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Dynamics of vortex tangle without mutual friction in superfluid 4He
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A recent experiment has shown that a tangle of quantized vortices in superfluid4He decayed even at mK
temperatures where the normal fluid was negligible and no mutual friction worked. Motivated by this experi-
ment, this work studies numerically the dynamics of the vortex tangle without the mutual friction, thus
showing that a self-similar cascade process, whereby large vortex loops break up to smaller ones, proceeds in
the vortex tangle and is closely related with its free decay. This cascade process which may be covered with the
mutual friction at higher temperatures is just the one at zero temperature Feynman proposed long ago. The full
Biot-Savart calculation is made for dilute vortices, while the localized induction approximation is used for a
dense tangle. The former finds the elementary scenario: the reconnection of the vortices excites vortex waves
along them and makes them kinked, which could be suppressed if the mutual friction worked. The kinked parts
reconnect with the vortex they belong to, dividing into small loops. The latter simulation under the localized
induction approximation shows that such cascade process actually proceeds self-similarly in a dense tangle and
continues to make small vortices. Considering that the vortices of the interatomic size no longer keep the
picture of vortex, the cascade process leads to the decay of the vortex line density. The presence of the cascade
process is supported also by investigating the classification of the reconnection type and the size distribution of
vortices. The decay of the vortex line density is consistent with the solution of the Vinen’s equation which was
originally derived on the basis of the idea of homogeneous turbulence with the cascade process. The cascade
process revealed by this work is an intrinsic process in the superfluid system free from the normal fluid. The
obtained result is compared with the recent Vinen’s theory which discusses the Kelvin wave cascade with
sound radiation.
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I. INTRODUCTION

Superfluid 4He ~helium II! behaves like an irrotationa
ideal fluid, whose characteristic phenomena can be expla
well by the Landau two-fluid model. However, superflo
becomes dissipative~superfluid turbulence! above some
critical velocity. The concept of superfluid turbulence w
introduced by Feynman1 who stated that the superfluid tu
bulent state consists of a disordered set of quanti
vortices,2,3 called vortex tangle~VT!. Reminding one of the
inertial range of the classical-fluid turbulence, Feynman p
posed that VT undergoes the following cascade process
zero temperature, a large distorted vortex loop breaks u
smaller loops through reconnections, and the cascade pro
continues self-similarly down to the order of the interatom
scale. At finite temperatures, however, normal fluid collid
with vortices and takes energy from them.

This idea was developed further by Vinen. In order
describe an amplification of a temperature difference at
ends of a capillary retaining thermal counterflow, Gorter a
Mellink introduced some additional interactions between
normal fluid and superfluid.4 Through experimental studie
of the second-sound attenuation, Vinen considered
Gorter-Mellink mutual friction in relation to the macroscop
dynamics of the VT.5 Assuming homogeneous superflu
turbulence, Vinen obtained an evolution equation for the v
tex line density~VLD ! L(t), what we call the Vinen’s equa
tion

dL

dt
5auvnsuL3/22x2

k

2p
L2, ~1!
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where a and x2 are parameters dependent on temperat
andvns is the relative velocity between the normal flow an
superflow,k the quantized circulation. This Vinen’s theor
could describe well a large number of observations of mo
stationary cases.

However, the nonlinear and nonlocal dynamics of vortic
had long delayed the progress in further microscopic und
standing of the VT. It was Schwarz that broke through.6,7 His
most important contribution was that the direct numeri
simulation of vortex dynamics connected with the scali
analysis enabled us to calculate such physical quantitie
the VLD, some anisotropic parameters, the mutual frict
force, etc. The observable quantities obtained by Schwa
theory agree well with the experimental results of the ste
state of the VT. This research field pioneered by Schwarz
revealed many problems of vortex dynamics, such as
flow properties in channels,8–11 sideband instability of
Kelvin waves,12 vortex array in rotating superfluid,13 and
vortex pinning.14,15

The mutual friction plays an important role in the abo
vortex dynamics. The stationary state of the VT Schw
obtained is self-sustaining, and realized by the competit
between the excitation and dissipation due to the mutual f
tion subject to thevns field, as described in the next sectio
Hence the system free from the mutual friction cannot s
tain the stationary VT.

Compared with the steady state, there have been less
ies of the transient behavior of the VT. Although the tra
sient behavior generally refers to both the growth and de
process, this paper considers only the decay of the VT a
11 751 ©2000 The American Physical Society
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11 752 PRB 62TSUBOTA, ARAKI, AND NEMIROVSKII
the driving velocity is suddenly reduced to zero. The ea
measurements by Vinen5 and the later ones16,17 observed a
decay of the VT which was consistent with the Vinen’s E
~1! with only the decay term, although Schwarz and Roze17

coupled the Vinen’s equation with the hydrodynamical eq
tions of the normal flow and the superflow in order to expla
a slow decay following an initial rapid decay they observe
Apart from these experiments on thermal counterflow,
decay of vorticity in turbulence generated by towing a g
was studied recently.18,19 This turbulence is expected to b
homogeneous and isotropic. The experimental results ma
understood by the picture that the mutual friction can be
strong that the normal fluid and the superfluid lock togeth
behaving effectively like a single fluid.20,21The experimental
results are compared with the change in the turbulent en
spectrum which includes the Kolmogorov law.

Both these numerical and experimental results are m
affected by the mutual friction. However, recently, Dav
et al.22 observed that vortices did decay even at mK tempe
tures where the normal-fluid density became vanishin
small and, as a consequence, the mutual friction did not w
effectively. The vortices were created by a vibrating gr
and detected by their trapping of negative ions. The fi
important point is that the vortices actually decay at such
temperatures. The second is that the decay rate become
dependent of temperature belowT.70 mK. It is unclear
how the vortices decay. This experimental work, which
just preliminary at present, can develop a new research
of superfluid or vortex dynamics at mK temperatures; it c
reveal some essence that may be covered with the no
fluid at higher temperatures.

Motivated by this experimental work, we study nume
cally the vortex dynamics without the mutual friction. Th
calculation under the localized induction approximati
~LIA ! is made for the dense VT, while the full Biot-Sava
calculation for the more dilute vortices. The absence of
mutual friction makes the vortices kinked, which promot
vortex reconnections. Consequently, small vortices are
off from a large one through the reconnections. The resul
vortices also follow the self-similar process to break up
smaller ones. Although our formulation cannot describe
final destiny of the minimum vortex, the decay of the VT
found to be connected with this cascade process, whic
just the cascade process at zero temperature Feyn
proposed.1

The contents of this paper are the following. Section
describes the equations of motion of vortices and the met
of numerical calculation. Section III studies the dynamics
dilute vortices under the full Biot-Savart law both witho
and with solid boundaries; this calculation reveals the
sence of the cascade process. The dynamics of the dens
under the LIA is discussed in Sec. IV. The obtained res
are compared with the solution of the Vinen’s equation
Sec. V. The agreement is good, which supports the pictur
the cascade process. The decay of the VT subject to
mutual friction is discussed too. Section VI is devoted
conclusions and discussions.

II. EQUATIONS OF MOTION AND NUMERICAL
SIMULATION

A quantized vortex is represented by a filament pass
through the fluid and has a definite direction correspond
y
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to its vorticity. Except for the thin core region, the superflo
velocity field has a classically well-defined meaning and c
be described by ideal fluid dynamics. The velocity produc
at a pointr by a filament is given by the Biot-Savart expre
sion:

vs,v5
k

4pEL

~s12r!3ds1

us12ru3
, ~2!

wherek is the quantized circulation. The filament is repr
sented by the parametric forms5s(j,t), s1 refers to a point
on the filament and the integration is taken along the fi
ment. The Helmholtz’s theorem for a perfect fluid states t
the vortex moves with the superfluid velocity at the poi
Attempting to calculate the velocityvs,v at a pointr5s on
the filament makes the integral diverge ass1→s. To avoid it,
we divide the velocityṡ of the filament at the points into two
components:6

ṡ5
k

4p
s83s9 lnS 2~ l 1l 2!1/2

e1/4a0
D 1

k

4pEL
8~s12r!3ds1

us12ru3
. ~3!

The first term shows the localized induction field arisi
from a curved line element acting on itself, andl 1 andl 2 are
the lengths of the two adjacent line elements that hold
point s between, and the prime denotes differentiation w
respect to the arc lengthj. The mutual perpendicular vector
s8, s9, ands83s9 point along the tangent, the principal no
mal, and the binormal at the points, respectively, and their
magnitudes are 1,R21, andR21, whereR is the local radius
of curvature. The parametera0 is a cutoff parameter corre
sponding to a core radius. Thus the first term tends to m
the local points with a velocity inversely proportional toR,
along the binormal direction. The second term represents
nonlocal field obtained by carrying out the integral of Eq.~2!
along the rest of the filament. The approximation that d
scribes the vortex dynamics neglecting the nonlocal te
and replacing Eq.~3! by

ṡ5bs83s9 ~4!

is called the localized induction approximation~LIA !. Here
the coefficientb is defined by

b5
k

4p
lnS c^R&

a0
D , ~5!

wherec is a constant of order 1 and (l 1l 2)1/2 is replaced by
the characteristic radiuŝR&.

When boundaries are present, the boundary-induced
vs,b is added tovs,v so that the boundary condition (vs,v

1vs,b)•n̂50 can be satisfied. If the boundaries are specu
plane surfaces,vs,b is just the field by an image vortex mad
by reflecting the vortex into the plane and reversing its
rection of the vorticity. Some other applied fieldvs,a , if
present, is added, which results in the total velocityṡ0 of the
vortex filament without dissipation:
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ṡ05
k

4p
s83s9 lnS 2~ l 1l 2!1/2

e1/4a0
D 1

k

4pEL
8~s12r!3ds1

us12ru3

1vs,b~s!1vs,a~s!. ~6!

At finite temperatures the mutual friction due to the intera
tion between the vortex core and the normal-fluid flowvn is
taken into account. Then the velocity of a points is given by2

ṡ5 ṡ01as83~vn2 ṡ0!2a8s83@s83~vn2 ṡ0!#, ~7!

wherea and a8 are the temperature-dependent friction c
efficients, andṡ0 is calculated from Eq.~6!. All calculations
in this work are made fora850.6

As discussed by Barenghi and Samuels,20 this formulation
is essentially kinematic in the sense that the driving flowsvn
and vs,a are constant, that is, they only act on the vort
dynamics but are never affected by it. When the dynamic
the driving flows is concerned, it should be coupled se
consistently to the vortex dynamics. However, since t
work studies the system without the normal fluid and
driving superflow, this formulation will be useful to describ
correctly the vortex dynamics, except for the phenomena
is concerned with the vortex core region, such as vortex
connection, nucleation, and annihilation.

Studying the vortex dynamics without the mutual frictio
needs to understand qualitatively the role of the mut
friction.6 Let us assume the LIA and neglect the term w
a8. Then Eqs.~6! and ~7! are reduced to

ṡ5bs83s91vs,a1as83~vn2vs,a2bs83s9!. ~8!

If the mutual friction is absent, the dynamics due to only t
self-induced velocity conserves the total line length of vo
ces. Under the above mutual friction, one can easily find
when the applied relative flowvn2vs,a blows against the
local self-induced velocitybs83s9, the mutual friction al-
ways shrinks the vortex line locally. On the other hand,
relative flow along the self-induced velocity yields a critic
radius of curvature

Rc.
b

uvn2vs,au
. ~9!

When the local radiusR at a point on a vortex is smaller tha
Rc , the vortex will shrink locally, while the vortex ofR
.Rc balloons out. Thus it should be noted that the mut
friction plays the dual role of the growth and decay of vort
line length. This dual role of the mutual friction sustains t
steady state of the VT subject to the applied flow, where
highly curved structure whose local radius of curvature
less thanRc will be smoothed out. If this applied field i
absent,Rc becomes infinite so that an arbitrary curved co
figuration of vortex lines shrinks away.

Here we will describe shortly the dynamical scaling d
cussed by Swanson and Donnelly,23 and Schwarz,7 which is
necessary for understanding the cascade process of th
dynamics. Using the LIA and absorbing the factorb into
reduced timet05bt and velocityv05v/b, Eq. ~7! becomes
-

-
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VT

]s

]t0
5s83s91vs,01as83~vn,02vs,02s83s9!2a8s8

3@s83~vn,02vs,02s83s9!#. ~10!

This equation is invariant under the scale transformation

s5ls* , j5lj* , t05l2t0* ,

vn,05l21vn,0* , vs,05l21vs,0* . ~11!

Accordingly, if all space coordinates of a system are redu
by a factorl(,1), the dynamics of the new system wi
look like the same as that of the old one, except that
velocity increases byl21 and the time passes more rapid
by l2. In other words, a small vortex loop whose configur
tion is similar to a large one but size is reduced byl follows
the similar motion whose time scale shortens byl2 com-
pared with the large one.

Some important quantities which are useful for charac
izing the VT will be introduced.7 The vortex line density
~VLD ! is

L5
1

VE
L
dj, ~12!

where the integral is made along all vortices in the sam
volume V. Even though the VT may be homogeneous,
need not generally be isotropic. The anisotropy of the
which is made under the counterflowvns is represented by
the dimensionless parameters

I i5
1

VLEL
@12~s8• r̂i!

2#dj, ~13a!

I'5
1

VLEL
@12~s8• r̂'!2#dj, ~13b!

I l r̂i5
1

VL3/2EL
s83s9dj. ~13c!

Herer̂i andr̂' stand for unit vectors parallel and perpendic
lar to thevns direction. The symmetry generally yields th
relation I i/21I'51. If the VT is isotropic, the average o
these measures areĪ i5 Ī'52/3 andĪ l50.

The method of the numerical calculations is similar to th
of Schwarz6 and described in our previous paper.14 A vortex
filament is represented by a single string of points. The v
tices configuration of a moment determines the velocity fi
in the fluid, thus moving the points on vortex filaments
Eqs. ~6! and ~7!. Both local and nonlocal terms are repr
sented by means of line elements connecting two adja
points. As discussed in Ref. 6, the explicit forward integ
tion of the local term may be numerically unstable. To p
vent the difficulty, a modified hopscotch algorithm
adopted. As the vortex configuration develops and, part
larly, two vortices approach each other, the length of a l
element can change. Then it is necessary to add or rem
points properly so that the local resolution does not lose~an
adaptive meshing routine!. Through the cascade process d
scribed in Sec. III, a large vortex can break up many tim
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11 754 PRB 62TSUBOTA, ARAKI, AND NEMIROVSKII
eventually to a small one whose size is less than the sp
resolution, i.e., the distance between neighboring points
the filament. Of course, the numerical calculation gener
cannot follow the dynamics beyond its space resoluti
Thus such vortices are eliminated numerically; the phys
justification of this cutoff procedure will be discussed in Se
IV.

How to deal with vortex reconnection is very important
the simulation of the VT. The numerical study of the incom
pressible Navie-Stokes fluid showed that the close inte
tion of two vortices leads to their reconnection, chiefly b
cause of the viscous diffusion of the vorticity.24 Koplik and
Levine solved directly the Gross-Pitaevskii equation to sh
the two close quantized vortices reconnect even in a invis
fluid.25 Of course, our numerical method for vortex filamen
cannot represent the reconnection process itself. Howe
Schwarz6 and the authors26 simulated the vortex dynamic
near the reconnection using the full Biot-Savart law. Wh
two vortices approach each other, let us define a crit
distance6

D.2R/ ln~c^R&/a0!, ~14!

at which the nonlocal field from the other becomes com
rable to its own local-induced field. Two vortices approac
ing within D cause local twists on each other so that th
become antiparallel at the closest place, even though the
not antiparallel initially. Then local cusps connecting the
two develop, which will lead to reconnection. After the r
connection, two vortices run away rapidly from each oth
owing to their self-induced velocity. Considering both t
full Biot-Savart calculation and the results of Ref.~25!, it
will be reasonable to assume that two close filaments wo
reconnect. This assumption has an important meaning
yond a numerical expedient. The numerical simulation of
dense VT forces us to use the LIA, because the full Bi
Savart calculation requires much computing time. The LIA
expected to be a good approximation~to order 10%! pro-
vided the intervortex spacing is enough large. Howev
when two vortices approach each other more closely thanD,
the nonlocal field becomes not negligible in reality. All th
effects coming from such nonlocal field may be thought
be renormalized artificially by making the vortices reco
nect. In the numerical simulation of the VT, Schwarz a
sumed that vortices which pass withinD are reconnected
with unit probability. He noticed that the details of when a
how the vortices are reconnected have no significant in
ence on the behavior of the VT, while the judgment by thisD
can make unphysical reconnections. For example, two
most straight vortices must reconnect even if they are v
far apart, because their large radiusR of curvature results in
the largeD. The full Biot-Savart calculation26 shows that
two vortices that once approach withinD can get away with-
out reconnecting. Hence, in contrast to the method
Schwarz, this work reconnects the vortices which pass wi
not D but the space resolutionDj, for both the LIA and the
full biot-Savart calculations. The concrete procedure is
following. Every vortex initially consists of a string of point
at regular intervals ofDj. The subsequent vortex motion ca
change the intervals of two adjacent points, yet the ab
adaptive meshing routine keeps each interval almostDj.
When a point on a vortex approaches another point on
ce
n
y
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other vortex more closely than the fixed space resolutionDj,
we join these two points and reconnect the vortices. Bef
and after the reconnection, the local line length may incre
or decrease by a small quantity less thanDj. This procedure
is best for the filament reconnection under the full Bio
Savart calculation. The dependence of the LIA dynamics
Dj will be discussed in Sec. IV.

The numerical space resolutionDj and the time resolu-
tion Dt will be described for each calculation. For examp
the dense tangle in a 1-cm3 cube shown in Fig. 9~a! is cal-
culated usingDj51.8331022 cm, Dt51.031023 sec,N
.16 000 points. Then, as described in Sec. IV, the VLD
conserved properly under the LIA, except for at each m
ment of reconnection.

III. DECAY OF DILUTE VORTICES

This section will investigate the dynamics of dilute vor
ces by the full Biot-Savart law described by Eq.~6!. We will
begin with the collision of a straight vortex line and a mo
ing ring in order to investigate what happens after the rec
nection. Figure 1 shows the motion without the mutual fr
tion. Toward the reconnection, the ring and the line tw
themselves so that they become locally antiparallel at

FIG. 1. Collision of a straight vortex and a ring by the fu
Biot-Savart calculation without the mutual friction. The right co
umn shows the side view of the left.
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PRB 62 11 755DYNAMICS OF VORTEX TANGLE WITHOUT MUTUAL . . .
closest place@Fig. 1~a!#. After the reconnection@Figs. 1~b!
and ~c!#, the resulting local cusps6,26 propagate along the
vortices, exciting vortex waves. As shown in Fig. 2, the d
namics with the mutual friction (a50.1) is similar, but there
is a noticeable difference; the vortices are relatively smo
because of that smoothing effect of the mutual friction. F
comparison, we calculated the dynamics under the LIA w
out the mutual friction. Although the twist due to the nonl
cal interaction is absent, the behavior is similar to that of F
1. It should be noted that the total line length under the L
without the mutual friction is properly conserved within th
numerical error except for at the moment of reconnecti
while it is just lengthened by the nonlocal interaction
Fig. 1.

A typical scenario that vortex loop follows is shown
Fig. 3, which is a part of the process of Fig. 4. Two vort
loops approach each other to reconnect, thus becoming
loop. The reconnection excites vortex waves along the l
and makes it kinked. The kinked parts reconnect with
loop itself they belong to, thereby dividing into small
loops. Then we are afraid that these kinks may arise fr
bad numerical methods, which can be denied by the follo
ing reasons. First, the calculation is made by enough m
points even when there appear kinks. For example, even

FIG. 2. Collision of a straight vortex and a ring by the fu
Biot-Savart calculation with the mutual friction (a50.1). The right
column shows the side view of the left.
-
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left vortex in Fig. 3~a! is represented by about 60 point
Second, as described in the last paragraph, we confirm
the total line length is conserved in the dynamics under
LIA without the mutual friction. Third, a circular vortex ring
is found to move at the expected speed without mak
kinks, which was proposed by Schwarz6 as a method tha
checks the numerical scheme.

Considering the above results, we will study the dynam
of dilute vortices with and without the mutual friction. Th
computation sample is taken to be a cube of size 1 cm.
calculation is made by the space resolutionDj51.83
31022 cm and the time resolutionDt51.031023 sec. The
initial configuration consists of four identical vortex ring
placed symmetrically. We will study first the system subje
to the periodic boundary conditions in all directions, that

FIG. 3. Typical motion of two vortices by the full Biot-Sava
calculation. They approach~a!, and reconnect~b! to be combined to
one loop~c!. Afterthat it is kinked~d! to cut off a small loop from
itself ~e!. The same process occurs again@~f! and ~g!#.
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11 756 PRB 62TSUBOTA, ARAKI, AND NEMIROVSKII
any vortex leaving the volume appears to reenter it from
opposite face, and next that surrounded by smooth, r
walls.

Figure 4 shows the dynamics in the absence of the mu
friction. Four rings move toward the center of the cube
their self-induced velocity to make the first reconnection~a!;
the four rings resulting after that move outside opposit
~b!. During the motion, they become kinked because of t
mechanism described previously, and cut off their sm
kinked parts by reconnection. The periodic boundary con
tions make the vortices collide repeatedly@~c! and ~d!#, so
that this self-similar process continues down to the scale
the space resolution below which the vortices are suppo
to be eliminated numerically. This can be considered as
degenerate cascade process that follows the cascade
process of the dense tangle investigated in the next sec
Figure 5 shows the decay of the VLDL(t) in the process of
Fig. 4. When two vortices approach each other, the nonlo

FIG. 4. Motion of four vortex rings by the full Biot-Savart ca
culation without the mutual friction. The system is a 1-cm3 cube
and the periodic boundary conditions are used in all directions.
time is t50 sec~a!, 30 sec~b!, 150 sec~c!, and 500 sec~d!.

FIG. 5. Decay of the VLDL(t). The solid and dotted lines refe
to the dynamics of Fig. 4 subject to the periodic boundary con
tions and that of Fig. 7 confined by solid walls, respectively.
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interaction can stretch them, which sometimes causes ju
little increase inL(t). However, the superior cascade proce
decreases the VLD as a whole. The effect of the mut
friction is shown in Fig. 6. The difference is apparent. T
mutual friction smoothes and shrinks the vortex lines bef
lots of reconnection.

Figure 7 shows the dynamics with boundaries, start
from the same initial conditions. Although the early behav
~a! is similar to that of Fig. 4, all vortices collide with th
boundaries and get attached there~b!, after that behaving
differently. Running along the walls~c! and colliding with

e

i-

FIG. 6. Motion of four vortex rings by the full Biot-Savart ca
culation with the mutual friction (a50.1). The system is a 1-cm3

cube and the periodic boundary conditions are used in all directi
The time ist50 sec~a!, 10 sec~b!, 20 sec~c!, and 40 sec~d!.

FIG. 7. Motion of four vortex rings by the full Biot-Savart ca
culation without the mutual friction. The system is a 1-cm3 cube
and the system is confined by solid walls. The time ist50 sec~a!,
100 sec~b!, 150 sec~c!, and 300 sec~d!.
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the faces of the cube, they become kinked and broken
through the cascade process, ending in a degenerate sta~d!.
As shown in Fig. 5, the VLD with the boundaries deca
faster than that without boundaries. Under the perio
boundary conditions, the vortices collide only when th
happen to meet each other in the volume. In the presenc
solid boundaries, however, the vortex which runs along
boundary surface of the cube collides with its image vor
whenever it comes across another face. Thus the presen
the boundaries causes more reconnections and promote
cascade process, which reduces VLD faster than the cas
periodic boundary condition. We find that the system who
size of the cube is enlarged by a factor delays the deca
the VLD by the same factor, which supports strongly th
scenario.

IV. DECAY OF THE VORTEX TANGLE

This section studies the free decay of the dense VT w
out mutual friction under the LIA. The decay of dilute vo
tices described in the last section follows this decay of
VT.

Throughout this section, the computation sample is ta
to be a cube of size 1 cm. The calculation is made by
space resolutionDj51.8331022 cm and the time resolu
tion Dt51.031023 sec. The one set of faces is subject
periodic boundary conditions. The other two sets of faces
treated as smooth, rigid boundaries, in which case vort
approaching the faces reconnect to them and their ends
move smoothly along the wall. The reason why we do
adopt the periodic boundary conditions in all directions
that then an artificial mixing process is necessary for obta
ing an isotropic VT.7

How to prepare the initial VT for free decay follows th
method used by Schwarz.7 An initial state of six vortex rings
is allowed to develop under a pure driving normal flowvn

5vnẑ, where ẑ is parallel to the direction along which th
periodic boundary condition is used. This process should
made through the dynamics with the mutual friction (a
50.1), because the vortices free from the mutual frict
never grow to a tangle as shown by Eq.~8!. Although
Schwarz continued the calculation until the vortices grew
to a steady self-sustaining state, we will take a growing
at a moment to prepare an initial state for the simulation
the free decay. Figure 8~a! shows an example of the transie
VT, which is anisotropic reflecting the anisotropy of the sy
tem. Turning off suddenly both the applied flow and t
mutual friction transforms this VT into that of Fig. 8~b! after

FIG. 8. Example of a VT with~a! and without~b! the mutual
friction.
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some time steps; this VT is nearly isotropic takingI i.0.7;
the little deviation from the isotropic valueI i52/3 may be
attributed to the anisotropic boundary conditions.

The comparison of Figs. 8~a! and ~b! shows a marked
difference. The VT with the mutual friction consists of rel
tively smooth vortex lines, while the VT without it is ver
kinked owing to the lack of the smoothing effect of the m
tual friction. Here it is necessary to check the accuracy of
numerical calculation. The LIA must conserve the VL
L(t), whereas each numerical procedure of reconnection
change the local line length by a small quantity less thanDj
before and after the event. We can monitor every reconn
tion in the VT dynamics, thus confirming thatL(t) is con-
served completely within the numerical error except for
each moment of reconnection. Then we find that our cal
lation is enough accurate.

Figure 9 shows the decay of the VT without mutual fri
tion. It is apparent that the tangle is becoming dilute. Dur
this process, as shown in Fig. 10,L(t) is actually reduced,
with keeping the VT nearly isotropic withI i.0.7. Since this
system is free from the mutual friction, the only mechanis
for the VT decay is that cutoff procedure which eliminat
the small vortices whose size is less than the numerical sp
resolution. However, it should be noted that the continuo
reduction ofL(t) results in the presence of the stationa
cascade process wherein large vortices break up to sm
ones through reconnections. This is because, if such cas
process is absent, even though the system is subject to
cutoff procedure, the VT only decays a little instantaneou
and the continuous decay is never sustained. Only the
cade process that keeps supplying the small vortices can
duce the VT constantly.

Figure 11 compares the decay ofL(t) for the original
space resolutionDj and its quarterDj/4; the latter calcula-
tion is made by the finer time resolutionDt/16. The decay

FIG. 9. Decay of a dense VT by the LIA calculation without th
mutual friction. The system is a 1-cm3 cube. A periodic boundary
condition is used only along the vertical direction in these figur
while the other sets of faces are treated as smooth, rigid walls.
time is t50 sec~a!, 30 sec~b!, 60 sec~c!, and 90 sec~d!.
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rate is found to be almost independent of the space res
tion. Although more coarse space resolution would affect
decay rate, ours turn out to be enough fine to describe
cascade process.

What does this independence of the space resolu
mean? If the original resolutionDj is improved to its quar-
ter, the vortices of the size fromDj and toDj/4, which are
supposed to vanish for the resolutionDj, should still survive
for the renewed oneDj/4. Investigating the size distributio
of vortices shows that the line length of the vortices of t
size betweenDj and Dj/4 is not negligible compared with
the total line length. Nevertheless the decay ofL(t) little
depends on the space resolution, which is understood by
dynamical scaling described in Sec. II. A small vortex who
size is reduced by a factorl follows the dynamics whose
time scale is shortened byl2. Accordingly, the small surviv-
ing vortices betweenDj andDj/4 follow the rapid cascade
dynamics to reach the cutoff scaleDj/4, which proceeds
much faster than the overall decay ofL(t) that includes the
slow dynamics of large vortices too. Since it is difficult
improve the space resolution furthermore because of
computational constraints, we made the cutoff scale co
oppositely keeping the spare resolutionDj, in order to check
how the decay rate is affected. When the cutoff scale is
creased to 2Dj, 3Dj, and 4Dj, the decay rate ofL(t) is
found to be almost the same as that with the cutoff scaleDj,

FIG. 10. Decay of the VLDL(t) for the dynamics of Fig. 9.

FIG. 11. Comparison of the VLD decay for the different spa
resolutionsDj51.8331022 cm ~solid line! and its quarter~dotted
line!.
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though more reduction of small vortices leads to larger fl
tuation of L(t). Accordingly, the decay rate is independe
of the space resolution and the cutoff scale as far as
investigate in this work. This means that the overall dec
rate of the VLD is determined principally by not small vo
tices but large ones whose size is comparable to the ave
line spacing.

It is important to know how this behavior depends on t
scale of the system. Section II describes that the vortex
namics under the LIA is subject to the dynamical scalin
Exactly speaking, this dynamical scaling is approximate,
cause the logarithmic term that depends on the character
radius^R& throughb is neglected@Eq. ~5!#. The logarithmic
dependence is so weak that the dynamical scaling is expe
to be realized well, which should be confirmed numerica
We made the calculation for the systems with the differ
scaling factors l51,1021,1022. The dynamical scaling
states that the VLD satisfies the relationL(l)5l22L(l
51),7 which was found to be well realized in the decay
the VT. Hence the VT dynamics is subject to the dynami
scaling within very high accuracy, thus being considered
be self-similar.

It is possible to classify the kinds of reconnection in t
VT dynamics. The vortex reconnection is divided topolog
cally into three classes, as shown in Fig. 12. The first ref
to the process whereby two vortices reconnect to two vo
ces, which is most usual. The second is the process w
divides one vortex into two vortices~the split type!; the cas-
cade process is driven by this kind of reconnection. Third
the process whereby two vortices are combined to one vo
against the cascade process~the combination type!. Table I
shows the number of reconnection events for each perio
the VT dynamics of Fig. 9. The column ‘‘total’’ refers to th
total event number of all reconnections,27 and the columns
‘‘split’’ and ‘‘comb.’’ represent the event number of th
above split and combination type, respectively. Most of
connections belong to the first class. The reconnection of
second split type occupies about 17% of the total reconn
tions, being superior to that of the third combination type
about 10%. It is found that the reconnection of the split ty
actually promotes the cascade process, against the rev
process due to that of the combination type.

FIG. 12. Kinds of reconnection. The type~1! shows two vortices
reconnect to two. The type~2! is one vortex divides to two~the split
type!. The type~3! is two vortices are combined to one~the com-
bination type!.
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The cascade process is revealed further by investiga
the size distribution of vortices. Figure 13 shows the cha
of the size distribution in the VT dynamics of Fig. 9. Ea
figure shows the numbern(x) of vortices as a function o
their lengthx. The system sizea(51 cm) and the space
resolutionDj(51.8331022 cm), i.e., the cutoff length, are
the characteristic scales in this system. The vortices lon
thana are originally few, and most vortices are concentra
in the scale range@Dj,a#. As the cascade proces
progresses, every vortex generally divide into smaller o
through the split-type reconnections, although so
combination-type reconnections may occur. As a result,
vortices larger thana become fewer, and the vortices b
tweenDj and a are decreased in number too because t
become smaller thanDj and be eliminated.28 However, the
contribution to the VLD is just different. Figure 14 shows th
contribution to the VLD from the vortices in the size ran
@Dj,a#, @a,4a#, @4a2#, respectively. The contribution
from three ranges are comparable. The VLD of the la
vortices fluctuates because they are few. The smooth V
due to the vortices in the range@Dj,a# seems to be similar to
the overallL(t) of Fig. 10. In the late stage (t>50 sec) of
the dynamics, the large vortices become fewer, so that
contribution of the vortices betweenDj anda to the overall
VLD is increased relatively.

The final destiny of small vortices through the casca
process may be interpreted several ways. First, the vort
whose size is eventually reduced to the order of the in
atomic distance no longer sustain the vortex state, prob
changing into such short-wavelength excitation as ro
whose energy is comparable to that of the vortex. Seco
the vortices can vanish at a small scale by radiating phon
which is discussed recently by Vinen~see Sec. VI!.29 Both
mechanisms remove the small vortices from the syst
Since both mechanisms work only at a small scale, so
process that transfers energy from a large scale to sm
scales is necessary for the decay of the VT; this is just
cascade process. Third, in a real system, the small vort
may collide with the vessel walls as studied in Sec. III. Sin
only the vortices in the bulk are observed experimentally,
reconnection with the walls may reduce the observed V
effectively.

TABLE I. Classification of the reconnection events for ea
period in the VT dynamics of Fig. 9. See the text.

Time~s! Total Split Comb.a Split/total ~%! Comb./total~%!

0-10 1921 298 203 15.5 10.6
10-20 1366 252 161 18.4 11.8
20-30 1021 178 114 17.4 11.2
30-40 771 164 96 21.3 12.5
40-50 588 122 71 20.7 12.1
50-60 508 101 56 19.9 11.0
60-70 393 58 26 14.8 6.6
70-80 319 46 34 14.4 10.7
80-90 252 34 21 13.5 8.3
90-100 255 39 13 15.3 5.1

7394 1292 795 17.5 10.8

a
Combination.
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V. COMPARISON WITH THE VINEN’S EQUATION

This section compares our numerical results with the
lution of the Vinen’s equation to show the good agreem
between them. The derivation of the Vinen’s equation w
be reviewed briefly.5 Considering that cascade process
zero temperature proposed by Feynman,1 Vinen suggested
that the homogeneous turbulence in the superflow with
any normal fluid develops in a manner analogous to tha
turbulence of high Reynolds number in an ordinary flu
The vortices are supposed to be approximately evenly spa
with an average separationl 5L21/2. Then the energy of the
vortices spreads from the eddies of wave number 1/l into a
wide range of wave numbers, which means the self-sim
VT sustained by the cascade process. The overall deca
the energy density will be governed by the chracteristic
locity vs5k/2p l and the time constantl /vs of the eddies of
the sizel, so that

dvs
2

dt
52x2

vs
2

l /vs
52x2

vs
3

l
, ~15!

FIG. 13. Bar chart showing the number of vorticesn(x) as a
function of the lengthx in the dynamics of Fig. 9. The range ofx is
discretized by eachDx5231022 cm. The time ist50 sec~a!, 50
sec~b!, and 100 sec~c!.
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wherex2 is a parameter. Rewriting this byL, we obtain

dL

dt
52x2

k

2p
L2. ~16!

This is the Vinen’s equation that describes the decay of
VLD L(t), and its solution is given by

1

L
5

1

L0
1x2

k

2p
t, ~17!

where L0 is the VLD at t50. At finite temperatures, the
presence of the normal fluid may affect the cascade proc
However, since the addition of the normal fluid introduc
no new dimensional parameters into the vortex dynamics,
form of Eq. ~16! cannot be altered andx2 becomes a func-
tion of the temperature. The values ofx2 observed at finite
temperatures are shown in Fig. 15. The symbolss denotes
the values observed when a heat current is suddenly swit
on, whileh the values when a heat current is turned off.
any case, two kinds ofx2 reflects the complicated behavio
of the normal fluid.

Figure 16 shows the comparison of our numerical res

FIG. 14. Contribution to the VLD from the vortices in the siz
range~a! @Dj,a#, ~b! @a,4a#, and~c! @4a2#, wherea51 cm.
e

ss.
s
e

ed

ts

and the solution of the Vinen’s equation. The solid line refe
to our result for the VT decay of Fig. 9, while three oth
lines denote Eq.~17! with the parametersx250.5, 0.3, 0.2.
Then we find that our result agrees excellently with the
lution of x250.3. There are two meanings for this. First, t
decay of the numerical VT is well described by the Vinen
equation. As stated in the last paragraph, the Vinen’s eq
tion is based closely on the cascade process. Hence
agreement supports that the cascade process occurs rea
the numerical simulation. Second, as seen from Fig. 15,
two kinds of datas and h are extrapolated towards zer
temperature, then seeming to reach reasonably tox2.0.3;
the value obtained numerically may be consistent with th
observed at finite temperatures.

In order to study how the mutual friction affects the ca
cade process, we calculate the decay of the VT with
mutual friction under the static normal fluid. As noted b
Barenghi and Samuels,20 such phenomena might as well b
calculated not kinematically but by a self-consistent a
proach which takes into account the back reaction of the
onto the normal fluid. However, since the decay of an
proximately isotropic and homogeneous VT may not indu
some overall flow in the static normal fluid, this work, fo
simplicity, calculates kinematically the problem subject

FIG. 15. Dependence ofx2 on the mutual friction coefficienta.
The symbolsd show the values obtained by this work, correspon
ing to T50, 0.91, 1.07, 1.26, 1.6 K, in order of increasinga. The
symbolss denote the values observed by Vinen~Ref. 5! when a
heat current is suddenly switched on, andh the values when a hea
current is turned off. We used the relationa5Brn/2r ~Ref. 2! in
order to translate the Vinen’s data represented by another fric
coefficientB.

FIG. 16. Comparison of the decay ofL(t) in Fig. 9 and the
solution @Eq. ~17!# of the Vinen’s equation. The values ofx2 as a
fitting parameter for Eq.~17! are shown in the figure.
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the static normal fluid. Similar to the above calculation,
compare the numerical decay of the VT at finite temperatu
with Eq. ~17! with a fitting parameterx2. The obtained de-
pendence ofx2 on the mutual friction coefficienta is also
shown in Fig. 15. When the temperatures are relatively
(T50.91, 1.07, and 1.26 K!, the solution with a proper value
of x2 can describe well the numerical result. However, as
temperature increases (T51.6 K), the numerical results be
come to deviate from Eq.~17!. This seems to be reasonab
The decay term of the Vinen’s equation was derived or
nally based on the idea of the homogeneous turbulence.5 At
low temperatures, the mutual friction is too small to distu
the inertial range, while the mutual friction at high tempe
tures shrinks not only small vortices but also large ones, t
disturbing the inertial range and deviating the numerical
sult from Eq.~17!.

VI. CONCLUSIONS AND DISCUSSIONS

Motivated by the recent experimental work by Dav
et al.,22 we studied numerically the dynamics of the V
without the mutual friction. The absence of the mutual fr
tion means that the usual well-known mechanism does
work for its free decay, so that we do not know why the V
decays. Throughout this paper, we conclude that the s
similar cascade process whereby large vortex loops brea
to smaller ones proceeds in the VT, being closely concer
with the decay of the VT. This cascade process, which m
be covered with the mutual friction at high temperatures
just the one at zero temperature Feynman proposed,1 al-
though the eventual destiny of the minimum vortex ring
beyond this formulation. The full Biot-Savart calculation
made for dilute vortices, while the LIA calculation for th
dense VT. The former reveals the scenario: the reconnec
of the vortices excites vortex waves on them and makes
vortex lines kinked, which would be suppressed in the pr
ence of the mutual friction. The kinked parts reconnect w
the body loop they belong to, breaking up to small loo
The LIA calculation shows that the cascade process proc
in the VT, keeps making the small vortices below the sp
resolution and reduces the VLDL(t). Although the small
vortices below the space resolution are eliminated num
cally, it should be emphasized that the VT never dec
without the cascade process. The decay ofL(t) obtained
numerically is consistent with the solution of the Vinen
equation. The calculation that takes account of the mu
friction shows that both the modified cascade process and
vortex shrinkage due to the mutual friction proceeds toge
in the VT at a finite temperature.

Here we will describe the recent work by Vinen.29 In
relation to the experimental work of the grid turbulence19

Vinen discussed the dissipation of the VT at zero tempe
ture. The dissipation can occur only by the emission of so
waves~phonons! by an oscillating vortex. The vortex osci
lation of the average vortex spacingl 5L21/2 has the charac
teristic velocityv l;k/ l and the characteristic timet l; l 2/k.
Estimating the dipole and quadrupole radiation from
Kelvin wave finds that such oscillation can cause only
very slow decay of the VT compared witht l . Hence Vinen
considered the excitation of the Kelvin wave whose wa
length is much smaller thanl. In a classical viscous fluid
s
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there is a flow of energy from components of the veloc
field with small wave numbers to components with lar
wave numbers, energy being dissipated by viscosity near
Kolmogorov wave number. The superfluid system will ha
the energy cascade process of the Kelvin waves, whereby
energy is transformed to Kelvin waves with wave numb
greater thanl 21 and eventually dissipated at a wave numb
k̃2 by sound radiation. Based on this picture, Vinen reform
lated the Vinen’s equation and obtained

k̃2l 5S Cl

A1/2k
D 1/2

~18!

for the case of dipole radiation, whereC is the speed of
sound andA is a constant. It should be noted that this Vi
en’s Kelvin wave cascade process corresponds to our
cade process which is shown by the direct simulation of
vortex dynamics. The difference is that, although Vinen co
sidered only the Kelvin wave, our cascade process inclu
not only the excitation of vortex waves but also the break
of large loops to smaller ones through reconnection, wh
was assumed to be negligible by Vinen but is found to
present by our simulation. Whether the excitation of vort
waves or the breakup of vortex loops, the structure of sm
wave number will be produced continuously. We will es
mate Eq.~18! for our simulation of the decay of the dens
VT. As shown in Fig. 10,L is supposed to be 400 cm22, so
that l 5L21/251/20 cm. TakingC.23104 cm/sec for liq-
uid helium andk.1023 cm2/sec and assuming the un
known constantA is the order of 1, Eq.~18! yields k̃2l

;103, i.e., k̃2;23104 cm21. Since the characteristic
length k̃2

21;531025 cm for sound radiation is enoug
smaller than our numerical space resolutionDj, our cutoff
procedure may be considered to be used for the effect of
sound radiation, assuming the cascade process conti
self-similarly also fromDj to k̃2

21.
We have to comment on how the nonlocal interaction a

on the VT.3 In a VT, the local field is usually superior to th
nonlocal field. As stated in Sec. III, however, when two vo
tices approach each other, the nonlocal interaction
stretch them partly. The full Biot-Savart calculation in Se
III shows that in dilute vortices the cascade process is su
rior to the stretch due to the nonlocal interaction. In a de
VT, these two processes can compete with each other; w
is superior may depend on the VLD or the size distributi
of vortices. Although the full Biot-Savart calculation for
dense VT is much CPU expensive and difficult, we start
calculation and obtain some preliminary results showing t
the decay due to the cascade process still proceeds. Th
tail will be reported shortly.

Our results are compared with the recent experiment
Davis et al.22 The observedT-independent decay below 7
mK strongly suggests that the phonon gas plays no r
because the phonon density falls asT3 in this range, and
there must be an unknown intrinsic process in this superfl
system. We believe that our cascade process is closely
nected with theT-independent decay. Daviset al. observed
the time costant of the decay was the order of 10 sec.
time constant depends on the amplitude of the VLD, but
do not know exactly the homogeneity of the VT and t
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amplitude of the VLD in the experiments.30 Accordingly, it
is difficult to compare our results quantitatively with the e
perimental data at present.

Such sound radiation can heat the fluid, which is recen
discussed by Samuels and Barenghi.31 They estimated ther
modynamically how much the temperature of the fluid
creases when the kinetic energy of the VT is transformed
compressive energy, i.e., phonons. Since the traditio
second-sound technique fails in the very low temperatu
the observation of thevortex heatingis useful for investigat-
ing this system.

Nore et al.32 studied the dynamics of the VT without an
friction, by the direct numerical simulation of the Gros
Pitaevskii equation. They show that the total energy of
VT is partly transformed to compressive energy, and the
ergy spectrum can follow the Kolmogorov law. The dyna
ics they studied seems to include the cascade process o
work, but its detail is not clear.
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Finally we will comment on the eddy viscosity. The s
perfluid turbulent state33 in a capillary flow induces exces
temperature and pressure differences between both end
the capillary, more than those in the laminar flow state. T
excess temperature difference is understood by the mu
friction, while the excess pressure difference is describ
phenomenologically by the eddy viscosity. The eddy visc
ity works for superfluid and reduces its total momentum, b
its origin has not been necessarily revealed. The eddy vis
ity which is thought to be an intrinsic mechanism in sup
fluid may be related with this cascade process.
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