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Meissner-London state in superconductors of rectangular cross section
in a perpendicular magnetic field
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The Meissner state with finite London penetration depth is analyzed for platelet samples of rectangular cross
section in a perpendicular magnetic field. The exact two-dimensional numerical solution of the London equa-
tion is extended analytically to the realistic three dimensional case. Data obtained on Nb cylinders and foils, as
well as single crystals of Y-Ba-Cu-O and Bi-Sr-Ca-Cu-O, are in a good agreement with the model. The results
are particularly relevant for magnetic susceptibility, rf, and microwave resonator measurements of the magnetic
penetration depth in high-Tc superconductors.
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The temperature and field dependencies of the magn
penetration depth yield basic information about the mic
scopic pairing state of a superconductor.1 Since most high-Tc
superconductors are highly anisotropic, a measuremen
which the probe magnetic field lies at an arbitrary angle re
tive to the conducting planes yields a Meissner response
ing from both in-plane and interplane supercurrents. The c
responding penetration depthslab andlc can differ widely
in their magnitude and temperature dependence, and
desirable to separate the two contributions to the total sig
To studylab , one must resort to a configuration in whic
the applied field is normal to the conducting planes so a
generate only in-plane supercurrents. Except in special ca
the London equations in this geometry cannot be solved a
lytically, making it difficult to reliably relate the experimen
tal response~typically a frequency shift or change in mag
netic susceptibility! to changes inlab . Exact analytical
solutions are known only for special geometries: an infin
bar or cylinder in longitudinal field, a cylinder in perpendic
lar field, a sphere, or a thin film.2 These solutions are no
practical since most high-Tc superconducting crystals ar
thin platelets with aspect ratios typically ranging from 1
30. Brandt developed a general numerical method to ca
late magnetic susceptibility for plates and disks,3 but this
method is somewhat difficult to apply in practice.

In this paper, we describe the numerical solution of
London equations in two dimensions for long slabs in a p
pendicular field. The results are then extended analyticall
three dimensions. We first compare our calculations in
limit of l50 with superconducting quantum interference d
vice ~SQUID! measurements on cylindrical Nb samples
differing aspect ratio.4 We then compare our calculations fo
finite l with data from Nb foils and platelets of both Bi-S
Ca-Cu-O~BSCCO! and Y-Ba-Cu-O~YBCO! high-Tc super-
conductors, obtained by using an rf LC resonator.5 Using
numerical results and analytical approximations, we deriv
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formula that can be used to interpret frequency-shift d
obtained from rf and microwave resonator experiments,
well as sensitive magnetic susceptibility measurements.

Consider an isotropic superconducting slab of width 2w
in thex direction, thickness 2d in they direction, and infinite
in the z direction. A uniform magnetic fieldH0 is applied
along they direction. In this two-dimensional~2D! geom-
etry, the vector potential isA5$0,0,A%, so that the magnetic
field has only two componentsH5$]A/]y,2]A/]x,0% and
the London equation takes the formDA2l22A50. Outside
the sample,DA524p j /c50, and ]A/]n is continuous
along the sample boundary. Here,n is the direction normal to
the sample surface. A numerical solution of this equat
was obtained using the finite-element method on a triang
adaptive mesh using a Gauss-Newton iterations scheme.
boundary conditions were chosen to obtain constant m
netic field far from the sample, i.e.,A(x,y)52H0x for y
@d andx@w.

Figure 1 presents the distribution of the magnetic field
and around the sample withw/d55 and l/d50.5. The
black color on a gray scale image corresponds touBu50. The
left half of the sample shows contour lines of the vec
potential. Figure 2 shows profiles of they component of the
magnetic field at different distancesy from the sample
middle plane.

The inset shows the corresponding profiles of the vec
potential, normalized by its valueA0(x5w) in the absence
of a sample~a uniform-field curveA05x is shown by the
dotted line!. Using the London relation 4pl2 j 52cA and
the definition of the magnetic momentM5(2c)21*r
3 jd3r , we calculate numerically the susceptibility per un
volume ~unit of surface cross section in a 2D case!:

4px5
1

dwl2H0
E

0

d

dyE
0

w

A~x,y!xdx. ~1!
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It is easy to check that for an infinite slab of width 2w in
parallel field, whereA52lH0 sinh(x/l)/cosh(w/l), Eq. ~1!
results in a known expression similar to Eq.~4! below ~with
N50 andR5w). In finite geometry, there will be a contri
bution to the total susceptibility from the currents flowing
top and bottom surfaces. These currents are due to shie
of the in-plane component of the magnetic field,Hx
5]A/]y, appearing due to demagnetization. Figure 3 sho
profiles ofHx on the sample surface, aty5d, calculated for
three different samples,w/d58, 5, and 2.5. The choice o
l/d50.05 was to achieve best screening in our numer
scheme. Similar results are obtained for larger ratios.
analytical form for the surface magnetic field is known on
for elliptical samples. We find, however, that it can
mapped onto the flat surface, so that the distribution ofHx is
given by

Hx5
H0r

Aa22r 2
, ~2!

wherer[x/w anda2511(2d/w)2. This equation is similar
to that obtained for an ideal Meissner screening.6,7 Solid
lines in Fig. 3 are the fits to Eq.~2! wherea was used as a fi
parameter. It agreed with the above analytical estimate
within 10% being better for larger aspect ratiow/d.

FIG. 1. Right half: gray scale image of the magnetic field in a
around the sample ofd/w51/5 andl/d50.5. Black color repre-
sentsB50. Left half: contour lines of the vector potential.@Origin,
(x50,y50) is at the sample center.#

FIG. 2. Profiles of they component of the magnetic field~par-
allel to the external field! for the sample shown in Fig. 1. Inse
corresponding profiles of the vector potential.
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Next, we find a simple analytical approximation to th
exact numerical results by calculating the ratio of the volu
penetrated by the magnetic field to the total sample volu
This procedure automatically takes into account demagn
zation and nonuniform distribution of the magnetic fie
along sample top and bottom faces. The exact calcula
requires knowledge ofA(x,y) inside the sample orH(x,y)
in a screened volume outside, proportional tow2. The pen-
etrated volume is

Vp5 R
S

luHsu
H0

ds, ~3!

where integration is conducted over the sample surface
3D case or sample cross-section perimeter in a 2D case.
ing Eq.~2! for magnetic field on the top and bottom surfac
and assumingHs5H0 /(12N) on the sides we obtain

24px5
1

~12N! F12
l

R
tanhS R

l D G . ~4!

Here N is an effective demagnetization factor, andR is the
effective dimension. Both depend on the dimensionality
the problem. As mentioned earlier, Eq.~4! is similar to the
well-known solution for the infinite slab of width 2w in par-
allel field. In that case,R5w and the effective demagnetiz
ing factorN50. In a 3D case (2w32w slab, infinite in the
z direction!, R5w/2 andN50. The tanh(R/l) term in Eq.
~4! was inserted to ensure a correct limit atl→`. This cor-
rection becomes relevant atl/R>0.4, which is realized only
at T/Tc>0.9 for typical high-Tc samples.

For the actual geometry studied here, bothR and N de-
pend upon the aspect ratiow/d. Unlike the case of an ellip-
tical cross section, the magnetic field is not constant wit
the sample, so there is no true demagnetizing factor fo
slab. However,N can still be defined in the limit ofl→0,
through the relation, 4pM /Vs52H/(12N). We find nu-
merically that in a 2D case, for not too large an aspect ra
w/d, 1/(12N)'11w/d. Calculating the expelled volume
as described above, the effective dimensionR is given by

R2D5
w

11arcsin~a21!
. ~5!

In the thin limit, d!w (a→1), we obtainR2D'0.39w.

FIG. 3. Distribution of the in-planeHx component of the mag-
netic field on the sample surfacey5d. Symbols show result of
numerical calculation, and solid lines are the fits to Eq.~2!.
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The natural extension of this approach for the 3D disk
radiusw and thickness 2d leads to 1/(12N)'11w/2d and

R3D5
w

2H 11F11S 2d

w D 2GarctanS w

2dD2
2d

w J . ~6!

In a thin limit, R3D'0.2w. Equation~6! was derived for a
disk, but the more experimentally relevant geometry is
rectangular slab. There is no analytical solution for the s
However,a2511(2d/w)2 is relatively insensitive tow in
the thin limit and so we approximatew for a slab by the
geometric mean of its two lateral dimensions. The validity
this approach will be determined shortly.

To verify Eqs. ~4! and ~5! we calculatedx(l) numeri-
cally. The result is shown in Fig. 4 by symbols. The so
line is a fit to Eq.~4! with N50.86 andR/w50.36. The
effective dimension calculated using Eq.~5! gives R/w
50.39, and the corresponding susceptibility curve is sho
as a dotted line. The calculated effective demagnetiza
factor isN50.84. It is seen that our approximations are re
sonably good. It should be borne in mind that these are
2D results—the sample extends to infinity in thez direction.
Demagnetizing effects are significantly larger in two dime
sions than in three owing to the much slower decay of fie
as we move away from the sample~compare 3D sphere,N
51/3, and cylinder in perpendicular field,N51/2). There-
fore, we expect our approximations to be more accurate
three dimensions.

In the 3D case, the validity of our results can be verifi
experimentally by independently measuring the demagn
zation factor as a function of the aspect ratio and the m
netic susceptibility for a finite London penetration depthl.
To achieve the first goal, we measured niobium cylinders
radiusw and length 2d using a Quantum Design MPMS-
SQUID magnetometer. Sample dimensions were typically
the order of millimeters, which allows us to disregard Lo
don penetration depth of Nb~about 500 Å!. The initial sus-
ceptibility obtained from the magnetization loops atT
58 K is shown in Fig. 5. The solid line is a plot of 1
1w/2d ~not the fit!, and for an aspect ratio up tow/d510,
the agreement is very good.

FIG. 4. Calculated24px(l) for a slab ofw/d55. Solid line is
a fit to Eq.~4! with the effective dimensionR/w50.36. Dotted line
is calculated usingR/w50.39 from Eq.~5!, and a dashed line is a
plot with R/w51. Inset:24px(l→0) calculated for samples o
different aspect ratio. Solid line is 11w/d.
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To test our result forR @Eq. ~6!# in actual samples, we
need the magnetic penetration depth. It is common to m
sure changes in the penetration depth by using the freque
shift of a microwave cavity or an LC resonator. In the
techniques, the relative frequency shift (f 2 f 0)/ f 0 due to a
superconducting sample is proportional toH22*Mac•HdV,
which in turn is proportional to the sample linear magne
susceptibility (Mac is the ac component of the total magne
moment,H is the external magnetic field, andf 0 is the reso-
nance frequency in the absence of a sample!. Using Eq.~4!
and Eq.~6!, we obtain forl!R:

D f

f 0
5

Vs

2V0~12N! S 12
l

RD , ~7!

whereVs is the sample volume,V0 is the effective coil vol-
ume. The apparatus and sample-dependent constantD f 0
[Vsf 0 /@2V0(12N)# is measured directly removing th
sample from the coil. Thus, the change inl with respect to
its value at low temperature is

Dl52d f
R

D f 0
, ~8!

whereDl[l(T)2l(Tmin) andd f [D f (T)2D f (Tmin).
We used an rf tunnel-diode resonator5 to measured f in

Nd foils, YBCO, and BSCCO single crystals. Combiningd f
with an independent measurement ofDl(T) and a measured
value for D f 0, we then arrived at an experimental determ
nation of the effective dimensionR. For the Nb and YBCO
samples,Dl(T) was obtained using the demagnetizatio
free orientation~rf magnetic field along the sampleab plane!
whereR5w and 1/(12N)51. In BSCCO, the large anisot
ropy prohibits using this method, and we used reported v
ues ofdl/dT.10 Å/K.8 Figure 6 summarizes our exper
mental results. The upper line represents the ‘‘infinite sla
model, whereR5w/2, whereas the lower solid line isR
50.2w obtained in a thin limit of Eq.~6!. Symbols show the
experimental data obtained on different samples, indica
on plot. In three samples, YBCO1 (w/d557), Nb1 (w/d
529), and Nb2 (w/d515), R agrees with Eq.~6! to better
than 5%. The standard result,R5w/2, is too large by a factor
of 2.5. Both YBCO2 and BSCCO giveR roughly 20%
smaller than predicted. For the BSCCO data, it is poss
that a sample tilt combined with the very large anisotropy

FIG. 5. Linear magnetic susceptibility of Nb cylinders of diffe
ent aspect ratio measured atT58 K. Solid line is a plot of 1
1w/2d.
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l produces an additional contribution fromlc . If the c axis
is tilted by an angleu away from the field direction, the
frequency shift is given by

D f

f 0
5

Vs

2V0~12N! S 12
lab

R D cos2~u!

1
Vs

2V0
S 12Flab

d
1

lc

w G D sin2~u!. ~9!

FIG. 6. Effective dimensionR determined experimentally fo
different samples~symbols!. The upper solid line is an ‘‘infinite
slab’’ model (R5w/2), and the lower solid line is an analytic ap
proximationR'w/5.
i
II

,

The importance of the tilt depends upon the relat
changes inlab and lc with temperature. From Eq.~9!, we
obtain for the relative contribution to the frequency shift

2
d f ~u!

d f ~u50!
'11

2

5
tan2~u!S 11

d

w

Dlc

Dlab
D , ~10!

where we used the previous estimates ofN and R. For
BSCCO we take, dlc /dT.170 Å/K and dlab /dT
.10 Å/K,8 Eq. ~10! reduces to'11tan2(u). We then find
that for sample tilt to produce an additional 20% frequen
shift, a misalignment ofu'20° would be required. Our es
timated misalignment was a factor of 10 smaller than this,
the discrepancy between measured and predictedR was not
due to tilt. Both the BSCCO and the YBCO2 samples we
more rectangular than square, and our use of the geom
mean forw could be the source of the error.

In conclusion, we solved numerically the London equ
tions for samples of a rectangular cross section in a perp
dicular magnetic field. We obtained approximate formulas
estimate the finite-l magnetic susceptibility of platele
samples.
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