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Critical properties of projected SO„5… models at finite temperatures

E. Arrigoni and W. Hanke
Institut für Theoretische Physik, Universita¨t Würzburg, D-97074 Wu¨rzburg, Germany

~Received 30 May 2000!

We consider the projected SO~5! bosonic model introduced in order to connect the SO~5! theory of high-Tc

superconductivity with the physics of the Mott-insulating gap, and derive the corresponding effective func-
tional describing low-energy degrees of freedom. At the antiferromagnetic-superconducting transition, SO~5!
symmetry-breaking effects due to the gap are purely quantum mechanical and become irrelevant in the neigh-
borhood of a possible finite-temperature multicritical point separating the normal from the antiferromagnetic
and the superconducting phases. A difference in the magnon and hole-pair mobility always takes the system
away from the SO~5!-symmetric fixed point towards a region of instability, and the phase transition between
the normal and the two ordered phases becomes first order before merging into the antiferromagnetic-
superconducting line. Quantum fluctuations at intermediate temperatures, while introducing symmetry-
breaking terms in the case of equal mobilities, tend to cancel the symmetry-breaking effects in the case of
different mobilities.
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I. INTRODUCTION

The SO~5! theory of high-Tc superconductivity1–4 has
been introduced as a concept to unify antiferromagnet
~AF! and d-wave superconductivity~SC! under a common
symmetry principle. In order to study the physical cons
quences, and to make predictions to compare with exp
ments, several exact SO~5!-symmetric models with smal
symmetry-breaking terms have been proposed and inv
gated in detail.5–7 However, a shortcoming of these mode
and of anexact SO~5! theory in general is that they ar
inconsistent with the antiferromagnetic gap at half fillin
one of the most important features of the high-Tc cuprates.8,9

This can be understood by the fact that an SO~5! transforma-
tion ‘‘rotates’’ spin into charge and thus a requirement for
exactly SO~5!-invariant system would be to have the sam
charge and spin gap. This is in contradiction with the exp
mental situation in the high-Tc materials, where a large
charge gap of some eV is present in the AF state at
filling, while spin-wave excitations are ungapped. The int
duction of asmallsymmetry-breaking term,1,5,6,10,11while on
the one hand correctly selecting the AF state at half fill
and shifting the AF-SC transition to finite doping, does n
introduce a charge gap of the correct order of magnitude
contrast, in a weakly coupled Hubbard ladder model, a s
and a charge gap of the same size are present and, in fa
has been shown that SO~5! symmetry is dynamically re-
stored at half filling.12,13

In order to cure this problem at strong coupling as wel
class of SO~5! models—‘‘projected’’ SO~5! models—has
been introduced where the Mott-Hubbard gap is taken
account by means of a Gutzwiller projection, whereby do
bly occupied states are projected out.14 In that paper, it was
shown that, despite the symmetry-breaking effects of
projection, static correlation functions remain exactly SO~5!
symmetric within a mean-field approximation. This is due
the fact that, neglecting dynamic effects, the Hamiltonian
manifestly SO~5! invariant. However, dynamic effects brea
ing the SO~5! symmetry become important whenever qua
PRB 620163-1829/2000/62~17!/11770~8!/$15.00
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tum fluctuations are taken into account.14 In another
paper,15,16 it was shown that the projection is crucial in ord
to correctly relate thed-wave superconducting gap at finit
doping with thed-wave modulation of the AF gap observe
at half filling by ARPES experiments.17

In a microscopic physical system, one would in gene
expect SO~5! symmetry to be explicitly broken by severa
terms. This is certainly the case for the Hubbard model,
example. However, it often occurs in nature that a symme
which is broken on the microscopic level, is then restored
the long-wavelength limit. Concerning SO~5!, this has been
shown to happen for quite generic ladder systems of
Hubbard type.12,13 Recently, Murakami and Nagaosa argu
that the bicritical point of the AF to SC transition in th
organic superconductork-(BEDT-TTF)2X @Bis~ethylenedi-
thio!tetrathiafulvalene# with X5Cu@N(CN)2#Cl, shows
SO~5! critical exponents.18 In fact, one of the scenarios sug
gested by Zhang1 is that there might be a direct first-orde
AF-to-SC transition terminating at a finite-temperature
critical point, where the SO~5! symmetry is asymptotically
restored at long wavelengths.1 These ideas are very interes
ing from an experimental point of view, and open the pos
bility of an explicit test of SO~5! symmetry, via a direct
‘‘measurement of the number 5.’’19 This could be done, as
suggested in Ref. 18, by measuring the critical exponent
the AF-to-SC transition, which, given the spatial dimensio
ality, should only depend on the number of componentsn of
the order parameter. On the other hand, it is well known t
for n.nc'4, the SO~5! symmetric fixed point is unstable
towards a so-called biconical fixed point.20 However, since
n55 is close tonc , it turns out that the stable biconical fixe
point only breaks the symmetry by about 20%.

However, the situation of the high-Tc materials is quite
delicate. As discussed above, the Mott-Hubbard gap play
important role, and it produces asubstantialbreaking of the
SO~5! symmetry. In Ref. 14, it was shown that in the e
treme case of a Gutzwiller projection, a degree of freedom
eliminated completely and the real and imaginary part of
local superconducting parameter become conjugate v
ables. Therefore it is not clear whether such aprojected
SO~5! symmetry can become asymptotically acomplete
11 770 ©2000 The American Physical Society
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SO~5! symmetry in the neighborhood of some critical poin
In this paper, we show why symmetry-breaking effe

due to the projection are asymptotically irrelevant in t
neighborhood of a finite-temperature critical point. Howev
two kinds of symmetry-breaking effects tend to preve
SO~5! symmetry from being restored asymptotically. One
related with the different mobilities of hole pairs and ma
nons (hÞ1 below!, and the second one is due to the ren
malization effects from quantum fluctuation at an interme
ate length scale. The common tendency of these effects
draw the system into a region of instability, where the tw
AF/normal ~N! and SC/N transitions become first order be
fore merging at the AF/SC/N triple point.20,18 However,
when the first effect is large, quantum fluctuations tend
take the system back to the SO~5! point.

This paper is organized as follows: In Sec. II we st
from the projected SO~5!-symmetric model~allowing for a
symmetry-breaking termh in the mobilities!, and treat it by
a slave-boson functional-integral approach in order to d
with the hard-core constraint. The important result is tha
the AF-SC transition, theclassicalpart of the action of the
projectedmodel preserves its SO~5! structure ath51, de-
spite the symmetry-breaking terms arising from the proj
tion. These terms only appear in thequantum-mechanica
~i.e., time derivative! part of the action. This fact gives
rigorous justification for the much used semiclassical
scription of the high-Tc materials via a SO~5!-symmetric
model21,10,11 despite of the presence of the large Hubba
gap. In Sec. III, we derive the associate effective Ginzbu
Landau model by integrating out the momenta conjugate
the AF superspin variables.22 We study the properties of suc
model in the neighborhood of the AF/SC/N triple point and
discuss the possibility of SO~5! symmetry restoring at long
wavelengths.

In Sec. IV, we evaluate the corrections to the effect
classical action due to the so far neglected quantum fluc
tions. For small temperatures, these mainly affect
magnon-magnon scattering, thus breaking the SO~5! symme-
try. Finally, in Sec. V we draw our conclusions. Some deta
of the calculations are given in the appendixes.

II. MODEL

We start from the effective bosonic model introduced
Refs. 23 and 14, which describes low-energybosonicexci-
tations of ‘‘blocks,’’ ~also referred to as ‘‘sites’’! labeled by
the coordinatex, consisting of a rung in a one-dimension
~1D! ladder or of a 232 plaquette in a 2D system.

H5D̄s(
x

ta
†~x!ta~x!1D̄c(

x
t i
†~x!t i~x!

2 J̄s (
^xx8&

na~x!na~x8!2 J̄c (
^xx8&

ni~x!ni~x8!. ~1!

In this paper, we shall use similar conventions as in Ref.
where the indicesa,b, . . . are the SO~5! superspin indices
and take the values 1,2,3,4,5~in some cases, they might als
include the ‘‘hole’’ indexh), a,b, . . . 52,3,4 ~correspond-
ing to x,y,z) denote the spin indices andi , j 51,5 denote the
charge indices, and repeated indices are implicitly summ
.
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over. A boldface sign indicates the vector as a whole. He
D̄s is the energy required to produce a magnon excitati
i.e., to replace a singlet with a triplet in a block, whileD̄c is
the energy required in order to produce a particle or h
pair. It is clear thatD̄c is of the order of the Mott-Hubbard
gap and thusD̄c@D̄s. On the other hand,J̄s and J̄c describe
the hybridization of these excitations between neare
neighbor sites and are related to their mobility. The Ham
tonian Eq.~1! acts on a ‘‘vacuum’’uV&, which is a kind of
‘‘RVB’’ state consisting of a product state of half filled sin
glet statesuV(x)& in each block. On the other hand, th
fivefold statesta

†(x)uV(x)& describe the triplet magnon state
~for a52,3,4), and thed-wave hole and particle pair state
on a block (a51,5).23 More specifically, one can define th
charge eigenoperatorsth and tp as

t15
1

A2
~ th1tp! t55

1

iA2
~ th2tp!, ~2!

whereth
† is the creation operator for a hole pair andtp

† is the
creation operator for a particle pair. In Eq.~1!, the na play
the role of ‘‘displacement’’ coordinates of local harmon
oscillators, while we will denote withpa the conjugate mo-
menta, and we have the transformation to canonical v
ables:

ta5
1

A2
~na1 ipa!. ~3!

Due to their microscopic origin these bosonic states are h
core bosons, in the sense that at most one boson can r
on each site. Mathematically, this is expressed by the co
tion

(
a

ta
†~x!ta~x!<1. ~4!

The particle and hole density is controlled by the chemi
potentialm, which couples to the Hamiltonian via a term

Hm522m(
x

@ tp
†~x!tp~x!2th

†~x!th~x!#. ~5!

In the presence of this chemical potential term, the gap
ergy of the hole and particle pairs becomeD̄c12m and D̄c
22m, respectively. A~negative! chemical potential of the
order of the charge gapD̄c/2 is needed to induce an AF-S
transition in this system. Near such a transition point, the
energy of the hole pairD̄c12m can be comparable to th
~local! spin gapD̄s , while the gap towards a particle pa
excitation is pushed up and becomes of the order of twice
charge gap. Since this is a very large energy scale, we
safely project this excitation out of the spectrum in the lo
energy limit, by requiring that the condition

tp~x!uC&50 ~6!

is fulfilled at every sitex. The new Hamiltonian takes th
form
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H5D̄s(
x,a

ta
†~x!ta~x!1~D̄c12m!

3(
x

th
†~x!th~x!2 J̄s (

^x,x8&,a
na~x!na~x8!

2 J̄c/2 (
^x,x8&

@ th
†~x!th~x8!1H.c.#. ~7!

In Ref. 14 it was shown that the constraint Eq.~6! can be
enforced by introducing canonical commutation rules
tween the two variablesn1 andn5, i.e.,

@n1 ,n5#5 i /2, ~8!

and therefore we can identifyA2n1 with the ‘‘hole displace-
ment’’ nh andA2n5 with its conjugate momentumph . The
SO~5! structure of the Hamiltonian becomes now clear if o
introduces the superspin vector

ma[~hnh ,n2 ,n3 ,n4 ,hph!, ~9!

where, for convenience, we have absorbed the different

bility for hole pairs and magnonsh[AJ̄c/2J̄s into the defi-
nition of the superspin. Carrying out the transformation
canonical variables Eq.~3!, the Hamiltonian Eq.~7! now
takes the simple form

H5
Ds

2 (
x

pa~x!21
Ds

2 (
x

ma~x!21
Dc

2 (
x

mi~x!2

2J (
^xx8&

ma~x!ma~x8!, ~10!

where we have further redefined

Dc[
D̄c12m

h2
Ds[D̄s , and J[ J̄s . ~11!

The anisotropy in superspin space due toh reflects now into
the constraint, as we will see in Eq.~16! below. If one for-
gets for a moment the connection between coordinatesma
and their conjugate momenta, the Hamiltonian Eq.~10! be-
comes exactly SO~5! invariant under rotation of the supe
spin Eq.~9! at the AF-SC transition pointDs5Dc , which is
reached by changing the chemical potentialm, i.e., at the
AF-SC transition. If one further hash51, i.e., 2J̄s5 J̄c , the
constraint is invariant as well, and one apparently has a c
plete SO~5! symmetric model~cf. Ref. 14!. More specifi-
cally, one would like to SO~5! ‘‘rotate’’ just the ma coordi-
nates, leaving the conjugate coordinates to the magnon
pa unrotated. This is possible, for example, in a classi
ensemble, where, due to Liouville’s theorem, expectat
values are evaluated with the measure) i dpi dqi
3exp2H@pi ,qi#, and rotations of theqi only leaves it invari-
ant. Of course, this does not hold for dynamics, which
affected by the relation between the two ‘‘superconductin
canonically conjugate componentsm1 /h andm5 /h, and be-
tween the AF componentsma and their conjugate moment
pa . Thus SO~5! symmetry is broken in dynamics, as pointe
out in Ref. 14. Unfortunately, the relation between conjug
variables is also important in quantum-mechanicalstatic av-
-

o-

-

art
l
n

s
’’

e

erages, so that ground-state or finite-temperature aver
are generally expected to break the symmetry when the
quantum problem is taken into account.

In order to understand the nature of the symmet
breaking terms, it is convenient to go over to a function
integral representation of the partition function for th
Hamiltonian Eq.~7!. The hard-core constraints can be co
veniently taken care of by means of a slave-bos
representation,24 where the boson operatore(x) labeling
‘‘empty’’ sites is introduced. The detailed procedure
shown in Appendix A. After this transformation, the actio
takes the form

S5SQM1SCL , ~12!

where

SQM5E
0

b

dt(
x

F2 ipa~x,t!ṁa~x,t!

2
i

h2
m5~x,t!ṁ1~x,t!G ~13!

(ṁa indicates the time derivative ofma), has the well-known
form pq̇ of the Feynman path integral, thei coming from the
imaginary-time representation. Moreover,

SCL5E
0

b

dtS Ds

2 (
x

pa~x,t!21
Ds

2 (
x

ma~x,t!2

1
Dc

2 (
x

mi~x,t!22J (
^xx8&

e~x,t!ma~x,t!

3e~x8,t!ma~x8,t!D , ~14!

where we have to replace

e~x,t!5A12
pa~x,t!2

2
2

ma~x,t!2

2
2

mi~x,t!2

2h2
,

~15!

which implicitly includes the condition

pa~x,t!2

2
1

ma~x,t!2

2
1

mi~x,t!2

2h2
<1, ~16!

and where we have already carried out the transformatio
canonical coordinates, Eq.~3!, for the corresponding fields.25

Equation~14! is the correct classical limit of aprojected, i.e.,
of the physicalSO~5! model. Notice that the effects of th
hard-core constraint is to introduce a renormalization of
boson hopping, and to bound the superspin magnitude, w
out, however, fixing its length.26 Thus the requirement tha
the superspin magnitude be unity should not be taken a
rigorous constraint of the SO~5! theory, at least not of the
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projected one~which is the physical one!. On the other hand
one expects that in the homogeneous ordered phase this
straint might be a good assumption. A similar result has b
shown by Wegner,27 namely, that the orthogonality con
straint in the exact SO~5! model is not a rigorous constrain
but it is favored at high temperature, as it maximizes
entropy.

Equation ~12! clearly identifies the SO~5!-symmetry
breaking terms. The classical actionSCL is exactly SO~5!
invariant at the AF-SC transition (Ds5Dc) and for h51,
while apparently incurable symmetry-breaking terms co
from the time-derivative terms inSQM . More specifically,
with these values of the parameters, if one carries out
SO~5! rotation within the superspin vector, Eq.~9!, SCL re-
mains invariant, whileSQM is changed. If quantum fluctua
tions are neglected, one can choose time-independent fi
and set Eq.~13! to zero. In this case, any equilibrium expe
tation value is exactly SO~5! invariant. More specifically, let
us take a generic SO~5! rotation matrixR(n)5expinaGa pa-
rametrized by the vectorn @Ga are the SO~5! generators5#,
and f @m(x),p(x)# is a function of the superspin vecto
m(x), and, possibly, ofp(x). Then, the classical expectatio
values^•••&CL have the property

^ f @m~x!,p~x!#&CL5^ f @R•m~x!,p~x!#&CL , ~17!

which is the requirement of SO~5!invariance. Notice that the
pa should not be rotated, while in an exact SO~5! model they
should.

The question is: when is it justified to neglect the tim
dependence of the fields? This is allowed at moderately h
temperatures, more precisely, at temperatures much la
thanv/j ~in units of kB5\51), wherej is the correlation
length andv is a typical velocity, in our case equal toJa, a
being the lattice spacing. This means that neglectingSQM is
exactly justifiedwhen j becomes infinite, i.e., in the neigh
borhood of a finite-temperature critical point, as a possi
~finite temperature! multicritical point at which the AF/N
and the SC/N transition lines merge into a first-order line1

Moreover, this critical point is indeed a good candidate fo
possible asymptotic restoring of thecompleteSO~5! symme-
try even in the presence, microscopically, of aprojected
SO~5! symmetry. This is very important as it would mea
that the large-energy symmetry-breaking effect of the Mo
insulator gap would be exactly compensated at this crit
point. This is analogous to the well-known situation for t
antiferromagnetic spin-flop transition1,28,20,29,30where a sys-
tem with uniaxial anisotropy restores SO~3! symmetry at the
bicritical point. However, there are some important diffe
ences with respect to the spin-flop transition, as we will sh
in the next sections. Moreover, notice that due to the sy
metry breaking term, Eq.~13!, it is unlikely that SO~5! sym-
metry can be restored if the AF-SC transition is controlled
a quantum-critical point. Since we are interested in fini
temperature critical points, we will restrict to the case
three spatial dimensionsD.

III. EFFECTIVE GINZBURG-LANDAU ACTION

In this section, we study the action Eq.~10! in more de-
tail. We first integrate out the momentapa and obtain an
effective action restricted to the superspin variables. For t
on-
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peratures smaller than the singlet-triplet splittingDs , one
can restrict to a Gaussian integration of the momenta,
consider only quadratic terms inpa . Carrying out such an
expansion, one obtains

SCL5Spm1Sm1O~pa
4 !, ~18!

where, leaving thet dependence implicit

Sm5E
0

t

dtS Ds

2 (
x

ma~x!21
Dc

2 (
x

mi~x!2

2J (
^xx8&

r ~x!ma~x!r ~x8!ma~x8!D , ~19!

Spm5E
0

t

dt(
x

Ds

2
A~x!pb~x!2, ~20!

where we have defined

A~x![11
2J

Ds

ma~x!

4r ~x! (
d

nn

ma~x1d!r ~x1d!, ~21!

r ~x![A12
ma~x!2

2
2

mi~x!2

2h2
, ~22!

and the sum(d
nn extends over nearest-neighbor sites.

It is now convenient to reabsorb them-dependent coeffi-
cientA(x) of thep2 term into the definition of the moment
p. This is done in order to avoid the appearance of ter
depending on the amplitude of the imaginary-time slice
the effective action. Furthermore, in order to avoid
m-dependent Jacobian due to the transformation, it is con
nient to transform them coordinates in such a way that th
Jacobian remains unity. The general procedure is illustra
in Appendix B. Up to second order inm2, the newm8 co-
ordinates are related with the old ones via

ma~x!5ma8~x!S 11
3J

7Ds
um8~x!u2D . ~23!

After this transformation, the integration of thepa8 (x)
[pa(x)AA(x) only affects SQM , and one obtains a new
QM action in the form

SQM8 5E
0

b

dtE dxS ṁa
2

2DsA~x!
2

i

h2
m5~x!ṁ1~x!D ,

~24!

where the transformation Eq.~23! should be inserted, and w
have absorbed the unit cell volumeV5a3 in the definition of
the fields by renamingma

2/V→ma
2 .

Thus the total effective SO~5! action restricted to the su
perspin variables is given by Eq.~19! plus Eq. ~24!. The
transformation Eq.~23! must still be carried out on them
variables, but, due to the fact that the coefficient 3J/7Ds is
small at the transition, this does not change the result sig
cantly. On the other hand, it is important to take into acco
the effects of the hard-core constraint, which introduces
transformation Eq.~22!, and, implicitly, the restriction of the
superspin within a five-dimensional hypersphere~or a ellip-
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soid, if hÞ1).26 ThusSm @Eq. ~19!# gives an effective clas
sical functional microscopically derived from an SO~5!
model,22 where the physics of the Mott insulating gap h
been properly taken into account via the projection. This
the appropriate functional which should be used forphysical
predictions of the SO~5! theory, consistent with the gap.

Close to the phase transitions, it is more convenien
derive a Ginzburg-Landau form for the action, obtained,
usual, by expanding in powers of the fieldm and keeping
only lowest-order gradient terms. After inserting Eq.~23!
and dropping the prime indices in the fieldsm, we obtain

SCL8 5E
0

b

dtE dxF r s

2
ma~x!21

r c

2
mi~x!21

r

2
@¹W ma~x!#2

1
us

8 S (
a

ma~x!2D 2

1
uc

8 S (
i

mi~x!2D 2

1
ucs

4 S (
a

ma~x!2D S (
i

mi~x!2D G , ~25!

with the parameters

r s/c

2
5S Ds/c

2
2DJD ,

r

2
5

Ja2

2
,

us

8
5

VJ

2 S D1
3r s

7Ds
D , ~26!

uc

8
5

VJ

2 S D

h2
1

3r c

7 Ds
D ,

ucs5
uc1us

2
,

where we have considered the fact that39

V(
x

m~x!(
d

nn

m~x1d!

5
V
2 (

x
(

d

nn

$m~x!21m~x1d!22@m~x!2m~x1d!#2%

'2DE dxm~x!22a2E dx@¹W m~x!#2. ~27!

The critical properties of the model Eq.~25! have been
analyzed in several works.20,28,30,31,29,32,18Its phase diagram
is determined by two relevant parameters, the first oner s
2r c}Ds2Dc controls the transition between the AF and t
SC phases, while the other;min(rs,rc) controls the second
order transition between the appropriate ordered~AF or SC!
and the disordered phase. At the transition pointr s;r c;0,
there are two competing fixed points controlling t
transition,20 the Heisenberg bicritical fixed point@in this spe-
cific case, the SO~5! fixed point#, and the biconical tetracriti-
cal fixed point. According to thee expansion, the latter fixed
s

o
s

point turns out to be the stable one forn.nc'42O(e).
This means that, in general, the model Eq.~25!, which has
n55, is expected to flow to this latter fixed point and not
the SO~5!-symmetric one forusÞucÞucs . On the other
hand, sincen55 is not very far away fromnc , the stable
biconical fixed point is approximately SO~5! invariant with
symmetry-breaking terms of the order of 20%. Moreov
there is a plane in theus ,uc ,ucs space, given by the condi
tion ucs

2 5ucus , from which the system flows to the SO~5!
point.20,18 This is due to the fact that a scale transformati
of, say, the SC componentsmi

2→mi
2us /uc of the order pa-

rameter would yield again an SO~5!-symmetric interaction of
the form uumu4. The asymmetry would then be transfere
into different susceptibilitiesrs ,rc for the AF and for the SC
order parameters. However, it has been shown in Refs. 3
that the different in the susceptibilities is an irrelevant p
rameter.

In our case, we have

Du2[ucs
2 2ucus5S uc2us

2 D 2

>0 ~28!

which means that the SO~5! symmetric fixed point is neve
reached, except when the equal sign holds, i.e., whenhÞ1
~at the transitionr s5r c). On the other hand, we expect o
physical grounds the mobility of the hole pairs to be sma
than that of the magnons, and thush to be smaller than 1.
Unfortunately, for the case Eq.~28!, the couplings flow away
into a region of instability. The common interpretation is th
the AF/N and SC/N transitions become first order as we
~fluctuation-induced first-order transition!, at least close
enough to the AF/SC/N triple point.20,18

This fact seems in contrast with the apparent observa
of bicritical behavior with SO~5! critical exponents in the
organic superconductork-(BEDT-TTF)2X ~see Refs. 34 and
35!, by Murakami and Nagaosa.18,36 There may be severa
ways to understand this. One possibility is that other effe
not considered here, such as, e.g., Coulomb interactions,
mionic excitations,15 or quantum effects, as discussed in S
IV, counterbalance this effect and draw the system back
the domain of attraction of the biconical fixed point. As di
cussed above, the differences between the SO~5! and the
biconical fixed point are only about 20%, so that they mig
be not observable experimentally. Alternatively, since
flow would cross the SO~5! plane, it could produce SO~5!
exponents at intermediate length scales. On the other h
Hu and co-workers37,38 observe a coexistence region of A
and SC for the SO~5!-anisotropic case, which could be po
sibly identified with the biconical phase. Their result cou
be due to the fact that they consider a differentc-axis anisot-
ropy (x in Ref. 39!, for the AF and for the SC variables.

IV. QUANTUM CORRECTIONS

Even when considering a classical~i.e., finite-
temperature! critical point, the quantum-mechanica
symmetry-breaking termsSQM although irrelevant in the
renormalization-group~RG! sense, contribute to the RG flow
up to a certain length scale of the order ofv/T. SinceSQM
breaks the SO~5! symmetry, it is expected, during this initia
renormalization process, to introduce symmetry-break
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terms inSCL . Therefore, even whenSCL is SO~5! symmetric
at the microscopic scale, the renormalizedSCL at the scale
j;v/T will probably break the symmetry. In this section, w
evaluate these symmetry-breaking terms originating fr
SQM , or, more precisely, from the time dependence of
fields.

In order to evaluate these effects, we separate the fi
into their static and dynamic parts, and integrate out the
ter. Since we are working at finite temperature, we have
integrate out the components of the fields with Matsub
frequenciesvn52pnT with n5” 0. In order to obtain an ana
lytic expression for these corrections, we restrict to one-lo
contributions and take just the leading low-temperat
terms.

We first diagonalize the noninteracting~quadratic! part of
the action Eq.~24! plus Eq.~25! by Fourier transform. We
can neglect the corrections toSQM8 due to the transformation
to the primed variables Eq.~23!, as it introduces irrelevan
quartic time-derivative terms. In Fourier space, the act
takes the usual form

SQM8 1SCL8 5
1

2 X
k

ma~2k!@G~k!21#abmb~k!

1
1

8 X

k1 ,k2 ,k3

ma~k1!ma~k2!uab

3mb~k3!mb~2k12k2 2k3!, ~29!

where we have introduced the shorthand notationk[(k,v),
and Xk[(1/b)(v*L@d3k/(2p)3#, with L;1/a a short-
distance cutoff fork. In Eq.~29!, the nonzero elements of th
~noninteracting! Green’s functions read

G~k!ab5
da,b

r s1
v2

Ds
1rk2

, ~30!

G~k!1,15G~k!5,55
rk21r c

~rk21r c!
21

v2

h4

, ~31!

and

G~k!5,152G~k!1,55

v

h2

~rk21r c!
21

v2

h4

, ~32!

and the interaction parameters areua,b5us , ui , j5uc , and
ui ,a5ucs .

At one loop, integration of thev5” 0 fields only changes
the parametersr, and u, similarly to conventional field
theory. In theT→0 limit, the change of the former is finite
and merely shifts the transition point. On the other hand,
changesduab in the interaction parametersuab grow loga-
rithmically with decreasing temperature at the critical poi
e

ds
t-
o
a

p
e

n

e

.

We will, thus, restrict to evaluation of these correction
These are given by the sum of the usual ‘‘loop’’ diagram
which give

duab52
1

2 (
c

uacucbI cc22uab
2 I ab2uab~ I aauaa1I bbubb!,

~33!

where the integralsI ab are given by

I ab5 X

k,vÞ0

G~k!aaG~2k!bb . ~34!

In Eqs.~33! and~34!, we have neglected contributions from
nondiagonal parts of Green’s functions Eq.~32!, as they only
give finite contributions to integrals of the form Eq.~34! in
the low-temperature limit. The same holds for integrals co
taining at least one Green’s function of the superconduc
fields Eq.~31!. This is due to the fact that for these fields th
~bare! dynamical critical exponent40,41 z is equal to 2, and it
does not produce divergences inD53. This in turn occurs
because the two components of the SC order paramete
canonically conjugate, while the AF ones have independ
massive ones. Therefore we will consider only the diverg
contribution

I a,b5I s[
1

8p2
ADs

r3
ln

LArDs

2pT
, ~35!

where we have assumed that we lie outside of the regio
influence of the quantum critical fixed point, i.e.,T
@Ar c/sDs. Replacing Eq.~35! in Eq. ~33!, we obtain for the
leading contributions

dus52 11
2 us

2I s ,

duc52 3
2 ucs

2 I s , ~36!

ducs52 5
2 usucsI s .

As expected, quantum fluctuations draw the system aw
from the SO~5!-invariant point even in the case whereh
51. This can be seen by adding these corrections to an
tially SO~5!-invariant system withuc5us5ucs5u. At the
lowest order in theua , the renormalized parametersua8
5ua1dua obey the relation

Du82[ucs8
22us8uc852I su

3.0, ~37!

i.e., as in the case ofhÞ1, Eq.~28!, the system is drawn into
the instability region where a fluctuation-induced first-ord
transition is expected. This indicates that quantum fluct
tions and anisotropyhÞ1 cooperate in the same directio
and draw the system into the instability region, where
finite fixed point is expected. However, for the case wh
the ua are different, one obtains

Du822Du252
us

2
~7ucs

2 211ucus!I s . ~38!

Further inserting the values of theua from Eq. ~26! with h
Þ1 ~we fix ourselves at the triple pointr s5r c), Eq. ~38!
becomes negative forh,xc , or h.1/xc with xc'0.498.
Therefore, for large difference in the mobilitiesh, quantum
fluctuations tend to shift the renormalized parameters b
towards the domain of attraction of the biconical and of t
SO~5! fixed point.
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V. CONCLUSIONS

In conclusion, we have analyzed the properties of a p
jected SO~5! model which takes into account the high-ener
physics of the Mott-insulating gap. As already pointed out
Ref. 14, the chemical potential can always be shifted to
AF-SC transition point in order to cancel the symmet
breaking terms produced by the gap in the classical par
the action. On the other hand, symmetry-breaking terms
to the projection show up in the quantum-mechanical par
the action, as a conjugacy relation between the supercond
ing components of the superspin vector. A further source
symmetry breaking is due to the different mobility of th
hole pairs and of the magnons parametrized byhÞ1.

Close to the AF/SC/N finite-temperature multicritica
point, the quantum effects due to the projection are irr
evant, although subleading symmetry-breaking correcti
appear at intermediate length scales. When considered s
rately, these symmetry-breaking effects both draw the
flow into a region of instability with first-order transition
and no SO~5! symmetry. On the other hand, for stron
anisotropiesh&0.5, quantum corrections partly cancel t
symmetry-breaking effects.

There are possibly other effects, such as Coulomb in
action, or fermionic excitations, which can possibly take
system back into the domain of attraction of the biconi
fixed point, where SO~5! symmetry is only broken by
;20%. Notice that, since the order parameter must be
caled in order to reach this fixed point, the~possibly approxi-
mate! SO~5! symmetry reached at this critical point isrenor-
malized, in the sense of Ref. 12. This means, for examp
that the SO~5! picture would be consistent with differen
absolute magnitudes of the SC and AF gaps, as obse
experimentally.15
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APPENDIX A: EXACT SLAVE-BOSON TREATMENT
OF THE CONSTRAINT

The hard-core constraint Eq.~4! becomes~after projecting
out the electron pairs!

Q~x!5ta
†~x!ta~x!1th

†~x!th~x!1e†~x!e~x!2150. ~A1!

The ‘‘physical’’ bosonic operators are then obtained as us
by the replacement

ta~x!→ta~x!e†~x! ~A2!

~includinga5h), so that the constraint is now conserved
the Hamiltonian. Within the functional integral, the co
straint Eq. ~A1! can be enforced as usual by adding
‘‘Lagrange multiplier’’ term i (xl(x)Q(x) and integrating
over all l(x). The partition function can thus be written i
terms of an integral over bosonic fields

Z5E Dta
†DtaDth

†DthDe†Dedl exp2S8, ~A3!
-

e
-
of
e
f
ct-
f

l-
s
pa-
G

r-
e
l

s-

,

ed

s-
y

al

with the action

S85E
0

b

dtH(
x

F ta
†~x,t!S ]

]t
1 il~x! D ta~x,t!1th

†~x,t!

3S ]

]t
1 il~x! D th~x,t!1e†~x,t!S ]

]t
1 il~x! D

3e~x,t!2 il~x!G1H~t!J , ~A4!

whereH(t) is obtained by replacing Eq.~A2! in Eq. ~7! and
by replacing all bosonic operators with the correspond
fields at the imaginary timet ~since the Hamiltonian is al-
ready normal ordered!. In principle, one should take a dis
cretization of the time variable and consider the continu
limit only at the end of the calculation.42–44,25Notice that the
integration ofl would not give a constraint like Eq.~A1! for
the bosonic fields at all imaginary times. Nevertheless,
can proceed in the usual way by carrying out the gauge tra
formation

e~x,t!5ē~x,t!eiu(x,t),

ta~x,t!5 t̄ a~x,t!eiu(x,t), ~A5!

l~x!5l̄~x,t!2 u̇~x,t!,

whereē(x,t)5ue(x,t)u. In this way, we can restrict to rea
values of the boson fielde and absorb the time dependen
of its phase into a~now! time dependentl. Integration over
l(x,t) now leads to the enforcement of the constraint via
d function ~for simplicity, we drop the bar everywhere!

)
x,t

d@ uta~x,t!u21uth~x,t!u21e~x,t!221# ~A6!

at all imaginary times. Integration overe(x,t) allows one to
replace it everywhere in the Hamiltonian, leading to the n
action Eq.~12! with Eq. ~14!.

APPENDIX B: INTEGRATION OF THE MOMENTA

The p-dependent part of the action has the general fo
@cf. Eqs.~13! and ~20!#

Sp5E
0

b

dtE dxDA@ um~x!u2#pa~x!22 ipa~x!B~x!, ~B1!

whereA is a function of the superspin’s magnitude squar
~for simplicity, we neglect gradient terms!. In order to absorb
the coefficientA, we define new momentum variables

pa8 ~x!5pa~x!AA@ um~x!u2#. ~B2!

However, since we do not want to produce anm-dependent
Jacobian, we carry out a similar transformation for them
variables as

ma8~x!5ma~x!g@ um~x!u2#, ~B3!

whereg is chosen in order to have a Jacobian equal to
This requirement gives the differential equation
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A~ umu2!3/2@g~ umu2!n22umu2g~ umu2!n21g8~ umu2!#51,
~B4!

n(55) being the number of components of the superspinm.
The solution of this equation is

@Arg~r !#n5
n

2E r n/221A~r !23/2dr, ~B5!
.
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where r 5umu2. Upon restricting to the lowest order of Eq
~21!, A(r )511(J/2Ds)r 1O(r 2), we obtain

g@ um~x!u2#'S 12
3J

7Ds
um~x!u2D , ~B6!

and its inverse Eq.~23!.
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