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Anisotropy and frequency dependence of the hopping magnetoresistance
in the high-frequency limit in three-dimensional samples
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The magnetic-field dependence of the magnetoconductivity due to quantum interferences of isotropic three-
dimensional samples in the strongly localized regime is investigated at high frequencies. To this end the
three-site model is used. The investigation shows that the magnetoconductivity at high frequencies is aniso-
tropic, that is; it depends on the direction between the electric and the magnetic field. A simple relationship
between the transverse part of the magnetoconductivity and the parallel part of the magnetoconductivity for all
magnetic fields is obtained. The magnetoconductivity for crossed electric and magnetic fields is always larger
than for parallel magnetic and electric fields. As a function of the magnetic field the magnetoconductivity is a
guadratic function with respect to the magnetic field for small magnetic fields, a linear function for moderate
fields and saturates at high fields. As a function of frequency the magnetoconductivity increases with decreas-
ing frequency at frequencies which are low, but in the range of applicability of the three-site model. At very
high frequencies the magnetoconductivity passes into a plateau. On the plateau the magnetoconductivity
becomes independent of frequency.

[. INTRODUCTION etrated by the magnetic field is always larger for hops trans-
verse to the field than for hops into the direction of the mag-

The investigation of the influence of quantum interferencenetic field. Consequently, the effect is highly anisotropic on
effects on the transport properties of disordered systems halse microscopic level.
received considerable attention in recent years. Also in the The current itself is a vector, and since in the presence of
hopping regime, where quantum interferences are naivel@n electric and a magnetic field only two vectors are avail-
not expected to be important on length scales larger than thable if the system is isotropic, the symmetric part of the
localization length, such interferences were shown to determagnetic-field-induced change of the curreijthas to lie
mine the magnetotransport properties of insulating samplewithin the vector space spanned by the vectrand H.'°
at low magnetic fields. A first explanation for the magnetore-Consequently, it has the structure
sistance of insulating samples was given by Nguyen, Spivak,
and Shklovski: who argued that phase coherence is main-
tained during a hop, so that elastic scattering of partial elec- _ ol (H)— 80 (H)
tron waves can give rise to quantum interferences, and there- &j=d0" (H)E+ H2
fore can lead to magnetoresistance.

So far such interferences have been studied in many pa-
pers both theoreticallysee, e.g., Refs. 13&nd experimen-  If soll# 8o+ anisotropy is present. In this case the current is
tally (see, e.g. Refs. 9—13In all papers it is found that the not always parallel tcE. In general, there is no principle
dc magnetoconductivity increases with decreasing temperavhich determines the differences betwedn! and so* in
ture. Furthermore, in most papers the magnetoconductivity isdvance. However, according to the theoretical results of
a quadratic function with respect to the magnetic field forRefs. 1-8 and to the experimental results of Refs. 9-13, the
small fields, a nearly linear function for moderate fields andmagnetoconductivity of a macroscopic sample is isotropic,
saturates at high magnetic fields. In some sam(es, e.g., SO that&r“(H): Sdot(H). Only in Ref. 15 was anisotropy
Ref. 14 quantum oscillations of the magnetoconductivity observed in a strong electric field. Thete™ = 1.9450! was
have been observed, which were investigated further in thdetected in the quadratic regime with respect to the magnetic
Refs. 3 and 4. field.

The impact of a magnetic field on the quantum interfer- To explain the isotropy usually the geometry of the per-
ences is governed by the flux penetrating the area of characelation path is invoked. Since in such a sample the perco-
teristic configurations. If the system is strongly localizedlation path writhes somehow through the sample and the
scattering at one intermediate site is most important, sinceesistance of the whole sample is deduced only from one
the transition probabilities are exponentially small functionsresistance, the critical resistance, which can have any direc-
with respect to the ratio between site separation and localizdion in space, the anisotropy is claimed to be wiped out. On
tion length, so that the scattering center can be anywhere bthe other hand, if one would try to construct an effective-
close to the initial or the final site. If we now consider a hopmedium theory for the magnetoconductivity the physical pic-
from an intial site to a final site with scattering of partial ture would be different. In this case there would be no per-
waves by one intermediate site, we find that the area percolation path. Instead every hop would be of the order of the

(EH)H. 1)
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Mott length, and into the direction of the electric field. Con- frequencies and in the dc limit, which takes into account
sequently, also anisotropy could be expected. Then, anothanisotropy, is devoted to another paper.
reason for the occurence of isotropy could be that the sys- Beside the dependence of the magnetoconductivity on the
tems in most experiments were close to the metal-insulatomagnetic field we also investigate the frequency dependence.
transition. In this case the physical picture sketched abovi&Ve find that in the range of applicability of the three-site
would no longer hold, since in this case scattering at manynodel the magnetoconductivity decreases with increasing
intermediate sites is of importance. If this is true the scatteriréquency at low frequencies. At high frequencies the mag-
ing paths can probably sufficiently diffuse out, so that theh€toconductivity becomes frequency independent.
area penetrable by flux for hops transverse to the field is as
large as for hops into the direction of the field. Il. BASIC EQUATIONS

_ Atpresent we are not able to check the latter assumption, |, yhe situation of interest the dynamics of the electrons is
since close to the metal-lnsullator transition it is necessary taoverned by the Hamilton operatdr
take into account also damping and level broadening effects
due to the nondiagonal parts of the density matrix and, more- 1
over, to construct a suitable method to find a solution for the H= % [em—e(E(H)Ry)]aman+ 2, f“"q( bg b+ §)
configuration-averaged Green’s function. First attempts to a
incorporate such effects in the investigation of the magneto- N
conductivity have been formulated in Refs. 17—19. However, + 2 , I (H) Prniry 8@y - @
what can be checked is the argument used to explain the mem
isotropy of the magnetoconductivity. The main point of theHereen, andR, are the energy and the position vector of the
argument is that in percolation theory the conductivity of thesite with indexm, a,;,, anda,, are creation and annihilation
whole sample is calculated from one resistor only, from theoperators for electrons at sibe, bg andb, are creation and
critical resistor. Since the critical resistor can have any direcannihilation operators for acoustical phonons with wave vec-
tion in space the anisotropy is averaged out in the course d¢r g and frequencyw,, and®, , is the multiphonon op-
the averaging procedure. The same situation, that is the sit@rator. The electric field(t) is switched on suddenly at
ation in which the current is calculated from one resistor=0. The magnetic field is taken into account only in the
only, can be modeled with the three-site model, introducedPhase factor of the resonance integralifverse localization
by Holstein® In this model the conductivity of the macro- length
scopic sample is calculated from three sites only. To this end
the transport equations are solved for three sites and the cur- 3 :Joexp( —a
rent is calculated in this approximation. The configuration-

averaged current is obtained by averaging over all possiblg,, yhat attention is paid only to the influence of the magnetic
side lengths of the triangle, and over all orientations of th&;g|q on quantum interferences. Wave-function shrinkage and
surface normal of the triangle in space. For three sites thgpin effects are ignored.
calculation can be performed exactly, so that no percolation” | the Hamilton operatof?) is used the transport equation
theory or effective medium method has to be used. takes the form

Clearly, if the transport equations are solved for three
sites only, one cannot expect to calculate the resistance for a
macroscopic sample for all cases of interest, but only for SCn(Um T ERp) =2 Tiyn(Upe —Up), (4)
those range of frequencies, for which the main contributions m’

to the current originate from jumps between nearby sitesn the linear approximation with respect to the electric field.
only. The range of applicability of the three-site model HereC, =f,,(1-f,,) (f, is the Fermi distribution with site
agrees with that of the two-site modske, gl.g.,' Refs'. 21 qnd energye,,), s= —iw (w is the frequency of the applied elec-
22), introduced by Pollak and Gebaffé** Since in this  ic field), and U,, is the local electrochemical potential at
model the typical hopping length is of the order'In(v/s),  sjte m. The quantitieS",ym, the resistances, are the transi-
where @ is the localization lengthy is the attempt-to- tjon rates. In the absence of the magnetic field their calcula-
escape frequency arg —iw is the frequency of the ap- tjon can be restricted to two-site processes, which describe
plied electric field, the hopping length increases with de-only direct hops between the initial and the final site. As
creasing frequency. The requirement that the hopping lengtthese contributions are independent of the magnetic field, the
does not exceed the mean site separation appreciably, rgonsideration of the impact of the magnetic field requires
duces therfore the practical applicability of the the concreteyiso the consideration of higher-order processes, which result
results to rather high frequencies. Clearly, one can not expegfom interferences between alternative hopping paths. If the
that anisotropy is produced just by increasing frequency, sQystem is strongly localized only scattering at one interme-

that anisotropy is also present at low frequencies, if preseffjate site has to be taken into account, so that
at high frequencies. Below we show that for strongly local-

ized samples anisotropy is present at high frequencies and me,:rg%ﬁrrfﬁ?ﬂ,(m (5)

we derive a simple relationship, which relates the transverse

part of the magnetoconductivity to the longitudinal part of holds, wherel'®® and I'® are the two-site and three-site
the magnetoconductivity. The construction of an effectivehopping rates, respectively. For weak electron-phonon cou-
theory for the description of the magnetoconductivity at lowpling the two-site rates are given ¥y

~eH
Riny +I%[RmXRmr] , 3)
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r® —yex

i well understoodsee, e.g., Refs. 21 and )22t agrees with

that of the two-site model introduced by Pollak and
l€m— €r|+ | €m — €F| + | €m— €l Geballe?® In the two-site model the characteristic hopping
- KT : (6)  length is of the order In{s)/(2a). Since the hopping length
increases with decreasing frequency the current can no
where v is the attempt-to-escape frequency aspdis the  longer be calculated from two sites only, if the characteristic
Fermi energy. Since the three-site contributions describe thiropping length exceeds the mean site separation appreciably,
interference between the amplitude for the direct hop withso that the model applies only to high frequencies.
the amplitude for a hopping path with scattering at one in- For three sites the transport equations take the form
termediate site it has the structure

is needed. Furthermore, the range of validity of the model is
- 2a| Rmm/|

(sC+ T+ U —T' Uy —T'15Uz= —sCie(ERy),

T (H)=> Tomm(H). 7)
mm oo LU H(SCo+ T ot Tpg) Uy —TMpsUz= —sCoe(ERy),

Herem; is the index corresponding to the scattering center. _

Since we are interested only in the magnetoconductivity we — L 13J171'2aUa+ (SCa+ gt I'ag)Us= _SQe(ER?»)l'Z

take into account only the symmetric part of the rate with (12)

respect to the magnetic field, which, for weak electron-consequently, the problem reduces to the calculation of the
phonon coupling, is given by inverse of a %3 matrix. To calculate the current we first
solve Eqg.(12) with respect to the electrochemical potentials.
S(eH[Rmm,xlem,]) 1} o q.(12) p p
co -1,

my

melm’(H): Yo

The calculation is elementary but lengthy and therefore not
2hc presented here in detail. Using the electrochemical potentials
we find that every triangle contributes to the configuration

with averaged current with
1 1
my
Yoy = VI + esB
0 e, em,ml) <T[Rlcl(u1+e(ERl>)+ RCo(Uz+e(ERy))
Xexp(— a|Rymw|— a’|Rmml| _allem’D
+R3C3(Us+e(ERg))] ).
><e)q{_|€m_5F|+|‘5m’_EF|"'|5mm’|) )
2kT ' Since we are calculating the average of the current according
to the rule

The rates(8), (9) can be derived using various techniques.
They have been derived in Ref. 2 with renormalized pertur-

bation expansion, in Refs. 5 and 25 using the Konstantinov]-(s):f dR;dR,dR;de;de,desN(e1)N(€2)N(€3)j(1,2,3),
Perel method, and in Ref. 6 with nonequillibrium Green’s
functions. Since in the strongly localized regime the mean (13

separation between the sites is large as compared to the Iz have actually overcounted the number of configurations.
calization length, the three-site rates are small as comparegince three bonds contribute to the current, and every bond
to the two-site rates, so that has two ends we then have to devide the results by 6, so that
2 3 the configuration averaged current is given b
r@ >r® (H) (10 g g given by

holds, independent of the strength of the magnetic field.

If the electrochemical potentials are known the

configuration-averaged current is calculated according to

. ess
](S): mf deddeRgdfldfzdfsN(€1)N(€2)N(€3)

X[R1C1(U;+e(ERy))+RyCo(Us+e(ERy))
j(s)z%ﬁs > RmCm[Um+e(ERm)]>, (11 +R3C3(Us+e(ERy))]. (14

. . . If we use the solution of the transport equations we find
where the bracket symbolizes the configuration average. P q

2
eps
lIl. CURRENT IN THREE-SITE APPROXIMATION i(s)= <m{sclczc3rme(ERu)Rlz+[F121“23
In order to investigate the magnetoconductivity at high
frequencies we use the three-site model. In this model the +T 10 15+ T ool 13]C1Co( €ER ) Ryt cyclic}>
current is calculated from three sites only. The model was '
used by Holstein in his investigation of the hopping Hall (15)

effect?’ Here we apply it to the magnetoconductivity. In our
opinion, the advantage of the model is in that it can be solvedvhere the cyclic denotes the cyclic permutation of the indi-
exactly. No percolation theory or effective medium methodces 1, 2, and 3, and
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D(1,2,3)=[$2C;C,Cs+S[C1Cp(T 15+ '3) IV. ANISOTROPIC MAGNETORESISTANCE

+C,Ca(T 1o+ T 99) + CoCa(T 15+ '19)] Since, in general, the transverse part of a vector with re-
spect to the magnetic field is different from the longitudinal
+(C1+Co+Cya) (Il 13+ Tl o3+ I'pal'19)] part, it appears that already Ed.8) indicates, that the mag-
(16) netoconductivity is anisotropic. To investigate this point fur-
ther we first perform the angular integrations. To this end we
is the determinant of the matrix of the systéh®). Since, in  split the integrations over the triangle into two parts, the
the averaging procedure, all sites are equal they yield thaverage over the side lengths of the triangle, and the average
same contribution to the configuration-averaged current, sover the orientation of the triangle in space. However, since
that we can omit the cyclic terms in the following, and mul- the integrand of E¢(19) depends only on the side lengths of
tiply the result simply by 3. the triangleR;=|R,4, R,=|Ry4, and R3=|R;5— R4 and
To proceed further, we take advantage of the fact that iron the angles of the unit vectoR3/R, andR,3/R; via the
the course of the averaging procedure the resistances caectorsR,;andR,3, we first introduce an additional integra-
take on any direction in space. To this end we first put oneion over the third side, using the identity
site, let us say site 3, on the origin of the coordinate system.
The z axis is chosen parallel to the magnetic field. Further-
more, we haveR;,= R;3— R,3. Now we decompose the vec-
tors Ry3 and R,5 into their longitudinal and their transverse ]
part with respect to the direction of the magnetic field, ac-Where ¢ is the angle between the vectdRg; and Rys. ¢
cording toR;s= Rl +RL; and Rys= Rl + RL,. Since in the  Satisfies the equation
averaging procedure all sites are treated equally to every _ _ ; ;
configuration withR; = R+ Ri; andR,3= Rl,+ Ri; there is COSY=COS $1 = §2)SiN0in 0+ €0S6,€086,.  (21)
also a configuration which differs only in th&; andRy;,  Here 6, (6,) and ¢, (¢,) are the polar and azimutal angle
are replaced by- Ri;and— R},. The cosine in Eq(8) is not  Of the vectorRy3 (Ry5), respectively. Thereafter, the integra-
affected by this operation. Invariant are also the quantitieions over the angles can be performed exatde the re-
I'® and yf, since they depend only on the side lengths ofmarks in Appendix A Doing so, we obtain
the triangle, which remain unchanged. The scalar product in A
Eq. (10) projects t.he correponding vectors onto the. direction Aj\lli:?eZESélf de,de,desN(e)N(ex)N(€3)
of the magnetic field. Consequently, in the averaging proce-
dure ER(») Ry, is replaced by ER!Z)R!Z. . iR R.R.Rav3
Consider now the situatoBL H. Again we decompose XJ dedsz ' ZdRSL:W12 It (hy
the vectorsR,; andR,5 into their longitudinal and into trans- 0 [R;—Rol D%(1,2,3
verse part with respect to the direction of the magnetic field.
If we now apply the same argumentation we find that, in the
course of the averaging procedur&R;,) Ry, is replaced by  \yhere
(ER)Ry,. Consequently, we have

1= 2f dR3R38(R3—R2—R3+ 2R;R,cosy),  (20)
0

X[a3,a3,R5+ (a3,— a3 (Ria,— R3a3) JE, (22)

. eHVARIR;— (R{+R5—R3)?  eHS

. eps’ . (23
()= <m{sqczcgrne<ERl’;>R'l’; anc hie
the dimensionless magnetic field, is equal to the number of
[Tl o3+ il 13+ I oal'a3) flux quanta penetrating the ar&of the triangle. The func-
tions gl(h) andg*(h) are different from each other. They
xClcz(eERQ’ZL)RQ’;}>, (17)  are given by
wherejll (j*) is the current foE||H (ELH). _ gll(h)= i(ﬂh) —cog h)) 1 (24)
To simplify Eq.(17) further we use the inequali10) to hz\ h
linearize Eq.(17) with respect to the three-site transition d
probabilities. Then the magnetic-field-induced change of th&"
current is given by
N 1d I
g (h)=ﬁ%(h g''(h)). (25
e’ps* a3 ol a3 12
L ey —
3l (s)= 20D2(1.2.3 I'ad Riz a1~ Res app]” | E, Consequently, the longitudinal past!/(H) differs from the
" (19  lransverse parbo*(H). Equation(25) entails that
h 1 d
where S0 (H)= = —(H2501l(H)). (26)

2H dH

a3,=I'{%Cy(C;+Cy)+I'PC,C,+5C,C,Cq, (19 . . . N
Equation (26) is applicable to magnetic fields of any

and the determinar(1,2,3) is given by Eq(16), with I’ strength. In the quadratic approximation with respect to the

replaced byl'(?, magnetic field, this equation results in the relationship
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@) f

FIG. 1. Longitudinal part(thick line) and
transverse paithin line) of the magnetoconduc-
tivity versus®.

So-(H)=280!l(H)+o(H?). (27

N(es3)
€3 '

A= 2Jof d€3 (29)
Since the transverse part of the magnetoconductivity is re- -
lated to the parallel part by the relationsty) we restrict For largen.= In(1/s) the intearations vieldsee Appendix
the further investigation to the investigation P gep=In(v/s) g yield PP B

8m?In2 -
T 2 2k TA o N2s(p /253! (®), (30)

Solllt =
V. FREQUENCY DEPENDENCE

While the angular integrations, which have lead to anisotyhere
ropy, could be performed exactly, the integrations over the

side lengths of the triangle and the site energies can only be ?j,l\(cp):1_32|:2(1,2,3/2,5/2;_ D2/4)
performed approximately. To see where the most important 5
contributions come from, we first investigate the integrand +2,F»(2,2,5/2,5/2;- ®</4), (32)

further. If all site energies were equal the integral would beand

zero, due to the symmetry of the integrand. Thus, in order to

obtain a nonvanishing contribution the site energies should ~1 a4 2

be different. Since the integrand is exponentially small with ¢ (P)=1-2F5(2,2,5/2,5/2: D7/4). (32)
respect to the distance of the site energies of site 1 and siteRere ,F, is the hypergeometric function and

on the Fermi energy, and the integrand is symmetric with

respect to exchange of 1 and 2, we infer that the initial and eH
the final site should be close to the Fermi energy. Since, = 8hca
furthermore, the energy of site 3 has to be different from that
of the sites 1 and 2, it has to be situated outside the range gf,o functions?i:” and'$" are depicted in Fig. 1. From the
accessible energies for sites 1 and 2. This notion is Veriﬁeﬂgure we see that the magnetoconductivity is a quadratic
by a closer look on the integrand.f is outside the range of  fnction with respect to the magnetic field for small fields, a
€1 andey, then the onlye; dependence which remains is the nearly finear function for moderate fields, and saturates for
e3 dependence of the preexponential factoyi Eq. (9). I high fields. Furthermore, the transverse part of the magneto-
we use furthermore the Fermi energy as the zero point for thgonductivity is always larger than the longitudinal part of the

5 p2, (33

energy axis, we find magnetoconductivity.
42 If we calculate the conductivity in the same approxima-
7T o0 . . .
50_\\/J.(S): _ TeZBNEAJ d€1d€2J0 dR,dR, tion we find (see Appendix €
R;+R, . a(s)= 4m4ln ZezNékT(Za)“r’Spg, (34)
fo . ldR3R1R2R3g”’L(h) 3 5
v so that
y F(122) ,eRs™aR1~aRy 50”(H,S) _
1 (2)C1+C2 —“angchs((D)- (35)
1+ =T ———=— o(s)
S C,C,

29) Since bothd andp. depend only ors andH the ratio(35) is
temperature independent. In the quadratic regime with re-
whereNg is the density of states at the Fermi energy, and spect to the electric field we have
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Reso!!
Co

FIG. 2. Sketch of the frequency dependence
of the magnetoconductivity1) lowest frequen-
3 cies and multiple hoppping regimé) three-site
model with w/v<1, (3) three-site model with
wlv>1.

w

~ 2 Again we observe, that the magnetoconductivity increases
Pl(®)= §3®2+ o(P?), (36  with decreasing frequency. In a further publication we
show?® that ReSa!!(w)/Revr(w) depends at most weakly on
so that frequency at very low frequencies and in the multiple hop-
ping regime, so that qualitatively the behavior sketched in
ResallH,s) 3  e®H?A v Fig. 2 is obtained.

= 4_
Rer(s)  3200" 720257 " 37)

VI. CONCLUSIONS
Consequently, the effect increases with decreasing fre- o
quency. In the paper we have calculated the magnetoconductivity
The equations derived so far are valid fgis>1. Conse-  ©f highly insulating samples in the high-frequency limit. To
quently, they do not apply to the frequency rangs<1. this end we have used the three-site model, which could be
For such high frequencies the denominator in @) can be ~ Solved exactly. According to our calculation the magneto-
replaced by 1, so that the magnetoconductivity becomes irf:onductivity in the strongly localized regime is anisotropic in

dependent of frequency. On the plateau we obtain the high-frequency limit. We have derived a simple relation-
ship which relates the transverse part of the magnetoconduc-
Soll'- = 3672k TNEA 8wl I (D), (38) tivity to the parallel part of the magnetoconductivity. It turns

out that the magnetoconductivity for magnetic fields applied

where transverse to the electric field is always larger, as for mag-

1 netic fields applied parallel to the electric field. We do not

/L I 1 _ expect that anisotropy is produced merely by increasing fre-

1 (@)= 288J0 dxldxzfo Axa(X1 % = Xa) (X2 +X3) quency, so that we expect that the magnetoconductivity in

- the strongly localized regime is also anisotropic. In that our
XXFI[ D2\ XpXa(X1 +Xo) (X1 — Xg) Je X172, results are in contradiction to those of the Refs. 1-8, which
(39) predict an isotropic magnetoconductivity for macroscopic
samples. They do, however, compare to some extent with the
In the quadratic regime with respect to the magnetic field Eqexperiments of Ref. 15. Theréo"/50/1=1.94 was mea-

(39 leads to sured in three-dimensional GaAs samples in the quadratic
regime with respect to the magnetic field. Our theory pre-
1287 e?H? dicts 5o/ 8a!l=2, also in the quadratic regime. However,

— 2,2 2 -8 2 . . . g .
soll= 40 7 ekTNEA Vh2C2a4+O(H ). (40 since in the experiments the dc conductivity in the non-
Ohmic regime was measured, these experiments cannot be

The conductivity also passes into a plateau in this limit. Foitaken as direct verification.

the conductivity we obtailisee Appendix € From our calculation we deduce that the reason for the
absence of anisotropy in previous calculations is in the ne-
o=3e2N,2:kTa‘5v. (42 glect of correlations between the direction of the electric

) ] ] ] field, the direction of the magnetic field and the surface nor-
Consequently, in the quadratic regime with respect to thena| of the surface spaned by the intermediate sites. In Refs.

electric field we have 1 and 7, in which the magnetoconductivity in the dc limit
Reso!l Sol 1 was investigated using percolation theory, and Refs. 2-5, in
A wlv<l]/ o () = n4<1) which the magnetoconductivity was investigated using effec-
Reo(w) o(w) wlv>1 11440 ' tive methods, the focus was on the properties of the critical

(42 resistor. The critical resistor is an objeftS,H) which de-
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pends on the oriented area of the surf8and on the mag- becomes independent of frequency, that is it passes into a
netic fieldH. Since the calculation of the configuration av- Plateau.

erage amounts to an integration over all directions of the Finally, we note that our expression for the current also
surface normal, in all areas the result of the averaging proexhibits thep-n anomaly for symmetric densities of states
cedure is isotropic. In our approach we first solve the ratdirst discussed in Ref. 5, that is the magnetoconductivity
equations, calculate the current and then perform the averaghanges sign if electrons are replaced by holes. This anomaly

ing. Before averaging, the current depends on the directioff completely analogous to then anomaly of the Hall ef-
of the electric field, on the direction of the magnetic field, fect, and results from the fact that the most important contri-

and on the direction of the surface normal of the triangle butions to the integrations arise from scattering sites with site

Thus it is an objec}(E,S,H) which is a linear function of energies far from the Fermi energy, so thathanges sign if
|E|, but depends on the angle between the electric field anglectrons are replaced by holes if the density of states is
the surface normal, the angle between the magnetic field argymmteric, and so does the magnetoconductivity.

the surface normal, and the magnitudes of the ve@aad

H. In the averaging procedure the direction of the surface APPENDIX A ANGULAR INTEGRATIONS

normal is integrated out, but in doing so it has to be taken  gjnce the integrations are very lengthy we cannot discuss
into account that the expression is not only a function of thgem entirely here, but describe only the general way. In
angle betweerS and H, but also a function on the angle der to perform the angular integrations we first insert the

betweenS and E. The latter angle is absent in those treat-igentity (20) into Eq. (18). Then the magnetoconductivity
ments which focus on the critical resistor only. If the angle iscan pe written in the form

taken into account in the integrations the dependence on the

angle between the electric and the magnetic field remains. s Hu_ezﬁ

Consequently, the consideration of the direction of the elec- o T

tric field is an important ingredient in the calculation of the

magnetoresistance, in that the situation is entirely analogous Xj dR,d RZXJ'
0 \

4
> J’ deide,desN(e;)N(e2)N(€3)

R;+R,
dR;R;R,R;

to the Hall effect. Therein, averaging also the dependence on Ry~ Ryl

the direction between the electric field and the magnetic field

has to be taken into account. Otherwise the Hall effect would ¥,

be zero. The percolation theory was applied to the investiga- 132—
tion of the Hall effect in Refs. 28 and 29. (P1,p2:P3)

It should, however, also be mentioned, that in most exwhere
periments isotropic magnetoresistance is observed. The rea- m
son for the occurence might be in that the samples used were K (p1.p2.p3)
close to the metal-insulator transition. The main assumption 27 .
of our calculation is that the system is strongly localized, so = d¢1d¢>2J d#,db,sin6,sin b,
that at most scattering at one intermediate site can be of 0 0
importance. Consequently, our results are not expected to
hold close to the metal-insulator transition, where scattering X
at many intermediate sites is relevant. This fact already indi-
cates that the results are not universal, but depend on the RZ—-R?-R3
degree of localization, and therefore on the sample in ques- (—+cos¢) Qllr, (A2)
tion. 2RiR,

From our results it follows that, as a function of the mag-and
netic field, the magnetoconductivity at fixed real Laplace fre-
guencys s a quadratic function with respect to the magnetic
field for low fields, a linear function for moderate fields and _ . 3 3 .
saturates for high fields. As a function of frequency the mag- Q" =(R;Sin #,c08¢,a3,~ R1aysin :€08p1)°.  (Ad)
netoconductivity decreases with increasing frequency at lovilere p;=(R; ,¢;), i=1,2,3.
frequencies, that is for frequencies<v. In this regime a First we consideK!!. If we perform the integrations over
decrease of the frequency acts just like an increase of thine anglesp, and ¢, and use the properties of thefunc-
magnetic-field strength. Fap> v the magnetoconductivity tion, we obtain

KH/L(plIPZIPS)v (Al)

eHRrRR, .~ .
co Wsmalsmazsm(@—@) -1

QH =( chosﬁzagl— Rlcoselafz)z, (A3)

2hc
\/Sir?0;Sirf 6, — (y — cos6,cosb,)?

y = C0S6;C0S6,|
sinf,sing, |

eHRR
™ COE{ ——\[SiP0,si? 6, (y—c0s0,c00,)%| ~ 1
Ku:4ﬂj d01d929(1_ )
0

X sin 0;sin 6,( Rya3,c0s6,— Rya3,c056;)?, (A5)

where 6(x) is the unit step function, an§d=(R§+ R%—R%)/(ZRlRZ). The remaining integrations in the calculation of the
functionK! are elementary but lengthy and therefore not presented here in detail. We only would like to point out that in order
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to perform these integrations it is convenient to use the identitx-sifi(2) = cos) to rewrite Eq.(A5) in such a way that the
range of integrations is restricted to the interval#f2). Then all trigonometric functions in the integrand are either monoto-
nous increasing or decreasing functions within the range of integrations. Thereafter, the integrations reduce to elementary
integrals if the standard change of variables is used, that is if trigonometric functions are used as integration variables.

Now we focus orK*. Since in this cas@' also depends on the azimutal angles, the integrations over the ahygtesd
¢, cannot be performed as before. It turns out to be convenient to perform first the integrationg,ovewe use the
periodicity of the trigonometric functions we obtain

(R3(a3,)?sin 6, + Ri(a3) *sin’ 6,

eHRR; . .
co sin#,Sinf#,sin¢g, | —1

2 T
Kl:ﬂ_fo d¢1f0 d01d025in ﬁlsin 02 TC

— 2Ry R,a3,a3,5in 0;SiN 6,C0S¢; ) X 8(y — COH;COH, — COSH1SiNG;SinGs) . (AB)

To proceed further we change the integration variables accordiwg-tsin ¢;,. Thereafter, the integration overcan again be
performed easily and we obtain

eHRR, — : ,
1 _ _ _ y— costcost COSW\/st 6,Sirf 6,— (y—cos@,c0s6,)%|— 1
Kt=——-Kll+27| d6,d6,sin6;sin6,6| 1—|——— _ ,
2 0 singsind, | \sir?0;sirf 6,— (y— c0s6,c0s6,)>
X [R3(a3,) >+ Ri(a1)?— 2RiRyy aj a3, (A7)
|
The remaining integrations can be performed as before. First 1 r
the range of integrations is reduced to the intervair(D), Q(R3—p/2)= —f de,de; = 2.
using the identities of the type siaf #/2)=cos). Thereaf- S (1+ Er(z)cﬁcz
ter, all trigonometric functions are either monotonous in- s 12 C,C,
creasing or decreasing functions within the range of integra- (B4)

tions, so that again the standard substitution can be applied,

that is trigonometric functions are used as new intergratiod Or the function<C; we use the low-temperature approxima-
variables. The remaining integrations are elementary buion Ci~exp(-|el). Since the application of this approxima-

lengthy and therefore not presented here in detalil.

APPENDIX B: FURTHER INTEGRALS

In order to perform the integrations in E8) we first

tion requireg ;| > 1, the application of this approximation is,
strictly spoken, not valid if the main contributions to the
integrations arise from sma|lk;|. The consideration of this
fact, however, leads only to an additional numerical factor
which appears in the logarithm of the dimensionless critical

introduce dimensionless integration variables, according t§OPPINg lengttp.. Since in the region of interests is large
aR,—R;, Be—¢€ . Furthermore, we use the Fermi energy this contribution is negligible.

as the zesro point for the energy axis. Then, 8) can be
written in the form

412
oll=——e?’N?Aa~%kTs|,

3 (B1)
where[ p.=In(v/9)]
* Ry+Ry
|:_f dedsz dRsR;R,R3
0 IR;— Rl
xgll[h"(Ry,Ry,Rg) 1Q(Rs— pof2)es FiRe,
(B2)
with
eh 252 2 o7 P22
h'(Ry,Rp,Re) = ———V4RIRS— (R{ + R5— R3).
Afica?
(B3)

The functionQ is given by

If we use this approximation the integrations over the en-
ergies can be performed exactly. They lead to

Q(Rs—pc/2)=4

1
1+expp.—2Rs) 1+ 2exp(pc—2R3J

+2

e2R37Pc|n( 1+ ePc*ZRS) — eZRsfpc

x1In (B5)

1
+
! 1+exp<2R3—pc))

The functionQ(R) has a maximum close t®=0 and a
finite support. Now we use the identity

o R;+R,
f dedsz dR;F(R;,R;,R3)
0 |R1—Ry|

:4f ded deRsF(R1+ R2,R2+ R3,R3+ Rl)r
0

(B6)
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valid for functionsF symmetric with respect to the first two

arguments, to cast E¢B2) into the form

1= f:dR14Q<R1—pc/2>¢<R1), (87)

where
o0 ) Rl
d(Ry)=— jo dR,e” RZJ’O dR3(R;+R,—R3)

X (Ry+R3)R3g[h' (R;+ Ry~ Rg, R+ Ry, Ry) 1.
(B8)

The function ¢(R) is a monotoneous increasing function,

which increases likeR® for R—x (see below. Conse-
quently, we have

=024 | dRQR)=G(pd2A  (B9)

where A=161In2. In Eq.(B8) the characteristid?, is of

order 1. The characteristRR;, however, is large. Therefore,

R, can be neglected, when compared wit2 or R;. Doing
SO we obtain

o pcl2
P2~ (2| "aRee 72 " aRy(p 2Ry

X Rggl[h' (pe/2+ Ry+Rg,Ry+ Rg,pd/2)].

(B10)
In the same approximation we find
h,(p0/2+ R2+ R3 , R2+ R3 ,pC/2)
12)RyR3(pf2—R3). (B11)

To eliminate the root we introduce a new variakleusing
the identity

1=2 f d223(22—RoRs(p/2—Rs)),  (B12)
0

and perform the integration ov&;. Then we obtain

4 ~
B(pol2)= g5 (pc/2 Bl(®), (B13)
where® is given by Eq.(33), and
llep
oAl :__f f Y@ J__ (B14)
Vi-y
To proceed further we use the equality
d sin(u)
gl(u=-35——- (B15)

and perfom an integration with respect to parts. Then th
remaining integrations can be performed with the formula

given in Ref. 27. They yield Eq31). The functiong’ is
obtained fromg! using Eq.(26).

O. BLEIBAUM, H. BOTTGER, AND V. V. BRYKSIN
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APPENDIX C: TWO-SITE MODEL

To calculate the conductivity we use the two-site model.
In this model the transport equations reduce to

sCG[Us+e(ER)]=T{(U,~Uy),
sC[U,+e(ERy)=T"(U;—Us,). (C1)

The configuration averaged current is calculated according to

_ pes
](S): mf dedR2d€1d€2N(€l)N(€2)

X[R;C1(U;+e(ERy))+R,Cy(U,+e(ERy))].
(C2

The factor 1/2 in front of the current again removes over-
counted points. If we solve EGC1), insert the solution into
the expression for the current and perform the angular inte-
grations we obtain

2
rey

2 @
o(s)z?ezNﬁﬂfO dRR“f de;de,—
1+-TY

To perform the intergations we again use the low-
temperature approximation for the functio@s, that is we
replaceC;~ exp(—|¢g|/KT). Here the Fermi energy was used
as the zero point for the energy axis. Again we point out that
strictly speaking, the use of this approximation requires that
the main contributions arise from large |/k T, which is in
principle not the case here. The consideration of this fact
leads, however, only to a change of the numerical factor in
the logarithm of the characteristic hopping lenéthyhich is
negligible.

First we consider the situatiossiv<<1. In the approxima-
tion chosen the integrations over the energies can be per-
formed exactly. Doing so we obtain

2
a(s)= ?kTeZN,Z:(Za)_5sI(V/s), (C4)
where
[(vls)= dx(x+po)?
e
1+2e % 1+1/(1+¢€%)
X1 8In +2€%In , (ChH
1+e X l+e X
andp.=In(v/s). The second term in the bracket is a function

with a sharp maximum close te=0. The first term ap-
proaches 8In2 forx— —o, and zero forx—o. Conse-
quently, the main contribution to the integration arises from
the first term, from which we obtain

8In2

l(vls)=—¢ p2. (C6)

% we combine Eqs(C4) and(C6) we obtain Eq.(34).
S Fors> v the denominator of EqC3) can be replaced by

1. Then the integrations can readily be performed and yield
immediately Eq.(41).
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