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Magnetic response for an ellipsoid of revolution in a magnetic field
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The quantum-mechanical spectrum and the magnetic response of noninteracting electrons confined to the
surface of an ellipsoid of revolution are investigated. We have found the magnetic response both for the case
of a fixed chemical potential and for the case of a fixed number of electrons. It is shown that the magnetic
response of an ellipsoid of revolution depends on the thermodynamics of the system. In particular, for a fixed
chemical potential, the magnetic response of an ellipsoid of revolution is a steplike function of a magnetic field.
The dependence of the magnetic response of an ellipsoid of revolution on temperature and geometric param-
eters is found and investigated in detail.

[. INTRODUCTION to the surface of a sphere has been used for a theoretical
investigation of the quantum-mechanical spectrum and the

The analysis of the magnetic response of nanostructurasagnetic response of electrons in the fullereng. Ginter-
with different geometry allows one to get important dataacting electrons on various two-dimensional surfaces are
concerning parameters of the electron energy spectrum arwbnsidered in Refs. 29-33n this model, the energy spec-
the potential of the geometric confinement in suchtrum of electrons on the sphere subjected to a uniform mag-
systems. 1% This is because the magnetic response of anetic field has been calculated in the framework of perturba-
nanostructure is determined predominantly by the energyion theory. The radius of convergence of perturbation theory
spectrum, which in turn depends on the geometric paramis defined by the conditionR/Ig)?<1, whereR is the radius
eters of a nanostructure. Note that a magnetic field tilted t@f a sphere antl; is the magnetic length. Since the effective
the symmetry axes of the system can lead to hybridization ofadius of the G, fullerene is of the order of 36108 cm,
the dimensional and magnetic confinement as a result of cowve can estimate the magnitude of the magnetic fi&@d:
pling of the motion of electrons parallel and perpendicular to<100 T. Obviously, this condition holds for all experimen-
the magnetic field>* tally accessible magnetic fields.

The recent progress in nanotechnology has promoted an If the magnetic field is absent, then the energy spectrum
experimental investigation of curved nanostructures. In paref electrons is (2+1)-fold degenerate due to the spherical
ticular, the so-called lift-off technology allows one to fabri- symmetry of the systeml (is the orbital quantum number
cate  two-dimensional curved layers of  GaAs An applied uniform magnetic field removes this degeneracy
heterostructure$1>-> Moreover, a wide class of curved completel?® and leads to the dependence of the energy spec-
structures is formed by the carbon nanostructures such agum on the magnetic quantum number Namely, the en-
nanotubes, fullerenes, and toroids. Theoretical and experergy of the level withm=0 increases with the field and with
mental studies of the magnetic and transport properties ahe quantum numben, whereas the energy of the level with
these carbon structures are presented in Refs. 16—-1fh<0 decreases with the field. Since the distance between
Thereby, the theoretical investigation of the spectral anddjacent shells is large, it follows that there is no level cross-
magnetic properties of nanostructures with a nonzero curvang (i.e., there is no accidental degeneracy of the lgvels
ture (in particular, quantum cylinders, spheres, and ellip-However, for a very high field, the level crossing becomes
soidg is a subject of current interest. The investigation of theessential and leads to a series of interesting effesets dis-
magnetic response for a nanostructure with cylindricalcussion in Refs. 25 and 27
symmetry 121319 hows that the curvature of surface of a  In this paper we study the quantum-mechanical spectrum
system influences substantially the spectral and magnetiand the magnetic response of electrons moving on the sur-
properties of this structure and leads to interesting physicdice of an ellipsoid of revolution. This system can be con-
effects™”*315Recent advances in technold§ave made it sidered as a model for the electron system in the nanocluster
possible to produce spherical nanostructdtes’The energy  Cyo, the geometry of which is close to that of an ellipsoid of
spectrum, electronic correlations, and magnetic properties g&volution. In this case, the semiaxes of the ellipsoid differ
a spherical two-dimensional electron gas have been consiglightly from each other. Hence, the effect of the nonsphe-
ered in a number of theoretical works.22 There is indirect  ricity can be considered in the framework of perturbation
evidence that the geometry of the above-mentioned systentkeory. The magnetic response for an ellipsoid of revolution
plays a dominant role in the behavior of the electron energylepends on the relationship between the two types of correc-
spectrum: there is good agreement between the numerictibns to the energy spectrum: the corrections due to the mag-
results obtained in the framework of the tight-binding ap-netic fieldB and those due to the ellipsoidal geometry of the
proximations and those obtained for the simplified model ofsystem. It is clear that the energy spectrum and the magnetic
noninteracting electrons. response of electrons confined to the surface of an ellipsoid

In Ref. 24, a model of noninteracting electrons confinedof revolution depend on the anglkg, between the axis of
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revolution and the magnetic field direction. b2 1
We consider below only the case of low magnetic fields, Va=byle+byl, +b,l,, Vi=— ——

namely, the caseR/lg)?><1, because this inequality holds 4 B°R

for all really accessible fields forggand G,. Moreover, we o . o

consider not only the case of the ellipsoidal surface, but th&nd A5 . is the angular term of the Laplacian in the new

case of the spherical surface as well. Note that the energ§Pordinates. The representationtéfin the form(3) will be

spectrum and the magnetic properties of the electron systef§ed below in the two limiting caseg=0o(B?) or B

on a sphere in presence of a uniform magnetic field have0(58?). In both cases, the term(Bp) is negligible com-

been studied in Refs. 24, 25, and 27, but in these articles apared to the remaining terms.

additional condition R/Ig)?=1 has been supposéthe rea- In what follows the term#/; andV, in Eq. (3) are called

son is that the authors of the cited articles are interestethe deformation perturbations and the terisandV, are

mainly in the effects related to the level crossingor the  called the magnetic perturbations. The corrections to the en-

simple model of noninteracting electrons, we obtain expliciterdy spectrum due to these perturbations are called the de-

perturbative expressions for the energy spectrum and thf@rmation correction and the magnetic correction, respec-

magnetic response. We shall show that in the case of lowiVely. _ _

magnetic fields the magnetic moment of a spherg)(@nd Let us consider the following three cases

of an ellipsoid (Gy) is a steplike function of the field at a (i) The deformation correction to the energy is of the or-

fixed chemical potential. By increasing the temperature théler of the magnetic one, i.e8~ maxby|.

[B1r]21

steps of this dependence are washed out. (i) The deformation correction to the energy is much
larger than the magnetic one, i.@3maxb|.
Il. ENERGY SPECTRUM OF AN ELLIPSOID (iii) The deformation correction to the energy is much
OF REVOLUTION IN A MAGNETIC FIELD smaller than the magnetic one, i.8s<sufb;].

First, we consider cadg). The eigenvalues and the eigen-
We consider the case of noninteracting electrons confineflnctions ofA?9 . are given by
to the surface of an ellipsoid of revolution in a uniform mag- '

netic fieldB. The Hamiltonian of such a system reads 5|0=|(| +1); |¢|0 Y=Y, (9, ¢))=|1,m) (4)
1 ,m. , ) ) ’
2 2
_Pp el 2 whereY, (9, ¢) is the spherical harmonic. We see that the
H + BL + [B,r]%, (1) : T g
2me  2meC 8mec? spectrum ofA§  is (21 +1)-fold degenerate. The first-order

. . correctione; to the energy spectrum is determined by the
wherem, is the mass of an electron ardis the angular 1 gy sp y

momentum operatokfor simplicity, we ignore the spin- secular equation: C[E{ﬂ’m?|vl+v3|l’m2>_815m1*m2]_:0'_
dependent termsForB<100 T, the second and third terms  Because of the rotational symmetry of an ellipsoid of
are much less than the first one. Hence, they yield a wealévolution, we can choose the direction of the magnetic field
perturbation of the energy spectrum of an ellipsoid by thesuch thaB,=0 and thereforé,=0. Using the properties of
magnetic field. The third term in EqL) is proportional toB? the spherical harmonics, after some algebra we obtain
and therefore it is much less than the second term.

In the Cartesian coordinatesy,z, the equation of an el- (1,ma|V1+V3|l,my)

H H : 2 2 2142 —
lipsoid of revolution has the formx€+y?)/R?+z%/d?=1. 02(I+1)2(I2—m§)+m§(2I—1)

Introducing new coordinates by the relatioésx, =Yy, =5 b,m, -2

and/=RZd, we rewrite the equation of an ellipsoid in the MMy T2 (21-1)(21+3)

form £2+ 7%+ ¢?=R?. In these new coordinates, the Laplac- 1 1

ian is given by the expression + 5m1,m2+1§a+(| M) b, + 5m1,m2,1§a,(l ,my) by,
? 9 9 (5)

A=—+—+(1-B)2—
e RO b

:AO+'B('8_2)F' 2
£ wherea. (I,m)=I(I+1)—m(m=1).
whereB=1-R/d andA°= 3%/ 3&>+ 3?1 dn°+ 9°1 92 As can be seen from Eq(5), the matrix (I,m;|V,

It is clear thatBL =ByL .+ ByL,+B,L,+0(BB), where  +v,|I,m,) is a Hermitian three-diagonal matrike., a Ja-
L:L,, andL, are the corresponding components of the ancobi matriy of order 2+ 1. In the case of an arbitrary di-
gular momentum operator. Let us denﬁféajz byb;, where rected field, it is difficult to obtain an explicit expression for
aj2= chlle|B; (j=x,y,z) andlj=L;/% (i=¢&,7,{). Thenwe  the first-order correction to the energy spectrum. At the same

can rewrite the Hamiltoniafil) as follows: time, if the field is parallel to the symmetry axis of an ellip-
soid (B||O2), then the matrix|,m,|V,+V;|l,m,) is diago-
h? 0 nal. In this case,
H:2 R2(_A0’¢+V1+V2+V3+V4)+0(Bﬁ)' (3)
m
¢ 2(1+1)%(12—m2)+m?2(21 — 1)
where 1=b,m=2p (2I—1)(21+3) ©
2 2
VlzzﬁRZa_, V,= —ﬁZRZa—, If we neglect the higher-order contributions due to the per-
a? aL? turbationsV, andV,, then
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52 2(1+1)%(12—=m?) + m?(21 — 1)
E|,m:2meR2 I(I1+1)+b,m 82=b,m+ B? (21-1)(21+3)
2(|+1)2(|2_m2)+m2(2|_1) +og? (|—2)2(|+1)2((|—1)2—m2)(|2_m2)
B (21—1)(21+3) - @ (21-3)(21-1)3(21+1)

12(14+3)2((1 +2)2 = m?)((1 + 1)2— m?)

Equation(7) allows us to understand how the deformation — 3
of a sphere into an ellipsoid of revolution decreases the level (21+1)(21+3)°(21+5)
degeneracy. Let us consider the collection of all levels with
the angular momenturh The states of these levels form an Note that the terms of the order @ in Eq. (9) cannot be

electron shell._ In the case of a sphere and a zero ﬁeld'. the?f?eglected. Indeed, if we neglect these terms, then we have to
levels merge into one (2-1)-fold degenerate Ievel._ Putting ignore the dependence of the energy spectrum on the mag-
B=0 in Eq. (7). we conclude that the deformation of a pqie field, sincgb,|~B2. Therefore, in this approximation,
sphere into an ellipsoid of revolution splits the level of thethe magnetic moment of the system is zero

Ith (the” into a sethof+1 Iﬁve:s. Tlhe I_el\;#el Withn:of il?j In this case, the energy spectrum depends or tbem-
nondegenerate, whereas the levels willk0 are twofo onent of the field:E,,|B|cosd. The radius of conver-

degenerate. Consequently, the deformation removes partialiyonce for perturbation theory is determined by the following
the degeneracy W'th respect to the quantum num_h)etlote __conditions:| 8| <1,|b,|~ B2. Therefore, if the field direction
that the deformation correction of the first order is negativeg o1most perpendicular to the axis of revolution, then 3.

for all values off andm. If B0, then Eq/(7) shows thgt all s not applicable. In fact, in the considered case, the energy
the energy levels of thith shell are nondegenerate; i.e., the gneqym for a transversal magnetic field is independent of
magnetic field removes the degeneracy completely. Moregq fie|q strength and coincides with the spectrum without
over, it is easy to see that the energy of the level with e fie|q. Note that the correction term of the third order with

>0 increases with the field, whereas the energy of the Ievq]espect to the field |b,|~|B|%) leads to the insignificant
with m<0 decreases; the level with=0 does not change lowering of the energy levels.

its position on the energy axis. The region of application for Finally, we consider caséii). Let the correction due to

Egs.(5) and(7) is determined by the conditions V, be of the second order with respect to the correction due
to V3. Then we can neglect the terw, in Eq. (3). We
max(|by|,|by|,|b,],|B])<1, choose the Cartesian coordinates so that 0. Neglecting

V,; andV,, we find the first-order correction to the energy
spectrum from the secular equation. It is convenient to rotate
max(|by|,[by|,|b,])~[B]. (8)  the coordinate system across fexis about the anglé,
=arccosB,/B) so that in the new coordinat&=B,. The
The second condition in Eq$8) is necessary, since other- new coordinate syste’,7’,{’ is related to the initial one
wise the deformation and magnetic corrections are of differby the equations
ent order, and we must take into account the perturbative

terms of higher order. &' =¢&cosdy— ¢ sindy,
Second, we consider ca®). In particular, in the case of
the fullerene G, we haveR~3.5x10 8 cm, 8~0.1; there- n' =7,
fore for the real field range 2 SB=<10 T, the perturbation .
V3 due to the magnetic field is of lower order with respect to {'=¢sindo+ { cosdy. (10)

the perturbatiorV;. In this connection, we consider the per-
turbative termsV, and V; in second-order perturbation
theory only; thg perturbatio,, which is quadratic with projector method for the calculation of the perturbation ma-
respect to the field, can be neglected. trix elements® we get

Using the standard perturbation theory, after some tedious '

Hence, in this systeﬁ?szblg, . Thereforee,=bm and the
corresponding eigenfunction |,m). Using the orthogonal

calculations we get go=(1,m[Vq|l,m)+(1,m|V3QVs|l,m)+(I,m|V,|I,m),
(1
2 ~ ~ ~
E - i [(+1)+e,+es] (9  WhereVy, Vs, andV,= (b?/4)sirf9 are the perturbation op-
Im 2 1 24 . .
R erators in the new coordinates, and
where 2 m( |
ml
Q=2 (12)
2(14+1)2(12—= m?)+ m?(21 — 1) 7 el-¢g,
.= —
' (21=1)(21+3) After some algebra, we obtain the following expression for

the energy spectrum for an electron confined to the surface of
ande, is given by an ellipsoid of revolution:
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2
E m:gSph_ i B
’ 2m,R?

e

212+21+3
2y S rATS M=—2
3SiT Yo 511 (2153) ;n

i (Ejm) (16)
0~,BZ 0 I,m/»

1 wherefy(E, ) is the Fermi distribution function. From here
m?— =1(1+ 1)) on we take into account the spin degeneracy with the help of
3 the factor of 2 in front of the sum over all quantum states.
It is necessary to distinguish two cases corresponding to
(13)  the two types of statistical ensembles. In the first ¢gsand
canonical ensemblgthere is an exchange of both energy and

Here £5P" is the energy spectrum of an electron confined tgparticles between the ellipsoid and the thermostat. In this

the surface of the corresponding sphere calculated up t62S€: the chemical potentjaldepends weakly on the fiels|
second-order perturbation theory: and this dependence can be neglected. Indeedy tejcq
+Au, wherey, is the chemical potential in the absence of

the field andA . is the term due to the fielB. Since in the
. thermal equilibrium eF/a,u)#:MO:O, we have, for the dif-

(14) ference of the free energyF,

X

2(1+1)%(12=m?) + m?(21 — 1)
(21-1)(21+3)

#? b? 12+1—1+m?
. I(1+1)+bm+—

sph_ -
£e= 2 (21-1)(21+3)

e

&°F
(9,LL2

The range of applications for this result is given by the con- AF = E

ditions |b|<1,|8|~b?. Note that the deformation correction 2
is always negative for all andm. We consider the depen-

dence of the energy spectrum on the angle of inclinatign  Since Aw is independent of the field direction, we have
As can be seen from Eq13), the energy spectrum is sym- AuxB2, and thereforeAF«B*3® On the other hand, the
metric with respect ta¥,= 7/2 because of the symmetry of magnetic correction is calculated up to terms of the order of
the system about they plane. It should be noted that the BZ. Hence,Au is negligible in this order of accuracy.

lower is the magnetic fieldB|, the stronger is the depen-  In the second case, there is an exchange only of the en-
dence of the spectrum on the angle of inclinatiby The  ergy between the system and the thermogtet numbem
reason is that thed,-dependent term in Eq13) gives a  Of particles in the system is fixgdin this case, the depen-

(Ap)?. 17

M= Mo

greater contribution to the enerdgy ,, of an electron. dence ofu on B is essential. This dependence is determined
Let us define the angléd; such that sifd;=2/3. It fol-  completely by the normalization condition

lows from Eq.(13) that atd,= 9, the deformation correc- 1

tion to the energy is independent of the magnetic quantum N=2> . (18)

numberm, and the spectrum of the ellipsoid differs from that fim 1+ exp (B m—w)/T]

of the sphere only on a slight shift of all the levels down- p{ ;10 temperature, the magnetic moment is given by

wards:
JE
2 M(T=0)=-2 3 —2=
B3l(1+1). (19 Bim=p 75z

. (19

Ejml o=, =€
e 2mR? _ . :
¢ With the help of the results of the previous section,

Equation (13) implies the following statement: Ifn? 9E|,m/ 9B, can be written as

<I(1+1)/3, then the energy of the level increases with the mug, for caseli) when (B|O2),
increase of the anglé, from 0 to #/2; if m?>1(l1+1)/3, -
then this energy decreases. With the help of this statement,aE"m: Mpg, for caseii),

we can determine the levels of the shell having the maximum 9Bz +b 12+1—1+m? ¢ i)
or the minimum atd,= /2. Namely, in the case of? Mite HB21-1)(21+3)" or casai).
<I(1+1)/3[m?>I(1+1)/3], the functionE,; (%) has the (20

maximum(minimum) at 9= 7/2. ]

In all considered cases, Eq49) and(20) may be used to
obtain explicit expressions for the magnetic moment at zero
temperature. Namely, jig is the Bohr magneton arlg, mg
are the quantum numbers of the highest occupied level, then

Let us consider the dependence of the magnetic momente have, for casé) (for mg>0),
M on B for an ellipsoid of revolution. As mentioned above,
) ST TR . . . M(T=0)
in case(i), it is difficult to obtain an explicit expression for = (lg—mg) (Ig+my+1), (21)
E| m(B) if the magnetic field is not parallel to the rotational MB
symmetry axis. Thereby, in this case we have to restrict ourg,, caselii)
selves to the case of a longitudinal field. Then in all consid- '
ered cases, only thecomponent of the field gives a nonva- M(T=0)
nishing contribution to the energy spectrum of an ellipsoid of ————=[mg|—my, (22
revolution. ThereforelM = M, for all cases. We use the stan- Ke
dard formula and for casiii),

IIl. MAGNETIC MOMENT OF A SPHERE
AND AN ELLIPSOID OF REVOLUTION
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M(T=0) 2b b Mo(Mo+1)(2Me+ 1) —lo(lo+1)(20 g+ 1) — 6(1g—mg) (12+1— 1)
— - ~Uo=mo)(lo+mp+1)— —(lo+ 1%~ 3 (21o—1)(215+3)

(23

[from here on we suppose thég e (0,77/2)]. Even though3  chemical potential crossing by either the highest occupied
does not explicitly appear in Eq$21)—(23), the magnetic levels or the lowest unoccupied levels. This crossing leads to
moment depends of. Indeed, the quantum numbdgsand  a change of the quantum numbdgsand mg, and, conse-

m, are defined by, =E, , , whereE,, in turn is defined by quently, to a jump in the magnetic moment. It should be

Egs. (7), (9), and (13) [case(i), case(ii), and casiii), re- mentioned that the number of jumps or steps is strictly lim-
spectively. Thus, the quantum numbefs and m, depend ited. The finiteness of the number of steps is caused by the
on B for fixed u, since E;n=E;n(3). Therefore,M also following reasons. First, only the levels of one shghe
depends orgB. highest occupied shelican cross the Fermi level. Second,
It may be seen that Eq22) [case(ii)] does not match this crossing is possible only for the levels with the energy
with Egs.(21) and(23) [case(i) and casiii ), respectively. that either increases or decreases with the field. Strictly
Figure 1 explains this mismatch. In this figure, we displaySPeaking, for the case of a sphdtke energy spectrum is
the energy levels of the fifth shell £5) of electrons as a calculated in second-order perturbation theamd for case
function of a magnetic field. As can be seen from this figure iil) (the magnetic correction is much greater than the defor-
for caselii), only the highest occupied level can give a con-mMation ong, the dependence of the magnetic moment on the
tribution to the magnetic mometicontributions from other field is not strictly steplikdsee Eq(23)], because the mag-
levels are exactly compensajedn cases(i) and (iii), the netic moment depends linearly on thg field in the plgteau of
relative position of the energy levels changes with respect t§ Step. However, when the geometric confinement is much
that for case(ii). In these cases, the magnetic moment carstronger than the magnetic ofiis is the case for the ex-
contain contributions of several levels of the highest occuPerimentally - accessible field range and foR<5
pied shell. Thus, the behavior of the magnetic response fot 10 ° ¢m), this linear dependenckl(B) is negligibly

case(ii) differs from that for caséi) and casiii ), although small, and we can consider this dependence as a nefarly step-
the spectrum in case@), (i), and (iii) differs only by the like one. On the other hand, when the magnetic confinement

higher-order corrections. becomes essential with respect to the geometric(forethe

In conclusion to this section, we present some results fore@! field range and f&R=10"" cm), the dependence of the
the case of a sphere. Direct calculations show that the madpagnetic moment on the field is rather a sawtoothlike one.
netic moment for a sphere is given by Eg1) if we restrict  For fixed N, the quantum number$, and m, are not
ourselves to linear terms with respect to the field in the specchanged, since there is no accidental level degeneracy for the
trum (14). On the other hand, if the second-order terms argonsidered field range. Hence, the magnetic moment is a
taken into account, then the magnetic moment is given bynonotone continuous function of the magnetic field.
Eq. (23. Namely, for casgs) and(ii), the .rpagnetlc momt_ent is inde-

Note that Eqgs(21), (22), and(23) are valid both for the _pend_ent of the f_leld, and for cas_m)z the magnetic moment
case of a fixed chemical potential and for the case of a IS @ linear function of a magnetic field.
fixed number of particlesN. At the same time, there is a
fundamental difference between these cases. Namely, fory. ANALYTICAL STUDY AND NUMERICAL ANALYSIS
fixed u, the field dependence of the magnetic moment is a OF THE MAGNETIC RESPONSE

steplike one. These steplike featuredMi{B) arise from the ) . _ ) .
First, we consider the case of a fixed chemical potential.

0.14 As can be seen from E@14) for the case of a sphere, the
Case (i) Case (iii) energy of the leveE, ,, with m=0 (with m<0) increases
B | (decreasgs with the field. Hence, foru>E, o (for
S0.13 - Case (ii) <E) 0, only the levelsE, , with m=0 (with m<0) can
< | cross the chemical potential. Note that f&/(g)?><1, there
@ & . — is no level crossing becaudy is very small. The steplike
§0.12 1 dependenceM (B) is associated with the crossing of the
=] Fermi energy by the levels of the highest occupied shell with
S— I=1,. Itis clear that the number of these steps in the case of
, the closed highest occupied shell is equal to the number of

increasing or decreasing levels of this shell with the field;
0.00 0.05 g)‘/lq())o Gl e i.e., the maximum number of the steps is equal 4ig-,
+1.

FIG. 1. Energy levels of the fifth shell €5) of electrons on an For the sphere, the dependerdgB) is depicted in Fig.
ellipsoid of revolution withR=10"7 cm andB=0.1 as a function 2. In this figure we can see sharp steps of the magnetic mo-
of a dimensionless magnetic field &,=0. Shaded areas indicate ment atT=0.1 K. The steplike behavior of the magnetic
regions which are out of the scope of perturbation theory. moment is caused by crossing the chemical potential with the
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FIG. 2. Magnetic moment of electrons on a sphere of raBius  FiG. 4. Magnetic moment of electrons on a sphere of raius
:35X 10_8 cCmasa fUnCtiOn Of a dimensionless magnetiC f|e|d f0r :35)( 10_8 cm as a function Of a dimensionless magnetic f|e|d at
the fixed chemical potentigk=34.22 eV. T=1,5,10,20 K for fixed\N=240. The heavy curve corresponds to

highest occupied IeveI§.|o,m of electrons on a sphere. These

steps are washed away by the temperalurel K. As can be seen from Fig. 3, at loBy there is a region on

Now we consider the field dependence of the magnetieghe curve u(B) where the chemical potential depends
moment for a sphere at a fixed number of electrdwis,.et  weakly on the magnetic field. The magnitude of this region
T=0. Then the Fermi energy is equal to the energy of théncreases with temperature. The region of the weak depen-
highest occupied leved, ., , where the quantum numbdgs  dencew(B) is changed by the region of the nearly linear
andm, depend on the total number of electrdvisAs can be  dependence:(B) with increasingB. As can be seen from
seen from Eq(21) or Eq. (23), the magnetic moment of a Egs.(14) and(16) and from a numerical analysis, the mag-
sphere is negative if the highest occupied shell is closed angetic response increases with the field in the region where the
positive if this shell is partially filled. In both these cases, thechemical potential depends weakly & The magnetic re-
magnetic moment is a linear function of a magnetic field. Insponse is almost constant in the region wheres nearly a
the limit B=0, the magnetic moment is equal to the Bohrlinear function of B. As shown in Fig. 4, at lowT (T
magneton times an integéfor the case of g we have ~1 K), the dependenc#1(B) is determined by the field
M|g 1-0=20ug). dependence of the chemical potential. The dependence of the

If T+#0, then at the beginning it is necessary to find themagnetic moment is like a smeared step. The greater is the
dependenceu(B) using the normalization conditiofi8). temperature, then the greater is the smearing of the steps. In
For some partial values of temperature, this dependence &ddition, in the considered region of the fields, the value of
shown in Fig. 3. As shown in this figure, the chemical po-the magnetic moment at finite temperature is always less
tential depends monotonically on the magnetic field. Let ughan that af=0. Since the levelg, , as well as the chemi-
discuss this behavior gi(B). Kim, Vagner, Sundaram, Jau- cal potential increase witB, there are no steps in the depen-
regui, and Marchenko showed that a variation of the leveHenceM(B) that are related to crossing by E, . The
degeneracy with the magnetic fidfdand the level crossings dependence of the energy of the highest occupied level
(the case of high magnetic fiefds leads to oscillatory fea- Ei,.m, On the magnetic field is clearly shown in Fig. 3.
tures inu as a function ofB. However, in this paper we  The pehavior of the magnetic response at a fixed chemical
consider only the case of low magnetic fields. In this casepqtential for the case of an ellipsoid of revolution differs
there is no level crossing; besujes that the degeneracy qf theom that for the case of a sphere. First, we consider Gigse
levels is not phanged with the fle!Bi Therefore, the c_:heml— this case corresponds to the fullereng.CThe energy spec-
cal .potentl'al is a monotone function Bffor the considered {;m depends on the component of the field®. Therefore,
region of fields. the x andy components of the magnetic response are zero,
and only thez component is nonzero. As mentioned before,
34227 only one energy level can cross the Fermi level. It follows

/ that there is at most one stépig. 5.
224 / It is clear that cas¢iii) for an ellipsoid is similar to the
| case of a sphere. For fixed, the dependenc# (B) is a
steplike one. For the field range where perturbation theory is
34221 applicable, the number of steps on the plot of the magnetic
moment is less than the maximum number of the steps
(lolg=o+ 1) for the case of a sphe(€ig. 6).

Finally, for casd(i), the behavior of the magnetic moment
as a function oB is similar to that for caséiii) except that
the term in Eq(21) proportional toB is negligible(Fig. 7).

FIG. 3. Dependence of the chemical potential of an electron gas If N is fixed, then the behavior of the magnetic moment
for a sphere of radiuR=3.5x10"8 cm on a dimensionless mag- for an ellipsoid of revolution is qualitatively similar to that
netic field atT=1,5,10,20 K for fixedN=240. The heavy curve for a sphere. For cas@), in the limit T=0, the magnetic
corresponds to the highest occupied lekél,,mg). moment depends on the multiplicity of the number of elec-

Chemical potential |\ (eV)

34218 : :
0.0 03 0.6 09
10° @/@,




PRB 62 MAGNETIC RESPONSE FOR AN ELLIPSOID B. .. 11523
20 130
15 (
110 |
510 | -T=0K e
= —T=02K =
9 |
ST J —T=0K
—T=0.2K
0 : : 70 : :
04 0.5 0.6 0.7 0.8 0.9 0.38 0.74 1.10
10° @/, ,
10° ®/D,

FIG. 5. Magnetic moment of electrons on an ellipsoid of revo-
lution with R=3.5x10"8 cm andB=0.1[case(ii)] as a function
of a dimensionless magnetic field &,=0 for the fixed chemical
potential u=39.507 eV.

trons in the highest occupied shell. Namely, if this number is

divisible by 4, then M(B)|r—9=2|m|ug; otherwise
M (B)|1-0=0. This behavior of the magnetic moment is d
termined by the dependence of the quantum numhkgeasd
mg on the total number of electronbl, For the considered
limiting case, for3>0,

e_

N=2[13+2|mg|+ ®(mg)], (24)

and, forB<0,
N=2[13+2ly—2|mg| +2— O (—mp)], (25)
where

1, for

Oy

Xx=0,

B(x)= x<0.

for
We consider below only the case of a prolate spher@d (
>0) [the case of an oblate spheroig<0) is considered
analogously. In Eq. (24), 2I§ is the number of electrons in
the filled shells, and [2|my|+®(mg)] is the number of

FIG. 7. Magnetic moment of electrons on an ellipsoid of revo-
lution with R=10"7 cm andB=0.001[case(i)] as a function of a
dimensionless magnetic field @,=0 for the fixed chemical po-
tential ©x=5.0292 eV.

M (B)|1—0=2|mo| ug . If the numbeN— 212 is not divisible
by 4, thenmy=0, and this leads tang=(N—213—2)/4.
Using Eq.(22), we obtainM(B)|t-,=0. Note that for the
case of the fullerene £, the magnetic moment is zero. In-
deed, for G, we haveN=280. Therefore, fory,< /2, the
guantum numberk, andmy are equal to 11 and 9, respec-
tively.

In caseqi) (B,]|O2) and(iii), the dependence of the mag-
netic moment for an ellipsoid of revolution on the magnetic
field is similar to the respective dependence for the case of a
sphere. For casg), the energy spectrum depends linearly on
the field. Therefore, in the limit=0, the magnetic moment
is independent of the field. And we see from E2{l) that the
magnetic moment is equal to the Bohr magneton times an
integer.

In both casesa sphere and an ellipsoid of revolutjpithe
dependence of the quantum numblgrandmg on N can be
written as

N=2(I13+1o+mg+1). (26)

electrons in the first open shell. It is easy to see that the casgsing the above-mentioned technique, the quantum numbers
of N=2(lo+1)? corresponds to the case of the closed high-|O andm, are determined completely.

est occupied shell and thereforééZN<2(|0+ 1)2. The The magnetic moment for an ellipsoid of revolution de-
quantum numbel, is determined completely by this condi- pends on the angl€, between the axis of revolution and the

tion. If the numbeN — ZIS is divisible by 4, thermy<<0, and
this leads tomy=— (N—2I2)/4. Using Eq.(22), we obtain

100

90

Mipg

80

70

0.10 0.12 0.14

O/,

0.16

FIG. 6. Magnetic moment of electrons on an ellipsoid of revo-
lution with R=3X10"7 cm andB8=0.001[cas«(iii )] as a function
of a dimensionless magnetic field B0 K for the fixed chemical
potentialx=0.5638 eV.

magnetic field direction. This dependence is caused by the
dependence of the energy spectriam, on J,. Thereby, at a
fixed number of electrons, the chemical potential depends on
Jp. On the other hand, at a fixed chemical potential, the
number of electrons can be changed with

First, we consider the dependence of the magnetic mo-
mentM on the angle of inclinationy, at a fixed chemical
potential. If the deformation perturbation is much larger than
the magnetic ondthis case corresponds to;{, then the
magnetic moment is positiveM>0) at 0<dJ,<#/3 and
negative M<0) at 27/3<9,< (recall that the case of
nearly perpendicular field direction to the axis of revolution
is out of the scope of perturbation theprgince the suscep-
tibility is defined by y=M/B, the ellipsoid of revolution is
paramagnetic¥>0) atd e (0,7). If the magnetic perturba-
tion is much larger than the deformation one, the at0,
the dependence of the magnetic momentigris a jumplike
one. Moreover, the dependent(9,) is symmetric with
respect tod,= 7/2. As mentioned in Sec. Il, the levels with
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FIG. 8. Magnetic moment of electrons on an ellipsoid of revo- ~ FIG. 9. (8 Chemical potential of an electron gas on an ellipsoid
lution with R=3x 107 cm andB=0.001[case(iii)] as a function  Of revolution with R=3.5x10"8 cm and5=0.1 [case(ii)] as a
of increasingd, atB=20 T for a fixed chemical potentiala) The ~ function of increasingd, at T=1,5,10,20 K andB=10 T for
energy level withl =11, m=11 crosses the chemical potentjal ~ fixed N=280. (b) Chemical potential of an electron gas on an el-
=0.5713 eV.(b) The energy level witd=11, m=6 crosses the lipsoid of revolution withR=3x10"" cm and 8=0.001 [case
chemical potentiak=0.56554 eV. (iii)] as a function of increasingl, at T=0.1,1,15,20 K and
=20 T for fixedN=280. The heavy curves correspond to the high-

9 . est occupied levels.
m-<I(l +1)/3 have the maximum a,= =/2, and the lev-

els withm?>1(1+ 1)/3 have the minimum ab,= /2. This

mode of dependence of the energy spectrum on the angle of _ .
inclination affects the dependent#(9,) as follows. If the ~ We have considered the energy spectrum of noninteract-
the value of the magnetic moment increases stepwise as th&ion and found the magnetic response of this system both
considered level crosses the Fermi level. Conversely, if th the case of a fixed chemical potential and in the case of a
energy of a level decreases with, then the value of the fixed number of electrons. The case when the geometric con-

magnetic moment decreases stepwise. Both these cases HR¢Ment is much stronger than the magnetic confinement has
shown in Fig. 8. been studied. In this connection, the perturbative corrections
In the case of a fixed number of particlég, the chemical to the_ energy spectrum due to a deformafuon of a sphere into
potential depends on the angle of inclinatiég. At low T, an ellipsoid(so-called deformation correctionare supposed
this dependence is caused predominantly by dgedepen- to be small. It is shown in Secs. Il and IV that the relations

dence of the highest occupied levBl. ,, (9,). These de- between these cqrrections drastically affect the magljetic re-
N 00 sponse as a function of the magnitude and the direction of a
pendences are plotted in Fig. 9.

. ; magnetic field.
Now we _c0n3|der caséi) and_stuqu the deper_ldence of It is shown that for a fixed chemical potential, the mag-
the magnetic moment for an ellipsoid of revolution on the

angle of inclinationd,. Here we are interested only in the

V. RESULTS AND DISCUSSION

case when the number of electrons in the highest occupied 2

shell is divisible by 4(otherwiseM =0). As can be seen \
from Eq. (22), the magnetic moment is positive &< /3 101

and negative athy>2/3. Hence, in caséi), if the number R

of electrons in the highest occupied shell is divisible by 4, § o

then the dependendé (,) is the same both for the case of
fixed w and for the case of fixell (Fig. 10. 10 |
As can be seen from E@23), for case(iii), for fixed N, \
the magnetic moment for an ellipsoid of revolutionTat 0
is independent of the angl§, (unlike the previous cage
since the quantum numbekg and my are not changed. At
nonzero temperature, the magnetic moment has a weak F|G. 10. Magnetic moment of electrons on an ellipsoid of revo-
monotone dependence aky, at g€ (0,7/2). This depen- |ution with R=3.5x10"8 c¢cm andB=0.1[case(i)] as a function

dence is caused by dependences of the energy levels and tteincreasingd, at T=0,1,5,10,20 K and3=10 T for fixed N
chemical potential ord, (Fig. 11). =278.

-20 2 n

9,
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magnetic correction, it is shown that the magnetic response
is a steplike function of the anglg, (Fig. 8.

In case(ii), for a fixed number of electrons, the chemical
potential increases monotonically with the magnetic field. If
the number of electrons in the highest occupied shell is di-
visible by 4, then the magnetic moment is positive ity
< /3 and negative foi}> 2 /3. If the number of electrons
in the highest occupied shell is not divisible bythis occurs
for the case of &), then the magnetic response vanishes. As
can be seen from Fig.(8, the chemical potential depends
monotonically ondg at d¢ € (0,7/2).

If the magnetic correction is much larger than the defor-

FIG. 11. Magnetic moment of electrons on an ellipsoid of revo-mation one, then the chemical potential is a slowly varying

lution with R=3x10"7 cm andB=0.001[case(iii )] as a function
of increasingd, at T=0,5,10,15,20 K and8=20 T for fixed N
=280.

monotone function of the anglg&, [Fig. 9b)]. In this case,
the magnetic moment is positive and also dependsign
weakly and monotonicallyat ¢, (0,7/2)].

It follows from the above discussion that the magnetic

netic response for an ellipsoid of revolution is a steplikeresponse for an ellipsoid of revolution depends on the ther-
function of a magnetic field. The steps of this function aremodynamics of the system, unlike the bulk cdtandau

washed away by the temperature. For c@se (this case is
similar to the case of a sphey¢he plot ofM(B) has some
steps(Fig. 6). For case(ii), only the z component of the

diamagnetisih when the dependence of the magnetic re-
sponse on the field is essentially the same both for the case
of fixed u and for the case of fixetl.>®

magnetic moment does not vanish. In this case, the plot of

M(B) has only one stefisee Fig. 5. Case(i) is similar to

case(ii) if the field is parallel to the axis of revolution. The
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