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A recent experiment has shown that a tangle of quantized vortices in supéiflaidecayed even at mK
temperatures where the normal fluid was negligible and no mutual friction worked. Motivated by this experi-
ment, this work studies numerically the dynamics of the vortex tangle without the mutual friction, thus
showing that a self-similar cascade process, whereby large vortex loops break up to smaller ones, proceeds in
the vortex tangle and is closely related with its free decay. This cascade process which may be covered with the
mutual friction at higher temperatures is just the one at zero temperature Feynman proposed long ago. The full
Biot-Savart calculation is made for dilute vortices, while the localized induction approximation is used for a
dense tangle. The former finds the elementary scenario: the reconnection of the vortices excites vortex waves
along them and makes them kinked, which could be suppressed if the mutual friction worked. The kinked parts
reconnect with the vortex they belong to, dividing into small loops. The latter simulation under the localized
induction approximation shows that such cascade process actually proceeds self-similarly in a dense tangle and
continues to make small vortices. Considering that the vortices of the interatomic size no longer keep the
picture of vortex, the cascade process leads to the decay of the vortex line density. The presence of the cascade
process is supported also by investigating the classification of the reconnection type and the size distribution of
vortices. The decay of the vortex line density is consistent with the solution of the Vinen’s equation which was
originally derived on the basis of the idea of homogeneous turbulence with the cascade process. The cascade
process revealed by this work is an intrinsic process in the superfluid system free from the normal fluid. The
obtained result is compared with the recent Vinen’s theory which discusses the Kelvin wave cascade with
sound radiation.

[. INTRODUCTION where @ and y, are parameters dependent on temperature
andv, is the relative velocity between the normal flow and
Superfluid “He (helium Il) behaves like an irrotational superflow,x the quantized circulation. This Vinen’s theory
ideal fluid, whose characteristic phenomena can be explainegbuld describe well a large number of observations of mostly
well by the Landau two-fluid model. However, superflow gtationary cases.
becomes dissipativetsuperfluid turbulenge above some However, the nonlinear and nonlocal dynamics of vortices
critical velocity. The concept of superfluid turbulence wasy, o4 long delayed the progress in further microscopic under-
introduced by Feynmarwho stated that the superfluid tur- tanding of the VT. It was Schwarz that broke throgitis
Sgﬁgésﬂaﬁ”gg"\‘gﬁ;}( gn; é\??;)rgiﬁ?n d?r?gt; :r]:e %ufatﬂgzeanost important contribution was that the direct numerical
’ : simulation of vortex dynamics connected with the scaling

inertial range of the classical-fluid turbulence, Feynman pro- nalvsis enabled us to calculate such physical quantities as
posed that VT undergoes the following cascade process. Y ) . phny q I~
e VLD, some anisotropic parameters, the mutual friction

zero temperature, a large distorted vortex loop breaks up t The ob bl . btained by Sch ,
smaller loops through reconnections, and the cascade proc ce, etc. The observable quantities obtained by Schwarz's
continues self-similarly down to the order of the interatomict"€0ry agree well with the experimental results of the steady

scale. At finite temperatures, however, normal fluid collidesState of the VT. This research field pioneered by Schwarz has
with vortices and takes energy from them. revealed many problems of vortex dynamics, such as the
This idea was developed further by Vinen. In order toflow properties in channefs* sideband instability of
describe an amplification of a temperature difference at th&elvin waves;” vortex array in rotating superfluitf, and
ends of a capillary retaining thermal counterflow, Gorter andvortex pinning:**°
Mellink introduced some additional interactions between the The mutual friction plays an important role in the above
normal fluid and superfluid.Through experimental studies vortex dynamics. The stationary state of the VT Schwarz
of the second-sound attenuation, Vinen considered thigbtained is self-sustaining, and realized by the competition
Gorter-Mellink mutual friction in relation to the macroscopic between the excitation and dissipation due to the mutual fric-
dynamics of the VT. Assuming homogeneous superfluid tion subject to the . field, as described in the next section.
turbulence, Vinen obtained an evolution equation for the vorHence the system free from the mutual friction cannot sus-

tex line density(VLD) L(t), what we call the Vinen’s equa- tain the stationary VT.

tion Compared with the steady state, there have been less stud-
ies of the transient behavior of the VT. Although the tran-
d_'— = afp, L3 LLz 1) sient behavior generally refers to both the growth and decay
dr *IPns X process, this paper considers only the decay of the VT after
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the driving velocity is suddenly reduced to zero. The earlyto its vorticity. Except for the thin core region, the superflow
measurements by Vineérand the later oné&'’ observed a velocity field has a classically well-defined meaning and can
decay of the VT which was consistent with the Vinen’s Eq.be described by ideal fluid dynamics. The velocity produced
(1) with only the decay term, although Schwarz and RdZen at a pointr by a filament is given by the Biot-Savart expres-
coupled the Vinen’s equation with the hydrodynamical equasijgn:

tions of the normal flow and the superflow in order to explain

a slow decay following an initial rapid decay they observed.

Apart from these experiments on thermal counterflow, the Kk [ (s—r)Xds;
decay of vorticity in turbulence generated by towing a grid Uso™4m c o |s—1?
was studied recentf{#*° This turbulence is expected to be

homogeneous and isotropic. The experimental results may be

understood by the picture that the mutual friction can be séNhereK is the quantized circulation. The filament is repre-

strong that the normal fluid and the superfiuid lock togetherS€Nted by the parametric forsxs(¢,1), s, refers to a point

behaving effectively like a single fluff21 The experimental  ©" the filament and :[he integration is taken al_ong the fila-

results are compared with the change in the turbulent enerdﬂe”t- The Helmholtz's theorem for a perfect fluid states that

spectrum which includes the Kolmogorov law. the vortex moves with the superfluid velocity at the point.
Both these numerical and experimental results are muchttempting to calculate the velocitys , at a pointr=s on

affected by the mutual friction. However, recently, Davis the filament makes the integral divergesas-s. To avoid it,

et al?? observed that vortices did decay even at mK temperawe divide the velocitys of the filament at the poirginto two

tures where the normal-fluid density became vanishingl{tomponent$:

small and, as a consequence, the mutual friction did not work

effectively. The vortices were created by a vibrating grid, (

, @

and detected by their trapping of negative ions. The first — Ls’Xs”In
important point is that the vortices actually decay at such low " A
temperatures. The second is that the decay rate becomes in-

dependent Of temperature l_)elo'W=7Q mK. 1t is unclgar . The first term shows the localized induction field arising
how the vortices decay. This experimental work, which iS¢ 3 curved line element acting on itself, andand! _ are
just preliminary at present, can develop a new research fielf,q |ongths of the two adjacent line elements that hold the
of superfluid or vortex dynamics at mK temperatures; it cary i+ between, and the prime denotes differentiation with

reyeal some essence that may be covered with the norm spect to the arc length The mutual perpendicular vectors
fluid at higher temperatures. . 8, &', ands’' X s" point along the tangent, the principal nor-
e e e e kon s e, &nd tho ol at e it respectvely,and e
calcyulation undery the localized induction approxin.1ationmagnimoIes are R, andR‘lz whereR is the local radius
(LIA) is made for the dense VT, while the full Biot-Savart of curyature. The parametalb IS a CUt.Oﬁ parameter corre-

: ' %po?dlnlg to_atscor_?hradluls. 'I_'thu_s the fllrst term ttendsI ttoRmove
. . ) ) e local points with a velocity inversely proportional t&,
mutual friction makes the vortices kinked, which promotes long the binormal direction. The second term represents the

vortex reconnections. Consequently, sme}ll vortices are .Clﬁonlocal field obtained by carrying out the integral of E2).
off from a large one through the reconnections. The resultm%lcmg the rest of the filament. The approximation that de-

vortices also follow the self-similar process to break. up toscribes the vortex dynamics neglecting the nonlocal terms
smaller ones. Although our formulation cannot describe the

final destiny of the minimum vortex, the decay of the VT is and replacing Eqc3) by
found to be connected with this cascade process, which is _
just the cascade process at zero temperature Feynman s=Bs' Xg’ 4
proposed.

The contents of this paper are the following. Section lljs called the localized induction approximatiGnlA). Here
describes the equations of motion of vortices and the methoghe coefficients is defined by
of numerical calculation. Section Ill studies the dynamics of
dilute vortices under the full Biot-Savart law both without
and with solid boundaries; this calculation reveals the es- B:Lm
sence of the cascade process. The dynamics of the dense VT A
under the LIA is discussed in Sec. IV. The obtained results
are compared with the solution of the Vinen's equation inwherec is a constant of order 1 andl,(| _)*?is replaced by
Sec. V. The agreement is good, which supports the picture dhe characteristic radiufR).
the cascade process. The decay of the VT subject to the When boundaries are present, the boundary-induced field
mutual friction is discussed too. Section VI is devoted tovg, is added tovs, SO that the boundary conditiorw

1/2 ’ _
2(1,1_) >+ Kf(s1 r)xdsl_ -

e¥ay | Amle s

c(R)
k)

, ©)

conclusions and discussions. +vg,)-n=0 can be satisfied. If the boundaries are specular
plane surfaces;g , is just the field by an image vortex made
Il. EQUATIONS OEIMSI,IA\?POQND NUMERICAL by reflecting the vortex into the plane and reversing its di-

rection of the vorticity. Some other applied fietd, ,, if

A quantized vortex is represented by a filament passingresent, is added, which results in the total velositpf the
through the fluid and has a definite direction correspondingortex filament without dissipation:
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1/2 (o — Js
s gxgn 2T« [rlaTnxds 2 Xt vgot as X (vng—vso—§ X —a's
A e1’4a0 47 ), |sl—r|3 aty
+0sp(9+5a(S). (6) X[$' X (0n 0~ vs0m XS] (10

This equation is invariant under the scale transformation:
At finite temperatures the mutual friction due to the interac-

tion between the vortex core and the normal-fluid floyvis S=ASY,  E=NEF,  to=N%E,
taken into account. Then the velocity of a pasi$ given by
voo=N"Tho,  vso=N vl (11

s=Stas' X(vy—s)—a's' X[s'X(vn=%)]. (7))  Accordingly, if all space coordinates of a system are reduced
by a factora(<1), the dynamics of the new system will
wherea and ' are the temperature-dependent friction co-jook like the same as that of the old one, except that the
efficients, ands, is calculated from Eq(6). All calculations  velocity increases by ! and the time passes more rapidly
in this work are made for’=0.° by A\2. In other words, a small vortex loop whose configura-
As discussed by Barenghi and Samu8ihis formulation  tion is similar to a large one but size is reduced\bfollows
is essentially kinematic in the sense that the driving flows the similar motion whose time scale shortens Xy com-
andvg, are constant, that is, they only act on the vortexpared with the large one.
dynamics but are never affected by it. When the dynamics of Some important quantities which are useful for character-
the driving flows is concerned, it should be coupled self-izing the VT will be introduced. The vortex line density
consistently to the vortex dynamics. However, since thiSVLD) is
work studies the system without the normal fluid and the

driving superflow, this formulation will be useful to describe 1

correctly the vortex dynamics, except for the phenomena that L= 5Ld§, (12)

is concerned with the vortex core region, such as vortex re-

connection, nucleation, and annihilation. where the integral is made along all vortices in the sample

Studying the vortex dynamics without the mutual friction volume ). Even though the VT may be homogeneous, it
needs to understand qualitatively the role of the mutuaneed not generally be isotropic. The anisotropy of the VT
friction.® Let us assume the LIA and neglect the term withwhich is made under the counterflay is represented by
a’. Then Egs(6) and(7) are reduced to the dimensionless parameters

. 1 R
§=BS' XS +vg,tas' X(v,—vsa—BS' XS'). (8 IH:mL[l—(s’-rH)z]dg, (13a

If the mutual friction is absent, the dynamics due to only the

self-induced velocity conserves the total line length of vorti- | :if [1-(s -,)?]d¢ (13b)
ces. Under the above mutual friction, one can easily find that oL, * ’

when the applied relative flow,—vs, blows against the

local self-induced velocityds' Xs’, the mutual friction al- R 1

ways shrinks the vortex line locally. On the other hand, the ||rH=—3,2f s'xXs'dé. (139
relative flow along the self-induced velocity yields a critical QL.

radius of curvature HereF” andr, stand for unit vectors parallel and perpendicu-

lar to thew, direction. The symmetry generally yields the
B © relation 1 /2+1,=1. If the VT is isotropic, the average of

lvn—vsal’ these measures alg=1, =2/3 andl,=0.
The method of the numerical calculations is similar to that

When the local radiuR at a point on a vortex is smaller than of Schwar? and described in our previous pap&A vortex
R., the vortex will shrink locally, while the vortex oR  filament is represented by a single string of points. The vor-
>R; balloons out. Thus it should be noted that the mutuakices configuration of a moment determines the velocity field
friction plays the dual role of the growth and decay of vortexin the fluid, thus moving the points on vortex filaments by
line length. This dual role of the mutual friction sustains theEgs. (6) and (7). Both local and nonlocal terms are repre-
steady state of the VT subject to the applied flow, where th&ented by means of line elements connecting two adjacent
highly curved structure whose local radius of curvature ispoints. As discussed in Ref. 6, the explicit forward integra-
less thanR; will be smoothed out. If this applied field is tion of the local term may be numerically unstable. To pre-
absentR, becomes infinite so that an arbitrary curved con-vent the difficulty, a modified hopscotch algorithm is
figuration of vortex lines shrinks away. adopted. As the vortex configuration develops and, particu-

Here we will describe shortly the dynamical scaling dis-larly, two vortices approach each other, the length of a line
cussed by Swanson and Donnéffyand SchwarZ,which is  element can change. Then it is necessary to add or remove
necessary for understanding the cascade process of the \fibints properly so that the local resolution does not I@se
dynamics. Using the LIA and absorbing the facf@®rinto  adaptive meshing routifneThrough the cascade process de-
reduced timey= Bt and velocityv,=v/B, Eq.(7) becomes scribed in Sec. lll, a large vortex can break up many times,

R.=
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eventually to a small one whose size is less than the space
resolution, i.e., the distance between neighboring points on
the filament. Of course, the numerical calculation generally
cannot follow the dynamics beyond its space resolution.
Thus such vortices are eliminated numerically; the physical
justification of this cutoff procedure will be discussed in Sec.
V.

How to deal with vortex reconnection is very important in
the simulation of the VT. The numerical study of the incom-
pressible Navie-Stokes fluid showed that the close interac-
tion of two vortices leads to their reconnection, chiefly be-
cause of the viscous diffusion of the vorticftyKoplik and
Levine solved directly the Gross-Pitaevskii equation to show
the two close quantized vortices reconnect even in a inviscid
fluid.2° Of course, our numerical method for vortex filaments
cannot represent the reconnection process itself. However, Q

Schwar? and the authof§ simulated the vortex dynamics

near the reconnection using the full Biot-Savart law. When

two vortices approach each other, let us define a critical

distancé b

A=2R/In(c(R)/ay), (14)

at which the nonlocal field from the other becomes compa-
rable to its own local-induced field. Two vortices approach-
ing within A cause local twists on each other so that they
become antiparallel at the closest place, even though they are
not antiparallel initially. Then local cusps connecting these @

two develop, which will lead to reconnection. After the re-
connection, two vortices run away rapidly from each other
owing to their self-induced velocity. Considering both the
full Biot-Savart calculation and the results of Ré€25), it

will be reasonable to assume that two close filaments would
reconnect. This assumption has an important meaning be-
yond a numerical expedient. The numerical simulation of the FIG. 1. Collision of a straight vortex and a ring by the full
dense VT forces us to use the LIA, because the full Biot_Blot—Savart calculation without the mutual friction. The right col-
Savart calculation requires much computing time. The LIA isuMmn shows the side view of the left.

expected to be a good approximati¢o order 10% pro-

vided the intervortex spacing is enough large. HoweverOther vortex more closely than the fixed space resolutign
when two vortices approach each other more closely than We join these two points and reconnect the vortices. Before
the nonlocal field becomes not negligible in reality. All the and after the reconnection, the local line length may increase
effects coming from such nonlocal field may be thought toOr decrease by a small quantity less thef This procedure

be renormalized art|f|c|a||y by making the vortices recon_iS best for the filament reconnection under the full Biot-
nect. In the numerical simulation of the VT, Schwarz as-Savart calculation. The dependence of the LIA dynamics on
sumed that vortices which pass within are reconnected A¢ will be discussed in Sec. IV.

with unit probability. He noticed that the details of when and ~ The numerical space resolutid¢ and the time resolu-
how the vortices are reconnected have no significant inflution At will be described for each calculation. For example,
ence on the behavior of the VT, while the judgment by this  the dense tangle in a 1-éncube shown in Fig. @) is cal-

can make unphysical reconnections. For example, two akulated usingé=1.83x10"2? cm, At=1.0x10"* sec,N
most straight vortices must reconnect even if they are very=16 000 points. Then, as described in Sec. IV, the VLD is
far apart, because their large radR®f curvature results in  conserved properly under the LIA, except for at each mo-
the largeA. The full Biot-Savart calculaticfi shows that ~ment of reconnection.

two vortices that once approach withinhcan get away with-
out reconnecting. Hence, in contrast to the method of
Schwarz, this work reconnects the vortices which pass within
not A but the space resolutiah¢, for both the LIA and the This section will investigate the dynamics of dilute vorti-
full biot-Savart calculations. The concrete procedure is thees by the full Biot-Savart law described by E6). We will
following. Every vortex initially consists of a string of points begin with the collision of a straight vortex line and a mov-
at regular intervals oA ¢. The subsequent vortex motion can ing ring in order to investigate what happens after the recon-
change the intervals of two adjacent points, yet the aboveection. Figure 1 shows the motion without the mutual fric-
adaptive meshing routine keeps each interval almo&t tion. Toward the reconnection, the ring and the line twist
When a point on a vortex approaches another point on arthemselves so that they become locally antiparallel at the

C

IIl. DECAY OF DILUTE VORTICES
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FIG. 2. Collision of a straight vortex and a ring by the full
Biot-Savart calculation with the mutual frictiorvE& 0.1). The right
column shows the side view of the left.
closest placdFig. 1(a)]. After the reconnectiofpFigs. 1b) -
and (c)], the resulting local cuspg® propagate along the
vortices, exciting vortex waves. As shown in Fig. 2, the dy- f g

namics with the mutual friction¢=0.1) is similar, but there
is a noticeable difference; the vortices are relatively smooth F|G. 3. Typical motion of two vortices by the full Biot-Savart
because of that smoothing effect of the mutual friction. Forcalculation. They approadia), and reconnedb) to be combined to
comparison, we calculated the dynamics under the LIA with-one loop(c). Afterthat it is kinked(d) to cut off a small loop from
out the mutual friction. Although the twist due to the nonlo- itself (e). The same process occurs aggii and(g)].
cal interaction is absent, the behavior is similar to that of Fig.
1. It should be noted that the total line length under the LIAleft vortex in Fig. 3a) is represented by about 60 points.
without the mutual friction is properly conserved within the Second, as described in the last paragraph, we confirm that
numerical error except for at the moment of reconnectionthe total line length is conserved in the dynamics under the
while it is just lengthened by the nonlocal interaction in LIA without the mutual friction. Third, a circular vortex ring
Fig. 1. is found to move at the expected speed without making
A typical scenario that vortex loop follows is shown in kinks, which was proposed by Schwhras a method that
Fig. 3, which is a part of the process of Fig. 4. Two vortexchecks the numerical scheme.
loops approach each other to reconnect, thus becoming one Considering the above results, we will study the dynamics
loop. The reconnection excites vortex waves along the loopf dilute vortices with and without the mutual friction. The
and makes it kinked. The kinked parts reconnect with thecomputation sample is taken to be a cube of size 1 cm. The
loop itself they belong to, thereby dividing into smaller calculation is made by the space resolutidré=1.83
loops. Then we are afraid that these kinks may arise fromx 102 cm and the time resolutioht=1.0x 10" sec. The
bad numerical methods, which can be denied by the followinitial configuration consists of four identical vortex rings
ing reasons. First, the calculation is made by enough mesplaced symmetrically. We will study first the system subject
points even when there appear kinks. For example, even the the periodic boundary conditions in all directions, that is,
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d

FIG. 4. Mot £ . by the full Biot-S | FIG. 6. Motion of four vortex rings by the full Biot-Savart cal-
- 4. Motion of four vortex rings by the full Biot-Savart cal- ¢ ation with the mutual friction €=0.1). The system is a 1-¢cm

: . o . 3
culation wnhogt the mutual fr|ct.|(.)n. The system IS a.l-cr.nube cube and the periodic boundary conditions are used in all directions.
and the periodic boundary conditions are used in all directions. Therhe time ist=0 sec(a), 10 sec(b), 20 sec(c), and 40 secd)

time ist=0 sec(a), 30 sec(b), 150 sedc), and 500 secd).

interaction can stretch them, which sometimes causes just a

any vortex leaving the volume appears to reenter it from _th_?ttle increase inL(t). However, the superior cascade process
opposite face, and next that surrounded by smooth, Tigiyecreases the VLD as a whole. The effect of the mutual

walls. h he d ics in the ab fth friction is shown in Fig. 6. The difference is apparent. The
. E|gure 4s ows the dynamics in the absence of the mutugy, v, 5 friction smoothes and shrinks the vortex lines before
friction. Four rings move toward the center of the cube by o ¢ reconnection

their self-induced velocity to make the first reconnectian Figure 7 shows the dynamics with boundaries, starting

tge fDour_ ringhs resullting l;':lfterbthat m(?(yekogtaide Opposfitﬁlyfrom the same initial conditions. Although the early behavior
(b). During the motion, they become kinked because of that) i similar to that of Fig. 4, all vortices collide with the

rkneﬁhgnism (lj)escribed previousrlly, and dCUtbOff (tjheir SmSuooundaries and get attached theébg, after that behaving
inked parts by reconnection. The periodic boundary condiyi V. Runni | h & llidi ith
tions make the vortices collide repeatedig) and (d)], so differently. Running along the walléc) and colliding wit

that this self-similar process continues down to the scale of

the space resolution below which the vortices are supposed
to be eliminated numerically. This can be considered as the
degenerate cascade process that follows the cascade decay
process of the dense tangle investigated in the next section. A\
Figure 5 shows the decay of the VLI(t) in the process of
Fig. 4. When two vortices approach each other, the nonlocal ’
5 a b
o
E e,
E . 'n""l
) ‘"".___ h
0 1 L 1 e
0 125 250 375 500 C d
t(s)

FIG. 7. Motion of four vortex rings by the full Biot-Savart cal-
FIG. 5. Decay of the VLDL(t). The solid and dotted lines refer culation without the mutual friction. The system is a 1%coube
to the dynamics of Fig. 4 subject to the periodic boundary condi-and the system is confined by solid walls. The time=€ sec(a),
tions and that of Fig. 7 confined by solid walls, respectively. 100 seca(b), 150 sec(c), and 300 secd).
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FIG. 8. Example of a VT with(a) and without(b) the mutual
friction.

the faces of the cube, they become kinked and broken up
through the cascade process, ending in a degeneratédtate
As shown in Fig. 5, the VLD with the boundaries decays
faster than that without boundaries. Under the periodic
boundary conditions, the vortices collide only when they
happen to meet each other in the volume. In the presence of
solid boundaries, however, the vortex which runs along one
boundary §urface of the cube collides with its image vortex FIG. 9. Decay of a dense VT by the LIA calculation without the
whenever it comes across another face. Thus the pl’es’encen%tual friction. The system is a 1-éneube. A periodic boundary

the boundaries causes more reconnections and promotes (e, yition is used only along the vertical direction in these figures,
cascade process, which reduces VLD faster than the case @fje the other sets of faces are treated as smooth, rigid walls. The
periodic boundary condition. We find that the system whosgjme ist=0 sec(a), 30 sec(b), 60 sec(c), and 90 sedd).

size of the cube is enlarged by a factor delays the decay of
the VLD by the same factor, which supports strongly this
scenario.

some time steps; this VT is nearly isotropic takihg-0.7;
the little deviation from the isotropic valug=2/3 may be
attributed to the anisotropic boundary conditions.
IV. DECAY OF THE VORTEX TANGLE The comparison of Figs.(a) and (b) shows a marked
difference. The VT with the mutual friction consists of rela-
This section studies the free decay of the dense VT withtively smooth vortex lines, while the VT without it is very
out mutual friction under the LIA. The decay of dilute vor- kinked owing to the lack of the smoothing effect of the mu-
tices described in the last section follows this decay of theyal friction. Here it is necessary to check the accuracy of the
VT. numerical calculation. The LIA must conserve the VLD
Throughout this section, the computation sample is taken (t), whereas each numerical procedure of reconnection can
to be a cube of size 1 cm. The calculation is made by thehange the local line length by a small quantity less thgn
space resolutiol §=1.83x10"? cm and the time resolu- pefore and after the event. We can monitor every reconnec-
tion At=1.0x10"2 sec. The one set of faces is subject totion in the VT dynamics, thus confirming tha(t) is con-
periodic boundary conditions. The other two sets of faces argerved completely within the numerical error except for at
treated as smooth, rigid boundaries, in which case vorticegsach moment of reconnection. Then we find that our calcu-
approaching the faces reconnect to them and their ends c##tion is enough accurate.
move smoothly along the wall. The reason why we do not Figure 9 shows the decay of the VT without mutual fric-
adopt the periodic boundary conditions in all directions istion. It is apparent that the tangle is becoming dilute. During
that then an artificial mixing process is necessary for obtainthjs process, as shown in Fig. 10(t) is actually reduced,
ing an isotropic VT. with keeping the VT nearly isotropic with=0.7. Since this
How to prepare the initial VT for free decay follows the system is free from the mutual friction, the only mechanism
method used by SchwafzAn initial state of six vortex rings  for the VT decay is that cutoff procedure which eliminates
is allowed to develop under a pure driving normal floy  the small vortices whose size is less than the numerical space
=v,2z, Wherez is parallel to the direction along which the resolution. However, it should be noted that the continuous
periodic boundary condition is used. This process should besduction ofL(t) results in the presence of the stationary
made through the dynamics with the mutual friction ( cascade process wherein large vortices break up to smaller
=0.1), because the vortices free from the mutual frictionones through reconnections. This is because, if such cascade
never grow to a tangle as shown by E@®). Although process is absent, even though the system is subject to that
Schwarz continued the calculation until the vortices grew ugcutoff procedure, the VT only decays a little instantaneously
to a steady self-sustaining state, we will take a growing VTand the continuous decay is never sustained. Only the cas-
at a moment to prepare an initial state for the simulation ofcade process that keeps supplying the small vortices can re-
the free decay. Figure(® shows an example of the transient duce the VT constantly.
VT, which is anisotropic reflecting the anisotropy of the sys- Figure 11 compares the decay b{t) for the original
tem. Turning off suddenly both the applied flow and thespace resolution ¢ and its quarten\ ¢/4; the latter calcula-
mutual friction transforms this VT into that of Fig(I8 after  tion is made by the finer time resolutiakt/16. The decay



11758 TSUBOTA, ARAKI, AND NEMIROVSKII PRB 62

360 T T T 1)2—’2
—dp-

240 i

=
2 2)1—2
ot
- CO-00

3)2 -1

0 1 1 1
0 25 50 75 100 —
t(s)

FIG. 10. Decay of the VLOL(t) for the dynamics of Fig. 9. FIG. 12. Kinds of reconnection. The typ® shows two vortices

reconnect to two. The typ@) is one vortex divides to twéhe split

rate is found to be almost independent of the space resoluype). The type(3) is two vortices are combined to orfthe com-
tion. Although more coarse space resolution would affect theination type.
decay rate, ours turn out to be enough fine to describe the
cascade process. though more reduction of small vortices leads to larger fluc-

What does this independence of the space resolutiof/ation of L(t). Accordingly, the decay rate is independent
mean? If the original resolutioA ¢ is improved to its quar- Of the space resolution and the cutoff scale as far as we
ter, the vortices of the size fromé and toA /4, which are  investigate in this work. This means that the overall decay
supposed to vanish for the resoluti, should still survive rate of the VLD is determined principally by not small vor-
for the renewed ond ¢/4. Investigating the size distribution tices but large ones whose size is comparable to the average
of vortices shows that the line length of the vortices of theline spacing. . .
size betweenm\ ¢ and A ¢/4 is not negligible compared with It is important to know _how this be_hawor depends on the
the total line length. Nevertheless the decayLgf) little ~ Scale of the system. Section Il describes that the vortex dy-
depends on the space resolution, which is understood by tHtamics under the LIA is subject to the dynamical scaling.
dynamical scaling described in Sec. II. A small vortex whoseEXactly speaking, this dynamical scaling is approximate, be-
size is reduced by a factor follows the dynamics whose C€ause the Iogarlthml_c term that depends on the chgrac;erlsnc
time scale is shortened by’. Accordingly, the small surviv- radius(R) through is neglectedEq. (5)]. The logarithmic
ing vortices between ¢ and A ¢/4 follow the rapid cascade dependen_ce is so weal_< that the dynamlcql scaling is expected
dynamics to reach the cutoff scale¢/4, which proceeds to be realized well, Wh.ICh should be conflrmgd nume.ncally.
much faster than the overall decayloft) that includes the We _made the calculatloq for t2he systems Wlt_h the dlfferent
slow dynamics of large vortices too. Since it is difficult to SCaling factorsA=1,10"%,10"% The dynamical 7szcal|ng
improve the space resolution furthermore because of thétate§ that the VLD satisfies the relatiarf\)=\"“L(\
computational constraints, we made the cutoff scale coarsg 1), Which was found to be well realized in the decay of
oppositely keeping the spare resolutidg, in order to check the yT. H.en_ce the V_T dynamics is subject.to the dynamlcal
how the decay rate is affected. When the cutoff scale is inSC@ling within very high accuracy, thus being considered to
creased to B¢, 3A¢, and A¢, the decay rate of(t) is  P€ Self-similar.

found to be almost the same as that with the cutoff saale It is possible to classify the kinds of reconnection in the
VT dynamics. The vortex reconnection is divided topologi-

cally into three classes, as shown in Fig. 12. The first refers
to the process whereby two vortices reconnect to two vorti-
ces, which is most usual. The second is the process which
divides one vortex into two vorticeshe split type; the cas-
cade process is driven by this kind of reconnection. Third is
the process whereby two vortices are combined to one vortex
against the cascade procdfise combination type Table |
shows the number of reconnection events for each period in
the VT dynamics of Fig. 9. The column “total” refers to the
total event number of all reconnectioffsand the columns
“split” and “comb.” represent the event number of the
above split and combination type, respectively. Most of re-

80 96 112 128 connections belong to the first class. The reconnection of the
t(s) second split type occupies about 17% of the total reconnec-
tions, being superior to that of the third combination type of
FIG. 11. Comparison of the VLD decay for the different spaceabout 10%. It is found that the reconnection of the split type
resolutionsA é=1.83x 10"? cm (solid line) and its quartefdotted ~ actually promotes the cascade process, against the reverse
line). process due to that of the combination type.
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TABLE |. Classification of the reconnection events for each 45
period in the VT dynamics of Fig. 9. See the text. (a)

Time(s) Total Split Comb? Split/total (%) Comb./total(%) 30 L i

0-10 1921 298 203 155 10.6
10-20 1366 252 161 18.4 11.8
20-30 1021 178 114 17.4 11.2 15 +
30-40 771 164 96 21.3 12.5

40-50 588 122 71 20.7 12.1 mh

50-60 508 101 56 19.9 11.0 0 | | “ ||;J,]|Lum||.mu.hu.|.,.,||.,.., ,
60-70 393 58 26 14.8 6.6 0.1 1.0 10.0
70-80 319 46 34 14.4 10.7 (b) 45 ER— —
80-90 252 34 21 135 8.3

90-100 255 39 13 15.3 51

n(x)

30 | i
7394 1292 795 175 10.8

n(x)

a
Combination.
15 F E

The cascade process is revealed further by investigating
the size distribution of vortices. Figure 13 shows the change | I
of the size distribution in the VT dynamics of Fig. 9. Each 0 1 I |-,'|Mdl.u|,.hlm_...\,.uu...u,_wﬁ_
figure shows the numbet(x) of vortices as a function of 0.1 1.0 10.0
their lengthx. The system siz&(=1 cm) and the space (¢) 45
resolutionA £(=1.83x10 2 cm), i.e., the cutoff length, are
the characteristic scales in this system. The vortices longer
thana are originally few, and most vortices are concentrated 30l ]
in the scale range[A¢,a]. As the cascade process
progresses, every vortex generally divide into smaller ones
through the split-type reconnections, although some
combination-type reconnections may occur. As a result, the
vortices larger thara become fewer, and the vortices be-
tweenA¢ anda are decreased in number too because they | | ‘1 I“I"“"“ AL s .
become smaller than ¢ and be eliminate@ However, the 0 S A PR P
contribution to the VLD is just different. Figure 14 shows the ) x(cm) )
contribution to the VLD from the vortices in the size range
[A¢,a], [a,4a], [4a—], respectively. The contribution FIG. 13. Bar chart showing the number of vortioe&) as a
from three ranges are comparable. The VLD of the largdunction of the lengthx in the dynamics of Fig. 9. The range fs
vortices fluctuates because they are few. The smooth VLiscretized by eachx=2x10"? cm. The time ig=0 sec(a), 50
due to the vortices in the ranga £,a] seems to be similar to  Sec(b), and 100 secc).

n(x)

15 F 1

the overaIII__(t) of Fig. 10. In _the late stage£50 sec) of V. COMPARISON WITH THE VINEN'S EQUATION

the dynamics, the large vortices become fewer, so that the

contribution of the vortices betweek¢ anda to the overall This section compares our numerical results with the so-
VLD is increased relatively. lution of the Vinen’s equation to show the good agreement

The final destiny of small vortices through the cascadebetween them. The derivation of the Vinen’s equation will
process may be interpreted several ways. First, the vorticdse reviewed briefly. Considering that cascade process at
whose size is eventually reduced to the order of the interzero temperature proposed by Feynmavinen suggested
atomic distance no longer sustain the vortex state, probablthat the homogeneous turbulence in the superflow without
changing into such short-wavelength excitation as rotorany normal fluid develops in a manner analogous to that of
whose energy is comparable to that of the vortex. Secondyrbulence of high Reynolds number in an ordinary fluid.
the vortices can vanish at a small scale by radiating phonongd,he vortices are supposed to be approximately evenly spaced
which is discussed recently by Vindeee Sec. I?° Both  with an average separatior L2 Then the energy of the
mechanisms remove the small vortices from the systenvortices spreads from the eddies of wave numbkiiritd a
Since both mechanisms work only at a small scale, somwide range of wave numbers, which means the self-similar
process that transfers energy from a large scale to small&fT sustained by the cascade process. The overall decay of
scales is necessary for the decay of the VT; this is just th¢he energy density will be governed by the chracteristic ve-
cascade process. Third, in a real system, the small vorticdscity vs= «/2m| and the time constamtv 4 of the eddies of
may collide with the vessel walls as studied in Sec. IIl. Sincethe sizel, so that
only the vortices in the bulk are observed experimentally, the ) )
reconnection with the walls may reduce the observed VLD %: ., Ys ___Us (15)
effectively. dt Xafpy X2

3
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wherey, is a parameter. Rewriting this Hy, we obtain

dL K

at - Xepnt

2

(16)

FIG. 15. Dependence ¢f, on the mutual friction coefficient.
The symbold® show the values obtained by this work, correspond-
ing to T=0, 0.91, 1.07, 1.26, 1.6 K, in order of increasiag The
symbolsO denote the values observed by VingRef. 5 when a
heat current is suddenly switched on, dddhe values when a heat
current is turned off. We used the relatiar=Bp,/2p (Ref. 2 in
order to translate the Vinen’'s data represented by another friction
coefficientB.

and the solution of the Vinen’s equation. The solid line refers
to our result for the VT decay of Fig. 9, while three other
lines denote Eq(17) with the parameterg,=0.5, 0.3, 0.2.
Then we find that our result agrees excellently with the so-
lution of y,=0.3. There are two meanings for this. First, the
decay of the numerical VT is well described by the Vinen'’s
equation. As stated in the last paragraph, the Vinen's equa-
tion is based closely on the cascade process. Hence their
agreement supports that the cascade process occurs really in
the numerical simulation. Second, as seen from Fig. 15, the
two kinds of data© and ] are extrapolated towards zero
temperature, then seeming to reach reasonably,t60.3;

the value obtained numerically may be consistent with those
observed at finite temperatures.

In order to study how the mutual friction affects the cas-
cade process, we calculate the decay of the VT with the
mutual friction under the static normal fluid. As noted by
Barenghi and Samuef§,such phenomena might as well be
calculated not kinematically but by a self-consistent ap-
proach which takes into account the back reaction of the VT
onto the normal fluid. However, since the decay of an ap-
proximately isotropic and homogeneous VT may not induce

This is the Vinen’s equation that describes the decay of th€ome overall flow in the static normal fluid, this work, for

VLD L(t), and its solution is given by

1

L

_1 K

J’_ JE—
L, TX2o, b

17

wherel, is the VLD att=0. At finite temperatures, the

simplicity, calculates kinematically the problem subject to

x2=0.5/

0.01 -

e 03

presence of the normal fluid may affect the cascade process.
However, since the addition of the normal fluid introduces
no new dimensional parameters into the vortex dynamics, the
form of Eq. (16) cannot be altered angd, becomes a func-
tion of the temperature. The values pf observed at finite
temperatures are shown in Fig. 15. The symliolslenotes

the values observed when a heat current is suddenly switched
on, whiled the values when a heat current is turned off. In
any case, two kinds of, reflects the complicated behavior

1/L(cm?

0.005

100

FIG. 16. Comparison of the decay &ft) in Fig. 9 and the

of the normal fluid. solution[Eq. (17)] of the Vinen’s equation. The values gf as a
Figure 16 shows the comparison of our numerical resultsitting parameter for Eq(17) are shown in the figure.
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the static normal fluid. Similar to the above calculation, wethere is a flow of energy from components of the velocity
compare the numerical decay of the VT at finite temperaturefield with small wave numbers to components with large
with Eq. (17) with a fitting parametely,. The obtained de- wave numbers, energy being dissipated by viscosity near the
pendence ofy, on the mutual friction coefficien& is also ~ Kolmogorov wave number. The superfluid system will have
shown in Fig. 15. When the temperatures are relatively lowthe energy cascade process of the Kelvin waves, whereby the
(T=0.91, 1.07, and 1.26 Kthe solution with a proper value energy is transformed to Kelvin waves with wave numbers
of x, can describe well the numerical result. However, as thereater thah ! and eventually dissipated at a wave number
temperature increase3 € 1.6 K), the numerical results be- k, by sound radiation. Based on this picture, Vinen reformu-
come to deviate from Ed17). This seems to be reasonable. |ated the Vinen’s equation and obtained

The decay term of the Vinen's equation was derived origi-

nally based on the idea of the homogeneous turbulerte. ~ cl |\ Y2
low temperatures, the mutual friction is too small to disturb kol = T (18
the inertial range, while the mutual friction at high tempera- AT K

tures shrinks not only small vortices but also large ones, thug, {he case of dipole radiation, whef@ is the speed of
disturbing the inertial range and deviating the numerical resound and is a constant. It ShOiJld be noted that this Vin-

sult from Eq.(17). en’s Kelvin wave cascade process corresponds to our cas-
cade process which is shown by the direct simulation of the
VI. CONCLUSIONS AND DISCUSSIONS vortex dynamics. The_difference is that, although Vingn con-
sidered only the Kelvin wave, our cascade process includes
Motivated by the recent experimental work by Davis not only the excitation of vortex waves but also the breakup
etal,”” we studied numerically the dynamics of the VT of large loops to smaller ones through reconnection, which
without the mutual friction. The absence of the mutual fric-was assumed to be negligible by Vinen but is found to be
tion means that the usual well-known mechanism does ngjresent by our simulation. Whether the excitation of vortex
work for its free decay, so that we do not know why the VT waves or the breakup of vortex loops, the structure of small
decays. Throughout this paper, we conclude that the selivave number will be produced continuously. We will esti-
similar cascade process whereby large vortex loops break upate Eq.(18) for our simulation of the decay of the dense
to smaller ones proceeds in the VT, being closely concernegT. As shown in Fig. 10L is supposed to be 400 ¢if, so
with the decay of the VT. This cascade process, which mayhat| =L ~'?=1/20 cm. TakingC=2x10* cm/sec for lig-
be covered with the mutual friction at high temperatures, isiid helium and k=102 cné/sec and assuming the un-

just the one at zero temperature Feynman propds#d, . own constantA is the order of 1, Eq(18) yields k!
though the eventual destiny of the minimum vortex ring iswlog . Ko 2% 100 1 th haracteristi
beyond this formulation. The full Biot-Savart calculation is » 1€ K cm = sihce ihe charactenstic

made for dilute vortices, while the LIA calculation for the length k, *~5x107% cm for sound radiation is enough
dense VT. The former reveals the scenario: the reconnectiofimaller than our numerical space resolutibg, our cutoff
of the vortices excites vortex waves on them and makes therocedure may be considered to be used for the effect of the
vortex lines kinked, which would be suppressed in the pressound radiation, assuming the cascade process continues
ence of the mutual friction. The kinked parts reconnect withself-similarly also fromA ¢ to ~k2_1.
the body loop they belong to, breaking up to small loops. We have to comment on how the nonlocal interaction acts
The LIA calculation shows that the cascade process proceeds the VT? In a VT, the local field is usually superior to the
in the VT, keeps making the small vortices below the spacaonlocal field. As stated in Sec. IIl, however, when two vor-
resolution and reduces the VLD(t). Although the small tices approach each other, the nonlocal interaction can
vortices below the space resolution are eliminated numeristretch them partly. The full Biot-Savart calculation in Sec.
cally, it should be emphasized that the VT never decaysll shows that in dilute vortices the cascade process is supe-
without the cascade process. The decaylL¢f) obtained rior to the stretch due to the nonlocal interaction. In a dense
numerically is consistent with the solution of the Vinen's VT, these two processes can compete with each other; which
equation. The calculation that takes account of the mutuak superior may depend on the VLD or the size distribution
friction shows that both the modified cascade process and thef vortices. Although the full Biot-Savart calculation for a
vortex shrinkage due to the mutual friction proceeds togethedense VT is much CPU expensive and difficult, we start the
in the VT at a finite temperature. calculation and obtain some preliminary results showing that
Here we will describe the recent work by Vinghln  the decay due to the cascade process still proceeds. The de-
relation to the experimental work of the grid turbuleri@e, tail will be reported shortly.
Vinen discussed the dissipation of the VT at zero tempera- Our results are compared with the recent experiment by
ture. The dissipation can occur only by the emission of soundavis et al??> The observed-independent decay below 70
waves(phonon$ by an oscillating vortex. The vortex oscil- mK strongly suggests that the phonon gas plays no role,
lation of the average vortex spacihg L~ 2 has the charac- because the phonon density falls & in this range, and
teristic velocityv,~ «/| and the characteristic timg~12/x.  there must be an unknown intrinsic process in this superfluid
Estimating the dipole and quadrupole radiation from asystem. We believe that our cascade process is closely con-
Kelvin wave finds that such oscillation can cause only thenected with theT-independent decay. Davét al. observed
very slow decay of the VT compared with. Hence Vinen the time costant of the decay was the order of 10 sec. The
considered the excitation of the Kelvin wave whose wavetime constant depends on the amplitude of the VLD, but we
length is much smaller thah In a classical viscous fluid, do not know exactly the homogeneity of the VT and the
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amplitude of the VLD in the experimentS Accordingly, it Finally we will comment on the eddy viscosity. The su-
is difficult to compare our results quantitatively with the ex- perfluid turbulent stafé in a capillary flow induces excess
perimental data at present. temperature and pressure differences between both ends of

Such sound radiation can heat the fluid, which is recentlyhe capillary, more than those in the laminar flow state. The
discussed by Samuels and Barenijtithey estimated ther- excess temperature difference is understood by the mutual
modynamically how much the temperature of the fluid in-friction, while the excess pressure difference is described
creases when the kinetic energy of the VT is transformed t@henomenologically by the eddy viscosity. The eddy viscos-
compressive energy, i.e., phonons. Since the traditionaly WQI’!(S for superfluid and redu_ces its total momentum, but
second-sound technique fails in the very low temperaturedtS 0rigin has not been necessarily revealed. The eddy viscos-
the observation of theortex heatings useful for investigat- :,fy.(\;Vh'Ch IS tholught to.t;]e ral‘.n intrinsic mechanism in super-
ing this system. uid may be related with this cascade process.

Nore et al3 studied the dynamics of the VT without any
friction, by the direct numerical simulation of the Gross-
Pitaevskii equation. They show that the total energy of the We acknowledge W. F. Vinen and P. V. E. McClintock
VT is partly transformed to compressive energy, and the enfor useful discussions. One of the authdS.N) thanks
ergy spectrum can follow the Kolmogorov law. The dynam-Osaka City University OCU) for giving an opportunity to
ics they studied seems to include the cascade process of thisit OCU and Russian Foundation of Basic Resedfatant
work, but its detail is not clear. No. 99-02-16942for supporting that field.
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