
PHYSICAL REVIEW B 1 NOVEMBER 2000-IVOLUME 62, NUMBER 17
Optical creation of vibrational intrinsic localized modes in anharmonic lattices
with realistic interatomic potentials
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Infineon Technologies AG, MP CAD, P.O. Box 800949, D-81609 Munich, Germany

J. B. Page
Department of Physics and Astronomy, Arizona State University, Tempe, Arizona 85287-1504

~Received 19 April 2000!

Using an efficient optimal control scheme to determine the exciting fields, we theoretically demonstrate the
optical creation of vibrational intrinsic localized modes~ILM’s ! in anharmonic perfect lattices with realistic
interatomic potentials. For systems with finite size, we show that ILM’s can be excited directly by applying a
sequence of femtosecond visible laser pulses at THz repetition rates. For periodic lattices, ILM’s can be created
indirectly via decay of an unstable extended lattice mode which is excited optically either by a sequence of
pulses as described above or by a single picosecond far-infrared laser pulse with linearly chirped frequency. In
light of recent advances in experimental laser-pulse shaping capabilities, the approach is experimentally
promising.
d
th
e

in
h
g

e
x

of
e

ve
sp

e
e
y
n
e

iv
ar
e
ce

tio

gy

f
ic
th
.

ntal
-
d,

at-
rol

e-

f
op-

th
de-
cy

nd

x-
are
ag-

imal
the
ex-

ired
rol
al
si-
s,
rnal
of

of

e-
n-
del

ical
o
we
I. INTRODUCTION

Over the past several years, theoretical studies of the
namics of anharmonic periodic lattices have established
existence of intriguing vibrational excitations, characteriz
by well-localized displacement patterns.1 These so-called in-
trinsic localized modes~ILM’s ! can exist at any site in a
perfect lattice, in contrast to localized impurity modes
harmonic defect crystals. While vibrational ILM’s wit
atomic scale localization have been obtained for increasin
realistic lattice-dynamical models,2,3 their experimental study
has been impeded by the lack of direct methods for th
excitation and verification. Recently, ILM’s in a comple
quasi-one-dimensional charge-density wave system were
ferred from resonance Raman data, through the use
coupled electron-vibration model restricted to a single rep
unit.4

Previously we have demonstrated theoretically that dri
ILM’s can exist as a steady-state response to an applied
tially homogeneous monochromatic driving force.5 As a
natural extension of that work, and to address a key exp
mental question, we here describe theoretically an avenu
the transient optical creation of ILM’s: we show how the
can be produced in a 1D model lattice with realistic pote
tials by means of laser pulses whose time dependenc
designed by an efficient optimal control scheme.

Owing to their high power densities, lasers are attract
sources for exciting large-amplitude ILM’s. Indeed, there
some notable examples of experiments with powerful las
in the regime of anharmonic lattice vibrations. For instan
phonon resonances measured in the ferroelectric LiNbO3 by
experiments using single visible laser pulses with a dura
of 60 fs and an energy per pulse of 5mJ were interpreted in
terms of ‘‘overtones’’ of the very anharmonic lowest-ener
TO phonon ofA1 symmetry.6 Also, experiments on Ti2O3
using single visible pulses with 10 nJ energy and 70
widths to excite theA1g mode apparently resulted in atom
displacements of about 0.07 Å—corresponding to 2% of
interatomic spacing—and revealed anharmonic behavior7
PRB 620163-1829/2000/62~17!/11460~13!/$15.00
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Of more direct relevance here is the fact that experime
laser-pulse shaping techniques8,9 provide considerable flex
ibility in the time dependence of the applied force. Indee
the use of tailored fields for vibrational excitation has
tracted much interest, mainly in the context of optical cont
of dissociation and reactions in molecular chemistry,10 but
also for the selective excitation of optical phonons in tim
domain spectroscopy.11,12 We will focus on two methods for
the transient optical creation of ILM’s:~i! impulsive stimu-
lated Raman scattering~ISRS! excitation13 by a sequence o
femtosecond pulses at THz repetition rates from a laser
erating at visible or near-visible frequencies, and~ii ! infrared
~IR! excitation by a picosecond far-IR laser pulse. For bo
mechanisms, the system’s dynamical response can be
scribed classically, provided the underlying laser frequen
for the ISRS case is well off resonance with vibrational a
electronic transitions.

Since ILM’s are complex, large-amplitude vibrational e
citations, the external fields necessary for their creation
likely to have a complicated time dependence and large m
nitudes. It is therefore advantageous to determine the opt
external fields by a systematic scheme. In engineering,
analogous task of designing the time dependence of an
ternal force to steer a dynamical system towards a des
target state is a fundamental problem. Optimal cont
theory14 provides a solution with a rigorous mathematic
foundation, based on the variational minimization of a po
tive objective functional. In the realm of atomic dynamic
this approach has been successful in the design of exte
electric fields for selective bond excitation in models
small harmonic lattices15–17 and small anharmonic
molecules.18 We apply a similar scheme to the creation
ILM’s.

The following section discusses our theoretical fram
work by providing the necessary details of the optimal co
trol scheme and describing the specific anharmonic mo
lattice we use. Our numerical results concerning the opt
creation of ILM’s are given in Sec. III, which is divided int
two parts according to the two different optical methods
11 460 ©2000 The American Physical Society
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consider. In Sec. IV we address aspects of the experime
feasibility and discuss our results. Section V concludes
paper, and an appendix provides additional qualitative
sight. Some of the results presented here were summariz
a letter.19

II. THEORETICAL BACKGROUND

Although some notable exceptions have appeared,2,3 most
studies of ILM’s have considered one-dimensional~1D! or
2D model lattices. This restriction to simpler model syste
has facilitated progress towards a theoretical understan
of basic ILM properties, without the additional numeric
complications encountered with more realistic 3D models
crystals.3 In addition to the reasonable expectation that ma
of these basic properties will transfer to the 3D case, ther
evidence that 1D models may apply directly to some type
motion in 3D crystals. For instance, in Ref. 2 a realistic 3D
lattice-dynamical model was considered and ILM’s were o
tained with displacement patterns localized along the edg
the crystal, which can be regarded as a natural generaliza
of a 1D lattice. Furthermore, it is well known that alon
some high-symmetry directions in 3D crystals, the harmo
lattice dynamics map onto an effective 1D model involvi
the collective motion of lattice planes. We have perform
preliminary studies showing that this mapping also occur
the anharmonic case, for certain polarization direction20

This point is addressed in more detail later. Hence, fo
demonstration of the optical creation of ILM’s, we consid
a diatomic 1D model lattice that incorporates realistic fe
tures, such as standard interparticle potentials and meas
harmonic properties of real crystals.

A. System: Hamiltonian and dynamics

For longitudinal motion in an externally driven 1D sy
tem, the Hamiltonian is

H5(
n

F pn
2

2mn
1(

l .0
Vn,n2 l~r n2r n2 l !2 f n

ext~ t !r nG , ~1!

where particlen has massmn , positionr n and momentumpn
and interacts with particlen2 l via a potentialVn,n2 l(r ), to
be specified below. The external force is given byf n

ext(t)
5 1

2 PnE 2(t) and f n
ext(t)5qnE(t) for ISRS and IR excitation,

respectively. HereE(t) is the longitudinally polarized elec
tric field, Pn[(]P/]r n)0 is the electronic polarizability de
rivative evaluated at the equilibrium configuration, andqn is
the effective charge. WithPn5(21)nP and qn5(21)nq,
the external forces for both excitation methods have eq
magnitudes and alternating signs:

f n
ext~ t !5~21!nF~ t !. ~2!

The vibrational dynamics of this 1D system are described
Hamilton’s equations

ṙ n5
]H

]pn
5

pn

mn
, ~3a!

ṗn52
]H

]r n
5 f n~$r m%!1~21!nF~ t !, ~3b!

where
tal
e
-
in

s
ng

f
y
is
f

-
of
on

ic

d
n

a
r
-
red

al

y

f n~$r m%![2(
l .0

@Vn,n2 l8 ~r n2r n2 l !2Vn1 l ,n8 ~r n1 l2r n!#

~4!

is the total internal force on particlen, with Vn,m8 (r n2r m)
[(dVn,m /dr)ur 5r n2r m

. From Eqs.~3! we readily obtain the
equations of motion

mnr̈ n5 f n~$r m%!1~21!nF~ t !, ~5!

which are more convenient for numerical simulations of t
system dynamics.

B. Scheme: Optimal control theory

In the following, we describe the most important aspe
of the optimal control scheme used in this work. More deta
can be found in Refs. 15 and 16, whose compact notation
adopt with some modifications. We consider a system oN
particles. Unless explicitly stated otherwise,N-dimensional
vectors are denoted by lower case bold Roman letters
N3N-dimensional matrices by upper case bold Roman
ters. Moreover in phase space, 2N-dimensional vectors are
denoted by lower case bold Greek letters a
2N32N-dimensional matrices by upper case bold Greek
ters.

We combine theN-dimensional vectorsr and p for the
particle positions and momenta, respectively, to form
2N-dimensional phase space vector

jT[~rT,pT![~r 1 , . . . ,r N ,p1 , . . . ,pN!, ~6!

where the superscriptT denotes the transpose. Equations~3!
are then rewritten as

j̇5f@j,F~ t !#, ~7!

with

fT@j,F~ t !#[@~M21p!T,fT1q̃TF~ t !#, ~8!

where M is the N3N-dimensional diagonal mass matr
with elements (M )nl[mndnl , (f)n[ f n($r m%), and the defi-
nition of the coupling vectorq̃ with components (q̃)n
[(21)n allows a compact description of the external for
terms. With this notation, we can rewrite Eq.~5! as

M• r̈5f1q̃F~ t !. ~9!

We furthermore specify initial conditions

r ~ t50!5r i , ~10a!

p~ t50!5pi ~10b!

at t50.
In order to apply optimal control methods to our proble

we first need to define a positive functional that reflects
physical objectives to be reached. Starting from the lattice
some initial configuration (r i ,pi), we want to excite a given
anharmonic mode at a specified final timet f , while keeping
the magnitude of the external force within reasonable lim
Combining the target mode positionsr f and momentapf into
a final phase space vectorjf , we define the objective func
tional
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J@j,F~ t !#5
1

2
@j~ t f !2jf #

T
•C•@j~ t f !2jf #

1
1

2
cFE

0

t f
dtF 2~ t !, ~11!

where the nonzero elements (C)aa[ca of the
2N32N-dimensional diagonal matrixC are positive weight
factors, as iscF . Note that in order for all terms in the
objective functional to have the same units, not all of t
weight factors can be unitless. Furthermore, only trajecto
j(t) satisfying the equations of motion~7! are admissible
during the optimization. Including this as a constraint in t
objective functional, we obtain the modified objective fun
tional

J̄@j,F~ t !#5J@j,F~ t !#2E
0

t f
dtlT

•$j̇2f@j,F~ t !#%,

~12!

where lT5(l1 , . . . ,l2N) is a 2N-dimensional vector of
time-dependent Lagrange multipliers. This modified obj
tive functional is minimized with respect to the trajectoriesj
and external forceF(t) to obtain the optimal force. For clar
ity, these quantities are treated separately in the follow
two paragraphs.

Variational minimization with respect to the trajectori
$ja(t)%, including an integration by parts of the ter
*0

t fdtlT
•d j̇, yields dynamical equations for the Lagran

multipliers

l̇1F•l50, ~13!

where F is a 2N32N-dimensional time-dependent matr
with elements (F)ab[]fb@j,F(t)#/]ja . At the final time
t f , these dynamical equations are subject to boundary c
ditions

l~ t f !5C•@j~ t f !2jf #. ~14!

For our definition off@j,F(t)# @see Eq.~8!#, the matrixF
decomposes into fourN3N-dimensional blocks:

F5S 0 2K

M21 0 D , ~15!

where we have defined theN3N-dimensional time-
dependent, symmetric dynamical matrixK with elements
(K )nl[2] f n($r m%)/]r l . We can now simplify the descrip
tion by considering separately the Lagrange multipli
(lr)T[(l1 , . . . ,lN) for the positions and (lp)T

[(lN11 , . . . ,l2N) for the momenta. Then, Eq.~13! be-
comes

l̇r2K•lp50, ~16a!

l̇p1M21
•lr50, ~16b!

which can be combined to yield

M•l̈p52K•lp. ~17!

We note that these dynamical equations for the momen
Lagrange multipliers correspond to the equations of mot
for a lattice of N fictitious particles with massesmn and
e
s

-

-

g

n-

s

m
n

instantaneous positionsln
p , interacting via time-dependen

harmonic forces. Combining Eqs.~14! and ~16!, we obtain
the corresponding boundary conditions

lp~ t f !5Cp
•@p~ t f !2pf #, ~18a!

l̇p~ t f !52M21Cr
•@r ~ t f !2r f #, ~18b!

where Cp and Cr are N3N-dimensional diagonal weigh
factor matrices with elements (Cp)nl5dnlcn1N and (Cr)nl
5dnlcn . Note that these boundary conditions for th
Lagrange multipliers are specified at thefinal time t f . Thus
their determination requires the knowledge of the final po
tions r (t f) and momentap(t f) of the particles in the actua
lattice. We emphasize that the introduction of Lagrange m
tipliers only serves the purpose of including the dynamics
the driven lattice as a constraint in the objective functio
~11!. This results in coupled equations for the dynamics
the actual lattice and that of the Lagrange multipliers.

The optimal external force is now obtained by minimizin
the modified objective functional~12! with respect toF(t).
This minimization can be done for an external forceF(t)
whose time dependence is allowed to be arbitrary15 or which
has a prescribed analytic form.16 In view of the important
aspect of experimental feasibility, we discuss the latter
proach. For ISRS excitation, the laser frequency is neglec
and we constrainF(t) to be a sequence of Gaussian puls

F ISRS~ t !5(
i

Sie
(t2t i )

2/D2
~19!

with individual heights$Si% and pulse center times$t i%, and
common widthD. For IR excitation,F(t) is taken to have a
linearly chirped IR frequency under a single Gaussian en
lope with fixed width:

F IR~ t !5Se(t2t0)2/D2
sin~u1vt1at2!. ~20!

In both cases, the external force depends on a set of vari
parameters$t j%, namely$Si%, $t i%, andD for the ISRS case,
andS,t0 ,u,v, anda for the IR case.

The gradient of the modified objective functional wi
respect to the external force parameters$t j% has components

] J̄@j,F~ t,$t j%!#

]t i
5E

0

t f
dt@cFF~ t,$t j%!

1~lp!T
•q̃#

]F~ t,$t j%!

]t i
, ~21!

where Eq. ~8! has been used to writelT
•]f/]F(t)

5(lp)T
•q̃. The optimal control forceF opt(t) is obtained by

finding the zero of this gradient. Following Ref. 15, we u
an iterative approach for this nontrivial numerical proble
Using an educated guess for the force parameters$t j%, we
integrate the dynamical Eqs.~9! for the actual particles’
driven motion forward in time fromt50 to t5t f , starting
from the initial conditions~10!. This yieldsK (t) for t in the
interval @0,t f #, as well as the final positionsr (t f) and mo-
mentap(t f), which are used to evaluate the boundary co
ditions ~18! for the Lagrange multipliers att5t f . We next
integrate Eq.~17! backward in time fromt5t f to t50. From
this we obtainlp(t) for t in @0,t f #, which is then used to



al
m

e

c
ai

to
ve
f o

n
le

y

y i
if
th
a

ta

e

ia

ti
re
-
gy
b

e
pin
uc

r
a

-
d
ng

th

ch
l

d to
the
ri-
onic
ci-
C
e-
he
f

of
ea-

C
to

ng a
and
he
l
In
the

nel

ap

re-
tate.
so-
-

c
at a

e
-
s-

PRB 62 11 463OPTICAL CREATION OF VIBRATIONAL INTRINSIC . . .
evaluate the gradient components~21!. We adapted a fifth-
order Gear predictor-corrector molecular-dynamics~MD!
method21 for the time evolution of the particles in the actu
lattice and for the Lagrange multipliers. The force para
eters are updated within a conjugate gradient scheme,22 and
the procedure is repeated until the gradient~21! is zero to
within a specified tolerance.

For the case of purely harmonic potentialsVn,n2 l(r n
2r n2 l), F, and K are time-independent matrices. Cons
quently, for initial conditionsr i50 andpi50 corresponding
to the lattice at rest in its equilibrium configuration, the exa
optimal control force can be obtained by direct algebr
manipulation of the matrix Eqs.~7! and ~16!, without itera-
tion. This is detailed in Refs. 16 and 17 for the application
harmonic molecules. Within this harmonic limit, we ha
used this algebraic approach as an independent test o
iterative MD method described above.

The harmonic limit also allows considerations of the co
trollability of the system. A system is said to be controllab
if an arbitrary specified target statejf can be reached exactl
with a suitable external forceF(t). In Ref. 17 it was pointed
out that a harmonic system is completely controllable onl
all normal modes couple to the external force. Still, even
system is not controllable in this rigorous sense, i.e.,
external force couples only to a restricted set of norm
modes, it may be possible to reach a final statej(t f) that is
close, although not exactly equal, to the specified target s
jf . We will return to this aspect in Sec. III below.

C. Model: Interatomic potentials and characteristics

We consider a 1D diatomic lattice with massesm and
M (.m), where nearest neighbors interact via Born-May
plus Coulomb~BMC! potentials

VmM~r !5lmMe2r /r2
q2

r
, ~22a!

VMm~r !5lMme2r /r2
q2

r
, ~22b!

while second neighbors interact via pure Coulomb potent

Vmm~r !5VMM~r !5
q2

r
~23!

and more distant neighbors are assumed to be noninterac
Note that the interaction between an atom and its nea
neighbors distinguishes between ‘‘left’’ and ‘‘right’’ neigh
bors. Accordingly, minimization of the total potential ener
of the static lattice leads to asymmetric nearest-neigh
equilibrium separationsR0

mM and R0
Mm(5” R0

mM). Although
this asymmetry might appear unusual at first sight, it inde
correctly represents the situation encountered by map
the collective motion of (111) planes in a zinc-blende str
ture crystal onto an effective 1D model lattice.20 Further-
more, this asymmetry is in fact necessary to properly rep
sent a lattice with first-order Raman active vibration
modes.

In a detailed study,23 we noted that ILM’s should be clas
sified according to their ‘‘associated’’ extended lattice mo
~ExM!, into which they spatially broaden with decreasi
amplitude. Since we are focusing on theoptical creation of
-
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ILM’s, we study a model that exhibits ILM’s associated wi
the optically activeExM. This intuitively reasonable choice
will later turn out to be essential. With an external force su
as given by Eq.~2!, the anharmonic version of the optica
zone-center mode~OZCM! with displacement pattern
A( . . . ,1,2m/M ,1,2m/M , . . . ) is both first-order Raman
and IR active, where for the former the asymmetryR0

mM

ÞR0
Mm is necessary, as noted above. We therefore nee

find model parameters such that ILM’s associated with
OZCM exist. In Ref. 23, we obtained an ILM existence c
terion based on the interplay between fundamental harm
and anharmonic dynamical properties of the ILM’s asso
ated ExM. For our case of interactions via realistic BM
potentials with their dominant soft anharmonicity, this crit
rion predicts the existence of ILM’s associated with t
OZCM in diatomic lattices for which the optical branch o
the harmonic dispersion relation has a minimum atk50. In
order to satisfy this constraint on the harmonic properties
our 1D model lattice, while at the same time ensuring r
sonably realistic interatomic forces, we determined our BM
potential parameters by fitting the harmonic dispersion
branches of the measured dispersion for a real crystal alo
high-symmetry direction. Since we consider both Raman
IR excitation, we focused on real diatomic crystals with t
zinc-blende structure, for which thek50 transverse optica
~TO! phonon is both first-order Raman and IR active.
particular, the measured TO phonon branch of ZnS along
^111& direction exhibits the required minimum atk50 ~see
Ref. 24!. Using ZnS massesm532.1 amu and M
565.4 amu, together with lmM53.453102 eV, lMm
52.733103 eV, r50.279 Å, andq50.9e, we can approxi-
mately match those curves, as shown in the upper left pa
of Fig. 1. In the resulting model,R0

mM51.67 Å andR0
Mm

52.95 Å, and the maximum of the harmonic phonon g
occurs at the harmonic OZCM frequencyv055.22
31022 rad/fs.

The optimal control scheme described in Sec. II B
quires the positions and momenta of a specified target s
In order to obtain accurate predictions for the stationary
lutions to Eq.~5! without external driving, we use the well
established rotating wave approximation~RWA! for the par-
ticles’ time dependence,1 but generalized to include stati
and second-harmonic contributions as well as oscillation
mode’s fundamental frequencyv. The motion of particlen
is assumed to be of the form

r n~ t !5bn1cn cos~vt !1dn cos~2vt !1r n
0 . ~24!

After inserting this ansatz into Eq.~5!, we multiply the re-
sulting equations by either unity, cos(vt), or cos(2vt), and
average over a single period. For anN-particle lattice, this
yields a system of 3N coupled nonlinear equations for th
static displacements$bn%, the fundamental dynamic dis
placements$cn%, and the second harmonic dynamic di
placements$dn%:

05
1

2pE0

2p

df f n~$r m%!, ~25a!

05mnv2cn1
1

pE0

2p

df cosf f n~$r m%!, ~25b!
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05mn~2v!2dn1
1

pE0

2p

df cos~2f! f n~$r m%!, ~25c!

wheref5vt and f n($r m%) is defined in Eq.~4!. Once the
boundary conditions are specified, these equations ca
solved using standard numerical routines; the solutions
conjunction with Eq.~24! constitute the RWA. We verify our
RWA predictions by performing direct MD simulations o
Eq. ~5!, using a fifth-order Gear predictor-correct
method.21 Traditionally, Born-von Karman periodic bound
ary conditions are employed for the description of bulk pro
erties of ‘‘infinite’’ lattices. These boundary conditions a
implemented by settingr n1N[r n1L, whereL is the static-
lattice equilibrium length of the supercell. Following the n

FIG. 1. Characteristics of our 1D diatomic BMC model latti
used for the optical creation of ILM’s. Upper-left panel: harmon
dispersion~solid line! and experimental transverse phonon frequ
cies ~diamonds! along ^111& in ZnS ~Ref. 24!. Upper-right panel:
frequency vs amplitude curves for the optical zone-center m
~OZCM! ~solid line! and the related intrinsic localized mod
~OZCM-ILM ! ~dashed line! for 40 particles and standard period
boundary conditions~StdPBC’s!. For the ILM curve the plotted
amplitude is that of the mode’s central particle, which is a lig
mass. The thin horizontal lines locate the top and bottom of
harmonic optical phonon band, indicated by the vertical bar. T
circles and crosses are the results of MD measurements of m
frequencies for the OZCM and the OZCM-ILM, respectively. O
measurements and RWA predictions differ by 0.5% at most. Mid
panel: static~squares! and fundamental dynamic~circles! displace-
ments for an OZCM-ILM in a 22-particle diatomic BMC lattic
with free-end boundary conditions~FBC’s!. The small~large! sym-
bols represent the light~heavy! masses. The lower panel gives th
corresponding second harmonic dynamic displacements as
angles.
be
in

-

menclature of Ref. 23, we denote them standard perio
boundary condition~StdPBC’s!. While StdPBC’s are conve
nient to describe infinite periodic lattices, we will also co
sider finite systems with free-end boundary conditio
~FBC’s!.

Applying the RWA to our model lattice, we find tha
ILM’s associated with the OZCM exist, as predicted by t
criterion of Ref. 23. The ILM frequencies are in the ha
monic phonon gap. The middle panel of Fig. 1 gives t
RWA static and fundamental dynamic displacements of s
an OZCM-ILM at v50.97v0 for a 22-particle system with
FBC’s. The displacements are relative to the average e
librium separationR0[(R0

mM1R0
Mm)/2. For clarity, the cor-

responding second-harmonic dynamic displacements, wh
magnitude is less than 8% of the fundamental dynamic
placements, are shown separately in the bottom panel.
this ILM is associated with a first-order Raman active Ex
is reflected by the fact that its fundamental dynamic displa
ment pattern exhibits no inversion symmetry. The static d
placements seen at the ends of this finite system are the r
of ‘‘surface’’ relaxation. The upper-right panel shows th
RWA frequency vs amplitude curves for the ILM and for th
OZCM in the corresponding 40-particle lattice wit
StdPBC’s. For each of these two modes the amplitude
given by the magnitude of the largest fundamental dyna
displacementcn . Also shown are the results of MD measur
ments of the ILM and OZCM frequencies, which agree
within less than 0.5% with the RWA predictions. Thev(A)
curve for this ILM is indistinguishable from the correspon
ing curve for the 22-particle FBC lattice of the middle pan
as one would expect from the mode’s high localization.

For our purpose of optical ILM excitation, the dynamic
stability properties of the optically active ExM are importan
as will be seen later. We have therefore examined the sta
ity of the OZCM in our model lattice within an RWA-base
approach detailed in Refs. 25 and 26, but generalized to
clude perturbations of the second-harmonic contributio
This stability analysis assumes infinitesimal displacem
and velocity perturbations having an exponential time dep
dence exp(lt), leading to a linear eigenvalue problem for th
growth rates$l%. In previous studies,23,25 we have shown
that a dynamical ExM instability with a purely real growt
rate l is intimately connected with the existence of ILM
associated with the ExM. The OZCM in our model lattic
exhibits such an ILM-related instability. In the top panel
Fig. 2, we show the predicted maximum growth rate a
function of the OZCM amplitude. MD measurements bas
on the ‘‘projection method’’ of Ref. 25 agree to within 8%
with the RWA predictions, as indicated by the diamonds.
decomposing the instability perturbation into its spatial Fo
rier components, we can extract the wave vector (kp)max of
the fastest-growing component, as discussed in Refs. 23
25. The bottom panel of Fig. 2 plots (kp)max as a function of
the OZCM amplitude. At zero amplitude, (kp)max vanishes,
and it increases to its maximum allowed valuep/(2R0) over
a restricted range of amplitudes. As discussed in Refs. 23
25, the corresponding wavelength 2p/(kp)max introduces a
preferred instability length scale at each amplitude. As
OZCM amplitude is increased from zero, the instabil
length scale decreases from infinity, reaching a maxim
value of 4R0, after which it remains constant for increasin
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amplitude. Finite-time MD simulations of unstable OZCM
seeded with the fastest growing instability perturbation
various amplitudes reveal that the instability leads to
breakup of the OZCM into a periodic array of localized ILM
like excitations whose spacing is very close to the prefer
instability length. The stability properties of the OZCM wi
be used in Sec. III B below.

III. OPTICAL CREATION OF ILM’S

Before we apply the optimal control scheme of Sec. I
to the optical creation of OZCM-ILM’s in the model lattic
described in Sec. II C, we consider the question of contro
bility, which was briefly addressed in Sec. II B. We find th
this aspect of our problem is different for different choices
the boundary conditions.

For aharmonicdiatomic lattice with StdPBC’s, it is wel
known that the harmonic version of the OZCM is the on
normal mode that couples to an optical-like force with
spatial dependence such as given in Eq.~2!. Hence, indepen-
dent of the time dependence ofF(t), this external force can
only excite the OZCM. On the other hand, if we start fro
zero initial conditions in ananharmoniclattice with StdP-
BC’s, this argument still applies at short times, since for
initially small amplitudes the interactions are dominated
the harmonic terms. It remains true even at longer times
our StdPBC model lattice, because the large-amplitude
harmonic OZCM continues to be an exact stationary so
tion.

On the other hand, when afinite harmonic system with
FBC’s is considered, the external force~2! couples with ap-
preciable strength to a set of normal modes. However,
size of this set decreases with increasing size of the sys
and in the limitN→` of an infinite system it is again just th

FIG. 2. Stability properties of the OZCM in our 1D diatom
BMC model lattice with StdPBC’s. Upper panel: RWA-predicte
maximum real instability growth rate of the OZCM as a function
the normalized amplitude~solid line!. The diamonds give growth
rate measurements obtained from MD simulations for a 40-par
lattice. Lower panel: wave vector of the fastest-growing Four
component of the instability perturbation as a function of the n
malized amplitude. To achieve good resolution, the stability an
sis for both panels was based on a wave-vector grid appropria
a 2000-particle lattice.
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FBC normal mode corresponding to the OZCM in a StdP
lattice which can be excited optically. From these consid
ations of theharmoniccase, we expect the external force~2!
to have better control over a system with FBC’s than ove
lattice with StdPBC’s, whenanharmonicity is included.
However, with FBC’s we also expect to see a dependence
the system size, with increased controllability for smal
systems.

In Sec. III A we show how ILM’s can be excited ‘‘di-
rectly’’ in a finite system with FBC’s. As expected, this a
proach depends on the size of the system. For the creatio
ILM’s in crystal lattices, we exploit the fact that the OZCM
is unstable and breaks up into ILM-like localized vibration
Hence, although we can only excite the StdPBC OZCM
rectly, its decay can produce ILM-like vibrations ‘‘indi
rectly.’’ This is detailed in Sec. III B.

A. ‘‘Direct’’ excitation of ILM’s in finite systems

1. ISRS excitation

We first demonstrate the power of the optimal cont
scheme by showing our results for ISRS excitation of
OZCM-ILM in a 22-particle system with FBC’s. Preliminar
studies with simpler model systems revealed that the con
scheme becomes more successful for longer control per
and larger numbers of pulses in the applied sequence. K
ing the question of experimentally feasible laser-pulse

le
r
-
-
to

FIG. 3. Direct ILM excitation via ISRS. Top panel: sequence
Gaussian pulsesF(t) for the direct creation of an ILM in a 22-
particle system with free ends. The bottom panel shows the
results of applying this sequence, with the particle displaceme
magnified by a factor 5. The applied field ends att f . Note that the
same force magnitudeF(t) acts on each particle.
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quences in mind, we choose a control interval@0,t f

550T0#, whereT0[2p/v0 is the period of the harmonic
OZCM. At t50 the particles are at rest at their equilibriu
positions. The system is then driven by a sequence of
Gaussian pulses. The MD time step used during the opt
zation for this case and for all of the simulations in this pa
is T0/100. For the target state att f we specify the RWA-
predicted positions and momenta of an ILM at frequencyv
50.97v0. The displacement pattern is given in the low
two panels of Fig. 1. Our initial studies with simpler system
also showed that a combination of weight factorscn
516(mnv0/2) andcn1N516/(mnv0/2) for the target posi-
tions and momenta of particlen, respectively, andcF51,
guarantees a good balance of the various terms in the ob
tive functional. Using these values in our control algorith
yields the pulse sequence given in the top panel of Fig
The common full width at half maximum~FWHM! 2Aln 2D
of the pulses is 18 fs, and the amplitudes$Si% range from
zero to 0.13 eV/Å. The bottom panel shows that the ap
cation of this rather complex sequence of pulses in MD p
duces a strikingly ‘‘simple’’ result, namely the creation of
highly localized excitation which persists almost unchang
well after the applied field ends att5t f .

We note that the pulse sequence shown in the top pan
Fig. 3 does not represent a unique solution of the minimi
tion of the modified objective functional~12!. It turns out
that depending on the initial guess for the parameters of
sequence, the optimal control algorithm reaches different
cal minima of Eq.~12! with distinct values. We have no
studied this aspect in detail, but among the small sampl
three different solutions we have obtained, the value of
minimum corresponding to the sequence shown in the
panel of Fig. 3 was the smallest. The application of each
the three sequences in MD simulations produced a long-li
stationary localized excitation like that shown in Fig.
From a practical viewpoint, the multiplicity of solutions su
gests that it should be possible to impose additional c
straints in the optimization algorithm to enhance the exp
mental feasibility of the resulting pulse sequence.

Although the results of Fig. 3 appear promising, they
sensitive to the system’s finite size as anticipated at the
ginning of this section. For instance, applying the identi
pulse sequence to a 42-particle system with FBC’s yields
localization. In Fig. 3, the system’s ends are essential for
flow of vibrational energy towards the center to set up
target ILM. Hence this ‘‘direct’’ ILM excitation method is
not suited for crystals, although it may have relevance for
excitation of anharmonic ‘‘local modes’’ in molecules su
as benzene (C6H6). Indeed,ab initio MD simulations for
benzene readily yield local modes,27 and the addition of an
optimal control scheme may allow the prediction of optic
wave forms for their creation.

2. IR excitation

We have attempted to obtain similar results for the dir
IR excitation of ILM’s in finite systems, using a singl
chirped far-IR pulse of fixed width for the external forc
Although we can reach a final statej(t f) that is quite well
localized, the localization does not persist for any signific
time after the applied field ends. Evidently, the more
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stricted prescribed analytic time dependence of the chir
Gaussian far-IR pulse reduces the ability for successful c
trol.

B. ‘‘Indirect’’ excitation of ILM’s in infinite lattices

The results of Sec. III A indicate that due to its size d
pendence, the direct excitation method is not a suitable
proach for the creation of ILM’s in crystals. However, o
previous studies of the interrelation between ILM’s and th
associated ExM, as detailed in Refs. 23 and 25, sugges
alternative approach: because we have designed our m
such that gap ILM’s are related to the optically acti
OZCM, we can create localized vibrations in the gap ‘‘ind
rectly’’ by optically driving the unstable OZCM.19,28 For
this, our choice of a model in which the ILM’s associate
ExM is optically active is essential.

1. ISRS excitation

To illustrate, we again use ISRS excitation. For the op
mal control algorithm target state, we specify an OZCM
frequencyv50.98v0, in an eight-particle lattice with StdP
BC’s. This particular system size is large enough to av
computational complications due to second-neighbor inte
tions across the supercell boundaries, and it is sufficie
small to accelerate the optimal control scheme. The dyn
ics of the anharmonic OZCM are independent of the size
the StdPBC supercell, so that the resulting optimal fie
apply to an infinite lattice. We choose this particular targ
OZCM on the basis of our RWA stability analysis of Se
II C. At v50.98v0, the OZCM has an amplitudeA54.37
31022R0, a maximum instability growth ratelmax52.78
31022v, and the corresponding preferred perturbation wa
vector is (kp)max50.624p/(2R0). Hence this particular
OZCM is expected to decay reasonably fast into ILM-li
localized excitations with an easily discernible spacing
about 6.4R0. The advantage of choosing such an interme
ate amplitude is clear from Fig. 2: at smaller amplitudes
expected spacing is larger, but the corresponding growth
is smaller, and vice versa for larger amplitudes. The issue
the size of the growth rate is important, because we wan
ensure that the decay of the unstable OZCM occurs on t
scales where other processes, e.g., damping, which are
included in our description of the lattice dynamics, will n
significantly alter the results. However, since an amplitu
corresponding to;4% of the average equilibrium separatio
is quite large, we have repeated the optimization using a
target state an OZCM of smaller amplitude. The results
that case will be discussed at the end of this section.

Starting from rest att50, the system is driven with a
sequence of 49 Gaussian pulses over a control interva
@0,50T0#, as for the direct excitation detailed in Sec. III A 1
We again use weight factorscn516(mnv0/2) and cn1N
516/(mnv0/2), but the simpler control task here allows u
to increase the weight factor for the integrated square m
nitude of the external force tocF510, without affecting the
ability to reach the target state. In contrast to the pulse
quence given in Fig. 3 for the finite chain, the optimal s
quence for OZCM excitation is found to consist of puls
having nearly equal amplitudes. Accordingly, we simplifi
the control algorithm so as to vary the pulses’ comm
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width, common amplitude, and individual pulse center tim
The top panel of Fig. 4 shows the resultingF(t), which

consists of pulses of FWHM 32 fs and amplitud
0.013 eV/Å. This is an order of magnitude less than
largest amplitude for the direct ILM excitation in the fini
22-particle lattice of Fig. 3, and the equal amplitudes ren
this sequence qualitatively simpler. However, a closer lo
reveals important details, demonstrating how the control
gorithm has globally optimized this pulse sequence. T
solid line in the upper panel of Fig. 5 plots the position o
light particle in the OZCM as a function of time during th
last fifth of the control interval. The thin vertical lines ind
cate the Gaussian pulse center times$t i% of the external
force. As expected for an efficient impulsive driving forc
the pulse centers$t i% coincide with the zero crossings of th
particle position. In addition, we measured the ‘‘instan
neous’’ amplitude of the OZCM during the excitation b
taking half the displacement difference between adjac
turning points of the motion of a light particle and assigni
it the time of the intermediate zero crossing. Then we cal
lated the corresponding undriven RWA frequency. This
shown as a solid line in the lower panel of Fig. 5, while t
circles indicate the frequencies 2p/(t i 112t i) corresponding
to the spacings between adjacent pulses of the external fo
The good agreement between these two quantities brings
the important~and somewhat hidden! aspect of the sequenc
of Fig. 4: the spacing between adjacent pulses varies thro
the sequence in such a way as to maintain resonant impu
driving of the anharmonic OZCM, whose frequency d
creases as its amplitude increases over the control interva
the Appendix we show that the qualitative aspects of t
behavior can be readily understood by doing the optimi
tion for a sequence ofd-function pulses.

Applying our Gaussian pulse sequence to a 40-part
StdPBC lattice in an MD simulation with the system initial
at rest, we find that after the field ends att f550T0, the
excited OZCM keeps vibrating with constant amplitude
about 150T0 until the perturbation due to accumulated co
putational round-off error triggers the instability and t
OZCM decays into several localized excitations, as show
the bottom panel of Fig. 4. The spatial array of localiz
excitations is not perfectly periodic because of the prese
of instability perturbations of many wavevectors, with diffe
ing growth rates. Instead of relying on the clearly comput
dependent behavior of Fig. 4, we can provide the pertur
tion necessary to trigger the OZCM instability by includin
the effects of nonzero temperature. The bottom panel of
6 displays an MD simulation for the same pulse sequen
but with random initial velocities corresponding to a latti
temperature of 5 K. The presence of this perturbation trigg
the OZCM decay much sooner. Of course the details of
MD results depend on the specific set of initial velocities, b
for ten sets consistent with 5 K we find thesame qualitative
results as shown in Fig. 6: the ILM-like localized excitatio
resulting from the decay of the OZCM persist at fixed loc
tions for several tens of vibrational periods and tend to m
slowly through the lattice.

As mentioned earlier, we have repeated the indirect IL
excitation via ISRS with the same control period, the sa
number of pulses in the sequence, and identical weight
tors, but using as a target state a less anharmonic OZC
.
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v50.99v0, with the corresponding amplitudeA53.03
31022R0. In this case, our optimal control algorithm yield
a sequence of pulses with 32 fs FWHM and amplitu
0.009 eV/Å, compared with 32 fs and 0.013 eV/Å for th
target OZCM atv50.98v0 and A54.3731022R0. The
qualitative time evolution of the unstable OZCM excited u
ing this optimal sequence in MD simulations with nonze
initial temperature is similar to that shown in Fig. 6, with th
resulting ILM-like localized vibrations having smaller ampl
tudes. Moreover, as expected from the larger preferred in
bility length scale and smaller growth rate at this OZC
amplitude~see Fig. 2!, the localized excitations are furthe
apart from each other and it takes roughly 20T0 longer than
in Fig. 6 before a comparable degree of localization
reached.

2. IR excitation

We have also studied the indirect ILM creation v
OZCM excitation using IR, assuming forF(t) a single
Gaussian pulse@Eq. ~20!# of fixed width 33T0 ~FWHM! and
having a linearly chirped far-IR frequency over the cont
interval @0,100T0#. Using the same OZCM target state an
weight factors as detailed for the ISRS excitation above,
control scheme yields an optimal force with pulse amplitu
0.008 eV/Å and chirp rate22.031027 fs22. The corre-
spondingF(t) is shown in the upper panel of Fig. 7, whil
the lower panel displays the results of applying this exter
force to a 40-particle StdPBC lattice in an MD simulatio
with initial random velocities corresponding to a lattice tem
perature of 5 K. Just as for the ISRS excitation of Fig. 6,
external force excites a slightly perturbed OZCM, whi
subsequently decays into ILM-like localized excitations. T
above discussion concerning different sets of random vel
ties at the same temperature applies here as well.

Again, the optimization was repeated with the same c
trol period, the same fixed pulse width, and identical weig
factors, but using as a target state the smaller-amplit
OZCM at v50.99v0. In this case, our algorithm yields a
optimal force with pulse amplitude 0.006 eV/Å and chi
rate 24.231028 fs22. In analogy to the excitation of this
OZCM with smaller amplitude via ISRS, the behavior in M
simulations with nonzero initial temperature is qualitative
similar to that for the larger-amplitude OZCM shown in Fi
7, but exhibits the same differences as in the case of IS
excitation: the resulting localized vibrations are spatially fu
ther apart and it takes about 20T0 longer until a comparable
degree of localization is reached.

IV. DISCUSSION

A. Feasibility of the necessary external fields

Having theoretically demonstrated the creation of ILM
using ‘‘designer’’ external forces, we now discuss the e
perimental feasibility of the corresponding fields. First w
consider the excitation via ISRS. Pulse shaping for ultrash
~13 fs! visible laser pulses has been demonstrated,29 with
complicated final waveforms ranging from 12-pulse s
quences with an overall Gaussian envelope and equal s
ing to 6-pulse sequences with equal amplitudes and vari
spacing. Furthermore, visible lasers producing ultrashort~18
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fs! pulses with extremely large field magnitudes up
;270 V/Å are available.30,31 It is thus possible to produc
the maximum field strengths of 1.22 V/Å and 0.38 V/Å ne
essary for the examples of Figs. 3 and 6, respectively, ass

FIG. 4. Indirect ILM excitation via ISRS withT50 initial con-
ditions. Top panel: sequence of Gaussian pulsesF(t) for the indi-
rect creation of ILM’s in a 40-particle lattice with periodic boun
ary conditions. The bottom panel shows the resulting M
simulation, for zero initial conditions. Displacements are magnifi
by a factor 5, and only a portion of the lattice is shown.

FIG. 5. Details of the ISRS pulse sequence for the indirect IL
excitation. Top panel: position of a light particle during the OZC
excitation shown in the bottom panel of Fig. 4 as a function of ti
~solid line!. Thin vertical lines denote the pulse center timest i of
the corresponding optimal pulse sequence given in the top pan
Fig. 4. Bottom panel: RWA frequency calculated from the me
sured instantaneous OZCM amplitude during the excitation~solid
line!. Circles indicate the frequencies 2p/(t i 112t i).
m-

ing a conservative valueP52.5 Å2 for the polarizability
derivative.32 However, the crucial experimental question
whether a given sample can tolerate such high electric fie
in an experiment.

In a theoreticalargument,33 Nelson and coworkers esti
mated the potential of single-pulse ISRS to excite lar
amplitude anharmonic vibrations. Assuming pulses w
10 mJ energy focused to 50mm ~FWHM! spot sizes, they
predicted that a maximum phonon displacement of
31023 Å could be produced in the organic molecular cry
tal a-perylene. For pulse widths of 70 fs, these parame
correspond to a field strength of about 0.5 V/Å. Hence th
estimation of the displacement produced by asingle pulse
and the field strength they considered reasonable are com
rable with the corresponding quantities in our indirect IL
excitation via ISRS. Furthermore, they suggested that
some materials coherent vibrational displacements in
0.1–1 Å range could possibly be achieved. These optimi
predictions were preceded by an actual experimental dem
stration that single visible laser pulses of 70 fs width a
1 mJ energy focused to 150-mm spot sizes impulsively ex
cited coherent optic modes ina-perylene.34 The field
strengths,;0.05 V/Å, used in this single pulse experime
were one order of magnitude below those assumed for
subsequent theoretical prediction. However, as discussed
later experimental paper by the same group,12 it turned out
not to be feasible to use the proposed larger field streng
because they exceed the fairly low laser-induced breakd
threshold ofa-perylene. This sequence of publications hig

d

of
-

FIG. 6. Indirect ILM excitation via ISRS withT.0 initial con-
ditions. Top panel: same as top panel of Fig. 4. The bottom pa
shows the resulting MD simulation, for random initial velocitie
appropriate to a lattice temperature of 5 K. Displacements are m
nified by a factor 5, and only a portion of the lattice is shown.
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lights how a material’s laser-induced breakdown thresh
can limit the potential of ISRS for the excitation of larg
amplitude vibrations. However, it was pointed out in Ref.
that materials having a substantially larger laser-indu
damage threshold thana-perylene exist.

The question of breakdown thresholds in ultrashort pu
laser-solid interaction is not yet very well studied. T
breakdown thresholds for alkali halides under irradiation
near-visible laser pulses with pulse widths down to 10
were experimentally determined to be about 0.2 V/Å~Ref.
35!, with a tendency for the thresholds to increase with
creasing frequency and decreasing pulse width. Only
measurements for femtosecond pulses, such as the p
used in our ISRS excitation studies, are available in the
erature. For fused silica and the alkali fluorides, breakdo
thresholds above 0.5 V/Å were obtained with 275- a
400-fs pulses for visible and near-visible frequencies.36 Val-
ues between 0.6 and 1.0 V/Å were measured for fused si
sapphire, magnesium fluoride, and glass, using visible la
pulses having a width of 120 fs.37 Other experimental studie
of fused silica obtained breakdown threshold fields of 3
3.0, and 3.3 V/Å for visible pulses of 150, 100, and 55
width, respectively.38,39We did not find measurements of th
breakdown threshold in ZnS in the relevant short-pulse
gime. However, an experiment on optical coatings ma
from ZnS~Ref. 40! showed that its breakdown field streng
for nanosecond pulses is comparable to that of magnes
fluoride, for which the short-pulse values are given abo
From these experimental results for pulses that are still 2
times wider than the ones we used for the excitation
ILM’s via ISRS in Secs. III A and III B, it appears that th
maximum field strength for our direct ILM excitation of Fig

FIG. 7. Same as Fig. 6, but for the indirect ILM excitation by
single, linearly chirped far-IR pulse.
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3 for the 22-particle chain may be slightly too large to
realized in an experiment, while that for the indirect ILM
excitation in the crystal lattice of Fig. 6 is below the valu
for breakdown. As discussed at the end of Sec. III B 1,
necessary external force magnitudes can be reduced by
geting an OZCM at a smaller amplitude, but this approa
has limitations due to the competition between the ti
scales for the unstable OZCM decay and other processes
crystal, e.g., damping. Moreover, the use of sequences
more pulses can also decrease the force magnitudes: ac
ing to the d-pulse approximation~see the Appendix!, the
force magnitude is inversely proportional to the number
pulses in the sequence. However, since a larger numbe
pulses requires longer control periods, the abovecaveat
about the competition of time scales applies here as wel

Turning to IR excitation, we note that the maximum for
amplitude in Fig. 7 corresponds to a field streng
0.008 V/Å, assuming thatq51.0e. Free-electron far-IR la-
sers produce picosecond pulses with intensities reported
to 43107 W/cm2 ~Ref. 41!, corresponding to a field magni
tude of 0.002 V/Å. Moreover, the frequency of free-electr
far-IR lasers can be chirped at rates of2931029 fs22 ~Ref.
9!. These field magnitudes and chirp rates are within a fac
of 4 and 20, respectively, of those used for the IR excitat
of ILM’s in Fig. 7. For this excitation mechanism, lase
induced breakdown should not play a role as a limiting fa
tor, since the threshold of 0.2 V/Å obtained for alkali halid
using near-IR pulses of 10 ps width35 is well above the nec-
essary maximum field magnitudes obtained here. As
cussed at the end of Sec. III B 2, both the necessary fi
magnitudes and the chirp rates are reduced when a sm
amplitude OZCM is targeted.

We conclude that the fields necessary for the indirect
citation of ILM’s via ISRS or far-IR as demonstrated in Se
III B are reasonable and may be feasible in the near futu
Among the approaches we have considered, excitation
ISRS seems more promising since lasers producing the
essary high field strengths are already available, although
experimental problem of laser-induced breakdown must
borne in mind.

Preliminary results indicate that the indirect excitation
ILM’s can also be achieved when simpler analytic time d
pendences for the external force are used, without necess
ing significantly larger force magnitudes. For the indire
ILM excitation via ISRS, we repeated the optimization pr
cedure using pulse sequences constrained to have anequal
variable spacing between the pulses as well as common
able widths and magnitudes and found that for the tar
OZCMs at v50.98v0 and v50.99v0 the required force
magnitudes were 2.3 and 0.4% larger, respectively. Si
larly, repeating the optimization for the indirect ILM excita
tion via IR using a single Gaussian pulse withunchirped
variable frequency as well as fixed width and variable m
nitude, we found the corresponding increases in the fo
magnitude to be 5.0 and 1.3%.

Another important experimental consideration is the
bustness of the optimal fields. Considering the experime
limitations on the fidelity of shaped waveforms for ISRS, w
note from Ref. 29 that prespecified pulse amplitudes a
widths were reproduced to within 10% and pulse positions
within 10 fs. Randomly perturbing the ISRS pulse para
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eters of the sequence shown in the top panel of Figs. 4
for the indirect ILM excitation in the lattice within thes
margins reveals that although the perturbedF(t) excites the
OZCM to a slightly different amplitude in each of the te
cases considered, a decay into localized excitations alw
occurs. On the other hand, the ISRS pulse sequence show
the top panel of Fig. 3 for the direct ILM excitation in th
22-particle chain is more sensitive to such infidelities.
each of ten cases of randomly perturbing the ISRS pu
parameters within the above margins, a localized excita
at the final time results, but only in one case does this e
tation persist after the applied field is turned off. Decreas
the margins to a 5% error for pulse amplitudes and widt
and 5 fs for the pulse positions, the success rate increas
4 out of 10.

B. Effects of nonzero initial temperature and damping

We have obtained our optimal external forces assum
that the system is initially at rest, but in an experiment th
mal fluctuations will always be present and we should c
sider their effect. For the case of indirect ILM excitation, w
have seen that the efficacy of the external field is enhan
by the presence of velocity perturbations due to an ini
temperature of 5 K, since they serve to trigger the OZC
instability. At this low temperature, thermal fluctuations a
small enough to act just as perturbations on the zero t
perature dynamics. Accordingly, application of the ze
temperature optimal force initially excites a slightly pe
turbed OZCM which subsequently decays, as seen in
lower panels of Figs. 6 and 7, respectively.

If we increase the initial temperature, the situati
changes. We have performed MD simulations with the IS
pulse sequence of Fig. 4 for ten different sets of initial v
locities appropriate to lattice temperatures of 77 and 300
Already at 77 K the initial excitation can no longer be ide
tified as a perturbed OZCM. Nevertheless, in all ten of the
K cases, the simulations result in well-localized ILM-lik
excitations, which appear sooner than for the 5 K case of
6. However, fewer localized excitations are observed for
same size lattice, and an increased background of therm
excited long-wavelength acoustic vibrations is present. T
trend continues as the initial temperature is raised to 300
Very similar results are obtained when the optimal force
the far-IR excitation from Fig. 7 is used at higher initi
temperatures. For comparison, we repeated the same no
initial temperature simulations, but with no external forc
and we observed no significant localization of vibration
energy. Therefore, although the optimal external force
tained for zero initial temperature does not achieve its or
nal goal of exciting an unstable OZCM when used at th
elevated temperatures, it nevertheless produces localize
brations.

Similar to the question of robustness with respect to in
delities in the pulse parameters, the optimal ISRS pulse
quence for the direct ILM excitation in the 22-particle cha
is more sensitive to nonzero initial temperatures than is
sequence for indirect ILM excitation in the lattice. Perform
ing MD simulations with the ISRS pulse sequence of Fig
for ten different sets of initial velocities appropriate to latti
temperatures of 5 K, we find that a persisting localized
citation at the target site results in seven cases. Already a
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initial temperature of 77 K the success rate drops to ze
although in some cases a localized excitation is created
site other than the target site.

Vibrations in real crystals couple to other types of exci
tions and exhibit finite lifetimes—typically between 5 an
300 phonon periods for optical phonons.42 We have included
this aspect by adding phenomenological velocity-depend
damping to our MD simulations. Anharmonicity, which co
tributes significantly to phonon lifetimes, is already treat
explicitly in our calculations; thus we assume a small dam
ing constant corresponding to an OZCM lifetime of 100T0.
We repeated the optimization for the direct ILM excitatio
via ISRS of Fig. 3 after adding this damping, using the o
timal pulse sequence with zero damping as the initial gue
This results in a qualitatively very similar sequence
pulses, but with a larger maximum force magnitude
0.24 eV/Å, compared with the earlier result 0.13 eV/Å f
zero damping. Due to the presence of damping the amplit
of the resulting localized excitation decays away within
few tens ofT0 after the applied force ends. Similarly, whe
we include damping in the optimization of the indirect ILM
excitation via ISRS of Figs. 4 or 6, we find that the comm
pulse amplitude increases from 0.013 to 0.016 eV/Å. W
T50 K initial conditions, the amplitude of the resultin
OZCM damps out before the accumulated computatio
round-off error can trigger the OZCM instability, but for a
initial temperature of 5 K, we again observe a breakup of
OZCM into ILM-like localized excitations, whose amplitud
subsequently damps out over a few tens of OZCM perio
Additional calculations for the indirect ILM excitation via
ISRS using a damping constant appropriate to a sho
OZCM lifetime of 50T0 yield a common pulse magnitud
0.019 eV/Å, along with qualitatively similar MD results
Thus we conclude that it is possible to create ILM’s wi
damping present, although the necessary force amplitu
are of course somewhat larger. Furthermore, detection
these ILM’s would have to occur within a few tens of OZC
periods after their creation.

C. Relevance for real crystals

While our 1D model incorporates some realistic featur
such as standard interparticle potentials and the meas
harmonic dispersion of ZnS, it is not a model of any re
crystal. We have also considered 3D models of ZnS-struc
crystals using standard two-body central potentials betw
atoms out to second neighbors.20 It is well known that the
harmonic modes fork along^111& map onto an effective 1D
model involving the collective motion of~111! planes. We
have shown that this mapping also occurs in the anharm
case, for certain polarization directions. The resulti
quasi-1D model, with effective anharmonic potentials b
tween ~111! planes undergoing collective motion with on
transverse and one longitudinal degree of freedom, yield
representation of the actual motion in a 3D crystal and t
justifies our studies of purely 1D lattices.43 Applying again
the ILM existence criterion of Ref. 23, we can choose t
parameters of the quasi-1D model such that the ILM’s
associated with the optically active ExM. Hence we adjus
our potential parameters so as to fit the measured harm
phonon dispersion data of ZnS along^111&, as well as mea-
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sured mode Gru¨neisen parameters. Within the RWA th
model exhibits gap ILM’s associated with the anharmo
version of thek50 TO phonon.20 These results suggests th
to the extent that the central potentials used in this mo
capture the anharmonic properties of the real crystals, re
sentative candidate materials for the indirect optical exc
tion of these ILM’s would be ZnS, ZnSe, and the copp
halides. We re-emphasize that these candidates for ind
optical creation of ILM’s have two basic properties in com
mon: ~i! thek50 TO phonon in these materials is both firs
order Raman and IR active, and~ii ! the frequency of thek
50 TO phonon is at theminimumof the TO branch along
^111&, such that in conjunction with the fact that real pote
tials are dominated by soft anharmonicity, the criterion
Ref. 23 predicts the existence of gap ILM’s associated w
this k50 TO phonon.

V. CONCLUSION

In conclusion, our optical excitation studies demonstr
theoretically that suitably tailored laser radiation offers
promising route for the laboratory creation of vibration
ILM’s. The time dependence of the fields is determined
an efficient optimal control algorithm, designed to produ
wave forms consistent with the rapidly developing expe
mental capabilities in laser pulse shaping. Thedirect excita-
tion of ILM’s in finite systems was demonstrated for impu
sive stimulated Raman scattering by a sequence of ultras
laser pulses at THz repetition rates, with variable spac
between consecutive pulses. For periodic lattices, ILM c
ation was achievedindirectly via decay of the unstable ass
ciated ExM which is excited optically either via multiple
pulse ISRS as above or via a single far-IR pulse with
linearly chirped frequency. For the indirect excitation a
proach, it is essential to consider a lattice having ILM’s th
are associated with the optically active ExM.

The direct ILM excitation via ISRS requires rather com
plex pulse sequences and laser field strengths that may
exceed the breakdown threshold of a given sample. Furt
more, this approach shows a dependence on the system
and is therefore not well suited for the creation of ILM’s
crystal lattices, although it may be relevant for the excitat
of local modes in molecules. Our studies show that the m
advantageous means to excite ILM’s in crystals is via
decay of their associated unstable anharmonic ExM, o
cally driven to a large amplitude. This approach not on
requires smaller field strengths, but it succeeds even in
presence of thermal fluctuations and damping, and also
external forces constrained to have simpler analytic time
pendences, i.e., pulse sequences withequalspacing between
consecutive pulses for ISRS and a single pulse withconstant
frequency for IR excitation. Hence our studies point to
potentially fruitful avenue for experimentally accessing t
regime of large-amplitude anharmonic vibrational dynami
which is very different than that for harmonic or weak
anharmonic systems.
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APPENDIX: DELTA APPROXIMATION FOR ISRS
EXCITATION OF THE OZCM

In this Appendix we demonstrate that the main charac
istics of the optimal pulse sequence for the ISRS excitat
of the OZCM in our model lattice described in Sec. III B
can be reproduced using a simplification which was cons
ered in Ref. 44, but in a different context. Here, the exter
force due to a sequence of short laser pulses is approxim
by a sequence ofL delta functions

F~ t !5(
j 51

L

ajd~ t2t j ! ~A1!

with individual positive amplitudesaj and pulse center time
t j . In addition, we know that the dynamics of the OZCM
a diatomic lattice map onto that of an effective anharmo
oscillator with massmeff , displacementx, and momentump.
Including the external force~A1!, the Hamiltonian for the
driven case is given by

Heff5
p2

2meff
1Veff~x!2xF~ t !, ~A2!

whereVeff(x) is an effective anharmonic potential.
Starting with the effective oscillator initially at rest w

want to excite it to a given final energyEf while keeping the
necessary external force magnitude minimal. This requ
an optimization of the parameters$aj% and $t j% for the ex-
ternal force~A1!. A single delta pulseajd(t2t j ) boosts the
momentum of the oscillator byaj at time t j , and instanta-
neously changes the kinetic energy. Denoting the momen
of the oscillator immediately before and after the pulse
pj 21 andpj , respectively, we can write the energy boost

DEj5
~pj

22pj 21
2 !

2meff
5

~aj
212aj pj 21!

2meff
. ~A3!

Evidently, for a givenaj the largest possible energy transf
occurs when the pulse arrives exactly at the time whenpj 21
is positive and maximal, i.e., at the zero crossings of
displacement of the oscillator where its momentum is po
tive. Knowing the effective potential, this simple result
sufficient to determine the optimal pulse center times fo
given set of pulse amplitudes$aj%. Furthermore, we now
know that the energy of the oscillator after the comple
pulse sequence is given by

EL5
1

2meff
S (

j 51

L

aj D 2

. ~A4!

We define an objective functional

J~$aj%!5(
j 51

L

aj
22l~EL2Ef !, ~A5!

where the first term is just the integrated square magnitud
the external force~A1! and the second term constrains t
energyEL after the pulse sequence to be equal to the des
final energyEf via introduction of a Lagrange parameterl.
Minimizing this objective functional with respect to th
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pulse amplitudes$aj%, we find that the optimal pulse se
quence consists of pulses with equal amplitudes

aj5
1

L
A2meffEf . ~A6!

To summarize, thed approximation predicts that the op
timal pulse sequence for the OZCM excitation consists
pulses with equal amplitudes whose pulse center times c
cide with the zero crossings of the motion of the atoms. T
agrees with our numerical results from the full optimal co
v

,

B

P
s

s,

v.

an

o

f
n-
is
-

trol scheme, as discussed in Sec. III B 1 and illustrated in F
5. However, thed approximation underestimates the ar
under a single pulse by about 20%, when compared with
pulses in the numerically obtained optimal sequence. He
this simplified description correctly predicts the qualitati
features of the optimal pulse sequence, but it cannot g
quantitatively reliable results for the optimal pulse width a
magnitude. These require knowledge of the actual motion
the particles over the duration of each pulse and are obta
by applying the full optimal control scheme.
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