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Magnetic response for an ellipsoid of revolution in a magnetic field

D. V. Bulaev, V. A. Geyler,* and V. A. Margulis†

Institute of Physics and Chemistry, Ogarev University of Mordovia, 430000, Saransk, Russia
~Received 17 November 1999; revised manuscript received 21 March 2000!

The quantum-mechanical spectrum and the magnetic response of noninteracting electrons confined to the
surface of an ellipsoid of revolution are investigated. We have found the magnetic response both for the case
of a fixed chemical potential and for the case of a fixed number of electrons. It is shown that the magnetic
response of an ellipsoid of revolution depends on the thermodynamics of the system. In particular, for a fixed
chemical potential, the magnetic response of an ellipsoid of revolution is a steplike function of a magnetic field.
The dependence of the magnetic response of an ellipsoid of revolution on temperature and geometric param-
eters is found and investigated in detail.
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I. INTRODUCTION

The analysis of the magnetic response of nanostruct
with different geometry allows one to get important da
concerning parameters of the electron energy spectrum
the potential of the geometric confinement in su
systems.1–10 This is because the magnetic response o
nanostructure is determined predominantly by the ene
spectrum, which in turn depends on the geometric par
eters of a nanostructure. Note that a magnetic field tilted
the symmetry axes of the system can lead to hybridizatio
the dimensional and magnetic confinement as a result of
pling of the motion of electrons parallel and perpendicular
the magnetic field.3–5,11

The recent progress in nanotechnology has promoted
experimental investigation of curved nanostructures. In p
ticular, the so-called lift-off technology allows one to fabr
cate two-dimensional curved layers of GaA
heterostructures.8,12–15 Moreover, a wide class of curve
structures is formed by the carbon nanostructures suc
nanotubes, fullerenes, and toroids. Theoretical and exp
mental studies of the magnetic and transport propertie
these carbon structures are presented in Refs. 16
Thereby, the theoretical investigation of the spectral a
magnetic properties of nanostructures with a nonzero cu
ture ~in particular, quantum cylinders, spheres, and ell
soids! is a subject of current interest. The investigation of t
magnetic response for a nanostructure with cylindri
symmetry1,8,12,13,19shows that the curvature of surface of
system influences substantially the spectral and magn
properties of this structure and leads to interesting phys
effects.1,7,13,15Recent advances in technology20 have made it
possible to produce spherical nanostructures.21–23The energy
spectrum, electronic correlations, and magnetic propertie
a spherical two-dimensional electron gas have been con
ered in a number of theoretical works.24–28 There is indirect
evidence that the geometry of the above-mentioned syst
plays a dominant role in the behavior of the electron ene
spectrum: there is good agreement between the nume
results obtained in the framework of the tight-binding a
proximations and those obtained for the simplified mode
noninteracting electrons.

In Ref. 24, a model of noninteracting electrons confin
PRB 620163-1829/2000/62~17!/11517~10!/$15.00
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to the surface of a sphere has been used for a theore
investigation of the quantum-mechanical spectrum and
magnetic response of electrons in the fullerene C60. ~Inter-
acting electrons on various two-dimensional surfaces
considered in Refs. 29–33.! In this model, the energy spec
trum of electrons on the sphere subjected to a uniform m
netic field has been calculated in the framework of pertur
tion theory. The radius of convergence of perturbation the
is defined by the condition (R/ l B)2!1, whereR is the radius
of a sphere andl B is the magnetic length. Since the effectiv
radius of the C60 fullerene is of the order of 3.531028 cm,
we can estimate the magnitude of the magnetic field:B
!100 T. Obviously, this condition holds for all experime
tally accessible magnetic fields.

If the magnetic field is absent, then the energy spectr
of electrons is (2l 11)-fold degenerate due to the spheric
symmetry of the system (l is the orbital quantum number!.
An applied uniform magnetic field removes this degenera
completely25 and leads to the dependence of the energy sp
trum on the magnetic quantum numberm. Namely, the en-
ergy of the level withm>0 increases with the field and wit
the quantum numberm, whereas the energy of the level wit
m,0 decreases with the field. Since the distance betw
adjacent shells is large, it follows that there is no level cro
ing ~i.e., there is no accidental degeneracy of the leve!.
However, for a very high field, the level crossing becom
essential and leads to a series of interesting effects~see dis-
cussion in Refs. 25 and 27!.

In this paper we study the quantum-mechanical spect
and the magnetic response of electrons moving on the
face of an ellipsoid of revolution. This system can be co
sidered as a model for the electron system in the nanoclu
C70, the geometry of which is close to that of an ellipsoid
revolution. In this case, the semiaxes of the ellipsoid dif
slightly from each other. Hence, the effect of the nonsp
ricity can be considered in the framework of perturbati
theory. The magnetic response for an ellipsoid of revolut
depends on the relationship between the two types of cor
tions to the energy spectrum: the corrections due to the m
netic fieldB and those due to the ellipsoidal geometry of t
system. It is clear that the energy spectrum and the magn
response of electrons confined to the surface of an ellips
of revolution depend on the angleq0 between the axis of
11 517 ©2000 The American Physical Society
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revolution and the magnetic field direction.
We consider below only the case of low magnetic fiel

namely, the case (R/ l B)2!1, because this inequality hold
for all really accessible fields for C60 and C70. Moreover, we
consider not only the case of the ellipsoidal surface, but
case of the spherical surface as well. Note that the ene
spectrum and the magnetic properties of the electron sys
on a sphere in presence of a uniform magnetic field h
been studied in Refs. 24, 25, and 27, but in these article
additional condition (R/ l B)2*1 has been supposed~the rea-
son is that the authors of the cited articles are interes
mainly in the effects related to the level crossing!. For the
simple model of noninteracting electrons, we obtain expl
perturbative expressions for the energy spectrum and
magnetic response. We shall show that in the case of
magnetic fields the magnetic moment of a sphere (C60) and
of an ellipsoid (C70) is a steplike function of the field at
fixed chemical potential. By increasing the temperature
steps of this dependence are washed out.

II. ENERGY SPECTRUM OF AN ELLIPSOID
OF REVOLUTION IN A MAGNETIC FIELD

We consider the case of noninteracting electrons confi
to the surface of an ellipsoid of revolution in a uniform ma
netic fieldB. The Hamiltonian of such a system reads

H5
p2

2me
1

ueu
2mec

BL1
e2

8mec
2

@B,r #2, ~1!

where me is the mass of an electron andL is the angular
momentum operator~for simplicity, we ignore the spin-
dependent terms!. ForB!100 T, the second and third term
are much less than the first one. Hence, they yield a w
perturbation of the energy spectrum of an ellipsoid by
magnetic field. The third term in Eq.~1! is proportional toB2

and therefore it is much less than the second term.
In the Cartesian coordinatesx,y,z, the equation of an el-

lipsoid of revolution has the form (x21y2)/R21z2/d251.
Introducing new coordinates by the relationsj5x, h5y,
andz5Rz/d, we rewrite the equation of an ellipsoid in th
form j21h21z25R2. In these new coordinates, the Lapla
ian is given by the expression

D5
]2

]j2
1

]2

]h2
1~12b!2

]2

]z2
5D01b~b22!

]2

]z2
, ~2!

whereb512R/d andD05]2/]j21]2/]h21]2/]z2.
It is clear thatBL5BxLj1ByLh1BzLz1o(Bb), where

Lj ,Lh , andLz are the corresponding components of the
gular momentum operator. Let us denoteR2/aj

2 by bj , where
aj

25c\/ueuBj ( j 5x,y,z) andl i5Li /\ ( i 5j,h,z). Then we
can rewrite the Hamiltonian~1! as follows:

H5
\2

2meR
2
~2Dq,w

0 1V11V21V31V4!1o~Bb!, ~3!

where

V152bR2
]2

]z2
, V252b2R2

]2

]z2
,

,
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V35bxl j1byl h1bzl z , V45
b2

4

1

B2R2
@B,r #2,

and Dq,w
0 is the angular term of the Laplacian in the ne

coordinates. The representation ofH in the form ~3! will be
used below in the two limiting casesb5o(B2) or B
5o(b2). In both cases, the termo(Bb) is negligible com-
pared to the remaining terms.

In what follows the termsV1 andV2 in Eq. ~3! are called
the deformation perturbations and the termsV3 and V4 are
called the magnetic perturbations. The corrections to the
ergy spectrum due to these perturbations are called the
formation correction and the magnetic correction, resp
tively.

Let us consider the following three cases
~i! The deformation correction to the energy is of the o

der of the magnetic one, i.e.,b'maxubju.
~ii ! The deformation correction to the energy is mu

larger than the magnetic one, i.e.,b@maxubju.
~iii ! The deformation correction to the energy is mu

smaller than the magnetic one, i.e.,b!supubj u.
First, we consider case~i!. The eigenvalues and the eige

functions ofDq,w
0 are given by

E l
05 l ~ l 11!; uc l ,m

0 &5uYl ,m~q,w!&[u l ,m&, ~4!

whereYl ,m(q,w) is the spherical harmonic. We see that t
spectrum ofDq,w

0 is (2l 11)-fold degenerate. The first-orde
correction«1 to the energy spectrum is determined by t
secular equation: det@^ l ,m1uV11V3u l ,m2&2«1dm1 ,m2

#50.
Because of the rotational symmetry of an ellipsoid

revolution, we can choose the direction of the magnetic fi
such thatBy50 and thereforeby50. Using the properties o
the spherical harmonics, after some algebra we obtain

^ l ,m1uV11V3u l ,m2&

5dm1 ,m2
Fbzm122b

2~ l 11!2~ l 22m1
2!1m1

2~2l 21!

~2l 21!~2l 13!
G

1dm1 ,m211

1

2
a1~ l ,m2!bx1dm1 ,m221

1

2
a2~ l ,m2!bx ,

~5!

wherea6( l ,m)5Al ( l 11)2m(m61).
As can be seen from Eq.~5!, the matrix ^ l ,m1uV1

1V3u l ,m2& is a Hermitian three-diagonal matrix~i.e., a Ja-
cobi matrix! of order 2l 11. In the case of an arbitrary di
rected field, it is difficult to obtain an explicit expression fo
the first-order correction to the energy spectrum. At the sa
time, if the field is parallel to the symmetry axis of an ellip
soid (BiOz), then the matrix̂ l ,m1uV11V3u l ,m2& is diago-
nal. In this case,

«15bzm22b
2~ l 11!2~ l 22m2!1m2~2l 21!

~2l 21!~2l 13!
. ~6!

If we neglect the higher-order contributions due to the p
turbationsV2 andV4, then
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El ,m5
\2

2meR
2 F l ~ l 11!1bzm

22b
2~ l 11!2~ l 22m2!1m2~2l 21!

~2l 21!~2l 13! G . ~7!

Equation~7! allows us to understand how the deformati
of a sphere into an ellipsoid of revolution decreases the le
degeneracy. Let us consider the collection of all levels w
the angular momentuml. The states of these levels form a
electron shell. In the case of a sphere and a zero field, t
levels merge into one (2l 11)-fold degenerate level. Puttin
B50 in Eq. ~7!, we conclude that the deformation of
sphere into an ellipsoid of revolution splits the level of t
l th shell into a set ofl 11 levels. The level withm50 is
nondegenerate, whereas the levels withmÞ0 are twofold
degenerate. Consequently, the deformation removes par
the degeneracy with respect to the quantum numberm. Note
that the deformation correction of the first order is negat
for all values ofl andm. If BÞ0, then Eq.~7! shows that all
the energy levels of thel th shell are nondegenerate; i.e., t
magnetic field removes the degeneracy completely. Mo
over, it is easy to see that the energy of the level withm
.0 increases with the field, whereas the energy of the le
with m,0 decreases; the level withm50 does not change
its position on the energy axis. The region of application
Eqs.~5! and ~7! is determined by the conditions

max~ ubxu,ubyu,ubzu,ubu!!1,

max~ ubxu,ubyu,ubzu!'ubu. ~8!

The second condition in Eqs.~8! is necessary, since othe
wise the deformation and magnetic corrections are of dif
ent order, and we must take into account the perturba
terms of higher order.

Second, we consider case~ii !. In particular, in the case o
the fullerene C70 we haveR'3.531028 cm, b'0.1; there-
fore for the real field range 2 T<B<10 T, the perturbation
V3 due to the magnetic field is of lower order with respect
the perturbationV1. In this connection, we consider the pe
turbative termsV2 and V3 in second-order perturbatio
theory only; the perturbationV4, which is quadratic with
respect to the field, can be neglected.

Using the standard perturbation theory, after some ted
calculations we get

Elm5
\2

2meR
2

@ l ~ l 11!1«11«2#, ~9!

where

«1522b
2~ l 11!2~ l 22m2!1m2~2l 21!

~2l 21!~2l 13!

and«2 is given by
el
h

se

lly

e

e-

el

r

r-
e

us

«25bzm1b2
2~ l 11!2~ l 22m2!1m2~2l 21!

~2l 21!~2l 13!

12b2F ~ l 22!2~ l 11!2
„~ l 21!22m2

…~ l 22m2!

~2l 23!~2l 21!3~2l 11!

2
l 2~ l 13!2

„~ l 12!22m2
…„~ l 11!22m2

…

~2l 11!~2l 13!3~2l 15!
G .

Note that the terms of the order ofb2 in Eq. ~9! cannot be
neglected. Indeed, if we neglect these terms, then we hav
ignore the dependence of the energy spectrum on the m
netic field, sinceubzu'b2. Therefore, in this approximation
the magnetic moment of the system is zero.

In this case, the energy spectrum depends on thez com-
ponent of the field:Elm}uBucosq. The radius of conver-
gence for perturbation theory is determined by the followi
conditions:ubu!1,ubzu'b2. Therefore, if the field direction
is almost perpendicular to the axis of revolution, then Eq.~9!
is not applicable. In fact, in the considered case, the ene
spectrum for a transversal magnetic field is independen
the field strength and coincides with the spectrum with
the field. Note that the correction term of the third order w
respect to the field (ubzu'ubu3) leads to the insignifican
lowering of the energy levels.

Finally, we consider case~iii !. Let the correction due to
V1 be of the second order with respect to the correction
to V3. Then we can neglect the termV2 in Eq. ~3!. We
choose the Cartesian coordinates so thatby50. Neglecting
V1 and V4, we find the first-order correction to the energ
spectrum from the secular equation. It is convenient to ro
the coordinate system across they axis about the angleq0
5arccos(Bz /B) so that in the new coordinatesB5Bz . The
new coordinate systemj8,h8,z8 is related to the initial one
by the equations

j85j cosq02z sinq0 ,

h85h,

z85j sinq01z cosq0 . ~10!

Hence, in this systemṼ35blz8 . Therefore,«15bm and the
corresponding eigenfunction isu l ,m&. Using the orthogonal
projector method for the calculation of the perturbation m
trix elements,34 we get

«25^ l ,muṼ1u l ,m&1^ l ,muṼ3QṼ3u l ,m&1^ l ,muṼ4u l ,m&,
~11!

whereṼ1 , Ṽ3, andṼ45(b2/4)sin2q are the perturbation op
erators in the new coordinates, and

Q5 (
l 8Þ l

(
m8

u l 8,m8&^ l 8,m8u

E l
02El 8

0 . ~12!

After some algebra, we obtain the following expression
the energy spectrum for an electron confined to the surfac
an ellipsoid of revolution:
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El ,m5E sph2
\2

2meR
2
bF3 sin2q0

2l 212l 13

~2l 21!~2l 13!

3S m22
1

3
l ~ l 11! D

12
2~ l 11!2~ l 22m2!1m2~2l 21!

~2l 21!~2l 13! G . ~13!

HereE sph is the energy spectrum of an electron confined
the surface of the corresponding sphere calculated up
second-order perturbation theory:

E sph5
\2

2meR
2 F l ~ l 11!1bm1

b2

2

l 21 l 211m2

~2l 21!~2l 13!G .
~14!

The range of applications for this result is given by the co
ditions ubu!1,ubu'b2. Note that the deformation correctio
is always negative for alll and m. We consider the depen
dence of the energy spectrum on the angle of inclinationq0.
As can be seen from Eq.~13!, the energy spectrum is sym
metric with respect toq05p/2 because of the symmetry o
the system about thexy plane. It should be noted that th
lower is the magnetic fielduBu, the stronger is the depen
dence of the spectrum on the angle of inclinationq0. The
reason is that theq0-dependent term in Eq.~13! gives a
greater contribution to the energyEl ,m of an electron.

Let us define the angleq1 such that sin2 q152/3. It fol-
lows from Eq.~13! that atq05q1 the deformation correc
tion to the energy is independent of the magnetic quan
numberm, and the spectrum of the ellipsoid differs from th
of the sphere only on a slight shift of all the levels dow
wards:

El ,muq05q1
5E sphere2

\2

2meR
2
•b

2

3
l ~ l 11!. ~15!

Equation ~13! implies the following statement: Ifm2

, l ( l 11)/3, then the energy of the level increases with
increase of the angleq0 from 0 to p/2; if m2. l ( l 11)/3,
then this energy decreases. With the help of this statem
we can determine the levels of the shell having the maxim
or the minimum atq05p/2. Namely, in the case ofm2

, l ( l 11)/3 @m2. l ( l 11)/3#, the functionEl ,m(q0) has the
maximum~minimum! at q05p/2.

III. MAGNETIC MOMENT OF A SPHERE
AND AN ELLIPSOID OF REVOLUTION

Let us consider the dependence of the magnetic mom
M on B for an ellipsoid of revolution. As mentioned abov
in case~i!, it is difficult to obtain an explicit expression fo
El ,m(B) if the magnetic field is not parallel to the rotation
symmetry axis. Thereby, in this case we have to restrict o
selves to the case of a longitudinal field. Then in all cons
ered cases, only thez component of the field gives a nonva
nishing contribution to the energy spectrum of an ellipsoid
revolution. Therefore,M5Mz for all cases. We use the stan
dard formula
o
to

-

m

e

nt,
m

nt

r-
-

f

M522(
l ,m

]El ,m

]Bz
f 0~El ,m!, ~16!

wheref 0(El ,m) is the Fermi distribution function. From her
on we take into account the spin degeneracy with the hel
the factor of 2 in front of the sum over all quantum state

It is necessary to distinguish two cases corresponding
the two types of statistical ensembles. In the first case~grand
canonical ensemble!, there is an exchange of both energy a
particles between the ellipsoid and the thermostat. In
case, the chemical potentialm depends weakly on the fieldB,
and this dependence can be neglected. Indeed, letm5m0
1Dm, wherem0 is the chemical potential in the absence
the field andDm is the term due to the fieldB. Since in the
thermal equilibrium (]F/]m)m5m0

50, we have, for the dif-

ference of the free energyDF,

DF5
1

2 S ]2F

]m2D
m5m0

~Dm!2. ~17!

Since Dm is independent of the field direction, we hav
Dm}B2, and thereforeDF}B4.35 On the other hand, the
magnetic correction is calculated up to terms of the orde
B2. Hence,Dm is negligible in this order of accuracy.

In the second case, there is an exchange only of the
ergy between the system and the thermostat~the numberN
of particles in the system is fixed!. In this case, the depen
dence ofm on B is essential. This dependence is determin
completely by the normalization condition

N52(
l ,m

1

11exp@~El ,m2m!/T#
. ~18!

At zero temperature, the magnetic moment is given by

M ~T50!522 (
El ,m<m

]El ,m

]Bz
. ~19!

With the help of the results of the previous sectio
]El ,m /]Bz can be written as

]El ,m

]Bz
5H mmB , for case~i! when ~BiOz!,

mmB , for case~ii !,

mmB1bmB

l 21 l 211m2

~2l 21!~2l 13!
, for case~iii !.

~20!

In all considered cases, Eqs.~19! and~20! may be used to
obtain explicit expressions for the magnetic moment at z
temperature. Namely, ifmB is the Bohr magneton andl 0 , m0
are the quantum numbers of the highest occupied level, t
we have, for case~i! ~for m0.0),

M ~T50!

mB
5~ l 02m0!~ l 01m011!, ~21!

for case~ii !,

M ~T50!

mB
5um0u2m0 , ~22!

and for case~iii !,
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M ~T50!

mB
5~ l 02m0!~ l 01m011!2

2b

3
~ l 011!22

b

3

m0~m011!~2m011!2 l 0~ l 011!~2l 011!26~ l 02m0!~ l 0
21 l 021!

~2l 021!~2l 013!
~23!
lay
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@from here on we suppose thatq0P(0,p/2)#. Even thoughb
does not explicitly appear in Eqs.~21!–~23!, the magnetic
moment depends onb. Indeed, the quantum numbersl 0 and
m0 are defined bym5El 0m0

, whereElm in turn is defined by
Eqs. ~7!, ~9!, and ~13! @case~i!, case~ii !, and case~iii !, re-
spectively#. Thus, the quantum numbersl 0 and m0 depend
on b for fixed m, since Elm5Elm(b). Therefore,M also
depends onb.

It may be seen that Eq.~22! @case~ii !# does not match
with Eqs.~21! and~23! @case~i! and case~iii !, respectively#.
Figure 1 explains this mismatch. In this figure, we disp
the energy levels of the fifth shell (l 55) of electrons as a
function of a magnetic field. As can be seen from this figu
for case~ii !, only the highest occupied level can give a co
tribution to the magnetic moment~contributions from other
levels are exactly compensated!. In cases~i! and ~iii !, the
relative position of the energy levels changes with respec
that for case~ii !. In these cases, the magnetic moment c
contain contributions of several levels of the highest oc
pied shell. Thus, the behavior of the magnetic response
case~ii ! differs from that for case~i! and case~iii !, although
the spectrum in cases~i!, ~ii !, and ~iii ! differs only by the
higher-order corrections.

In conclusion to this section, we present some results
the case of a sphere. Direct calculations show that the m
netic moment for a sphere is given by Eq.~21! if we restrict
ourselves to linear terms with respect to the field in the sp
trum ~14!. On the other hand, if the second-order terms
taken into account, then the magnetic moment is given
Eq. ~23!.

Note that Eqs.~21!, ~22!, and ~23! are valid both for the
case of a fixed chemical potentialm and for the case of a
fixed number of particles,N. At the same time, there is
fundamental difference between these cases. Namely,
fixed m, the field dependence of the magnetic moment i
steplike one. These steplike features inM (B) arise from the

FIG. 1. Energy levels of the fifth shell (l 55) of electrons on an
ellipsoid of revolution withR51027 cm andb50.1 as a function
of a dimensionless magnetic field atq050. Shaded areas indicat
regions which are out of the scope of perturbation theory.
,
-

to
n
-

or

r
g-

c-
e
y

or
a

chemical potential crossing by either the highest occup
levels or the lowest unoccupied levels. This crossing lead
a change of the quantum numbersl 0 and m0, and, conse-
quently, to a jump in the magnetic moment. It should
mentioned that the number of jumps or steps is strictly li
ited. The finiteness of the number of steps is caused by
following reasons. First, only the levels of one shell~the
highest occupied shell! can cross the Fermi level. Secon
this crossing is possible only for the levels with the ener
that either increases or decreases with the field. Stri
speaking, for the case of a sphere~the energy spectrum is
calculated in second-order perturbation theory! and for case
~iii ! ~the magnetic correction is much greater than the de
mation one!, the dependence of the magnetic moment on
field is not strictly steplike@see Eq.~23!#, because the mag
netic moment depends linearly on the field in the plateau
a step. However, when the geometric confinement is m
stronger than the magnetic one~this is the case for the ex
perimentally accessible field range and forR,5
31028 cm), this linear dependenceM (B) is negligibly
small, and we can consider this dependence as a nearly
like one. On the other hand, when the magnetic confinem
becomes essential with respect to the geometric one~for the
real field range and forR>1027 cm), the dependence of th
magnetic moment on the field is rather a sawtoothlike o
For fixed N, the quantum numbersl 0 and m0 are not
changed, since there is no accidental level degeneracy fo
considered field range. Hence, the magnetic moment
monotone continuous function of the magnetic fie
Namely, for cases~i! and~ii !, the magnetic moment is inde
pendent of the field, and for case~iii !, the magnetic momen
is a linear function of a magnetic field.

IV. ANALYTICAL STUDY AND NUMERICAL ANALYSIS
OF THE MAGNETIC RESPONSE

First, we consider the case of a fixed chemical potent
As can be seen from Eq.~14! for the case of a sphere, th
energy of the levelEl ,m with m>0 ~with m,0) increases
~decreases! with the field. Hence, form.El 0,0 ~for m

,El 0,0), only the levelsEl ,m with m>0 ~with m,0) can

cross the chemical potential. Note that for (R/ l B)2!1, there
is no level crossing becausebz is very small. The steplike
dependenceM (B) is associated with the crossing of th
Fermi energy by the levels of the highest occupied shell w
l 5 l 0. It is clear that the number of these steps in the cas
the closed highest occupied shell is equal to the numbe
increasing or decreasing levels of this shell with the fie
i.e., the maximum number of the steps is equal tol 0uB50
11.

For the sphere, the dependenceM (B) is depicted in Fig.
2. In this figure we can see sharp steps of the magnetic
ment atT50.1 K. The steplike behavior of the magnet
moment is caused by crossing the chemical potential with
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highest occupied levelsEl 0 ,m of electrons on a sphere. Thes

steps are washed away by the temperatureT51 K.
Now we consider the field dependence of the magn

moment for a sphere at a fixed number of electrons,N. Let
T50. Then the Fermi energy is equal to the energy of
highest occupied levelEl 0 ,m0

, where the quantum numbersl 0

andm0 depend on the total number of electronsN. As can be
seen from Eq.~21! or Eq. ~23!, the magnetic moment of a
sphere is negative if the highest occupied shell is closed
positive if this shell is partially filled. In both these cases, t
magnetic moment is a linear function of a magnetic field.
the limit B50, the magnetic moment is equal to the Bo
magneton times an integer~for the case of C60 we have
M uB,T50520mB).

If TÞ0, then at the beginning it is necessary to find t
dependencem(B) using the normalization condition~18!.
For some partial values of temperature, this dependenc
shown in Fig. 3. As shown in this figure, the chemical p
tential depends monotonically on the magnetic field. Let
discuss this behavior ofm(B). Kim, Vagner, Sundaram, Jau
regui, and Marchenko showed that a variation of the le
degeneracy with the magnetic field36 and the level crossing
~the case of high magnetic fields25! leads to oscillatory fea-
tures in m as a function ofB. However, in this paper we
consider only the case of low magnetic fields. In this ca
there is no level crossing; besides that the degeneracy o
levels is not changed with the fieldB. Therefore, the chemi
cal potential is a monotone function ofB for the considered
region of fields.

FIG. 2. Magnetic moment of electrons on a sphere of radiuR
53.531028 cm as a function of a dimensionless magnetic field
the fixed chemical potentialm534.22 eV.

FIG. 3. Dependence of the chemical potential of an electron
for a sphere of radiusR53.531028 cm on a dimensionless mag
netic field atT51,5,10,20 K for fixedN5240. The heavy curve
corresponds to the highest occupied levelE( l 0 ,m0).
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As can be seen from Fig. 3, at lowB, there is a region on
the curve m(B) where the chemical potential depen
weakly on the magnetic field. The magnitude of this regi
increases with temperature. The region of the weak dep
dencem(B) is changed by the region of the nearly line
dependencem(B) with increasingB. As can be seen from
Eqs.~14! and ~16! and from a numerical analysis, the ma
netic response increases with the field in the region where
chemical potential depends weakly onB. The magnetic re-
sponse is almost constant in the region wherem is nearly a
linear function of B. As shown in Fig. 4, at lowT (T
'1 K), the dependenceM (B) is determined by the field
dependence of the chemical potential. The dependence o
magnetic moment is like a smeared step. The greater is
temperature, then the greater is the smearing of the step
addition, in the considered region of the fields, the value
the magnetic moment at finite temperature is always l
than that atT50. Since the levelsEl ,m as well as the chemi-
cal potential increase withB, there are no steps in the depe
denceM (B) that are related to crossingm by El 0 ,m . The
dependence of the energy of the highest occupied le
El 0 ,m0

on the magnetic field is clearly shown in Fig. 3.
The behavior of the magnetic response at a fixed chem

potential for the case of an ellipsoid of revolution diffe
from that for the case of a sphere. First, we consider case~ii !;
this case corresponds to the fullerene C70. The energy spec-
trum depends on thez component of the fieldB. Therefore,
the x and y components of the magnetic response are ze
and only thez component is nonzero. As mentioned befo
only one energy level can cross the Fermi level. It follow
that there is at most one step~Fig. 5!.

It is clear that case~iii ! for an ellipsoid is similar to the
case of a sphere. For fixedm, the dependenceM (B) is a
steplike one. For the field range where perturbation theor
applicable, the number of steps on the plot of the magn
moment is less than the maximum number of the st
( l 0uB5011) for the case of a sphere~Fig. 6!.

Finally, for case~i!, the behavior of the magnetic mome
as a function ofB is similar to that for case~iii ! except that
the term in Eq.~21! proportional toB is negligible~Fig. 7!.

If N is fixed, then the behavior of the magnetic mome
for an ellipsoid of revolution is qualitatively similar to tha
for a sphere. For case~ii !, in the limit T50, the magnetic
moment depends on the multiplicity of the number of ele

r

s

FIG. 4. Magnetic moment of electrons on a sphere of radiuR
53.531028 cm as a function of a dimensionless magnetic field
T51,5,10,20 K for fixedN5240. The heavy curve corresponds
T50.
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trons in the highest occupied shell. Namely, if this numbe
divisible by 4, then M (B)uT5052um0umB; otherwise
M (B)uT5050. This behavior of the magnetic moment is d
termined by the dependence of the quantum numbersl 0 and
m0 on the total number of electrons,N. For the considered
limiting case, forb.0,

N52@ l 0
212um0u1Q~m0!#, ~24!

and, forb,0,

N52@ l 0
212l 022um0u122Q~2m0!#, ~25!

where

Q~x!5H 1, for x>0,

0, for x,0.

We consider below only the case of a prolate spheroidb
.0) @the case of an oblate spheroid (b,0) is considered
analogously#. In Eq. ~24!, 2l 0

2 is the number of electrons in
the filled shells, and 2@2um0u1Q(m0)# is the number of
electrons in the first open shell. It is easy to see that the c
of N52(l 011)2 corresponds to the case of the closed hig
est occupied shell and therefore 2l 0

2,N<2(l 011)2. The
quantum numberl 0 is determined completely by this cond
tion. If the numberN22l 0

2 is divisible by 4, thenm0,0, and
this leads tom052(N22l 0

2)/4. Using Eq.~22!, we obtain

FIG. 6. Magnetic moment of electrons on an ellipsoid of rev
lution with R5331027 cm andb50.001@case~iii !# as a function
of a dimensionless magnetic field atT50 K for the fixed chemical
potentialm50.5638 eV.

FIG. 5. Magnetic moment of electrons on an ellipsoid of rev
lution with R53.531028 cm andb50.1 @case~ii !# as a function
of a dimensionless magnetic field atq050 for the fixed chemical
potentialm539.507 eV.
s

-

se
-

M (B)uT5052um0umB . If the numberN22l 0
2 is not divisible

by 4, thenm0>0, and this leads tom05(N22l 0
222)/4.

Using Eq.~22!, we obtainM (B)uT5050. Note that for the
case of the fullerene C70, the magnetic moment is zero. In
deed, for C70 we haveN5280. Therefore, forq0,p/2, the
quantum numbersl 0 andm0 are equal to 11 and 9, respe
tively.

In cases~i! (BziOz) and~iii !, the dependence of the mag
netic moment for an ellipsoid of revolution on the magne
field is similar to the respective dependence for the case
sphere. For case~i!, the energy spectrum depends linearly
the field. Therefore, in the limitT50, the magnetic momen
is independent of the field. And we see from Eq.~21! that the
magnetic moment is equal to the Bohr magneton times
integer.

In both cases~a sphere and an ellipsoid of revolution!, the
dependence of the quantum numbersl 0 andm0 on N can be
written as

N52~ l 0
21 l 01m011!. ~26!

Using the above-mentioned technique, the quantum num
l 0 andm0 are determined completely.

The magnetic moment for an ellipsoid of revolution d
pends on the angleq0 between the axis of revolution and th
magnetic field direction. This dependence is caused by
dependence of the energy spectrumEl ,m on q0. Thereby, at a
fixed number of electrons, the chemical potential depends
q0. On the other hand, at a fixed chemical potential,
number of electrons can be changed withq0.

First, we consider the dependence of the magnetic m
ment M on the angle of inclinationq0 at a fixed chemical
potential. If the deformation perturbation is much larger th
the magnetic one~this case corresponds to C70), then the
magnetic moment is positive (M.0) at 0,q0,p/3 and
negative (M,0) at 2p/3,q0,p ~recall that the case o
nearly perpendicular field direction to the axis of revoluti
is out of the scope of perturbation theory!. Since the suscep
tibility is defined byx5M /B, the ellipsoid of revolution is
paramagnetic (x.0) atqP(0,p). If the magnetic perturba-
tion is much larger than the deformation one, then atT50,
the dependence of the magnetic moment onq0 is a jumplike
one. Moreover, the dependenceM (q0) is symmetric with
respect toq05p/2. As mentioned in Sec. II, the levels wit

-

FIG. 7. Magnetic moment of electrons on an ellipsoid of rev
lution with R51027 cm andb50.001@case~i!# as a function of a
dimensionless magnetic field atq050 for the fixed chemical po-
tential m55.0292 eV.
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m2, l ( l 11)/3 have the maximum atq05p/2, and the lev-
els withm2. l ( l 11)/3 have the minimum atq05p/2. This
mode of dependence of the energy spectrum on the ang
inclination affects the dependenceM (q0) as follows. If the
energy of a level increases asq0 runs through (0,p/2), then
the value of the magnetic moment increases stepwise a
considered level crosses the Fermi level. Conversely, if
energy of a level decreases withq0, then the value of the
magnetic moment decreases stepwise. Both these case
shown in Fig. 8.

In the case of a fixed number of particles,N, the chemical
potential depends on the angle of inclinationq0. At low T,
this dependence is caused predominantly by theq0 depen-
dence of the highest occupied levelEl 0 ,m0

(q0). These de-
pendences are plotted in Fig. 9.

Now we consider case~ii ! and study the dependence
the magnetic moment for an ellipsoid of revolution on t
angle of inclinationq0. Here we are interested only in th
case when the number of electrons in the highest occu
shell is divisible by 4~otherwiseM50). As can be seen
from Eq. ~22!, the magnetic moment is positive atq0,p/3
and negative atq0.2p/3. Hence, in case~ii !, if the number
of electrons in the highest occupied shell is divisible by
then the dependenceM (q0) is the same both for the case
fixed m and for the case of fixedN ~Fig. 10!.

As can be seen from Eq.~23!, for case~iii !, for fixed N,
the magnetic moment for an ellipsoid of revolution atT50
is independent of the angleq0 ~unlike the previous case!,
since the quantum numbersl 0 and m0 are not changed. A
nonzero temperature, the magnetic moment has a w
monotone dependence onq0 at q0P(0,p/2). This depen-
dence is caused by dependences of the energy levels an
chemical potential onq0 ~Fig. 11!.

FIG. 8. Magnetic moment of electrons on an ellipsoid of rev
lution with R5331027 cm andb50.001@case~iii !# as a function
of increasingq0 at B520 T for a fixed chemical potential.~a! The
energy level withl 511, m511 crosses the chemical potentialm
50.5713 eV.~b! The energy level withl 511, m56 crosses the
chemical potentialm50.56554 eV.
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V. RESULTS AND DISCUSSION

We have considered the energy spectrum of noninter
ing electrons confined to the surface of an ellipsoid of re
lution and found the magnetic response of this system b
in the case of a fixed chemical potential and in the case
fixed number of electrons. The case when the geometric c
finement is much stronger than the magnetic confinement
been studied. In this connection, the perturbative correcti
to the energy spectrum due to a deformation of a sphere
an ellipsoid~so-called deformation corrections! are supposed
to be small. It is shown in Secs. III and IV that the relatio
between these corrections drastically affect the magnetic
sponse as a function of the magnitude and the direction
magnetic field.

It is shown that for a fixed chemical potential, the ma

- FIG. 9. ~a! Chemical potential of an electron gas on an ellipso
of revolution with R53.531028 cm andb50.1 @case~ii !# as a
function of increasingq0 at T51,5,10,20 K andB510 T for
fixed N5280. ~b! Chemical potential of an electron gas on an
lipsoid of revolution with R5331027 cm and b50.001 @case
~iii !# as a function of increasingq0 at T50.1,1,15,20 K andB
520 T for fixedN5280. The heavy curves correspond to the hig
est occupied levels.

FIG. 10. Magnetic moment of electrons on an ellipsoid of rev
lution with R53.531028 cm andb50.1 @case~ii !# as a function
of increasingq0 at T50,1,5,10,20 K andB510 T for fixed N
5278.
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netic response for an ellipsoid of revolution is a stepl
function of a magnetic field. The steps of this function a
washed away by the temperature. For case~iii ! ~this case is
similar to the case of a sphere!, the plot ofM (B) has some
steps~Fig. 6!. For case~ii !, only the z component of the
magnetic moment does not vanish. In this case, the plo
M (B) has only one step~see Fig. 5!. Case~i! is similar to
case~ii ! if the field is parallel to the axis of revolution. Th
dependence of the magnetic response on the angle of i
nation is investigated. In particular, for the case of a la

FIG. 11. Magnetic moment of electrons on an ellipsoid of rev
lution with R5331027 cm andb50.001@case~iii !# as a function
of increasingq0 at T50,5,10,15,20 K andB520 T for fixed N
5280.
ev
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magnetic correction, it is shown that the magnetic respo
is a steplike function of the angleq0 ~Fig. 8!.

In case~ii !, for a fixed number of electrons, the chemic
potential increases monotonically with the magnetic field
the number of electrons in the highest occupied shell is
visible by 4, then the magnetic moment is positive forq0
,p/3 and negative forq0.2p/3. If the number of electrons
in the highest occupied shell is not divisible by 4~this occurs
for the case of C70), then the magnetic response vanishes.
can be seen from Fig. 9~a!, the chemical potential depend
monotonically onq0 at q0P(0,p/2).

If the magnetic correction is much larger than the def
mation one, then the chemical potential is a slowly varyi
monotone function of the angleq0 @Fig. 9~b!#. In this case,
the magnetic moment is positive and also depends onq0
weakly and monotonically@at q0P(0,p/2)#.

It follows from the above discussion that the magne
response for an ellipsoid of revolution depends on the th
modynamics of the system, unlike the bulk case~Landau
diamagnetism! when the dependence of the magnetic
sponse on the field is essentially the same both for the c
of fixed m and for the case of fixedN.35
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