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Anisotropy and frequency dependence of the hopping magnetoresistance
in the high-frequency limit in three-dimensional samples
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The magnetic-field dependence of the magnetoconductivity due to quantum interferences of isotropic three-
dimensional samples in the strongly localized regime is investigated at high frequencies. To this end the
three-site model is used. The investigation shows that the magnetoconductivity at high frequencies is aniso-
tropic, that is; it depends on the direction between the electric and the magnetic field. A simple relationship
between the transverse part of the magnetoconductivity and the parallel part of the magnetoconductivity for all
magnetic fields is obtained. The magnetoconductivity for crossed electric and magnetic fields is always larger
than for parallel magnetic and electric fields. As a function of the magnetic field the magnetoconductivity is a
quadratic function with respect to the magnetic field for small magnetic fields, a linear function for moderate
fields and saturates at high fields. As a function of frequency the magnetoconductivity increases with decreas-
ing frequency at frequencies which are low, but in the range of applicability of the three-site model. At very
high frequencies the magnetoconductivity passes into a plateau. On the plateau the magnetoconductivity
becomes independent of frequency.
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I. INTRODUCTION

The investigation of the influence of quantum interferen
effects on the transport properties of disordered systems
received considerable attention in recent years. Also in
hopping regime, where quantum interferences are naiv
not expected to be important on length scales larger than
localization length, such interferences were shown to de
mine the magnetotransport properties of insulating sam
at low magnetic fields. A first explanation for the magneto
sistance of insulating samples was given by Nguyen, Spiv
and Shklovskii,1 who argued that phase coherence is ma
tained during a hop, so that elastic scattering of partial e
tron waves can give rise to quantum interferences, and th
fore can lead to magnetoresistance.

So far such interferences have been studied in many
pers both theoretically~see, e.g., Refs. 1–8! and experimen-
tally ~see, e.g. Refs. 9–13!. In all papers it is found that the
dc magnetoconductivity increases with decreasing temp
ture. Furthermore, in most papers the magnetoconductivi
a quadratic function with respect to the magnetic field
small fields, a nearly linear function for moderate fields a
saturates at high magnetic fields. In some samples~see, e.g.,
Ref. 14! quantum oscillations of the magnetoconductiv
have been observed, which were investigated further in
Refs. 3 and 4.

The impact of a magnetic field on the quantum interf
ences is governed by the flux penetrating the area of cha
teristic configurations. If the system is strongly localiz
scattering at one intermediate site is most important, si
the transition probabilities are exponentially small functio
with respect to the ratio between site separation and loca
tion length, so that the scattering center can be anywhere
close to the initial or the final site. If we now consider a h
from an intial site to a final site with scattering of parti
waves by one intermediate site, we find that the area p
PRB 620163-1829/2000/62~17!/11450~10!/$15.00
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etrated by the magnetic field is always larger for hops tra
verse to the field than for hops into the direction of the ma
netic field. Consequently, the effect is highly anisotropic
the microscopic level.

The current itself is a vector, and since in the presence
an electric and a magnetic field only two vectors are av
able if the system is isotropic, the symmetric part of t
magnetic-field-induced change of the currentd j has to lie
within the vector space spanned by the vectorsE and H.16

Consequently, it has the structure

d j5ds'~H !E1
ds uu~H !2ds'~H !

H2
~EH!H. ~1!

If ds uuÞds' anisotropy is present. In this case the curren
not always parallel toE. In general, there is no principle
which determines the differences betweends uu and ds' in
advance. However, according to the theoretical results
Refs. 1–8 and to the experimental results of Refs. 9–13,
magnetoconductivity of a macroscopic sample is isotrop
so thatds uu(H)5ds'(H). Only in Ref. 15 was anisotropy
observed in a strong electric field. Thereds'51.94ds uu was
detected in the quadratic regime with respect to the magn
field.

To explain the isotropy usually the geometry of the p
colation path is invoked. Since in such a sample the per
lation path writhes somehow through the sample and
resistance of the whole sample is deduced only from
resistance, the critical resistance, which can have any di
tion in space, the anisotropy is claimed to be wiped out.
the other hand, if one would try to construct an effectiv
medium theory for the magnetoconductivity the physical p
ture would be different. In this case there would be no p
colation path. Instead every hop would be of the order of
11 450 ©2000 The American Physical Society
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Mott length, and into the direction of the electric field. Co
sequently, also anisotropy could be expected. Then, ano
reason for the occurence of isotropy could be that the s
tems in most experiments were close to the metal-insul
transition. In this case the physical picture sketched ab
would no longer hold, since in this case scattering at m
intermediate sites is of importance. If this is true the scat
ing paths can probably sufficiently diffuse out, so that t
area penetrable by flux for hops transverse to the field i
large as for hops into the direction of the field.

At present we are not able to check the latter assumpt
since close to the metal-insulator transition it is necessar
take into account also damping and level broadening eff
due to the nondiagonal parts of the density matrix and, mo
over, to construct a suitable method to find a solution for
configuration-averaged Green’s function. First attempts
incorporate such effects in the investigation of the magne
conductivity have been formulated in Refs. 17–19. Howev
what can be checked is the argument used to explain
isotropy of the magnetoconductivity. The main point of t
argument is that in percolation theory the conductivity of t
whole sample is calculated from one resistor only, from
critical resistor. Since the critical resistor can have any dir
tion in space the anisotropy is averaged out in the cours
the averaging procedure. The same situation, that is the
ation in which the current is calculated from one resis
only, can be modeled with the three-site model, introdu
by Holstein.20 In this model the conductivity of the macro
scopic sample is calculated from three sites only. To this
the transport equations are solved for three sites and the
rent is calculated in this approximation. The configuratio
averaged current is obtained by averaging over all poss
side lengths of the triangle, and over all orientations of
surface normal of the triangle in space. For three sites
calculation can be performed exactly, so that no percola
theory or effective medium method has to be used.

Clearly, if the transport equations are solved for thr
sites only, one cannot expect to calculate the resistance
macroscopic sample for all cases of interest, but only
those range of frequencies, for which the main contributio
to the current originate from jumps between nearby s
only. The range of applicability of the three-site mod
agrees with that of the two-site model~see, e.g., Refs. 21 an
22!, introduced by Pollak and Geballe.23,24 Since in this
model the typical hopping length is of the ordera21ln(n/s),
where a21 is the localization length,n is the attempt-to-
escape frequency ands52 iv is the frequency of the ap
plied electric field, the hopping length increases with d
creasing frequency. The requirement that the hopping len
does not exceed the mean site separation appreciably
duces therfore the practical applicability of the the concr
results to rather high frequencies. Clearly, one can not ex
that anisotropy is produced just by increasing frequency
that anisotropy is also present at low frequencies, if pres
at high frequencies. Below we show that for strongly loc
ized samples anisotropy is present at high frequencies
we derive a simple relationship, which relates the transve
part of the magnetoconductivity to the longitudinal part
the magnetoconductivity. The construction of an effect
theory for the description of the magnetoconductivity at lo
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frequencies and in the dc limit, which takes into accou
anisotropy, is devoted to another paper.

Beside the dependence of the magnetoconductivity on
magnetic field we also investigate the frequency depende
We find that in the range of applicability of the three-s
model the magnetoconductivity decreases with increas
frequency at low frequencies. At high frequencies the m
netoconductivity becomes frequency independent.

II. BASIC EQUATIONS

In the situation of interest the dynamics of the electrons
governed by the Hamilton operator24

H5(
m

@em2e„E~ t !Rm…#am
1am1(

q
\vqS bq

1bq1
1

2D
1 (

mÞm8
Jmm8~H!Fmm8am

1am8 . ~2!

Hereem andRm are the energy and the position vector of t
site with indexm, am

1 , andam are creation and annihilation
operators for electrons at sitem, bq

1 andbq are creation and
annihilation operators for acoustical phonons with wave v
tor q and frequencyvq , andFm8m is the multiphonon op-
erator. The electric fieldE(t) is switched on suddenly att
50. The magnetic field is taken into account only in t
phase factor of the resonance integral (a inverse localization
length!

Jmm85J0expS 2aURmm8U1 i
eH

2\c
@Rm3Rm8# D , ~3!

so that attention is paid only to the influence of the magne
field on quantum interferences. Wave-function shrinkage
spin effects are ignored.

If the Hamilton operator~2! is used the transport equatio
takes the form

sCm~Um1ERm!5(
m8

Gm8m~Um82Um!, ~4!

in the linear approximation with respect to the electric fie
HereCm5 f m(12 f m) ( f m is the Fermi distribution with site
energyem), s52 iv (v is the frequency of the applied elec
tric field!, and Um is the local electrochemical potential a
site m. The quantitiesGm8m , the resistances, are the trans
tion rates. In the absence of the magnetic field their calcu
tion can be restricted to two-site processes, which desc
only direct hops between the initial and the final site.
these contributions are independent of the magnetic field,
consideration of the impact of the magnetic field requi
also the consideration of higher-order processes, which re
from interferences between alternative hopping paths. If
system is strongly localized only scattering at one interm
diate site has to be taken into account, so that

Gmm85Gmm8
(2)

1Gmm8
(3)

~H! ~5!

holds, whereG (2) and G (3) are the two-site and three-sit
hopping rates, respectively. For weak electron-phonon c
pling the two-site rates are given by24
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Gmm8
(2)

5n expS 22auRmm8u

2
uem2eFu1uem82eFu1uem2em8 u

2kT D , ~6!

where n is the attempt-to-escape frequency andeF is the
Fermi energy. Since the three-site contributions describe
interference between the amplitude for the direct hop w
the amplitude for a hopping path with scattering at one
termediate site it has the structure

Gmm8
(3)

~H!5(
m1

Gmm1m8~H!. ~7!

Herem1 is the index corresponding to the scattering cen
Since we are interested only in the magnetoconductivity
take into account only the symmetric part of the rate w
respect to the magnetic field, which, for weak electro
phonon coupling, is given by

Gmm1m8~H!5g
mm8

m1 FcosS eH@Rmm83Rm1m8#

2\c
D 21G , ~8!

with

g
mm8

m1 5nJ0S 1

emm1

1
1

em8m1

D
3exp~2auRmm8u2auRmm1

u2auRm1m8u!

3expS 2
uem2eFu1uem82eFu1uemm8u

2kT D . ~9!

The rates~8!, ~9! can be derived using various technique
They have been derived in Ref. 2 with renormalized pert
bation expansion, in Refs. 5 and 25 using the Konstantin
Perel method, and in Ref. 6 with nonequillibrium Green
functions. Since in the strongly localized regime the me
separation between the sites is large as compared to th
calization length, the three-site rates are small as comp
to the two-site rates, so that

Gmm8
(2)

@Gmm8
(3)

~H! ~10!

holds, independent of the strength of the magnetic field.
If the electrochemical potentials are known t

configuration-averaged current is calculated according to

j~s!5
ebs

V K (
m

RmCm@Um1e~ERm!#L , ~11!

where the bracket symbolizes the configuration average.

III. CURRENT IN THREE-SITE APPROXIMATION

In order to investigate the magnetoconductivity at hi
frequencies we use the three-site model. In this model
current is calculated from three sites only. The model w
used by Holstein in his investigation of the hopping H
effect.20 Here we apply it to the magnetoconductivity. In o
opinion, the advantage of the model is in that it can be sol
exactly. No percolation theory or effective medium meth
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is needed. Furthermore, the range of validity of the mode
well understood~see, e.g., Refs. 21 and 22!. It agrees with
that of the two-site model introduced by Pollak an
Geballe.23 In the two-site model the characteristic hoppin
length is of the order ln(n/s)/(2a). Since the hopping length
increases with decreasing frequency the current can
longer be calculated from two sites only, if the characteris
hopping length exceeds the mean site separation appreci
so that the model applies only to high frequencies.

For three sites the transport equations take the form

~sC11G121G13!U12G12U22G13U352sC1e~ER1!,

2G12U11~sC21G121G23!U22G23U352sC2e~ER2!,

2G13U12G23U21~sC31G131G23!U352sC3e~ER3!.
~12!

Consequently, the problem reduces to the calculation of
inverse of a 333 matrix. To calculate the current we firs
solve Eq.~12! with respect to the electrochemical potentia
The calculation is elementary but lengthy and therefore
presented here in detail. Using the electrochemical poten
we find that every triangle contributes to the configurati
averaged current with

K esb

V
@R1C1„U11e~ER1!…1R2C2„U21e~ER2!…

1R3C3„U31e~ER3!…#L .

Since we are calculating the average of the current accor
to the rule

j~s!5E dR1dR2dR3de1de2de3N~e1!N~e2!N~e3!j~1,2,3!,

~13!

we have actually overcounted the number of configuratio
Since three bonds contribute to the current, and every b
has two ends we then have to devide the results by 6, so
the configuration averaged current is given by

j~s!5
esb

6V E dR1dR2dR3de1de2de3N~e1!N~e2!N~e3!

3@R1C1„U11e~ER1!…1R2C2„U21e~ER2!…

1R3C3„U31e~ER3!…#. ~14!

If we use the solution of the transport equations we find

j~s!5 K ebs2

6VD~1,2,3!
$sC1C2C3G12e~ER12!R121@G12G23

1G12G131G23G13#C1C2~eER12!R121cyclic%L ,

~15!

where the cyclic denotes the cyclic permutation of the in
ces 1, 2, and 3, and
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D~1,2,3!5s@s2C1C2C31s@C1C2~G131G23!

1C1C3~G121G23!1C2C3~G121G13!#

1~C11C21C3!~G12G131G12G231G23G13!#

~16!

is the determinant of the matrix of the system~12!. Since, in
the averaging procedure, all sites are equal they yield
same contribution to the configuration-averaged current
that we can omit the cyclic terms in the following, and mu
tiply the result simply by 3.

To proceed further, we take advantage of the fact tha
the course of the averaging procedure the resistances
take on any direction in space. To this end we first put o
site, let us say site 3, on the origin of the coordinate syst
The z axis is chosen parallel to the magnetic field. Furth
more, we haveR125R132R23. Now we decompose the vec
tors R13 and R23 into their longitudinal and their transvers
part with respect to the direction of the magnetic field, a
cording toR135R13

uu 1R13
' and R235R23

uu 1R23
' . Since in the

averaging procedure all sites are treated equally to ev
configuration withR135R13

uu 1R13
' andR235R23

uu 1R23
' there is

also a configuration which differs only in thatR13
' andR23

' ,
are replaced by2R13

' and2R23
' . The cosine in Eq.~8! is not

affected by this operation. Invariant are also the quanti
G (2) andg i j

k , since they depend only on the side lengths
the triangle, which remain unchanged. The scalar produc
Eq. ~10! projects the correponding vectors onto the direct
of the magnetic field. Consequently, in the averaging pro
dure (ER12)R12 is replaced by (ER12

uu )R12
uu .

Consider now the situatonE'H. Again we decompose
the vectorsR13 andR23 into their longitudinal and into trans
verse part with respect to the direction of the magnetic fie
If we now apply the same argumentation we find that, in
course of the averaging procedure, (ER12)R12 is replaced by
(ER12

' )R12
' . Consequently, we have

juu/'~s!5 K ebs2

2VD~1,2,3!
$sC1C2C3G12e~ER12

uu/'!R12
uu/'

1@G12G231G12G131G23G13#

3C1C2~eER12
uu/'!R12

uu/'%L , ~17!

wherejuu ( j') is the current forEuuH (E'H).
To simplify Eq. ~17! further we use the inequality~10! to

linearize Eq.~17! with respect to the three-site transitio
probabilities. Then the magnetic-field-induced change of
current is given by

d juu/'~s!5K e2bs4

2VD2~1,2,3!
G132@R13

uu/'a21
3 2R23

uu/'a12
3 #2L E,

~18!

where

a12
3 5G13

(2)C2~C11C3!1G23
(2)C1C21sC1C2C3 , ~19!

and the determinantD(1,2,3) is given by Eq.~16!, with G
replaced byG (2).
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IV. ANISOTROPIC MAGNETORESISTANCE

Since, in general, the transverse part of a vector with
spect to the magnetic field is different from the longitudin
part, it appears that already Eq.~18! indicates, that the mag
netoconductivity is anisotropic. To investigate this point fu
ther we first perform the angular integrations. To this end
split the integrations over the triangle into two parts, t
average over the side lengths of the triangle, and the ave
over the orientation of the triangle in space. However, sin
the integrand of Eq.~19! depends only on the side lengths
the triangleR15uR23u, R25uR13u, and R35uR132R23u and
on the angles of the unit vectorsR13/R2 andR23/R1 via the
vectorsR13 andR23, we first introduce an additional integra
tion over the third side, using the identity

152E
0

`

dR3R3d~R3
22R1

22R2
212R1R2cosc!, ~20!

wherec is the angle between the vectorsR13 and R23. c
satisfies the equation

cosc5cos~f12f2!sinu1sinu21cosu1cosu2 . ~21!

Hereu1 (u2) andf1 (f2) are the polar and azimutal ang
of the vectorR23 (R13), respectively. Thereafter, the integra
tions over the angles can be performed exactly~see the re-
marks in Appendix A!. Doing so, we obtain

D juu/'5
4p

3
e2bs4E de1de2de3N~e1!N~e2!N~e3!

3E
0

`

dR1dR2E
uR12R2u

R11R2
dR3

R1R2R3g12
3

D2~1,2,3!
guu/'~h!

3@a12
3 a21

3 R3
21~a12

3 2a21
3 !~R1

2a12
3 2R2

2a21
3 !#E, ~22!

where

h5
eHA4R1

2R2
22~R1

21R2
22R3

2!2

4\c
5

eHS

\c
, ~23!

the dimensionless magnetic field, is equal to the numbe
flux quanta penetrating the areaS of the triangle. The func-
tions guu(h) and g'(h) are different from each other. The
are given by

guu~h!5
3

h2 S sin~h!

h
2cos~h! D21 ~24!

and

g'~h!5
1

2h

d

dh
„h2guu~h!…. ~25!

Consequently, the longitudinal partds uu(H) differs from the
transverse partds'(H). Equation~25! entails that

ds'~H !5
1

2H

d

dH
„H2ds uu~H !…. ~26!

Equation ~26! is applicable to magnetic fields of an
strength. In the quadratic approximation with respect to
magnetic field, this equation results in the relationship
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FIG. 1. Longitudinal part~thick line! and
transverse part~thin line! of the magnetoconduc
tivity versusF.
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ds'~H !52ds uu~H !1o~H2!. ~27!

Since the transverse part of the magnetoconductivity is
lated to the parallel part by the relationship~27! we restrict
the further investigation to the investigation ofds uu.

V. FREQUENCY DEPENDENCE

While the angular integrations, which have lead to anis
ropy, could be performed exactly, the integrations over
side lengths of the triangle and the site energies can onl
performed approximately. To see where the most impor
contributions come from, we first investigate the integra
further. If all site energies were equal the integral would
zero, due to the symmetry of the integrand. Thus, in orde
obtain a nonvanishing contribution the site energies sho
be different. Since the integrand is exponentially small w
respect to the distance of the site energies of site 1 and s
on the Fermi energy, and the integrand is symmetric w
respect to exchange of 1 and 2, we infer that the initial a
the final site should be close to the Fermi energy. Sin
furthermore, the energy of site 3 has to be different from t
of the sites 1 and 2, it has to be situated outside the rang
accessible energies for sites 1 and 2. This notion is veri
by a closer look on the integrand. Ife3 is outside the range o
e1 ande2, then the onlye3 dependence which remains is th
e3 dependence of the preexponential factor ing12

3 Eq. ~9!. If
we use furthermore the Fermi energy as the zero point for
energy axis, we find

ds uu/'~s!52
4p2

3
e2bNF

2LE de1de2E
0

`

dR1dR2

3E
uR12R2u

R11R2
dR3R1R2R3

3guu/'~h!

3
G12

(2)

S 11
1

s
G12

(2) C11C2

C1C2
D 2 eaR32aR12aR2,

~28!

whereNF is the density of states at the Fermi energy, an
e-

t-
e
be
nt
d
e
to
ld

2
h
d
e,
t
of
d

e

L52J0E
2`

`

de3

N~e3!

e3
. ~29!

For largerc5 ln(n/s) the integrations yield~see Appendix B!

ds uu/'5
8p2ln 2

9
e2kTLa28NF

2s~rc/2!6f̃ uu/'~F!, ~30!

where

f̃ uu~F!51232F2~1,2,3/2,5/2;2F2/4!

122F2~2,2,5/2,5/2;2F2/4!, ~31!

and

f̃'~F!5122F2~2,2,5/2,5/2;2F2/4!. ~32!

Here 2F2 is the hypergeometric function and

F5
eH

8\ca2
rc

3/2. ~33!

The functionsf̃ uu and f̃' are depicted in Fig. 1. From th
figure we see that the magnetoconductivity is a quadr
function with respect to the magnetic field for small fields
nearly linear function for moderate fields, and saturates
high fields. Furthermore, the transverse part of the magn
conductivity is always larger than the longitudinal part of t
magnetoconductivity.

If we calculate the conductivity in the same approxim
tion we find ~see Appendix C!

s~s!5
4p

3

4 ln 2

5
e2NF

2kT~2a!25src
5 , ~34!

so that

ds uu~H,s!

s~s!
}a23Lrcf̃~F!. ~35!

Since bothF andrc depend only ons andH the ratio~35! is
temperature independent. In the quadratic regime with
spect to the electric field we have
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FIG. 2. Sketch of the frequency dependen
of the magnetoconductivity.~1! lowest frequen-
cies and multiple hoppping regime,~2! three-site
model with v/n!1, ~3! three-site model with
v/n@1.
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f̃ uu~F!5
2

25
F21o~F2!, ~36!

so that

Reds uu~H,s!

Res~s!
5

3

3200
p

e2H2L

\2c2a7
ln4

n

v
. ~37!

Consequently, the effect increases with decreasing
quency.

The equations derived so far are valid forn/s@1. Conse-
quently, they do not apply to the frequency rangen/s!1.
For such high frequencies the denominator in Eq.~28! can be
replaced by 1, so that the magnetoconductivity becomes
dependent of frequency. On the plateau we obtain

ds uu/'536p2e2kTNF
2La28nI uu/'~F!, ~38!

where

I uu/'~F!52
1

288E0

`

dx1dx2E
0

x1
dx3~x11x22x3!~x21x3!

3x1
3guu/'@F2Ax2x3~x11x2!~x12x3!#e2x12x2.

~39!

In the quadratic regime with respect to the magnetic field
~39! leads to

ds uu5
1287

40
p2e2kTNF

2La28n
e2H2

\2c2a4
1o~H2!. ~40!

The conductivity also passes into a plateau in this limit. F
the conductivity we obtain~see Appendix C!

s53e2NF
2kTa25n. ~41!

Consequently, in the quadratic regime with respect to
electric field we have

Reds uu~v!

Res~v!
Uv/n!1 /

ds uu~v!

s~v!
U

v/n@1

5
1

11440
ln4S n

v D .

~42!
e-

n-

.

r

e

Again we observe, that the magnetoconductivity increa
with decreasing frequency. In a further publication w
show,26 that Reds uu(v)/Res(v) depends at most weakly o
frequency at very low frequencies and in the multiple ho
ping regime, so that qualitatively the behavior sketched
Fig. 2 is obtained.

VI. CONCLUSIONS

In the paper we have calculated the magnetoconducti
of highly insulating samples in the high-frequency limit. T
this end we have used the three-site model, which could
solved exactly. According to our calculation the magne
conductivity in the strongly localized regime is anisotropic
the high-frequency limit. We have derived a simple relatio
ship which relates the transverse part of the magnetocon
tivity to the parallel part of the magnetoconductivity. It turn
out that the magnetoconductivity for magnetic fields appl
transverse to the electric field is always larger, as for m
netic fields applied parallel to the electric field. We do n
expect that anisotropy is produced merely by increasing
quency, so that we expect that the magnetoconductivity
the strongly localized regime is also anisotropic. In that o
results are in contradiction to those of the Refs. 1–8, wh
predict an isotropic magnetoconductivity for macrosco
samples. They do, however, compare to some extent with
experiments of Ref. 15. Thereds'/ds uu51.94 was mea-
sured in three-dimensional GaAs samples in the quadr
regime with respect to the magnetic field. Our theory p
dicts ds'/ds uu52, also in the quadratic regime. Howeve
since in the experiments the dc conductivity in the no
Ohmic regime was measured, these experiments canno
taken as direct verification.

From our calculation we deduce that the reason for
absence of anisotropy in previous calculations is in the
glect of correlations between the direction of the elect
field, the direction of the magnetic field and the surface n
mal of the surface spaned by the intermediate sites. In R
1 and 7, in which the magnetoconductivity in the dc lim
was investigated using percolation theory, and Refs. 2–5
which the magnetoconductivity was investigated using eff
tive methods, the focus was on the properties of the crit
resistor. The critical resistor is an objectf (S,H) which de-
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pends on the oriented area of the surfaceS and on the mag-
netic field H. Since the calculation of the configuration a
erage amounts to an integration over all directions of
surface normal, in all areas the result of the averaging p
cedure is isotropic. In our approach we first solve the r
equations, calculate the current and then perform the ave
ing. Before averaging, the current depends on the direc
of the electric field, on the direction of the magnetic fie
and on the direction of the surface normal of the triang
Thus it is an objectj(E,S,H) which is a linear function of
uEu, but depends on the angle between the electric field
the surface normal, the angle between the magnetic field
the surface normal, and the magnitudes of the vectorsS and
H. In the averaging procedure the direction of the surfa
normal is integrated out, but in doing so it has to be tak
into account that the expression is not only a function of
angle betweenS and H, but also a function on the angl
betweenS and E. The latter angle is absent in those tre
ments which focus on the critical resistor only. If the angle
taken into account in the integrations the dependence on
angle between the electric and the magnetic field rema
Consequently, the consideration of the direction of the e
tric field is an important ingredient in the calculation of th
magnetoresistance, in that the situation is entirely analog
to the Hall effect. Therein, averaging also the dependenc
the direction between the electric field and the magnetic fi
has to be taken into account. Otherwise the Hall effect wo
be zero. The percolation theory was applied to the invest
tion of the Hall effect in Refs. 28 and 29.

It should, however, also be mentioned, that in most
periments isotropic magnetoresistance is observed. The
son for the occurence might be in that the samples used w
close to the metal-insulator transition. The main assump
of our calculation is that the system is strongly localized,
that at most scattering at one intermediate site can be
importance. Consequently, our results are not expecte
hold close to the metal-insulator transition, where scatter
at many intermediate sites is relevant. This fact already in
cates that the results are not universal, but depend on
degree of localization, and therefore on the sample in qu
tion.

From our results it follows that, as a function of the ma
netic field, the magnetoconductivity at fixed real Laplace f
quencys is a quadratic function with respect to the magne
field for low fields, a linear function for moderate fields an
saturates for high fields. As a function of frequency the m
netoconductivity decreases with increasing frequency at
frequencies, that is for frequenciesv!n. In this regime a
decrease of the frequency acts just like an increase of
magnetic-field strength. Forv@n the magnetoconductivity
e
o-
e
g-
n

,
.

d
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he
s.
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re
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becomes independent of frequency, that is it passes in
plateau.

Finally, we note that our expression for the current a
exhibits thep-n anomaly for symmetric densities of state
first discussed in Ref. 5, that is the magnetoconductiv
changes sign if electrons are replaced by holes. This anom
is completely analogous to thep-n anomaly of the Hall ef-
fect, and results from the fact that the most important con
butions to the integrations arise from scattering sites with
energies far from the Fermi energy, so thatL changes sign if
electrons are replaced by holes if the density of state
symmteric, and so does the magnetoconductivity.

APPENDIX A: ANGULAR INTEGRATIONS

Since the integrations are very lengthy we cannot disc
them entirely here, but describe only the general way.
order to perform the angular integrations we first insert
identity ~20! into Eq. ~18!. Then the magnetoconductivit
can be written in the form

ds uu/'5
e2bs4

2 E de1de2de3N~e1!N~e2!N~e3!

3E
0

`

dR1dR23E
uR12R2u

R11R2
dR3R1R2R3

3
g12

3

D2~r1 ,r2 ,r3!
K uu/'~r1 ,r2 ,r3!, ~A1!

where

K uu/'~r1 ,r2 ,r3!

5E
0

2p

df1df2E
0

p

du1du2sinu1sinu2

3FcosS eHR1R2

2\c
sinu1sinu2sin~f12f2! D21G

3dS R3
22R1

22R2
2

2R1R2
1cosc DQuu/', ~A2!

and

Quu5~R2cosu2a21
3 2R1cosu1a12

3 !2, ~A3!

Q'5~R2sinu2cosf2a21
3 2R1a12

3 sinu1cosf1!2. ~A4!

Herer i5(Ri ,e i), i 51,2,3.
First we considerK uu. If we perform the integrations ove

the anglesf1 and f2 and use the properties of thed func-
tion, we obtain
e
n order
K uu54pE
0

p

du1du2uS 12Uy2cosu1cosu2

sinu1sinu2
U D cosFeHR1R2

2\c
Asin2u1sin2u22~y2cosu1cosu2!2G21

Asin2u1sin2u22~y2cosu1cosu2!2

3sinu1sinu2~R2a21
3 cosu22R1a12

3 cosu1!2, ~A5!

whereu(x) is the unit step function, andy5(R1
21R2

22R3
2)/(2R1R2). The remaining integrations in the calculation of th

functionK uu are elementary but lengthy and therefore not presented here in detail. We only would like to point out that i
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to perform these integrations it is convenient to use the identity sin(x1p/2)5cos(x) to rewrite Eq.~A5! in such a way that the
range of integrations is restricted to the interval (0,p/2). Then all trigonometric functions in the integrand are either mono
nous increasing or decreasing functions within the range of integrations. Thereafter, the integrations reduce to ele
integrals if the standard change of variables is used, that is if trigonometric functions are used as integration variab

Now we focus onK'. Since in this caseQ' also depends on the azimutal angles, the integrations over the anglesf1 and
f2 cannot be performed as before. It turns out to be convenient to perform first the integrations overf2. If we use the
periodicity of the trigonometric functions we obtain

K'5pE
0

2p

df1E
0

p

du1du2sinu1sinu2FcosS eHR1R2

2\c
sinu1sinu2sinf1D21G~R2

2~a21
3 !2sin2u21R1

2~a12
3 !2sin2u1

22R1R2a12
3 a21

3 sinu1sinu2cosf1!3d~y2cosu1cosu22cosf1sinu1sinu2!. ~A6!

To proceed further we change the integration variables according tow5sinf1. Thereafter, the integration overw can again be
performed easily and we obtain

K'52
1

2
K uu12pE

0

p

du1du2sinu1sinu2uS 12Uy2cosu1cosu2

sinu1sinu2
U D Fcos

eHR1R2

2\c
Asin2u1sin2u22~y2cosu1cosu2!2G21

Asin2u1sin2u22~y2cosu1cosu2!2

3@R2
2~a21

3 !21R1
2~a12

3 !222R1R2ya12
3 a21

3 #. ~A7!
ir

in
r
lie
tio
b

gy

a-
-
,
e

tor
cal

n-
The remaining integrations can be performed as before. F
the range of integrations is reduced to the interval (0,p/2),
using the identities of the type sin(x1p/2)5cos(x). Thereaf-
ter, all trigonometric functions are either monotonous
creasing or decreasing functions within the range of integ
tions, so that again the standard substitution can be app
that is trigonometric functions are used as new intergra
variables. The remaining integrations are elementary
lengthy and therefore not presented here in detail.

APPENDIX B: FURTHER INTEGRALS

In order to perform the integrations in Eq.~28! we first
introduce dimensionless integration variables, according
aRi→Ri , be i→e i . Furthermore, we use the Fermi ener
as the zesro point for the energy axis. Then, Eq.~28! can be
written in the form

s uu5
4p2

3
e2Nf

2La28kTsI, ~B1!

where@rc5 ln(n/s)#

I 52E
0

`

dR1dR2E
uR12R2u

R11R2
dR3R1R2R3

3

3guu@h8~R1 ,R2 ,R3!#Q~R32rc/2!eR32R12R2,

~B2!

with

h8~R1 ,R2 ,R3!5
eH

4\ca2
A4R1

2R2
22~R1

21R2
22R3

2!2.

~B3!

The functionQ is given by
st

-
a-
d,
n
ut

to

Q~R32rc/2!5
1

sE de1de2

G12
(2)

S 11
1

s
G12

(2) C11C2

C1C2
D 2 .

~B4!

For the functionsCi we use the low-temperature approxim
tion Ci'exp(2ueiu). Since the application of this approxima
tion requiresue i u@1, the application of this approximation is
strictly spoken, not valid if the main contributions to th
integrations arise from smallue i u. The consideration of this
fact, however, leads only to an additional numerical fac
which appears in the logarithm of the dimensionless criti
hopping lengthrc . Since in the region of interestn/s is large
this contribution is negligible.

If we use this approximation the integrations over the e
ergies can be performed exactly. They lead to

Q~R32rc/2!54F 1

11exp~rc22R3!
2

1

112exp~rc22R3!G
12Fe2R32rcln~11erc22R3!2e2R32rc

3 lnS 11
1

11exp~2R32rc!
D G ~B5!

The functionQ(R) has a maximum close toR50 and a
finite support. Now we use the identity

E
0

`

dR1dR2E
uR12R2u

R11R2
dR3F~R1 ,R2 ,R3!

54E
0

`

dR1dR2dR3F~R11R2 ,R21R3 ,R31R1!,

~B6!
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valid for functionsF symmetric with respect to the first tw
arguments, to cast Eq.~B2! into the form

I 5E
0

`

dR14Q~R12rc/2!f~R1!, ~B7!

where

f~R1!52E
0

`

dR2e22R2E
0

R1
dR3~R11R22R3!

3~R21R3!R1
3guu@h8~R11R22R3 ,R21R3 ,R1!#.

~B8!

The functionf(R) is a monotoneous increasing functio
which increases likeR6 for R→` ~see below!. Conse-
quently, we have

I'f~rc/2!4E
2`

`

dRQ~R!5f~rc/2!A, ~B9!

where A516 ln 2. In Eq. ~B8! the characteristicR2 is of
order 1. The characteristicR3, however, is large. Therefore
R2 can be neglected, when compared withrc/2 or R3. Doing
so we obtain

f~rc/2!52~rc/2!3E
0

`

dR2e22R2E
0

rc/2

dR3~rc/22R3!

3R3guu@h8~rc/21R21R3 ,R21R3 ,rc/2!#.

~B10!

In the same approximation we find

h8~rc/21R21R3 ,R21R3 ,rc/2!

'
eH

\ca2
A~rc/2!R2R3~rc/22R3!. ~B11!

To eliminate the root we introduce a new variablez, using
the identity

152E
0

`

dzzd„z22R2R3~rc/22R3!…, ~B12!

and perform the integration overR3. Then we obtain

f~rc/2!5
4

96
~rc/2!f̃ uu~F!, ~B13!

whereF is given by Eq.~33!, and

f̃ uu~F!52
3

4E0

`

dxE
0

1

dye2x
yguu~FAxy!

A12y
. ~B14!

To proceed further we use the equality

guu~u!523
d

du

sin~u!

u
21 ~B15!

and perfom an integration with respect to parts. Then
remaining integrations can be performed with the formu
given in Ref. 27. They yield Eq.~31!. The functionf̃' is
obtained fromf̃ uu using Eq.~26!.
e
s

APPENDIX C: TWO-SITE MODEL

To calculate the conductivity we use the two-site mod
In this model the transport equations reduce to

sC1@U11e~ER1!#5G12
(2)~U22U1!,

sC2@U21e~ER2!#5G12
(2)~U12U2!. ~C1!

The configuration averaged current is calculated accordin

j~s!5
bes

2V E dR1dR2de1de2N~e1!N~e2!

3@R1C1„U11e~ER1!…1R2C2„U21e~ER2!…#.

~C2!

The factor 1/2 in front of the current again removes ov
counted points. If we solve Eq.~C1!, insert the solution into
the expression for the current and perform the angular in
grations we obtain

s~s!5
2p

3
e2NF

2bE
0

`

dRR4E de1de2

G12
(2)

11
1

s
G12

(2) C11C2

C1C2

.

~C3!

To perform the intergations we again use the lo
temperature approximation for the functionsCi , that is we
replaceCi'exp(2ueiu/kT). Here the Fermi energy was use
as the zero point for the energy axis. Again we point out t
strictly speaking, the use of this approximation requires t
the main contributions arise from largeue i u/kT, which is in
principle not the case here. The consideration of this f
leads, however, only to a change of the numerical facto
the logarithm of the characteristic hopping length,24 which is
negligible.

First we consider the situations/n!1. In the approxima-
tion chosen the integrations over the energies can be
formed exactly. Doing so we obtain

s~s!5
2p

3
kTe2NF

2~2a!25sI~n/s!, ~C4!

where

I ~n/s!5E
2rc

`

dx~x1rc!
4

3F8 ln
112e2x

11e2x
12exln

111/~11ex!

11e2x G , ~C5!

andrc5 ln(n/s). The second term in the bracket is a functio
with a sharp maximum close tox50. The first term ap-
proaches 8 ln 2 forx→2`, and zero forx→`. Conse-
quently, the main contribution to the integration arises fro
the first term, from which we obtain

I ~n/s!5
8 ln 2

5
rc

5 . ~C6!

If we combine Eqs.~C4! and ~C6! we obtain Eq.~34!.
For s@n the denominator of Eq.~C3! can be replaced by

1. Then the integrations can readily be performed and y
immediately Eq.~41!.
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