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Using an efficient optimal control scheme to determine the exciting fields, we theoretically demonstrate the
optical creation of vibrational intrinsic localized mod@sM’s) in anharmonic perfect lattices with realistic
interatomic potentials. For systems with finite size, we show that ILM’s can be excited directly by applying a
sequence of femtosecond visible laser pulses at THz repetition rates. For periodic lattices, ILM’s can be created
indirectly via decay of an unstable extended lattice mode which is excited optically either by a sequence of
pulses as described above or by a single picosecond far-infrared laser pulse with linearly chirped frequency. In
light of recent advances in experimental laser-pulse shaping capabilities, the approach is experimentally
promising.

[. INTRODUCTION Of more direct relevance here is the fact that experimental
laser-pulse shaping techniqfi@provide considerable flex-

Over the past several years, theoretical studies of the dybility in the time dependence of the applied force. Indeed,
namics of anharmonic periodic lattices have established ththe use of tailored fields for vibrational excitation has at-
existence of intriguing vibrational excitations, characterizedrracted much interest, mainly in the context of optical control
by well-localized displacement patterhhese so-called in- of dissociation and reactions in molecular chemisfriput
trinsic localized modesILM’s) can exist at any site in a also for the selective excitation of optical phonons in time-
perfect lattice, in contrast to localized impurity modes indomain spectroscopy:*2We will focus on two methods for
harmonic defect crystals. While vibrational ILM’s with the transient optical creation of ILM'€i) impulsive stimu-
atomic scale localization have been obtained for increasingljated Raman scatteringSRS excitatiort® by a sequence of
realistic lattice-dynamical modefs’ their experimental study femtosecond pulses at THz repetition rates from a laser op-
has been impeded by the lack of direct methods for theierating at visible or near-visible frequencies, dinglinfrared
excitation and verification. Recently, ILM’s in a complex (IR) excitation by a picosecond far-IR laser pulse. For both
quasi-one-dimensional charge-density wave system were imnechanisms, the system'’s dynamical response can be de-
ferred from resonance Raman data, through the use of scribed classically, provided the underlying laser frequency
coupled electron-vibration model restricted to a single repeafor the ISRS case is well off resonance with vibrational and
unit? electronic transitions.

Previously we have demonstrated theoretically that driven Since ILM’s are complex, large-amplitude vibrational ex-
ILM’s can exist as a steady-state response to an applied spaitations, the external fields necessary for their creation are
tially homogeneous monochromatic driving forceds a likely to have a complicated time dependence and large mag-
natural extension of that work, and to address a key experiitudes. It is therefore advantageous to determine the optimal
mental question, we here describe theoretically an avenue faxternal fields by a systematic scheme. In engineering, the
the transient optical creation of ILM’s: we show how they analogous task of designing the time dependence of an ex-
can be produced in a 1D model lattice with realistic potenternal force to steer a dynamical system towards a desired
tials by means of laser pulses whose time dependence target state is a fundamental problem. Optimal control
designed by an efficient optimal control scheme. theory** provides a solution with a rigorous mathematical

Owing to their high power densities, lasers are attractivefioundation, based on the variational minimization of a posi-
sources for exciting large-amplitude ILM’s. Indeed, there aretive objective functional. In the realm of atomic dynamics,
some notable examples of experiments with powerful laserthis approach has been successful in the design of external
in the regime of anharmonic lattice vibrations. For instanceglectric fields for selective bond excitation in models of
phonon resonances measured in the ferroelectric LINBO small harmonic latticds™’ and small anharmonic
experiments using single visible laser pulses with a duratiomolecules® We apply a similar scheme to the creation of
of 60 fs and an energy per pulse oftb) were interpreted in ILM'’s.
terms of “overtones” of the very anharmonic lowest-energy The following section discusses our theoretical frame-
TO phonon ofA; symmetry? Also, experiments on 305  work by providing the necessary details of the optimal con-
using single visible pulses with 10 nJ energy and 70 fdrol scheme and describing the specific anharmonic model
widths to excite theA;; mode apparently resulted in atomic lattice we use. Our numerical results concerning the optical
displacements of about 0.07 A—corresponding to 2% of thecreation of ILM’s are given in Sec. I, which is divided into
interatomic spacing—and revealed anharmonic behdvior. two parts according to the two different optical methods we
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consider. In Sec. IV we address aspects of the experimental
feasibility and discuss our results. Section V concludes the fn({rm})E_lE Va1 (Fa= o) = Vi n(Tas = To) ]
paper, and an appendix provides additional qualitative in- -0 4)
sight. Some of the results presented here were summarized in
a letter® is the total internal force on particle, with V| . (r,—rp)
E(dvn’m/dr)|r=rn,rm. From Eqgs.(3) we readily obtain the
Il. THEORETICAL BACKGROUND equations of motion

Although some notable exceptions have appearadpst MF = ({7 o}) + (— 1)) )
studies of ILM’s have considered one-dimensioftD) or mnoomuem ’
2D model lattices. This restriction to simpler model systemswhich are more convenient for numerical simulations of the
has facilitated progress towards a theoretical understandingystem dynamics.
of basic ILM properties, without the additional numerical
complications encountered with more realistic 3D models of B. Scheme: Optimal control theory
crystals® In addition to the reasonable expectation that many h lowi d ibe th .
of these basic properties will transfer to the 3D case, there is In the following, we describe the most important aspects

evidence that 1D models may apply directly to some types O(f')f the optimal _control scheme used in this work. More d_etails
motion in 3D crystals. For instance, in R&f a realistic 3D can be found in Refs. 15 and 16, whose compact notation we

lattice-dynamical model was considered and ILM’s were Ob_adopt with some modifications. We consider a systerhl of

tained with displacement patterns localized along the edge cﬁartlcles. Unless explicily stated otherwidé.dimensional
vrgctors are denoted by lower case bold Roman letters and

the crystal, which can be regarded as a natural generalizatick|>< N-dimensional matrices by upper case bold Roman let-

of a 1D lattice. Furthermore, it is well known that anng&erS Moreover in phase spaceZlimensional vectors are
me high-symmetry directions in 3D cr Is, the harmoni ’ !
some high-symmetry directions in 3D crystals, the harmo denoted by lower case bold Greek letters and

lattice dynamics map onto an effective 1D model involving . . .
the collective motion of lattice planes. We have performedZNXZl\l'd'mens'omII matrices by upper case bold Greek let-

preliminary studies showing that this mapping also occurs irfers.

the anharmonic case, for certain polarization directfdns. We comb'lr)e theN-dimensional vectors andp for the
This point is addressed in more detail later. Hence, for article positions and momenta, respectively, to form a

demonstration of the optical creation of ILM’s, we consider N-dimensional phase space vector

a diatomic 1D model lattice that incorporates realistic fea- =0T pN=(r1, ... InP1s - PN (6)
tures, such as standard interparticle potentials and measured
harmonic properties of real crystals. where the superscrift denotes the transpose. Equati¢8s
are then rewritten as
A. System: Hamiltonian and dynamics ;
- e e ynamies = H £, @)
For longitudinal motion in an externally driven 1D sys-
tem, the Hamiltonian is with
S'LEFD]I=[MP)TIT+QTAD)], 8

2
p
HZE 2mn +2 Vn,nfl(rn_rnfl)_fﬁn(t)rn . (D ) ) ) ) )

n n >0 where M is the NXN-dimensional diagonal mass matrix

where particlen has massn,, positionr, and momentunp, ~ With elements K1), =m, &y, ()n="fn({rm}), and the defi-
and interacts with particlea—| via a potentiaV, ,_(r), to  nition of the coupling vectorq with components d),

be specified below. The external force is given H§{t) =(—1)" allows a compact description of the external force
=1P.E3(t) andf&(t)=q,&(t) for ISRS and IR excitation, terms. With this notation, we can rewrite E&) as
respectively. Here(t) is the longitudinally polarized elec- . ~
tric%ield, PZE(&P/ér:)O is the elgectronic )é)(lnolarizability de- M.-r=f+qx(0). ©
rivative evaluated at the equilibrium configuration, apds e furthermore specify initial conditions

the effective charge. WithP,=(—1)"P andqg,=(—1)"q,

the external forces for both excitation methods have equal r(t=0)=r;, (109
magnitudes and alternating signs:
’ g =9 p(t=0)=p, (10b)
i) =(=1"AW). 2
) ] ) ] ] att=0.
Hamilton’s equations we first need to define a positive functional that reflects the
H  p, physical objectives to be reached. Starting from the lattice in
(g =— (33 some initial configurationr( ,p;), we want to excite a given

Pn My anharmonic mode at a specified final titne while keeping

. JH the magnitude of the external force within reasonable limits.
Pn== 5= fa{rmh) +(=1)" A1), (3b)  Combining the target mode positionsand momentg; into
. a final phase space vectér, we define the objective func-
where tional
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1 . instantaneous positions), interacting via time-dependent
IEFO]= 58t — &1 - W-[&(t) — &] harmonic forces. Combining Eqé&l4) and (16), we obtain
the corresponding boundary conditions
1 t
+§¢ff "dtFAL), (11) AP(t) =P [p(ty)—ps], (18a
0
AP(t)= =MW" [r(ty) 1], (18b

where the nonzero elements ¥f, ,=¢, of the

2N X 2N-dimensional diagonal matri are positive weight \where WP and W' are N X N-dimensional diagonal weight
factors, as isy-. Note that in order for all terms in the factor matrices with elementsKP),,,= 6, ¥/nn and ("),
objective functional to have the same units, not all of the=¢s_,4,. Note that these boundary conditions for the
weight factors can be unitless. Furthermore, only trajectorieg agrange multipliers are specified at tfieal time t; . Thus
&(t) satisfying the equations of motiofY) are admissible their determination requires the knowledge of the final posi-
during the optimization. Including this as a constraint in thetions r(t;) and momenta(t;) of the particles in the actual
objective functional, we obtain the modified objective func- |attice. We emphasize that the introduction of Lagrange mul-

tional tipliers only serves the purpose of including the dynamics of
o t _ the driven lattice as a constraint in the objective functional
J[g,]—‘(t)]=J[§,}'(t)]—f dtNT-{&— @[ £ F (D) ]}, (11). This results in coupled equations for the dynamics of
0 the actual lattice and that of the Lagrange multipliers.
(12 The optimal external force is now obtained by minimizing
where AT=(\q, ... \,y) is a 2N-dimensional vector of the modified objective functiondll2) with respect taZ(t).

time-dependent Lagrange multipliers. This modified objec-This minimization can be done for an external for¢t)
tive functional is minimized with respect to the trajectories Whose time dependence is allowed to be arbitrany which
and external forc& (t) to obtain the optimal force. For clar- has a prescribed analytic fortfi.In view of the important
ity, these quantities are treated separately in the followingspect of experimental feasibility, we discuss the latter ap-
two paragraphs. proach. For ISRS excitation, the laser frequency is neglected
Variational minimization with respect to the trajectories and we constraiif(t) to be a sequence of Gaussian pulses
{&€,(1)}, including an integration by parts of the term -
J{dtAT- 8¢, yields dynamical equations for the Lagrange FIRYt) =) selt-w7A (19
multipliers '
: with individual heights{S;} and pulse center timds;}, and
A+ ®-A=0, (13 common widthA. For IR excitation,F(t) is taken to have a
where ® is a 2N X 2N-dimensional time-dependent matrix linearly chirped IR frequency under a single Gaussian enve-
with elements ®),,,=d¢ 4 & F(1)1/3¢,. At the final time  lope with fixed width:
tdfit’iotggse dynamical equations are subject to boundary con- ]—"R(t)zséHo)z’Azsin(0+wt+atz). (20)
Iy, _ In both cases, the external force depends on a set of variable
M) =W L&)~ &l (14 parametergr;}, namely{S}, {t;}, andA for the ISRS case,
For our definition of & 7F(t)] [see Eq.(8)], the matrix®  andS,ty,0,w, anda for the IR case.

decomposes into foux X N-dimensional blocks: The gradient of the modified objective functional with
0 —-K respect to the external force parameterg has components
b= 1 _
Mt oo (15 PLEFLITN]  [u
where we have defined thé\XN-dimensional time- Ti 0
dependent, symmetric dynamical matt& with elements IF LT )
(K)m=—9fn({rm})/dr, . We can now simplify the descrip- +()\p)T.a]a’—‘J, (22)

tion by considering separately the Lagrange multipliers [

T e T
(_)‘r; =()‘l'--)\- '7‘N)f for: the p03|t|_|(_)rr1ws En(?LS)(pb) where Eq. (8) has been used to writ\"- d¢p/ IF(t)
=(\ny1, oo Agy) for the momenta. Then, Eq13) be- =(AP)T.q. The optimal control forceF°P(t) is obtained by

comes finding the zero of this gradient. Following Ref. 15, we use
AN —K-AP=0, (163 an iterative approach for this nontrivial numerical problem.
_ Using an educated guess for the force paramdtgis we
ANP+M~L N =0, (16b) integrate the dynamical Eq$9) for the actual particles’
_ ) ) driven motion forward in time from=0 to t=t;, starting
which can be combined to yield from the initial conditiong10). This yieldsK () for t in the
M-AP= —K.\P. 17) interval [0t;], as well as the final positiongt;) and mo-

mentap(t{), which are used to evaluate the boundary con-
We note that these dynamical equations for the momenturditions (18) for the Lagrange multipliers at=t;. We next
Lagrange multipliers correspond to the equations of motiorintegrate Eq(17) backward in time from=t; tot=0. From
for a lattice of N fictitious particles with masses), and  this we obtainAP(t) for t in [0}t;], which is then used to
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evaluate the gradient componergl). We adapted a fifth- ILM’s, we study a model that exhibits ILM’s associated with
order Gear predictor-corrector molecular-dynami®dD)  the optically activeExM. This intuitively reasonable choice
method" for the time evolution of the particles in the actual will later turn out to be essential. With an external force such
lattice and for the Lagrange multipliers. The force param-as given by Eq(2), the anharmonic version of the optical
eters are updated within a conjugate gradient scHéraad  zone-center mode(OZCM) with displacement pattern
the procedure is repeated until the gradi€t) is zero to  A(...,1—m/M,1,—m/M, ...) is both first-order Raman
within a specified tolerance. and IR active, where for the former the asymmeR§™

For the case of purely harmonic potentidls ,_(r,  +#RY™ is necessary, as noted above. We therefore need to
—Inh-), ®, andK are time-independent matrices. Conse-find model parameters such that ILM’s associated with the
quently, for initial conditions;=0 andp;=0 corresponding OZCM exist. In Ref. 23, we obtained an ILM existence cri-
to the lattice at rest in its equilibrium configuration, the exactterion based on the interplay between fundamental harmonic
optimal control force can be obtained by direct algebraicand anharmonic dynamical properties of the ILM’s associ-
manipulation of the matrix Eq¢7) and (16), without itera-  ated ExM. For our case of interactions via realistic BMC
tion. This is detailed in Refs. 16 and 17 for the application topotentials with their dominant soft anharmonicity, this crite-
harmonic molecules. Within this harmonic limit, we have rion predicts the existence of ILM's associated with the
used this algebraic approach as an independent test of o@zCM in diatomic lattices for which the optical branch of
iterative MD method described above. the harmonic dispersion relation has a minimunkat0. In

The harmonic limit also allows considerations of the con-order to satisfy this constraint on the harmonic properties of
trollability of the system. A system is said to be controllableour 1D model lattice, while at the same time ensuring rea-
if an arbitrary specified target stagg can be reached exactly sonably realistic interatomic forces, we determined our BMC
with a suitable external forc&(t). In Ref. 17 it was pointed potential parameters by fitting the harmonic dispersion to
out that a harmonic system is completely controllable only ifbranches of the measured dispersion for a real crystal along a
all normal modes couple to the external force. Still, even if ahigh-symmetry direction. Since we consider both Raman and
system is not controllable in this rigorous sense, i.e., thgr excitation, we focused on real diatomic crystals with the
external force couples only to a restricted set of normakinc-blende structure, for which the=0 transverse optical
modes, it may be possible to reach a final sg{tg) thatis  (TO) phonon is both first-order Raman and IR active. In
close, although not exactly equal, to the specified target stajgarticular, the measured TO phonon branch of ZnS along the

& . We will return to this aspect in Sec. Il below. (111) direction exhibits the required minimum kt0 (see
Ref. 24. Using ZnS massesm=32.1 amu and M
C. Model: Interatomic potentials and characteristics =65.4 amu, together withA,u=3.45<10 eV, Aym

=2.73x10% eV, p=0.279 A, andg=0.%, we can approxi-
/nately match those curves, as shown in the upper left panel
of Fig. 1. In the resulting modeRj™=1.67 A andR}'™
=2.95 A, and the maximum of the harmonic phonon gap

We consider a 1D diatomic lattice with massasand
M (>m), where nearest neighbors interact via Born-Maye
plus Coulomb(BMC) potentials
2

- q occurs at the harmonic OZCM frequencywy,=5.22
= rlp__ 1 o
V() =Xmme r’ (228 072 radffs.
5 The optimal control scheme described in Sec. IIB re-
_ —vp Y quires the positions and momenta of a specified target state.
VMm(r)_kae =, (22b) ; i~ ;
r In order to obtain accurate predictions for the stationary so-

lutions to Eq.(5) without external driving, we use the well-
Bstablished rotating wave approximatidiwWA) for the par-
2 ticles’ time dependenceput generalized to include static
V(1) =Vum(r) = - (23)  and second-harmonic contributions as well as oscillation at a
mode’s fundamental frequeney. The motion of particlen
and more distant neighbors are assumed to be noninteracting.assumed to be of the form
Note that the interaction between an atom and its nearest
neighbors distinguishes between “left” and “right” neigh- rn(t)=by+c, cogwt) +d,cof2wt) +rp. (29
bors. Accordingly, minimization of the total potential energy . _ _ . .
of the static lattice leads to asymmetric nearest-neighbof(t€" inserting this ansatz into E¢S), we multiply the re-

equilibrium separation®)™ and Ry ™(#RI™). Although sulting equations by either unity, ces], or cos(2:t), and
this asymmetry might appear unusual at first sight, it indeed€'age over a single period. For _NFpartche Ia_lttlce, this
correctly represents the situation encountered by mappin |el<_js a system of B coupled nonlinear equations 'for t.he
the collective motion of (111) planes in a zinc-blende struc- atic_displacementsby}, the fundamental_ dynamlc_ d|s_-
ture crystal onto an effective 1D model lattiteFurther- placements{cn}., and the second harmonic dynamic dis-
more, this asymmetry is in fact necessary to properly repreplacements{dn}.
sent a lattice with first-order Raman active vibrational 1 (2=
modes. 0= Z_J do fo({rmb), (253

In a detailed study® we noted that ILM’s should be clas- mJo
sified according to their “associated” extended lattice mode 1 r2m
(ExM), into which they spatially broaden with decreasing O=mnwzcn+—f d¢ cosdf,({rm}), (25b)
amplitude. Since we are focusing on tbptical creation of mJo

while second neighbors interact via pure Coulomb potential
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menclature of Ref. 23, we denote them standard periodic
boundary conditiorfStdPBC’s. While StdPBC'’s are conve-
nient to describe infinite periodic lattices, we will also con-
1.0 I~ sider finite systems with free-end boundary conditions
(FBC’s).

Applying the RWA to our model lattice, we find that
+ ILM’s associated with the OZCM exist, as predicted by the
criterion of Ref. 23. The ILM frequencies are in the har-
monic phonon gap. The middle panel of Fig. 1 gives the
0.0 ) 1 00'90 00 ) 0.08 RWA static and fundamental dynamic displacements of such

: kpd In : . AR, ™ an OZCM-ILM at w=0.97w, for a 22-particle system with
FBC’s. The displacements are relative to the average equi-
0.05 - librium separatiorR,= (R}'™+ Ry ™)/2. For clarity, the cor-
responding second-harmonic dynamic displacements, whose
magnitude is less than 8% of the fundamental dynamic dis-
placements, are shown separately in the bottom panel. That
0.00 4 this ILM is associated with a first-order Raman active ExM
is reflected by the fact that its fundamental dynamic displace-
ment pattern exhibits no inversion symmetry. The static dis-
0.01 placements seen at the ends of this finite system are the result
of “surface” relaxation. The upper-right panel shows the

0.00 _‘r‘_‘_‘_‘_‘_‘_‘,*i/\)_r‘_‘_‘_‘_‘_ﬂ_" RWA frequency vs amplitude curves for the ILM and for the
) OZCM in the corresponding 40-particle lattice with

_ StdPBC'’s. For each of these two modes the amplitude is
0.01 - . y . : . .
20 given by the magnitude of the largest fundamental dynamic
partic|e displacement,, . Also shown are the results of MD measure-
ments of the ILM and OZCM frequencies, which agree to
FIG. 1. Characteristics of our 1D diatomic BMC model lattice within less than 0.5% with the RWA predictions. Th¢A)
used for the optical creation of ILM’s. Upper-left panel: harmonic curve for this ILM is indistinguishable from the correspond-
dispersion(solid line) and experimental transverse phonon frequen-ing curve for the 22-particle FBC lattice of the middle panel,
cies (diamonds along (111) in ZnS (Ref. 24. Upper-right panel:  as one would expect from the mode’s high localization.
frequency vs am_plitude curves for the_ op_ticgl zone-center mode  For our purpose of optical ILM excitation, the dynamical
(OZCM) (solid ling) and the related intrinsic localized mode giapjlity properties of the optically active ExM are important,
(OZCM-ILM) (dashed ling for 40 particles and standard periodic 45 \j| be seen later. We have therefore examined the stabil-
boundary conditiongStdPBC’s. For the ILM curve the plotted ity of the OZCM in our model lattice within an RWA-based
amplitude is that of the mode’s central particle, which is a "ghtapproach detailed in Refs. 25 and 26, but generalized to in-
mass. The thin horizontal lines locate the top and bottom of theClude perturbations of the second-h;irmonic contributions
harmonic optical phonon band, indicated by the vertical bar. Th .

. hi ili nalysi m infinitesimal displ men
circles and crosses are the results of MD measurements of mode s stability analysis assumes tesimal displacement

frequencies for the OZCM and the OZCM-ILM, respectively. Our and velocity perturbations having an exponential time depen-

measurements and RWA predictions differ by 0.5% at most. Middledence exp(t), leading to a linear eigenvalue problem for the

: - 23,25
panel: statiqsquaresand fundamental dynamigircles displace- ~ 9rowth rates{x}. In previous §tud|_e§3; we have shown
ments for an OZCM-ILM in a 22-particle diatomic BMC lattice that a dynamical ExM instability with a purely real growth

bols represent the lightheavy masses. The lower panel gives the associated with the ExM. The OZCM in our model lattice

corresponding second harmonic dynamic displacements as treXhibits such an ILM-related instability. In the top panel of
angles. Fig. 2, we show the predicted maximum growth rate as a
function of the OZCM amplitude. MD measurements based
1 (2= on the “projection method” of Ref. 25 agree to within 8%
0=mn(2w)2dn+;J decog2¢)f,({rm), (250  with the RWA predictions, as indicated by the diamonds. By
0 decomposing the instability perturbation into its spatial Fou-
where ¢=wt and f,({r.,}) is defined in Eq(4). Once the rier components, we can extract the wave vectq)) ., of
boundary conditions are specified, these equations can libe fastest-growing component, as discussed in Refs. 23 and
solved using standard numerical routines; the solutions i25. The bottom panel of Fig. 2 plot&() . as a function of
conjunction with Eq(24) constitute the RWA. We verify our the OZCM amplitude. At zero amplitudeky) na Vanishes,
RWA predictions by performing direct MD simulations of and it increases to its maximum allowed valuiK2R,) over
Eq. (5), using a fifth-order Gear predictor-corrector a restricted range of amplitudes. As discussed in Refs. 23 and
method?! Traditionally, Born-von Karman periodic bound- 25, the corresponding wavelengthrZKp) max introduces a
ary conditions are employed for the description of bulk prop-preferred instability length scale at each amplitude. As the
erties of “infinite” lattices. These boundary conditions are OZCM amplitude is increased from zero, the instability
implemented by setting, . y=r,+L, whereL is the static- length scale decreases from infinity, reaching a maximum
lattice equilibrium length of the supercell. Following the no- value of 4R, after which it remains constant for increasing

1.0 4—o—0—+"1

0 /0,

displacement/R,
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FIG. 2. Stability properties of the OZCM in our 1D diatomic g
BMC model lattice with StdPBC’s. Upper panel: RWA-predicted °
maximum real instability growth rate of the OZCM as a function of =
the normalized amplitudésolid line). The diamonds give growth 8
rate measurements obtained from MD simulations for a 40-particle
lattice. Lower panel: wave vector of the fastest-growing Fourier -20
component of the instability perturbation as a function of the nor-
malized amplitude. To achieve good resolution, the stability analy-

sis for both panels was based on a wave-vector grid appropriate to 0 t 160
a 2000-patrticle lattice. time/T
0

amplltude.. Finite-time MD smulat_lons 9“, unstable O,ZCMS FIG. 3. Direct ILM excitation via ISRS. Top panel: sequence of
seeded with the fastest growing instability perturbation forgayssian pulses(t) for the direct creation of an ILM in a 22-
various amplitudes reveal that the instability leads to &aricle system with free ends. The bottom panel shows the MD
breakup of the OZCM into a periodic array of localized ILM- resuits of applying this sequence, with the particle displacements
like excitations whose spacing is very close to the preferreghagnified by a factor 5. The applied field ends atNote that the
instability length. The stability properties of the OZCM will same force magnitud&(t) acts on each particle.
be used in Sec. IlI B below.
FBC normal mode corresponding to the OZCM in a StdPBC
lattice which can be excited optically. From these consider-
ations of theharmoniccase, we expect the external fol@
Before we apply the optimal control scheme of Sec. 11 Bto have better control over a system with FBC’s than over a
to the optical creation of OZCM-ILM’s in the model lattice lattice with StdPBC's, whenanharmonicity is included.
described in Sec. Il C, we consider the question of controllaHowever, with FBC’s we also expect to see a dependence on
bility, which was briefly addressed in Sec. I1B. We find that the system size, with increased controllability for smaller
this aspect of our problem is different for different choices ofsystems.
the boundary conditions. In Sec. A we show how ILM’s can be excited “di-
For aharmonicdiatomic lattice with StdPBC's, it is well rectly” in a finite system with FBC'’s. As expected, this ap-
known that the harmonic version of the OZCM is the only proach depends on the size of the system. For the creation of
normal mode that couples to an optical-like force with alLM’s in crystal lattices, we exploit the fact that the OZCM
spatial dependence such as given in @j. Hence, indepen- is unstable and breaks up into ILM-like localized vibrations.
dent of the time dependence &tt), this external force can Hence, although we can only excite the StdPBC OZCM di-
only excite the OZCM. On the other hand, if we start fromrectly, its decay can produce ILM-like vibrations *“indi-
zero initial conditions in aranharmoniclattice with StdP-  rectly.” This is detailed in Sec. IlI B.
BC's, this argument still applies at short times, since for the
initially small amplitudes the interactions are dominated by A. “Direct” excitation of ILM’s in finite systems
the harmonic terms. It remains true even at longer times for
our StdPBC model lattice, because the large-amplitude an-
harmonic OZCM continues to be an exact stationary solu- We first demonstrate the power of the optimal control
tion. scheme by showing our results for ISRS excitation of an
On the other hand, when finite harmonic system with OZCM-ILM in a 22-particle system with FBC's. Preliminary
FBC's is considered, the external for(® couples with ap- studies with simpler model systems revealed that the control
preciable strength to a set of normal modes. However, thecheme becomes more successful for longer control periods
size of this set decreases with increasing size of the systerand larger numbers of pulses in the applied sequence. Keep-
and in the limitN—cc of an infinite system it is again just the ing the question of experimentally feasible laser-pulse se-

IIl. OPTICAL CREATION OF ILM’'S

1. ISRS excitation
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guences in mind, we choose a control interjdt;  stricted prescribed analytic time dependence of the chirped
=50T,], where To=27/w, is the period of the harmonic Gaussian far-IR pulse reduces the ability for successful con-
OZCM. At t=0 the particles are at rest at their equilibrium trol.

positions. The system is then driven by a sequence of 49

Gaussian pulses. The MD time step used during the optimi- B, “Indirect” excitation of ILM’s in infinite lattices

zation for this case and for all of the simulations in this paper
is To/100. For the target state &t we specify the RWA-
predicted positions and momenta of an ILM at frequency
=0.97w,. The displacement pattern is given in the lower
two panels of Fig. 1. Our initial studies with simpler systems

The results of Sec. Il A indicate that due to its size de-
pendence, the direct excitation method is not a suitable ap-
proach for the creation of ILM’s in crystals. However, our
previous studies of the interrelation between ILM’s and their
o ; associated ExM, as detailed in Refs. 23 and 25, suggest an
also showed that a combination of weight facto!s  iemative approach: because we have designed our model
= 16(Mywo/2) and i, y=16/(Mywo/2) for the target posi- - g,ch that gap ILM's are related to the optically active
tions and momenta of particie, respectively, andsz=1,  57cM, we can create localized vibrations in the gap “indi-
guarantees a gooql balance of the various terms in the _objepécﬂyu by optically driving the unstable OZCNF28 For
tive functional. Using these \_/alue_s in our control algo”_thmthis, our choice of a model in which the ILM’s associated
yields the pulse sequence given in the top panel of Fig. 34\ is optically active is essential.
The common full width at half maximutFWHM) 2+/In 2A
of the pulses is 18 fs, and the amplitudes} range from _ 1. ISRS excitation
zero to 0.13 eV/A. The bottom panel shows that the appli- ] ] o ]
cation of this rather complex sequence of pulses in MD pro- 10 illustrate, we again use ISRS excitation. For the opti-
duces a strikingly “simple” result, namely the creation of a Mal control algorithm target state, we specify an OZCM of
highly localized excitation which persists almost unchangedréquencyo=0.98w,, in an eight-particle lattice with StdP--
well after the applied field ends &tt; . BC's. Th|§ partlcular_ sy;tem size is large enqugh to_ avoid
We note that the pulse sequence shown in the top panel &pmputatlonal complications due to §econd-n9|ghbor interac-
Fig. 3 does not represent a unique solution of the minimizalloNS across the supercell_boundarles, and it is sufficiently
tion of the modified objective functiondll?). It turns out ~Small to accelerate the optimal control scheme. The dynam-
that depending on the initial guess for the parameters of thi€s of the anharmonic OZCM are independent of the size of
sequence, the optimal control algorithm reaches different lothe StdPBC supercell, so that the resulting optimal fields
cal minima of Eq.(12) with distinct values. We have not apply to an |nf|n|te. lattice. We choose_ Fhls part|c_ular target
studied this aspect in detail, but among the small sample dJPZCM on the basis of our RWA stability analysis of Sec.
three different solutions we have obtained, the value of thdl C. At @=0.98w,, the OZCM has an amplituda=4.37
minimum corresponding to the sequence shown in the top< 10 ?Ro, @ maximum instability growth rat@ mac=2.78
panel of Fig. 3 was the smallest. The application of each of<10 “w, and the corresponding preferred perturbation wave
the three sequences in MD simulations produced a long-livedector is  Kp)max=0.6247/(2R,). Hence this particular
stationary localized excitation like that shown in Fig. 3. OZCM is expected to decay reasonably fast into ILM-like
From a practical viewpoint, the multiplicity of solutions sug- localized excitations with an easily discernible spacing of
gests that it should be possible to impose additional conabout 6.&,. The advantage of choosing such an intermedi-
straints in the optimization algorithm to enhance the experiate amplitude is clear from Fig. 2: at smaller amplitudes the
mental feasibility of the resulting pulse sequence. expected spacing is larger, but the corresponding growth rate
A|though the results of F|g 3 appear promising, they arés smaller, and vice versa for Iarger amplitudes. The issue of
sensitive to the system’s finite size as anticipated at the béhe size of the growth rate is important, because we want to
ginning of this section. For instance, applying the identicalensure that the decay of the unstable OZCM occurs on time
pulse sequence to a 42-particle system with FBC's yields n§cales where other processes, e.g., damping, which are not
localization. In Fig. 3, the system’s ends are essential for thécluded in our description of the lattice dynamics, will not
flow of vibrational energy towards the center to set up thesignificantly alter the results. However, since an amplitude
target ILM. Hence this “direct” ILM excitation method is corresponding te-4% of the average equilibrium separation
not suited for crystals, although it may have relevance for thds quite large, we have repeated the optimization using as a
excitation of anharmonic “local modes” in molecules such target state an OZCM of smaller amplitude. The results for
as benzene (&HG) Indeed,ab initio MD simulations for that case will be discussed at the end of this section.
benzene readily yield local mod&sand the addition of an Starting from rest at=0, the system is driven with a

optimal control scheme may allow the prediction of opticalSequence of 49 Gaussian pulses over a control interval of
wave forms for their creation. [0,50T,], as for the direct excitation detailed in Sec. [I1A1.

We again use weight factorg,=16(m,wy/2) and ¢,y
=16/(m,wy/2), but the simpler control task here allows us
to increase the weight factor for the integrated square mag-
We have attempted to obtain similar results for the direchitude of the external force t¢ = 10, without affecting the

IR excitation of ILM’s in finite systems, using a single ability to reach the target state. In contrast to the pulse se-
chirped far-IR pulse of fixed width for the external force. quence given in Fig. 3 for the finite chain, the optimal se-
Although we can reach a final staét;) that is quite well quence for OZCM excitation is found to consist of pulses
localized, the localization does not persist for any significantaving nearly equal amplitudes. Accordingly, we simplified
time after the applied field ends. Evidently, the more re-the control algorithm so as to vary the pulses’ common

2. IR excitation
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width, common amplitude, and individual pulse center timesw=0.9%,, with the corresponding amplitudé=3.03
The top panel of Fig. 4 shows the resultift), which X 10 2R,. In this case, our optimal control algorithm yields
consists of pulses of FWHM 32 fs and amplitude a sequence of pulses with 32 fs FWHM and amplitude
0.013 eV/A. This is an order of magnitude less than the0.009 eV/A, compared with 32 fs and 0.013 eV/A for the
largest amplitude for the direct ILM excitation in the finite target OZCM atw=0.98w, and A=4.37<10 °R,. The
22-particle lattice of Fig. 3, and the equal amplitudes rendeflualitative time evolution of the unstable OZCM excited us-
this sequence qualitatively simpler. However, a closer looknd this optimal sequence in MD simulations with nonzero
reveals important details, demonstrating how the control alinitial temperature is similar to that shown in Fig. 6, with the
gorithm has globally optimized this pulse sequence. Thdesulting ILM-like localized vibrations having smaller amph-
solid line in the upper panel of Fig. 5 plots the position of atg(_}les. Moreover, as expected from the larger pref(_erred insta-
light particle in the OZCM as a function of time during the Pility length scale and smaller growth rate at this OZCM
last fifth of the control interval. The thin vertical lines indi- @mplitude(see Fig. 2, the localized excitations are further
cate the Gaussian pulse center tinfég of the external ~apart from each other and it takes roughlyrg0onger than
force. As expected for an efficient impulsive driving force, N Fig. 6 before a comparable degree of localization is
the pulse centerf;} coincide with the zero crossings of the féached.
particle position. In addition, we measured the “instanta-
neous” amplitude of the OZCM during the excitation by 2. IR excitation
taking half the displacement difference between adjacent \ye have also studied the indirect ILM creation via
fcurnmg points of 'Fhe mothn of a light par_tlcle and assignindozcM excitation using IR, assuming faf(t) a single
it the time of the |ntermed|ate zero crossing. Then we C?"Q“Gaussian pulsEEq. (20)] of fixed width 337, (FWHM) and
lated the corresponding undriven RWA frequency. This ishaying a linearly chirped far-IR frequency over the control
shown as a solid line in the lower panel of Fig. 5, while thejnteryal[0,100T,]. Using the same OZCM target state and
circles indicate the frequenciesrX(t; ,; —t;) corresponding \yeight factors as detailed for the ISRS excitation above, the
to the spacings between adjacent pulses of the external forcgoniro| scheme yields an optimal force with pulse amplitude
The.good agreement between_these two quantities brings ogtgog ev/A and chirp rate-2.0x10"7 fs"2. The corre-
the importantiand somewhat hiddémspect of the sequence spondingZ(t) is shown in the upper panel of Fig. 7, while

of Fig. 4: the spacing between adjacent pulses varies througfie |o\er panel displays the results of applying this external
the sequence in such a way as to maintain resonant impulsiygyce o a 40-particle StdPBC lattice in an MD simulation
driving of the anharmonic OZCM, whose frequency de-yit injtial random velocities corresponding to a lattice tem-
creases as its amplitude increases over the control interval. Bbrature of 5 K. Just as for the ISRS excitation of Fig. 6, the
the Appendix we show that the qualitative aspects of thisyeral force excites a slightly perturbed OZCM, which
behavior can be readily understood by doing the optimizag,psequently decays into ILM-like localized excitations. The
tion for a sequence aof-function pulses. _ above discussion concerning different sets of random veloci-
Applying our Gaussian pulse sequence to a 40-particlgies ot the same temperature applies here as well.

StdPBC lattice in an MD simulation with the system initially Again, the optimization was repeated with the same con-
at rest, we find that after the field ends tat=50To, the ] period, the same fixed pulse width, and identical weight
excited OZCM keeps vibrating with constant amplitude foraetors. but using as a target state the smaller-amplitude
about 150, until the perturbation due to accumulated com-q7cM at ®=0.9%,. In this case, our algorithm yields an
putational round-off error triggers the instability and the optimal force with pulse amplitude 0.006 eV/A and chirp
OZCM decays into several localized excitations, as shown ifzie — 4 2% 1078 fs~2. In analogy to the excitation of this
the bottom panel of Fig. 4. The spatial array of localizednzcwm with smaller amplitude via ISRS, the behavior in MD
excitations is not perfectly periodic because of the presencgmyations with nonzero initial temperature is qualitatively
_of instability perturbations of many wavevectors, with differ- gimilar to that for the larger-amplitude OZCM shown in Fig.
ing growth rates. Instead of relying on the clearly computery ¢ exhibits the same differences as in the case of ISRS
dependent behavior of Fig. 4, we can provide the perturbagyitation: the resulting localized vibrations are spatially fur-

tion necessary to trigger the OZCM instability by including ther apart and it takes about2plonger until a comparable
the effects of nonzero temperature. The bottom panel of F'gdegree of localization is reached.

6 displays an MD simulation for the same pulse sequence,
but with random initial velocities corresponding to a lattice
temperature of 5 K. The presence of this perturbation triggers IV. DISCUSSION
the OZCM decay much sooner. Of course the details of the
MD results depend on the specific set of initial velocities, but
for ten sets consistent wits K we find thesame qualitative Having theoretically demonstrated the creation of ILM's
results as shown in Fig. 6: the ILM-like localized excitationsusing “designer” external forces, we now discuss the ex-
resulting from the decay of the OZCM persist at fixed loca-perimental feasibility of the corresponding fields. First we
tions for several tens of vibrational periods and tend to moveonsider the excitation via ISRS. Pulse shaping for ultrashort
slowly through the lattice. (13 f9 visible laser pulses has been demonstratedith

As mentioned earlier, we have repeated the indirect ILMcomplicated final waveforms ranging from 12-pulse se-
excitation via ISRS with the same control period, the samejuences with an overall Gaussian envelope and equal spac-
number of pulses in the sequence, and identical weight fadng to 6-pulse sequences with equal amplitudes and variable
tors, but using as a target state a less anharmonic OZCM apacing. Furthermore, visible lasers producing ultrasti@t

A. Feasibility of the necessary external fields
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FIG. 4. Indirect ILM excitation via ISRS witA =0 initial con- FIG. 6. Indirect ILM excitation via ISRS witf >0 initial con-
ditions. Top panel: sequence of Gaussian pulsg3 for the indi- ditions. Top panel: same as top panel of Fig. 4. The bottom panel

rect creation of ILM’s in a 40-particle lattice with periodic bound- shows the resulting MD simulation, for random initial velocities
ary conditions. The bottom panel shows the resulting MDappropriate to a lattice temperature of 5 K. Displacements are mag-
simulation, for zero initial conditions. Displacements are magnifiednified by a factor 5, and only a portion of the lattice is shown.
by a factor 5, and only a portion of the lattice is shown.
ing a conservative valu=2.5 A? for the polarizability
fs) pulses with extremely large field magnitudes up toderivative®> However, the crucial experimental question is
~270 VIA are availablé®3! It is thus possible to produce whether a given sample can tolerate such high electric fields
the maximum field strengths of 1.22 V/A and 0.38 V/A nec-in an experiment.
essary for the examples of Figs. 3 and 6, respectively, assum- In a theoreticalargument® Nelson and coworkers esti-
mated the potential of single-pulse ISRS to excite large-
amplitude anharmonic vibrations. Assuming pulses with
10 uJ energy focused to 5am (FWHM) spot sizes, they
predicted that a maximum phonon displacement of 2
U IRNENANANAY %102 A could be produced in the organic molecular crys-
tal a-perylene. For pulse widths of 70 fs, these parameters
correspond to a field strength of about 0.5 V/A. Hence their
0.99 estimation of the displacement produced bwiagle pulse
and the field strength they considered reasonable are compa-
rable with the corresponding quantities in our indirect ILM
excitation via ISRS. Furthermore, they suggested that in
some materials coherent vibrational displacements in the
0.1-1 A range could possibly be achieved. These optimistic
0.98 predictions were preceded by an actual experimental demon-
40 _ 50 stration that single visible laser pulses of 70 fs width and
time/ T, 1 uJ energy focused to 15@m spot sizes impulsively ex-

FIG. 5. Details of the ISRS pulse sequence for the indirect ILMC'ted coherent optic modes |m-perylene‘°f The field

excitation. Top panel: position of a light particle during the 0zcm Strengths~0.05 VIA, used in this single pulse experiment
excitation shown in the bottom panel of Fig. 4 as a function of imeWere one order of magnitude below those assumed for the

(solid line). Thin vertical lines denote the pulse center timesf ~ Subsequent theoretical prediction. However, as discussed in a
the corresponding optimal pulse sequence given in the top panel 8fter experimental paper by the same grotij, turned out

Fig. 4. Bottom panel: RWA frequency calculated from the mea-not to be feasible to use the proposed larger field strengths,
sured instantaneous OZCM amplitude during the excitatimtid ~ because they exceed the fairly low laser-induced breakdown
line). Circles indicate the frequenciesr2(t; ., —t;). threshold ofa-perylene. This sequence of publications high-

-7.5 1

particle pos. [A]

®/m,
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0.01 3 for the 22-particle chain may be slightly too large to be
g‘ realized in an experiment, while that for the indirect ILM
> | \HHHWHHJ“H\ | excitation in the crystal lattice of Fig. 6 is below the values
&000 1 “"“““““"v'\“‘\W";I\J‘“Hm““‘ IM ‘I‘HHH‘M“r\ﬁ'\‘\""‘““"“”‘ for breakdown. As discussed at the end of Sec. IlIB 1, the
8 H H ‘ necessary external force magnitudes can be reduced by tar-
o geting an OZCM at a smaller amplitude, but this approach
00l = has limitations due to the competition between the time

== scales for the unstable OZCM decay and other processes in a
MWWMW crystal, e.g., damping. Moreover, the use of sequences with
20 - " more pulses can also decrease the force magnitudes: accord-
A NSO ing to the §-pulse approximatior(see the Appendjx the
ol [T e e force magnitude is inversely proportional to the number of
'E' g s pulses in the sequence. However, since a larger number of
__g ' pulses requires longer control periods, the abocaweat
B - e about the competition of time scales applies here as well.
8 0- L Lt S Turning to IR excitation, we note that the maximum force
o f”wwmwwmmmmm amplitude in Fig. 7 corresponds to a field strength
3] N 0.008 V/A, assuming thaj=1.0e. Free-electron far-IR la-
"g sers produce picosecond pulses with intensities reported up
o e o to 4x 10’ W/cn? (Ref. 41), corresponding to a field magni-
ot tude of 0.002 V/A. Moreover, the frequency of free-electron
-20 - s far-IR lasers can be chirped at rates-09x 10 ° fs~2 (Ref.

Wit W ! 9). These field magnitudes and chirp rates are within a factor

0 & 200 of 4 and 20, respectively, of those used for the IR excitation
time/T of ILM’s in Fig. 7. For this excitation mechanism, laser-
0 induced breakdown should not play a role as a limiting fac-
FIG. 7. Same as Fig. 6, but for the indirect ILM excitation by a tor, since the threshold of 0.2 V/A obtained for alkali halides
single, linearly chirped far-IR pulse. using near-IR pulses of 10 ps widtHs well above the nec-
essary maximum field magnitudes obtained here. As dis-
lights how a material’'s laser-induced breakdown thresholccussed at the end of Sec. IlIB2, both the necessary field
can limit the potential of ISRS for the excitation of large- magnitudes and the chirp rates are reduced when a smaller
amplitude vibrations. However, it was pointed out in Ref. 12amplitude OZCM is targeted.
that materials having a substantially larger laser-induced We conclude that the fields necessary for the indirect ex-
damage threshold tham-perylene exist. citation of ILM’s via ISRS or far-IR as demonstrated in Sec.
The question of breakdown thresholds in ultrashort pulséll B are reasonable and may be feasible in the near future.
laser-solid interaction is not yet very well studied. The Among the approaches we have considered, excitation via
breakdown thresholds for alkali halides under irradiation bylSRS seems more promising since lasers producing the nec-
near-visible laser pulses with pulse widths down to 10 psessary high field strengths are already available, although the
were experimentally determined to be about 0.2 ef.  experimental problem of laser-induced breakdown must be
35), with a tendency for the thresholds to increase with in-borne in mind.
creasing frequency and decreasing pulse width. Only few Preliminary results indicate that the indirect excitation of
measurements for femtosecond pulses, such as the pulséd’s can also be achieved when simpler analytic time de-
used in our ISRS excitation studies, are available in the litpendences for the external force are used, without necessitat-
erature. For fused silica and the alkali fluorides, breakdowring significantly larger force magnitudes. For the indirect
thresholds above 0.5 V/A were obtained with 275- andILM excitation via ISRS, we repeated the optimization pro-
400-fs pulses for visible and near-visible frequenéfegal-  cedure using pulse sequences constrained to haezjaal
ues between 0.6 and 1.0 V/A were measured for fused silicajariable spacing between the pulses as well as common vari-
sapphire, magnesium fluoride, and glass, using visible laseble widths and magnitudes and found that for the target
pulses having a width of 120 f€.Other experimental studies OZCMs at w=0.98», and w=0.9%, the required force
of fused silica obtained breakdown threshold fields of 3.8magnitudes were 2.3 and 0.4% larger, respectively. Simi-
3.0, and 3.3 V/A for visible pulses of 150, 100, and 55 fslarly, repeating the optimization for the indirect ILM excita-
width, respectively?®3*We did not find measurements of the tion via IR using a single Gaussian pulse withchirped
breakdown threshold in ZnS in the relevant short-pulse revariable frequency as well as fixed width and variable mag-
gime. However, an experiment on optical coatings madeitude, we found the corresponding increases in the force
from ZnS(Ref. 40 showed that its breakdown field strength magnitude to be 5.0 and 1.3%.
for nanosecond pulses is comparable to that of magnesium Another important experimental consideration is the ro-
fluoride, for which the short-pulse values are given abovebustness of the optimal fields. Considering the experimental
From these experimental results for pulses that are still 2—20mitations on the fidelity of shaped waveforms for ISRS, we
times wider than the ones we used for the excitation ohote from Ref. 29 that prespecified pulse amplitudes and
ILM’s via ISRS in Secs. IllA and IlI B, it appears that the widths were reproduced to within 10% and pulse positions to
maximum field strength for our direct ILM excitation of Fig. within 10 fs. Randomly perturbing the ISRS pulse param-
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eters of the sequence shown in the top panel of Figs. 4 or titial temperature of 77 K the success rate drops to zero,
for the indirect ILM excitation in the lattice within these although in some cases a localized excitation is created at a
margins reveals that although the perturlfgd) excites the site other than the target site.

OZCM to a slightly different amplitude in each of the ten  Vibrations in real crystals couple to other types of excita-
cases considered, a decay into localized excitations alway®ns and exhibit finite lifetimes—typically between 5 and
occurs. On the other hand, the ISRS pulse sequence shown380 phonon periods for optical phondtdiVe have included

the top panel of Fig. 3 for the direct ILM excitation in the this aspect by adding phenomenological velocity-dependent
22-particle chain is more sensitive to such infidelities. Indamping to our MD simulations. Anharmonicity, which con-
each of ten cases of randomly perturbing the ISRS puls&ributes significantly to phonon lifetimes, is already treated
parameters within the above margins, a localized excitatioexplicitly in our calculations; thus we assume a small damp-
at the final time results, but only in one case does this excing constant corresponding to an OZCM lifetime of IQ0
tation persist after the applied field is turned off. DecreasingVe repeated the optimization for the direct ILM excitation
the margins to a 5% error for pulse amplitudes and widthsyia ISRS of Fig. 3 after adding this damping, using the op-
and 5 fs for the pulse positions, the success rate increasestimal pulse sequence with zero damping as the initial guess.

4 out of 10. This results in a qualitatively very similar sequence of
pulses, but with a larger maximum force magnitude of
B. Effects of nonzero initial temperature and damping 0.24 eV/A, compared with the earlier result 0.13 eV/A for

ero damping. Due to the presence of damping the amplitude
of the resulting localized excitation decays away within a

mal fluctuations will always be present and we should con—few tens ofT, after the applied force ends. Similarly, when

sider their effect. For the case of indirect ILM excitation, we € _inc!ude _dalrglgigg ]ian'Fhe czlptimGizatior;_ Odf tne inhdirect ILM
have seen that the efficacy of the external field is enhancegctation Via 1Sk 0T FIgs. & 0r'b, we fin that the cgmm(_)n
by the presence of velocity perturbations due to an initiaIpU|Se amplitude increases from 0.013 to 0.016 eV/A. With

temperature of 5 K, since they serve to trigger the ozcm! =0 K initial conditions, the amplitude of the resulti_ng
instability. At this low temperature, thermal fluctuations are ©2CM damps out before the accumulated computational

small enough to act just as perturbations on the zero tenfound-off error can trigger the OZCM instability, but for an

perature dynamics. Accordingly, application of the zero—Initial temperatur_e of 5 K’. we agai'n qbserve a breakup of the
temperature optimal force initially excites a slightly per- OZCM into ILM-like localized excitations, whose amplitude

turbed OZCM which subsequently decays, as seen in thé“b$?q“e”t'y damps out over a few tens of OZCM periods.
lower panels of Figs. 6 and 7, respectively. Additional calculations for the indirect ILM excitation via

If we increase the initial temperature, the situation!SRS USIng @ damping constant appropriate to a shorter

changes. We have performed MD simulations with the ISR ZCM Iife’éime of 50r.0 yield a common pulse magnitude
pulse sequence of Fig. 4 for ten different sets of initial ve-0-019 €V/A, along with qualitatively similar MD  results.

locities appropriate to lattice temperatures of 77 and 300 K1hus we conclude that it is possible to create ILM's with
Already at 77 K the initial excitation can no longer be iden-9amping present, although the necessary force amplitudes

tified as a perturbed OZCM. Nevertheless, in all ten of the 7/AT€ Of course somewhat larger. Furthermore, detection of
K cases, the simulations result in well-localized ILM-like these ILM’s would have to occur within a few tens of OZCM
excitations, which appear sooner than for the 5 K case of FigP€rods after their creation.
6. However, fewer localized excitations are observed for the
same size lattice, and an increased background of thermally
excited long-wavelength acoustic vibrations is present. This
trend continues as the initial temperature is raised to 300 K. While our 1D model incorporates some realistic features,
Very similar results are obtained when the optimal force forsuch as standard interparticle potentials and the measured
the far-IR excitation from Fig. 7 is used at higher initial harmonic dispersion of ZnS, it is not a model of any real
temperatures. For comparison, we repeated the same nonzemystal. We have also considered 3D models of ZnS-structure
initial temperature simulations, but with no external force,crystals using standard two-body central potentials between
and we observed no significant localization of vibrationalatoms out to second neighbdfslt is well known that the
energy. Therefore, although the optimal external force obharmonic modes fok along{111) map onto an effective 1D
tained for zero initial temperature does not achieve its originodel involving the collective motion oft11) planes. We
nal goal of exciting an unstable OZCM when used at thesdave shown that this mapping also occurs in the anharmonic
elevated temperatures, it nevertheless produces localized \dase, for certain polarization directions. The resulting
brations. quasi-1D model, with effective anharmonic potentials be-
Similar to the question of robustness with respect to infi-tween (111) planes undergoing collective motion with one
delities in the pulse parameters, the optimal ISRS pulse sdransverse and one longitudinal degree of freedom, yields a
quence for the direct ILM excitation in the 22-particle chainrepresentation of the actual motion in a 3D crystal and thus
is more sensitive to nonzero initial temperatures than is thgustifies our studies of purely 1D lattic& Applying again
sequence for indirect ILM excitation in the lattice. Perform-the ILM existence criterion of Ref. 23, we can choose the
ing MD simulations with the ISRS pulse sequence of Fig. 3parameters of the quasi-1D model such that the ILM’s are
for ten different sets of initial velocities appropriate to lattice associated with the optically active ExM. Hence we adjusted
temperatures of 5 K, we find that a persisting localized ex-our potential parameters so as to fit the measured harmonic
citation at the target site results in seven cases. Already at gghonon dispersion data of ZnS alofijl1), as well as mea-

We have obtained our optimal external forces assumin
that the system is initially at rest, but in an experiment ther

C. Relevance for real crystals
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sured mode Gmeisen parameters. Within the RWA this Planck Institute for the Physics of Complex Systems,
model exhibits gap ILM’s associated with the anharmonicDresden, Germany, for their hospitality and support during
version of thek=0 TO phonorf® These results suggests that the completion of the manuscript.

to the extent that the central potentials used in this model

capture the anharmonic properties of the real crystals, repre- APPENDIX: DELTA APPROXIMATION FOR ISRS

sentative candidate materials for the indirect optical excita- EXCITATION OF THE OZCM

tion of these ILM’'s would be ZnS, ZnSe, and the copper ) ) ]

halides. We re-emphasize that these candidates for indirect !N this Appendix we demonstrate that the main character-
optical creation of ILM’s have two basic properties in com- istics of the optimal pulse sequence for the ISRS excitation
mon: (i) thek=0 TO phonon in these materials is both first- Of the OZCM in our model lattice described in Sec. 1lIB1
order Raman and IR active, afi) the frequency of th&  ¢an be reproduced using a simplification which was consid-
—0 TO phonon is at theninimumof the TO branch along €red in Ref. 44, but in a different context. Here, the external
(112), such that in conjunction with the fact that real poten-force due to a sequence of short laser pulses is approximated
tials are dominated by soft anharmonicity, the criterion ofPY & sequence df delta functions

Ref. 23 predicts the existence of gap ILM’s associated with L

this k=0 TO phonon. ]—"(t)=j21 a;8(t—t;) (A1)

with individual positive amplitudes; and pulse center times
V. CONCLUSION t;. In addition, we know that the dynamics of the OZCM in
A diatomic lattice map onto that of an effective anharmonic

In conclusion, our optical excitation studies demonstrat . . .
oscillator with massng;, displacemenk, and momentunp.

theoretically that suitably tailored laser radiation offers a ) S
promising route for the laboratory creation of vibrational :jng;ludlng th‘? ex'ternag forcéAl), the Hamiltonian for the
ILM’s. The time dependence of the fields is determined by riven case IS given by
an efficient optimal control algorithm, designed to produce 2
eff= 5
Zmeff

wave forms consistent with the rapidly developing experi-

r_nenta;l Iiﬁap'“t;.es. in laser pulse sZaplng. Tinecét;axc.lta- . WhereVe(x) is an effective anharmonic potential.

tion o s In finite systems was demonstrated for impul- Starting with the effective oscillator initially at rest we
ant to excite it to a given final enerdy; while keeping the

sive stimulated Raman scattering by a sequence of ultrashcw
si’1ecessary external force magnitude minimal. This requires

laser pulses at THz repetition rates, with variable spacin
between consecutive pulses. For periodic lattices, ILM cregn optimization of the parametefa;} and{t;} for the ex-
ternal force(Al). A single delta pulse;§(t—t;) boosts the

ation was achievethdirectly via decay of the unstable asso-
momentum of the oscillator bg; at timet;, and instanta-

ciated ExM which is excited optically either via multiple-

pulse ISR.S as above or via a smg_le _far-IR pu_lse_ with aheously changes the kinetic energy. Denoting the momentum
linearly chirped frequency. For the indirect excitation aP" of the oscillator immediately before and after the pulse by
pj—1 andp;, respectively, we can write the energy boost as

H + V(X)) —XF(1), (A2)

proach, it is essential to consider a lattice having ILM’s that
are associated with the optically active ExM.

The direct ILM excitation via ISRS requires rather com- (pf—p’y) (af+2ap;_4)
plex pulse sequences and laser field strengths that may just AE;= = .
exceed the breakdown threshold of a given sample. Further-
more, this approach shows a dependence on the system sigeidently, for a giverg; the largest possible energy transfer
and is therefore not well suited for the creation of ILM’s in occurs when the pulse arrives exactly at the time when
crystal lattices, although it may be relevant for the excitationis positive and maximal, i.e., at the zero crossings of the
of local modes in molecules. Our studies show that the mordisplacement of the oscillator where its momentum is posi-
advantageous means to excite ILM’s in crystals is via theive. Knowing the effective potential, this simple result is
decay of their associated unstable anharmonic ExM, optisufficient to determine the optimal pulse center times for a
cally driven to a large amplitude. This approach not onlygiven set of pulse amplitudea;}. Furthermore, we now
requires smaller field strengths, but it succeeds even in thienow that the energy of the oscillator after the complete
presence of thermal fluctuations and damping, and also witpulse sequence is given by
external forces constrained to have simpler analytic time de- L
pendences, i.e., pulse sequences wihalspacing between E_ 1 >
consecutive pulses for ISRS and a single pulse wdthstant L 2mey a
frequency for IR excitation. Hence our studies point to a ) o ,
potentially fruitful avenue for experimentally accessing theVe define an objective functional
regime of large-amplitude anharmonic vibrational dynamics, L
which is very different than that for harmonic or weakly J({aj}):z ajz—)\(EL—Ef), (A5)
anharmonic systems. =1

2Mggt 2Mgg (A3)

2

(Ad)

i=1

where the first term is just the integrated square magnitude of
the external forc6d A1) and the second term constrains the
energyE, after the pulse sequence to be equal to the desired
This work was supported by NSF Grant No. DMR- final energyE; via introduction of a Lagrange parameter
9510182. J. B. Page also gratefully acknowledges the MaMinimizing this objective functional with respect to the
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pulse amplitudeqa;}, we find that the optimal pulse se- trol scheme, as discussed in Sec. Il B 1 and illustrated in Fig.
guence consists of pulses with equal amplitudes 5. However, thes approximation underestimates the area
1 under a single pulse by about 20%, when compared with the
aj=E\/2meﬁEf_ pglse; in Fhe numerl'ca'lly obtained optlmgl sequence. Hence
this simplified description correctly predicts the qualitative

To summarize, thed approximation predicts that the op- features of the optimal pulse sequence, but it cannot give
timal pulse sequence for the OZCM excitation consists ofduantitatively reliable results for the optimal pulse width and
pulses with equal amplitudes whose pulse center times coifagnitude. These require knowledge of the actual motion of
cide with the zero crossings of the motion of the atoms. Thighe particles over the duration of each pulse and are obtained

(AB)

agrees with our numerical results from the full optimal con-

by applying the full optimal control scheme.
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