsyR, »* andx¥ are bounded in- 2"d corre.spongmg trjalgsmlsm.on Coeﬂc'iﬂ@fi_RS%
tegrating in the opposite directidm(P) -x<0].2 Restating | "€ functionsp;; and pij are given ap;;=S; = %@ Sy
this in context of the interface problem we can always inte2ndpf; =S| — ¥® S| . The scattered coherence functions

grate up to the barrier obtaining?, ¥, x* along trajectories  ©" side 2 are g_iven by interchanging the side index2.
with o,(B) - x>0, i.e., along the trajectorigs andp,, in Fig Advanced functions are related to the retarded ones by gen-
f . , 1.C., 2,4 .

! ~n A = . eral symmetryg”= 75(g®) " 75. The similarity in form of the
L ASlmllarIy,. VoY a”‘{x_ ar.e integrated Stab'Y along final result given in Eq(2) to the solution of a scattering
v(p)-x<0, i.e,, py andp, in Fig. 1. For constructing the problem is not a coincidence as the boundary condition for
Greens's function at the surface that fulfills Eq4) we  the quasiclassical Green’s function can also be solved by a
still need the “scattered” functiond’® ' and XX with  direct scattering approacf.
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So far no reference to the form of the scatterimatrix ll. ANDREEV BOUND STATES AT AN IMPENETRABLE
has been mad&is a scalar in Keldysh space and a mat§ix MAGNETIC BARRIER
in particle-hole space, spanned by Pauli-matriegs with As a first point we return to the half-space model of Toku-

the form S=S(1+73)/2+S(1—173)/2 where S(pH) yasuet al,?’ a semi-infinite BCS superconductor bounded by
:Str(_rJH)_13 For spin-active interfaces the different compo- @ magnetic insulator. The scattering o_ff the irjsulatpr is as-
nents of theS-matrix, S; in (2) above, are X2 spin matri- sumed to be spec_ular with a p_hase shift acqmreq d|ffere|jtly
ces. To proceed further a speciSenatrix is chosen to model 2t réflection for spin-up and spin-down quasiparticles. Using
the magnetic barrier the S matrix above, the coherence functions scattered off the
magnetic insulator are given directly by the incoming ones as

I'=exp(@as) vy and T =i,y exp(®os). Using the in-

. [S11 S r t - X
:( HoTe :<t )exmga), (4)  formation of the scattered coherence functions the Green’s
So1 S22 ' function is given for a trajectory with-p;>0 as

where g notes the Pauli matrices spa.nn?ng spin space_and A 1+ nyR) 2R
parameters t(r) are the usual transmission and reflection gR=—inNR . ~r R (6)
coefficients. TheS matrix (4) is one of the simplest choices —2r —(1+T7y5)
that allows a variable degree of spin mixing at the interfachh

G ) T ere
and the spin mixing is parametrized by the spin-mixing angle
0. By this constructionS only violates spin conservation, (1_7R1:R) 1 0
i.e., it does not commute with the quasiparticle spin operator N~ = ~R Ri_1]" (7)
o. The angle® will be considered as a phenomenological 0 (1=T7y7)

parameter independent of the trajectory direction in this pas . N , L
per, but as shown by Tokuyasti al. in the appendix of Ref. If the trajectory isn-p;<0, the Green’s function is simply

27 one can relat® to the microscopic properties of the 9iven by interchanging—1I" andI'— y. The effect of the
magnetic barrier. In particular, in Ref. 27 @matrix is  SPIN mixing is perhaps best seen in the spin and angle-
constructed for a magnetically ordered insulating barrier anfi€ésolved density of state®O0S) right at the barrier. On a

it is found, as expected, th& depends on the quasiparticle rajectory withn-p;>0 this quantity is given by the imagi-
momentum projection parallel to the interface and on matenary part ofgR(p; ), the upper left component of E¢6) as

rial parameters describing the barrier such as the averagiescribed in Eq(A10). Assuming a constant order parameter

band gapE,, the internal exchange fielt;, and its orien-  up to the interface, the local DOS at the interface for spin-up
tation ;t quasiparticlesN, , can be written as

Only the simplest case of an isotrogevave supercon-
ductor will be considered in this paper using weak coupling
BCS theory. For this, assuming a constant order parameter in
spaceA(x)=A, the retarded coherence functions ay@

=yoio, and YR=io,y, with yo=—A/(eR+iQ), 7,

eRcog0/2)+Q sin(0/2)
Q cog0/2)—eRsin©/2) |

N (pf,e;0)=Im )

For spin-down quasiparticlds, reads the same after substi-

. . tution ® — —©. This density of states has Andreev bound
—AK* R — 2_(.R\2 R_
=A%/(e"+10), Q=V[A[*~(e")* ande"=g+id. If, on states inside the gap, i.e., flar]<A. These states are located
the other hand, the effect of proximity to a magnetic materia

) X . . at e =*+Acos@®/2), with +(—) for the spin-u
on the superconductor is of interest the Riccati equatfons (-dovS}I)(Branch. " isonot)able that th(e D)QB) has exac[:)tly thF:a

same form as the DOS calculated for a S/F/S weak link, for
ivi VeyR+2eRyR= yRARYRL SRIR_RSR_AR which the angle® is shown to depend on the thickness of
and exchange field in the F-lay&t.
_ - ~ ~ ~ The existence of bound states will lead to a reduction of
v VeyR—2eFyR=yRARYR+ SEYR-_HRS B AR, the order parameter amplitude in the vicinity of the magnetic
(5)  interface. This is seen in Fig. 2 in Ref. 27. The pairbreaking
occurs gradually as the bound state on either spin branch is
have to be solved together with a self consistent determinauned towardg,=0 with ® — 7. At ® = 7 the order param-
tion of the order parametek(x) and of the impurity self eter is totally reduced at the interface and recovers to its bulk

energy3 (x;e) as described in the appendix. In Hf), AR Value over a dis.tance of ordéy, the zero temperature co-
~A+3R and ZR:Z_,’_iRd are the impurity renormalized herence length in the superconductor. It turns out that the
(o] o]

. = . . osition in energy of the surface stateg, is not to sensitive
gaps, whﬂeEff and Eff are diagonal in Nambu space, and P 9y €5

include both the i ity self : dth field to a spatial variation in the order parameter. The Andreev
Inciude both the impurity se energ!§5 and the meantields -, ,nq states would be delta peaks if the superconductor had
Zm. Al funct|0n_s entering are spin matrices, e}nd fqr _thean infinite mean free path. The presence of impurities in the
problems that will be considered in this paper it is sufficient

t trize th tri by tw " bulk give rise to a finite life timer which broadens the
0 paramelrize the matrices by two components as, €.gapgreey peak. The broadening of the Andreev states is sen-

(7ot v303)ioz andioa(yo— y3073). The bulk values fon®  sitive to the scattering strength of the impurities. In the main
andyR, given above, serve in this case as initial values whempanels of Fig. 2 the DOS is shown for different values of
integrating Eqgs(5). spin-mixing ®. The surface order parameter is self consis-
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FIG. 2. Tunneling density of states for spin-up quasiparticles at an impenetrable magnetically active insulator. The superconductor is a
conventional BCS superconductor with a self-consistently determined order parameter. In the mai®pganalsed from O tor in steps
of /4 going top to bottom and the curves are shifted for clarity. In the left figure the impurity scattering is in the Born limit while in the
right panel the scattering is taken in the unitary limit. In both cases the scattering rate is chosen to 0.01 in units.dhzhe left inset
in the left figure the DOS is plotted f& = 7 but with varying impurity scattering. The dependence of the zero-energy peak width/Tvith
is plotted in the right inset of the left panel. In the panel to the right the impurity scattering is in the unitary limit. As expected the broadening
of the Andreev states is very much suppressed.

tently determined for each spin-mixing angle. The scattering © de A

rate isI"=1/2r=0.01 in units of 2rT. and corresponds to a i(¢)=efo FP Tr(Unggg(pf,O;S)ﬁ,f. 9
mean free path,=50¢,. From the literature ord-wave o

superconductors it is known that surface bound states afgegre (j‘;(fof,o;s)=[§§(|5f,0;s)—ég(f)f,o;s)]tanh(sIZT) is

broadened by impurity scattering asyAI" in the Born  the equilibrium Keldysh Green function constructed from the

. . 29 . . . ~ N
limit.= In the two insets in Fig. 2 the dependence of theretarded and advanced on@,A(pf,o;s)’ at the interface.

width of the zero energy peak with scattering rate €@r  ARAA )
— 7 is shown. For small scattering rates indeed tfel’ Functionsg ;~(pr,0;¢) are calculated at the interface so the

dependence is recovered. If, on the other hand, the scatteriﬁ’gundary condition2) is fulfilled. The resulting critical cur-
strength of the impurities is in the strong scattering limit the©Nt of the junctions is characterized by different transpar-
broadening of the Andreev bound states will be exponenENCY and spin-mixing angle and show a rich variety as seen

iall Il ~JAT _AT12° The eff f uni _in Fig. 3. This quantity is defined as the ma>'<imum amplitude
:Ieare);ssgasﬁown in ?ﬁgfigu/re] to theer(ieghetci;olzi;m;ary scat of the current reached between a phase difference of 0 and

7r. The sign of the critical current is either positive giving a
“0” junction or negative signaling a ‘" junction. For ar-
IV. JOSEPHSON CURRENT-PHASE RELATION AND THE bitrary transmi_ssion and spin mixing the analytic expres§i0n
ENERGY STATE OF THE JUNCTION for the current is not very trr?lctable and m_JmerlcaI analysis of
the current-phase relation is more practical. In the two ex-
Next, let us consider the Josephson current-phase relatidreme limits of tunneling,t<1, and high transparency,
through a magnetically active point contact. Assuming a=1, the analytical expression is simpler and reveals the
point contact allows several simplifications. Effects of thephysics going on.
contact itself on superconductivity, i.e., the order parameter Starting with the tunneling limit, the transmitted coher-
profile may be disregarded. This holds true if the contackence functions[‘yf‘ as given by Eq.(2) are expanded to
radius is taken much smaller than the superconducting cohefaading order in transparendy=|t|2. The expanded’, T are

ence length. Furthermqre, sp?n—neutral surface scat'terinﬁ1en put into the expression fF, Eq. (6), and to first order
alone does not affect an isotrogavave superconductor and in Tthe resulting current is given as follows:

thus bulk values of the coherence functions can be used
for the in-scattering ones in the boundary conditi@nh An © de

additional advantage of the point contact condition is that the  [(¢;0)=7], sin¢>J 1, K+(8.0)+K (&,0)]
results will not depend on the presence of nonmagnetic bulk o (10)
impurities as the current through the point contact depends

only on bulk coherence functions. On the other hand, thavhere K. (&,0)=[Q cos@/2)= ¢ sin(@/2)] 2 tanhE/2T)
point contact itself is fully described by its transmisst@nd ~ andj,=2ev;N;AZ2. In general the current is totally governed
degree of spin mixing®. The Josephson current through the by the bound states af =+ A cos@®/2) and their population
contact is calculated as a function of the phase differegice, at the given temperaturé. Notable is that for all values of
between two superconductors by the current formula 0, the current-phase relation is sinusoidal. Settthg O re-
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FIG. 3. Critical currents for different transparencie®1, 0.1, and®.99, left to right, and for a dense sampling of the spin-mixing angle,
O running from 0 tor in steps ofx/20. Thick lines are in intervals of/4 as a guide for the eye. All currents are scaled with the value of
the critical current aT =0 and® =0 for the current value dof. As is seen for all values of transparen@ythe junction may either be a “0”
or a “a” junction depending on the degree of spin mixing. In the low transparency limit afid=atr the zero-energy bound state gives rise
to a critical current~T ! as seen in the inset of the left most panel. At intermedgatine junction may switch between the “0” and the
* ar”-junction state with temperature. At larg@&rthis switching becomes more abrupt in temperature. Finally, in the high transparency limit

the switching between “0” and the #"-junction state is lost an® defines the junction state for all temperatures.

produces the usual Ambegaokar-Baratoff expres&loft neglected, and the bulk Green'’s functions are used in Egs.
O =, &, is a zero-energy bound state and give rise to &93) and (94) of MRS, the resulting Josephson current will
“ 7" junction with a critical current which increases as* simply have two contributions sig-®), one contribution
with decreasing temperature as shown in the inset in the lefor each spin band.
Fig. 3. A similar anomaly in the critical current occurs for ~ Moving away from the tunneling limit th& ~*-anomaly
d-wave superconductofd. The difference between the is cut off by the finite value ofZ. Instead, the switching
anomaly in the two types of superconductors is that forbetween “0” and “=” states happens in abrupt jumps in the
d-wave superconductors any concentration of bulk impuritiesritical current. This abruptness is spurious since the current-
will give a finite width of the zero energy bound states andphase relation has three zeros between O andnd the
reduce theél ~! anomaly. For ars-wave superconductor at a change of state from #” to “0” occurs without the current
point contact only inelastic scattering processes, phaséeing zero for every phase difference. Instead the junction
breaking impurities or, as shown below, a finifean give a  has two local minima in energy, at phase differerte 0
similar broadening and the anomaly is quite robust due t@nds. Right at the switching point the two states are degen-
long inelastic (phase-breaking scattering times, i.e., erate and the junction state can be tuned with temperature.
1/27ine), (phases<A. Going away from® =, e, moves to fi-  This is shown in the inset of the middle Fig. 3 which depicts
nite energy and the functiori§. (¢,0) acquire double pole the junction energy vs phase difference for a junction with
structure ate,. The two poles are slightly shifted and have 7=0.1 and ® =3x/4. As seen, between the two energy
slightly asymmetric magnitude in residues. Given that theminima there is a potential barrier. This barrier is at highest
residues also are of different sign, they contribute oppositelyat an intermediate phaseQp< = where the current through
to the critical current. The separation in energy of the poles ishe junction is zero. As temperature is swept over the switch-
dependent on the imaginary pa#t, of the energye+is. §  ing temperature, which for this junction is @t,~0.12T,
can loosely be interpreted as an inelastic scattering rate. Ahe energy minimum jumps fromp= 7 to ¢=0 as tempera-
T=0 andé— 0 it turns out that the ground state of the junc- ture is increased througfy,, and vice versa as the tempera-
tion is always a “0” junction except a® = 7. As tempera- ture is decreased througdh,,. The position in temperature
ture and/or thes is increased the region i showing a depends on the two junction paramet@rand®. For larger
“ r”-state junction increases. This is clearly demonstrated irtransparencies the values of tunable junctions are restricted
Fig. 3 where the critical current is plotted as function of to a decreasing range  just below® = /2.
temperature. For all but the two largest value®othe low- If the transparency is taken to unity the tunability of the
T critical current is positive. junction state with temperature vanishes. This is seen from
Sticking to the tunneling limit, the results derived herethe current-phase relation
can also be obtained using E¢83) and(94) of MRS. What
is crucial to note is that in order to find the bound state = de
contribution to the current the Green's functions must be the J(¢i®)=ioJ' [T (d:e,0)+ T (d:e,0)],
ones arrived at in Eq(6). This is taking into account the ol
spatial dependence of the Green’s function at the magnetic (1)
pinhole, i.e., solving the impenetrable wall problem with the

S matrix describing the pinhole. If this spatial dependence iswith
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Sin(¢+ ) e APPENDIX: QUASICLASSICAL THEORY
J+(¢;e,0)= n"( )

T 7 A2 o ann o=
[V —e"+ A% cogd=0)] 2T Calculations presented in this paper are done within the
quasiclassical approximation which is a generalization of the
The current is now controlled by interface states located ak@ndau Fermi-liquid theory to include superconduncting
e,=+ A cog(¢+0)/2], i.e., at a position given by the phase and §up_erf|uib9 p-h.eno.mena. Quasiclassi-cal theory is an ex-
& but shifted by+ @ for the two spin bands as compared to Pansion in quantities lik&/T; or 1/£k¢, which are usually of

the spin-neutral case. This shows up in the fact tha®at order ~10"*~10"* in conventional supercondgctaors. | use
—0 the usual Kulik-Omelyanchuk(KO) formula is the quasiclassical theory for prwave superfluid*He as

recovered and at finite®, Eq. (11) is a sum of two KO worked out by Serene and Raiketogether with the real-
supercurrents evaluated i;.t phases shifted-I6y. For spin- metal_—orlented weak-coupling _theory .Of _AIexanMraI.zo to
mixing angles® < /2 the junction is in the “0” state and at des_cnbe the_ superc_onductor In proximity to a magnetl(_:ally
®>m/2 in the “=" state. At ©=/2 the junction state is active material. In this appendix a brief review, or collection,

degenerate for every temperature as the current-phase refg-tohﬁrbslig?t'i';g blgﬁ] lﬁso,]:h%ugﬁg%ﬁ'c:: ?euo;%gc;ﬁ given.
tion has doubled periodicity. gp gereq

iv-Veg+[ems—3,9]=0 (A1)

V. DISCUSSION for the 4x4 matrix propagatog(ps,R;e). Herev; is the

In this paper a general solution is derived for the equilib-F€Mi Velocity,py is a point on the Fermi surface, The ex-

rium part of the Zaitsev-Millis-Rainer-Sauls boundary con-Pplicit 2X2-matrix structure ofg reflects particle-hole
dition describing spin-active interfaces. This solution is the(Nambu space. The spin degree of freedom is in the param-
main result of the paper and will be an important part inetrization into spin scalars,g(p,R;e), 9(ps,R;e),
further studies of hybrid superconductéeirojmagnetic sys-  f(p, R:e), F(p;,R;e), and spin vectors, g(ps,R;e),
temg. As an appllcatlon, thg effects of a maAgnetlcglly aCt'V%(pf Rg), f(p.Re), T(pr,Ris) as

barrier, as described by a simple two-param&teratrix, are
studied. In particular, it is shown that spin mixing brings
about Andreev bound states within the superconducting gap
A. The energy of these states is sensitive to the amount of
spin-mixing imposed by the scattering off the interface.In addition to Eq.(Al) the propagator obeys the normaliza-
Comparing with the DOS calculated here and those obtaineglyy conditiong?(p; ,R; ) = — 2. There is some redundancy
in the tunneling experiments of Stageberigal” it is plau- in the parametrization of EqA2) which gives the following
sible to conclude that the spin-mixing angle is not that largesymmetries?

but rather in the rangd|=< m/4 for the materials studied in

the experiment.None the less, it is important to note that the X(pr ,Rie)=x(—pf,R;—&*)*, (A3)
shift seen in the tunneling conductance may be dependent _ _

on, and described by, the tunneling barrier propettiasd ~ wherex (x) is one of the spin componengs,; or f .z (9.
thus not directly dependent of the exchange field in the feror?aﬁ) of the Green'’s function. Matsubara propagators are
romagnet probet?® On account of the Josephson coupling obtained by[e—is,=i#T(2n+1)], retarded propagators
through a magnetically active interface, a small valu®of by (¢—e+i6), and advanced propagators by—e—id).
would imply that “7” junctions are hard to realize at leastin  Analogous symmetry relations hold for the self-energies.
large junctions. To obtain a#” junction it is shown that® The self-energys. in Eq. (A1) contains impurity contri-

must exceedr/2 for any range of transparency. On the otherytions, the Fermi-liquid mean fields and the order parameter
hand, new experiments are in the making like the magnetic

Cobalt grains studied by Gumn et al*® These small mag- 3P R:8)=3:(Pr,Rie)+3m(Pr,R) + AP ,R).
netic systems may well prove to offer magnetic scattering (Ad)
where a large® ~ 7 is realized. As an example, using STM h if. ist i for the i it if
techniques, as those performed on the Au point contacts ik e_se COﬂS.IS engy equa |9rls or the |r_npur|_y Sell energy
Ref. 34, on small magnetic grains and with superconductingi 9iven one impurity potentiali; and one impurity concen-
electrodes, the Josephson physics described in this pap&ftionn;Is
could be probed.

~ g+g-o (f+f-o)io,
o= - - . A2
ioy)(f—f-0) 0y(9—g-0)0,

Si(pr,Rre)=niti(pr.pr Rie), (A5)
with the quasiclassical matrix equation
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will be a sum over the different impurity contributions, each . A .

with its own density and its owil matrix. It is important to A(pr R =T 2 (Vi(pr.p V(P ,Rign))s, . (AB)

bare in mind tha,; is in general not diagonal in particle- o

hole space. The self energy,, contains the Fermi-liquid

mean-field self energies. It is diagonal in particle-hole space The set of equations written above, the Ellenberger equa-

and divided into a symmetricX(y,) and an antisymmetric jon for g and the equations for the self-energiesmust be

(Zm) part as solved self-consistently by iteration together with the appro-
A o A priate boundary conditions imposed on the propagator. With

S (P R=T X (A%(pr,pe")9(ps " Rien))p, s g(ps,R;e) determined, physical quantities like the current
“n density may be computed

(P RI=T 2 (AYBr B AP Rign)s - (A7)

o , . _ J(RI=2eNT X (ve(p)a(Pr . Rien))s-  (A9)
The Fermi-liquid interactiona®®(p; ,p;’) are parametrized €n
by the Fermi-liquid parameterd® and A® which are phe-

nomenological parameters determined from expenments_l_he local density of states resolved for a givenand a
The order parametek is split into singletA and tripletA y given

) ) s P given spin directiore is calculated at real energies as
parts by the singlet and triplet pairing interactidfigp; ,p;’)
andVi(ps,p’), and is calculated as

. N . .
Ne(Pr Rie®) = — —Im[g(pr Rie™) +e-g(Pr Rie®) 1.

AP RI=T 2 (Va(pr i ) (P Rien) i A0
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