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Critical properties of projected SO(5) models at finite temperatures
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We consider the projected $8&) bosonic model introduced in order to connect the®&heory of highT
superconductivity with the physics of the Mott-insulating gap, and derive the corresponding effective func-
tional describing low-energy degrees of freedom. At the antiferromagnetic-superconducting transit®n, SO
symmetry-breaking effects due to the gap are purely quantum mechanical and become irrelevant in the neigh-
borhood of a possible finite-temperature multicritical point separating the normal from the antiferromagnetic
and the superconducting phases. A difference in the magnon and hole-pair mobility always takes the system
away from the S(B)-symmetric fixed point towards a region of instability, and the phase transition between
the normal and the two ordered phases becomes first order before merging into the antiferromagnetic-
superconducting line. Quantum fluctuations at intermediate temperatures, while introducing symmetry-
breaking terms in the case of equal mobilities, tend to cancel the symmetry-breaking effects in the case of
different mobilities.

[. INTRODUCTION tum fluctuations are taken into accodfit.In another

papert>'®it was shown that the projection is crucial in order
The S@5) theory of highT, superconductivit* has  to correctly relate thel-wave superconducting gap at finite
been introduced as a concept to unify antiferromagnetisroPINg with thed-wave modulation %fthe AF gap observed
(AF) and d-wave superconductivitySCO) under a common &t Ihalf filling by ARPEhS e_xp:anmen : i |
symmetry principle. In order to study the physical conse—e ZC‘? g&g)osscfﬁrﬁeg ytsécgesgSt?-rg{| OT)?OV&’S# b 'nsgeggla
quences, and to make predictions to compare with exper P 0) Symmetry xplicity Yy Sev
. . terms. This is certainly the case for the Hubbard model, for

ments, several exact $8)-symmetric models with small

svmmetrv-breaking terms have been proposed and inves example. However, it often occurs in nature that a symmetry,
y y Ing v prop INVESWihich is broken on the microscopic level, is then restored in

gated in detait”’ However, a shortcomlng .Of these models, ,q long-wavelength limit. Concerning $8), this has been
and of anexact SOS) theory in general is that they are ghown to happen for quite generic ladder systems of the
inconsistent with the antiferromagnetic gap at half filling, y,pbard typeefm Recently, Murakami and Nagaosa argued
one of the most important features of the hiGheuprates:®  that the bicritical point of the AF to SC transition in the
This can be understood by the fact that anS@ansforma-  organic superconductot-(BEDT-TTF),X [Bis(ethylenedi-
tion “rotates” spin into charge and thus a requirement for anthjo)tetrathiafulvaleng with X=Cu N(CN),]Cl, shows
exactly S@5)-invariant system would be to have the sameS(Q(5) critical exponents® In fact, one of the scenarios sug-
charge and spin gap. This is in contradiction with the experigested by Zhar%is that there might be a direct first-order
mental situation in the high; materials, where a large AF-to-SC transition terminating at a finite-temperature bi-
charge gap of some eV is present in the AF state at hal€ritical point, where the S®B) symmetry is asymptotically
filling, while spin-wave excitations are ungapped. The intro-restored at long wavelengthhese ideas are very interest-
duction of asmallsymmetry-breaking terrh>®%while on  ing from an experimental point of view, and open the possi-
the one hand correctly selecting the AF state at half fillingbility of an explicit test of S((B)gsyn_qmetry, via a direct
and shifting the AF-SC transition to finite doping, does not ‘measurement of the number 5 This could be done, as
introduce a charge gap of the correct order of magnitude. I§uggested in Ref. 18, by measuring the critical exponents of
contrast, in a weakly coupled Hubbard ladder model, a spiﬁhe AF-to-SC transition, which, given the spatial dimension-

and a charge gap of the same size are present and, in fact3jty, should only depend on the number of componenoé
has been shown that $8 symmetry is dynamically re- the order parameter. On the other hand, it is well known that
stored at half filling?13 for n>n.~4, the S@5) symmetric fixed point is unstable

In order to cure this problem at strong coupling as well, atowards a so-called biconical fixed poffitHowever, since

. =5 is close to,, it turns out that the stable biconical fixed
class of S@) models—"projected” S@5) models—has n= c o
been introduced where the Mott-Hubbard gap is taken int(g)Olnt only breaks the symmetry by about 20%.

account by means of a Gutzwiller proiection. whereby dou- However, the situation of the high; materials is quite
unt by utzwiller projection, whereéby doU-ygjicate  As discussed above, the Mott-Hubbard gap plays an
bly occupied states are projected btitn that paper, it was

; . important role, and it producessaibstantialbreaking of the
shown that, despite the symmetry-breaking effects of th%O(S) symmetry. In Ref. 14, it was shown that in the ex-

projection, static correlation functions remain exactly(SO  treme case of a Gutzwiller projection, a degree of freedom is
symmetric within a mean-field approximation. This is due t0g|iminated completely and the real and imaginary part of the
the fact that, negleCUnQ dynam|C effeCtS, the Hamiltonian |qoca| superconducting parameter become Conjugate Vari_
manifestly S@5) invariant. However, dynamic effects break- aples. Therefore it is not clear whether suctprajected
ing the S@5) symmetry become important whenever quan-SQ(5) symmetry can become asymptotically complete
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SO(5) symmetry in the neighborhood of some critical point. over. A boldface sign indicates the vector as a whole. Here,

In this paper, we show why symmetry-breaking effectsA _ is the energy required to produce a magnon excitation,
dug to the projection are asymptotlcallly |rreI.evant n thei.e., to replace a singlet with a triplet in a block, Wth_Q is
neighborhood of a finite-temperature critical point. However, energy required in order to produce a particle or hole

two kinds of symmetry-breaking effects tend to prevent . . — .
SQ(5) symmetry from being restored asymptotically. One isP2" It is clear thatA is of the order of the Mott-Hubbard

related with the different mobilities of hole pairs and mag-9ap and thus\:>Ag. On the other hand]s andJ. describe
nons (p# 1 below, and the second one is due to the renor-the hybridization of these excitations between nearest-
malization effects from quantum fluctuation at an intermedi-neighbor sites and are related to their mobility. The Hamil-
ate length scale. The common tendency of these effects is #@nian Eq.(1) acts on a “vacuum”[Q), which is a kind of
draw the system into a region of instability, where the two"‘RVB” state consisting of a product state of half filled sin-
AF/normal (N) and SCN transitions become first order be- glet states|Q(x)) in each block. On the other hand, the
fore merging at the AF/S®! triple point?®!8 However, fivefold states}(x)|(x)) describe the triplet magnon states
when the first effect is large, quantum fluctuations tend tdfor a=2,3,4), and thed-wave hole and particle pair states
take the system back to the &) point. on a block @=1,5) % More specifically, one can define the
This paper is organized as follows: In Sec. Il we startcharge eigenoperatotg andt, as
from the projected S®)-symmetric modelallowing for a
symmetry-breaking termy in the mobilitie3, and treat it by 1
a slave-boson functional-integral approach in order to deal tFﬁ(tth) tSZﬁ(th_tp)y 2
with the hard-core constraint. The important result is that at

the AF-SC transition, thelassicalpart of the action of the wheretﬁ is the creation operator for a hole pair a@ds the
projectedmodel preserves its 36) structure aty=1, de-  reation operator for a particle pair. In Eq), the N, play
spite the symmetry-breaking terms arising from the projecyne (gl of “displacement” coordinates of local harmonic
tion. These terms only appear in tigiantum-mechanical oscillators, while we will denote witlp, the conjugate mo-

(ie., time derivativg part of the action. This fact gives @ onta and we have the transformation to canonical vari-
rigorous justification for the much used semiclassical de‘ables-

scription of the high¥, materials via a S®)-symmetric
modef1%!! despite of the presence of the large Hubbard 1
gap. In Sec. lll, we derive the associate effective Ginzburg- - i

; : : ta=—=(Natipa). 3
Landau model by integrating out the momenta conjugate to NA
the AF superspin variabléd We study the properties of such o o ]
model in the neighborhood of the AF/SCkriple point and Due to their microscopic origin these bosonic states are hard-
discuss the possibility of SG) symmetry restoring at long €ore boso'ns, in the sense that at most one boson can res[de
wavelengths. on each site. Mathematically, this is expressed by the condi-

In Sec. IV, we evaluate the corrections to the effectivellon

classical action due to the so far neglected quantum fluctua-
tions. For small temperatures, these mainly affect the 0t (x)<1 4
magnon-magnon scattering, thus breaking th¢556€ymme- Ea a(Wt0)=1. @

try. Finally, in Sec. V we draw our conclusions. Some details ) o )

potential w, which couples to the Hamiltonian via a term

Il. MODEL

_ T st
We start from the effective bosonic model introduced in Hu 2’“; [tp(x)tp(x) OOt ®

Refs. 23 and 14, which describes low-enelmpsonicexci-

tations of “blocks,” (also referred to as “siteg’labeled by  In the presence of this chemical potential term, the gap en-
the coordinatex, consisting of a rung in a one-dimensional ergy of the hole and particle pairs becomg+2u andA.

(1D) ladder or of a Z 2 plaquette in a 2D system. —2u, respectively. A(negative chemical potential of the

order of the charge gaf./2 is needed to induce an AF-SC
transition in this system. Near such a transition point, the gap
energy of the hole paiA.+2u can be comparable to the
(local) spin gapAg, while the gap towards a particle pair
—J. > n ()N, (x')—J. 2 n(x)ni(x’). (1)  excitation is pushed up and becomes of the order of twice the
(xx") (xx") charge gap. Since this is a very large energy scale, we can

. . . i safely project this excitation out of the spectrum in the low-
In this paper, we shall use similar conventions as in Ref. 14

- Y > energy limit, by requiring that the condition
where the indices,b, ... are the S() superspin indices
and take the values 1,2,3,4(f some cases, they might also t,(X)|¥)=0 (6)
include the “hole” indexh), «,8, ...=2,3,4 (correspond- P
ing tox,y,z) denote the spin indices amd =1,5 denote the is fulfilled at every sitex. The new Hamiltonian takes the
charge indices, and repeated indices are implicitly summetbrm

H=A> th0t, () +A.> tH0ti(x)
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_ _ erages, so that ground-state or finite-temperature averages
H=As2 th0t(x) +(Ag+2u) are generally expected to break the symmetry when the full
oo quantum problem is taken into account.
In order to understand the nature of the symmetry-

X2 0t () —=Jds 2 N ()N, (X") breaking terms, it is convenient to go over to a functional-
X (xx)x integral representation of the partition function for the
_ Hamiltonian Eq.(7). The hard-core constraints can be con-
—Jd2 2 [th0t(x") +H.c]. (1) veniently taken care of by means of a slave-boson
(xx") representatiof; where the boson operata(x) labeling

In Ref. 14 it was shown that the constraint E6). can be ~ "€mpty” sites is introduced. The detailed procedure is
enforced by introducing canonical commutation rules be_ShOWn n Appendlx A. After this transformation, the action

tween the two variables; andns, i.e., takes the form

[n;,ng]=i/2, 8 S=Som+ScL, (12)
and therefore we can identify2n, with the “hole displace-

ment” n,, and \2ns with its conjugate momenturp,,. The ~ Where
SQ(5) structure of the Hamiltonian becomes now clear if one
introduces the superspin vector

B .
SQM=JO drg {—ipa(x,r)ma(x,r)

Mg= (77N ,N2,N3,Ng, 7Ph), )
where, for convenience, we have absorbed the different mo- i .
bility for hole pairs and magnong= /J./2J, into the defi- - ?m5(x,r)m1(x,r)
nition of the superspin. Carrying out the transformation to

canonical variables Eq3), the Hamiltonian Eq.(7) now
takes the simple form

(13

(m, indicates the time derivative aifi,), has the well-known

form pq of the Feynman path integral, theoming from the
A A A imaginary-time representation. Moreover,
H=7 2 pu(0*+ 5 X my(0%+ 5 X my(x)?

X

A A
Scu= f:df(fg P, 5 2 my(x,7)

—33 my(0my(x'), (10
()
where we have further redefined + % 2 m(x,n)?=3 X e(X,7)My(X,7)
B X (xx")
A= N XL andd=T. @D
7 Xe(x’,r)ma(X',T)) , (14

The anisotropy in superspin space duejteeflects now into
the constraint, as we will see in E(L6) below. If one for-  \yhere we have to replace
gets for a moment the connection between coordinatgs
and their conjugate momenta, the Hamiltonian Ed) be-

comes exactly S@) invariant under rotation of the super- _ \/1_ Pa(X,7)? _ma(X.T)Z B mi(X,7)?
spin Eq.(9) at the AF-SC transition poimkg=A., which is e(x,7)= 2 2 272
reached by changing the chemical potenyjal_i.e.,_at the (15)

AF-SC transition. If one further hag=1, i.e., 21;=J., the

constraint is invariant as well, and one apparently has a conwhich implicitly includes the condition
plete S@5) symmetric model(cf. Ref. 14. More specifi-
cally, one would like to S(») “rotate” just the m, coordi-
nates, leaving the conjugate coordinates to the magnon part
p, unrotated. This is possible, for example, in a classical 2 2 279?
ensemble, where, due to Liouville’'s theorem, expectation

values are evaluated with the measuné;dp;dg; and where we have already carried out the transformation to
X exp—H[p;,q], and rotations of the; only leaves it invari- canonical coordinates, E¢B), for the corresponding fieldS.

ant. Of course, this does not hold for dynamics, which isEquation(14) is the correct classical limit of projected i.e.,
affected by the relation between the two “superconducting”of the physical SO5) model. Notice that the effects of the
canonically conjugate componenmts / » andmg/ 7, and be-  hard-core constraint is to introduce a renormalization of the
tween the AF components,, and their conjugate momenta boson hopping, and to bound the superspin magnitude, with-
p,, . Thus S@5) symmetry is broken in dynamics, as pointed out, however, fixing its lengtf Thus the requirement that
out in Ref. 14. Unfortunately, the relation between conjugatéhe superspin magnitude be unity should not be taken as a
variables is also important in quantum-mechanataticav-  rigorous constraint of the S6) theory, at least not of the

P.(X,7)% my(x,7)? mi(x,7)2$l1 (16)




PRB 62 CRITICAL PROPERTIES OF PROJECTED $9). . . 11773

projected ondwhich is the physical oneOn the other hand, peratures smaller than the singlet-triplet splitting, one
one expects that in the homogeneous ordered phase this caran restrict to a Gaussian integration of the momenta, i.e.,
straint might be a good assumption. A similar result has beeponsider only quadratic terms im,. Carrying out such an
shown by Wegnet/ namely, that the orthogonality con- expansion, one obtains

straint in the exact SG) model is not a rigorous constraint,

but it is favored at high temperature, as it maximizes the ScL=Spmt St O(P3), (18
entropy. where, leaving ther dependence implicit

Equation (12) clearly identifies the S@®)-symmetry ' g P P
breaking terms. The classical acti®@, is exactly SO(5) T [Ag , A )
invariant at the AF-SC transitionA(=A.) and for =1, =f d7| = > my(x)2+ > > mi(x)
while apparently incurable symmetry-breaking terms come 0 X *

from the time-derivative terms iSqy . More specifically,
with these values of the parameters, if one carries out an —J32 r(x)mu00r(x )ymy(x’) |, (19
(

SQO(5) rotation within the superspin vector, E@®), Sc, re- xx')

mains invariant, whileéSq), is changed. If quantum fluctua- A

tions are neglected, one can choose time-independent fields T As 2

and set Eq(13) to zero. In this case, any equilibrium expec- Spm= o dTEX: 2 AX)PEX)%, (20

tation value is exactly S@) invariant. More specifically, let )
us take a generic S6) rotation matrixR(n) = expin,[', pa-  Where we have defined

rametrized by the vectan [T, are the S@6) generatord, 23 my(x) &
and f[m(x),p(x)] is a function of the superspin vector = +_ma_x +d)r(x+d 21
m(x), and, possibly, op(x). Then, the classical expectation A=1 Ag 4r(x) % mcrdricrd). 2

values(---)c, have the property

2 2
(Hm(x),p00 o= (FIR-MO),p(X) Der,  (17) (0= \/1_ Mo MOT, 22

which is the requirement of S6)invariance. Notice that the 27
p, should not be rotated, while in an exact(GDmodel they — and the sunEj" extends over nearest-neighbor sites.
should. It is now convenient to reabsorb time-dependent coeffi-

The question is: when is it justified to neglect the timecient.A(x) of the p? term into the definition of the momenta
dependence of the fields? This is allowed at moderately high. This is done in order to avoid the appearance of terms
temperatures, more precisely, at temperatures much largelepending on the amplitude of the imaginary-time slice in
thanv/¢ (in units ofkg=A=1), where¢ is the correlation the effective action. Furthermore, in order to avoid a
length andv is a typical velocity, in our case equal i@, a m-dependent Jacobian due to the transformation, it is conve-
being the lattice spacing. This means that neglecligg is  nient to transform then coordinates in such a way that the
exactly justifiedvhen & becomes infinite, i.e., in the neigh- Jacobian remains unity. The general procedure is illustrated
borhood of a finite-temperature critical point, as a possiblén Appendix B. Up to second order im?, the newm’ co-
(finite temperature multicritical point at which the ARN ordinates are related with the old ones via
and the SQN transition lines merge into a first-order lihe.
Moreover, this critical point is indeed a good candidate for a
possible asymptotic restoring of tkempleteSO(5) symme-
try even in the presence, microscopically, ofpeojected _ _ ) . ,
SO(5) symmetry. This is very important as it would mean After this transformation, the integration of thp,(x)
that the large-energy symmetry-breaking effect of the Mott-=Pa(X) V.A(X) only affectsSqy, and one obtains a new
insulator gap would be exactly compensated at this critica@M action in the form
point. This is analogous to the well-known situation for the

_ ’ 3J ’ 2
m,(X) =m(X) 1+7TAS|m(X)| ) (23

antiferromagnetic spin-flop transitibf2%2°34here a sys- , B m [ :

_ JNe . Som= [ d7| dX| 55— — < Ms(X)my(X) |,
tem with uniaxial anisotropy restores &psymmetry at the Q o 20A(X) 52
bicritical point. However, there are some important differ- (24)

ences with respect to the spin-flop transition, as we will show ) )

in the next sections. Moreover, notice that due to the symWhere the transformation E3) ShOU“g be inserted, and we
metry breaking term, Eq13), it is unlikely that S@5) sym- have_ absorbed the l_mlt 2c:eII V0|L21r?l}€'=a in the definition of
metry can be restored if the AF-SC transition is controlled bythe fields by renamingnz/V—ms.

a quantum-critical point. Since we are interested in finite- Thus the total effective S@) action restricted to the su-
temperature critical points, we will restrict to the case ofPerspin variables is given by Eq19) plus Eq.(24). The

three spatial dimensiors. transformation Eq(23) must still be carried out on thm
variables, but, due to the fact that the coefficiedf7d; is
IIl. EFFECTIVE GINZBURG-LANDAU ACTION small at the transition, this does not change the result signifi-

cantly. On the other hand, it is important to take into account
In this section, we study the action E@.0) in more de- the effects of the hard-core constraint, which introduces the
tail. We first integrate out the momenfg, and obtain an transformation Eq(22), and, implicitly, the restriction of the
effective action restricted to the superspin variables. For temsuperspin within a five-dimensional hypersphése a ellip-
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soid, if 7#1).2° Thus S, [Eq. (19)] gives an effective clas- point turns out to be the stable one forn,~4—0(e).
sical functional microscopically derived from an &P This means that, in general, the model E2f), which has
model?? where the physics of the Mott insulating gap hasn=5, is expected to flow to this latter fixed point and not to
been properly taken into account via the projection. This ighe S@5)-symmetric one forug#u.#u.s. On the other
the appropriate functional which should be usedgbysical  hand, sincen=5 is not very far away froom., the stable
predictions of the S®) theory, consistent with the gap. biconical fixed point is approximately $8) invariant with
Close to the phase transitions, it is more convenient taymmetry-breaking terms of the order of 20%. Moreover,
derive a Ginzburg-Landau form for the action, obtained, ashere is a plane in thag,u.,u.s Space, given by the condi-
usual, by expanding in powers of the fietd and keeping  tion u?,=u.us, from which the system flows to the $&)
only lowest-order gradient terms. After inserting E@3)  point?>*® This is due to the fact that a scale transformation
and dropping the prime indices in the fields we obtain of, say, the SC Componenmfﬂmfus/uc of the order pa-
rameter would yield again an $8)-symmetric interaction of
S = fﬁde dx r—sma(x)2+r—°mi(x)2+£[€ma(x)]2 the form ulm|*. The asymmetry would then be transfered
0 2 2 2 into different susceptibilitiep,, p. for the AF and for the SC
order parameters. However, it has been shown in Refs. 33,29

Us 2 ? U 2 ? that the different in the susceptibilities is an irrelevant pa-
+ = m, (X += m; (X
8 % a(X) 8 Z 0 rameter.
In our case, we have
u
2 ma<x>2) Y mi<x>2) , (25) U2
‘ Auzzuﬁs—ucus=( °2 S) =0 (28)

which means that the §6) symmetric fixed point is never
_DJ)' reached, except when the equal sign holds, i.e., wiprl
(at the transitiorrs=r;). On the other hand, we expect on

) physical grounds the mobility of the hole pairs to be smaller
Ji than that of the magnons, and thysto be smaller than 1.
2’ Unfortunately, for the case E¢R8), the couplings flow away
into a region of instability. The common interpretation is that
3rg the AF/NN and SCN transitions become first order as well
_) (26) (fluctuation-induced first-order transitipnat least close
enough to the AF/S®O triple point?%-18
D 3r, ) This fact seems in contrast with the apparent observation

of bicritical behavior with S@b) critical exponents in the
organic superconductar-(BEDT-TTF),X (see Refs. 34 and
35), by Murakami and Nagaos&>® There may be several
_ UgtUs ways to understand this. One possibility is that other effects
Ues™ 2 not considered here, such as, e.g., Coulomb interactions, fer-
_ mionic excitations;’ or quantum effects, as discussed in Sec.
where we have considered the fact ffiat IV, counterbalance this effect and draw the system back to
. the domain of attraction of the biconical fixed point. As dis-
cussed above, the differences between thés55@nd the
V; m(x)% mOx-+d) biconical fixed point are only about 20%, so that they might
. o ble not oll:()jservablehexpg;antally. Altelr(;]ativ?jly, sig(c? the
flow would cross the S®) plane, it could produce S8
) EX: zd: {mO0)?+m(x+d)?=[m(x) —m(x+d)]? exponents at intermediate length scales. On the other hand,
Hu and co-worker¥ 8 observe a coexistence region of AF
- and SC for the S(®)-anisotropic case, which could be pos-
~2D f dxm(x)?~a? f A Vm(x) T2, (@D sibly identified with the biconical phase. Their result could
be due to the fact that they consider a differefixis anisot-

The critical properties of the model E(R5) have been ropy (y in Ref. 39, for the AF and for the SC variables.
analyzed in several work8:28:3031.29.32.145 hhase diagram
is determined by two relevant parameters, the first nne
—r.xAg— A, controls the transition between the AF and the
SC phases, while the othermin(rg,ro) controls the second- Even when considering a classicali.e., finite-
order transition between the appropriate ordeg®d or SO temperaturg critical point, the quantum-mechanical
and the disordered phase. At the transition poiatr.~0, symmetry-breaking term$gy although irrelevant in the
there are two competing fixed points controlling therenormalization-groupRG) sense, contribute to the RG flow
transition?° the Heisenberg bicritical fixed poifin this spe-  up to a certain length scale of the orderudfT. SinceSgp
cific case, the S®) fixed poini, and the biconical tetracriti- breaks the S&) symmetry, it is expected, during this initial
cal fixed point. According to the expansion, the latter fixed renormalization process, to introduce symmetry-breaking

IV. QUANTUM CORRECTIONS
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terms inS¢| . Therefore, even whe8;, is SO5) symmetric  We will, thus, restrict to evaluation of these corrections.
at the microscopic scale, the renormaliZgg at the scale These are given by the sum of the usual “loop” diagrams,
£~vlT will probably break the symmetry. In this section, we Which give
evaluate these symmetry-breaking terms originating from 1
i i 2

ﬁgféé or, more precisely, from the time dependence of the sy, = — > 2 UacUchl cc— 2Uap) ab— Uab(l aalaat I bbUpb),

In order to evaluate these effects, we separate the fields (33
into their static and dynamic parts, and integrate out the latwhere the integrals,,, are given by
ter. Since we are working at finite temperature, we have to
integrate out the components of the fields with Matsubara
frequenciesv,=27nT with n# 0. In order to obtain an ana- lap= i G(K)aaG(—K)pp- (34)
lytic expression for these corrections, we restrict to one-loop ko0 o
contributions and take just the leading low-temperaturdn EGs.(33) and(34), we have neglected contributions from
terms. nondiagonal parts of Green'’s functions E8R), as they only

We first diagonalize the noninteractiiguadratig part of ~ 9iVe finite contributions to integrals of the form E4) in
the action Eq(24) plus Eq.(25) by Fourier transform. We the low-temperature limit. The same holds for integrals con-

. . taining at least one Green'’s function of the superconducting
can neglect the corrections 8y due to the transformation o\ 15% (31) This is due to the fact that for these fields the
to the primed variables Eq23), as it introduces irrelevant

- o ) ' (bare dynamical critical exponefft*!zis equal to 2, and it
quartic time-derivative terms. In Fourier space, the actionyjas not produce divergencesin=3. This in turn occurs

takes the usual form because the two components of the SC order parameter are
canonically conjugate, while the AF ones have independent

, , 1 _ massive ones. Therefore we will consider only the divergent
SQM+ SCLZE $ Ma(—K)[G(k) l]abmb( k) contribution
k
1 PP \/A\SI Apas (39
=l.=— —In ,
b E Mk my(ka) gy =T g2 N o 2w
kaka ks where we have assumed that we lie outside of the region of
X mp(Kz)mp(—k;— Kk, —K3), (29)  influence of the quantum critical fixed point, i.eTl
_ ) > rysAs. Replacing Eq(35) in Eq. (33), we obtain for the
where we have introduced the shorthand notakier(k, ), leading contributions
and ¥,=(1/B)= S [d3k/(27)3], with A~1/a a short- L
distance cutoff fok. In Eq.(29), the nonzero elements of the Ous=— % Ugls,
(noninteracting Green’s functions read -
duc=— 5 Uugds, (36)
LY __s
G(K)p=——5" (30 Blics= = § Uslicsls.
ret —+pk? As expected, quantum fluctuations draw the system away
As from the S@5)-invariant point even in the case wherg
=1. This can be seen by adding these corrections to an ini-
pk2+r, tially SO(5)-invariant system withu,=ug=u.c=u. At the

G(k)11=G(K)s5= (31 lowest order in theu,, the renormalized parametets,

21
. = .
(pk2+l‘c)2+—4 =u,+ du, obey the relation
Au'?=ulZ-ulu.=21u°>0, (37)
and i.e., asin the case oj+# 1, Eq.(28), the system is drawn into
the instability region where a fluctuation-induced first-order
o transition is expected. This indicates that quantum fluctua-
- tions and anisotropy;# 1 cooperate in the same direction
K = k), = U and draw the system into the instability region, where no
G(k)51=—G(K)1 5= 2’ (32 finite fixed point is expected. However, for the case where
(pk?+r.)%+ — theu, are different, one obtains
AU2— AUP= — = (TUZ— 1luuy)| (39
and the interaction parameters argz=us, U; j=Uc, and 2 cs crs/is:

Uj o= Ucs-

At one loop, integration of the+ 0 fields only changes Further inserting the values of thg, from Ed.(26) with »

the parameters, and u, similarly to conventional field l;)&e{:()(:nvgsﬁ)rie%gt?\i\/?sni;he J:'p;i Eg(lmsvztrh"))'( qu %%
theory. In theT—0 limit, the change of the former is finite, 1 0 efore, for large difference in the mcobilitieﬁcquantum
and merely shifts the transition point. On the other hand, theycyations tend to shift the renormalized parameters back

changesdu,,, in the interaction parameters,, grow loga-  towards the domain of attraction of the biconical and of the
rithmically with decreasing temperature at the critical point.so(5) fixed point.
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V. CONCLUSIONS with the action

In conclusion, we have analyzed the properties of a pro- P
jected S@5) model which takes into account the high-energy s’ = f dr{ 2
physics of the Mott-insulating gap. As already pointed out in 0 x

th(x 7)(i+i)\(x)>t (X,7)+tl(x,7)
@\ or at™ '

Ref. 14, the chemical potential can always be shifted to the

AF-SC transition point in order to cancel the symmetry- X i+i)\(x) th(x,7)+ef(x,7) iﬂ)\(x))
breaking terms produced by the gap in the classical part of Jr ar

the action. On the other hand, symmetry-breaking terms due

to the projection show up in the quantum-mechanical part of Xe(x,7)—iN(X) |+ H(r)], (A4)
the action, as a conjugacy relation between the superconduct-

ing components of the superspin vector. A further source of : : ; :
symmetry breaking is due to the different mobility of the whereH(7) is obtained by replacing E¢A2) in Eq. (7) and

hole pairs and of the magnons parametrize 1. by replacing all bosonic operators with the corresponding

. _— fields at the imaginary time (since the Hamiltonian is al-
Close to the AF/SQM finite-temperature multicritical ginary time (

. o . ready normal ordergdIn principle, one should take a dis-
point, the quantum effects due to the projection are irrel- y 9 P P

. ) .~ cretization of the time variable and consider the continuum
evant, although subleading symmetry-breaking correction

appear at intermediate length scales. When considered se ﬁé?it only at the end of the calculaticf™****Notice that the
rately, these symmetry-breaking effects both draw the R egration ofh would not give a constraint like EgAL) for

flow into a region of instability with first-order transitions he bosonic fields at all imaginary times. Nevertheless, one
and no S@6) symmetry. On the other hand, for strong can proceed in the usual way by carrying out the gauge trans-

. ) ) formation
anisotropiesy=<0.5, quantum corrections partly cancel the

symmetry-breaking effects. e(x,7)=e(x,7)e !>,
There are possibly other effects, such as Coulomb inter-
action, or fermionic excitations, which can possibly take the t(X,7) =t_(x el (A5)
system back into the domain of attraction of the biconical am am ’
fixed point, where S(®) symmetry is only broken by NX) =N (X, 7)— (X, 7),

~20%. Notice that, since the order parameter must be res-

caled in order to reach this fixed point, ttgossibly approxi-  wheree(x, ) =|e(x,7)|. In this way, we can restrict to real
mate SQ(5) symmetry reached at this critical pointrisnor-  yalues of the boson field and absorb the time dependence
malized in the sense of Ref. 12. This means, for exampleof jts phase into @now) time dependenk . Integration over
that the S@6) picture would be consistent with different ) (x ) now leads to the enforcement of the constraint via the

absolute magnitudes of the SC and AF gaps, as observeslfynction (for simplicity, we drop the bar everywhére
experimentally:

8 2+ 2+ ~-1] (A
ACKNOWLEDGMENTS [T otltatx D2+t n*re(xn?=1] - (A6)

~ We acknowledge many enlightening and pleasant discusat all imaginary times. Integration ove(x,7) allows one to
sions with S. C. Zhang. This work was partially supported byreplace it everywhere in the Hamiltonian, leading to the new
the DFG(HA 1537/17-1. action Eq.(12) with Eq. (14).

APPENDIX A: EXACT SLAVE-BOSON TREATMENT APPENDIX B: INTEGRATION OF THE MOMENTA

OF THE CONSTRAINT
) o The p-dependent part of the action has the general form
The hard-core constraint EGl) becomesafter projecting  [cf. Egs.(13) and (20)]

out the electron paijs
B
Q) =t ()t (x) +tI(th(x) +ef(x)e(x)—1=0. (A1) S,= fo drj dXAA[IM(X)[?]p,(X)2=ipL(X)B(X), (Bl

The “physical” bosonic operators are then obtained as usual . . . .
by theprélplacement P whereA is a function of the superspin’s magnitude squared

(for simplicity, we neglect gradient termsn order to absorb

ta(X)—ta(x)et(x) (A2) the coefficientA, we define new momentum variables
(includinga=h), so that the constraint is now conserved by P.(X) =P (X) VAL [M(x)|*]. (B2

the Hamiltonian. Within the functional integral, the con-
straint Eq. (A1) can be enforced as usual by adding a
“Lagrange multiplier” termiZ,\(x)Q(x) and integrating

over all X (x). The partition function can thus be written in
terms of an integral over bosonic fields m2(x) =my(x)g[|m(x)|?], (B3)

However, since we do not want to produce rasdependent
Jacobian, we carry out a similar transformation for the
variables as

whereg is chosen in order to have a Jacobian equal to 1.

_ T t T ’
Z_J Dt Dt Dty DtpDe Dedh exp—S', (A3) This requirement gives the differential equation
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wherer =|m|2. Upon restricting to the lowest order of Eq.

A(Im[%)¥g(|m|*)"=2[m|*g(Im[*)" g’ (Im[*)]=1, _
(21), A(r)=1+(J/2A)r +O(r?), we obtain

(B4)

n(=5) being the number of components of the superspin

The solution of this equation is

3J
g[|m<x>|2]~(1—m|m<x>|2), ®6)

LroT=3[ A S @9

and its inverse Eq23).

250ne should be aware of the fact that it is not completely correct to
take the continuum limit in the functional integral at the outset
(see Refs. 42—-44. Different procedures for taking this limit may
lead to a different value of the constraftite “1” in Eq. (16)],
which is thus not well defined in the continuum limit. However,
for low-energy properties we are interested in, the precise value
of the constraint is not important.

28Due to Eq.(15), the magnitude of the superspin, rather than being
constant, must be smaller than a constant.
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