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As an alternative to the usual Landau-Ginzburg-type continuous field approximation, a free energy featuring
two anticrossed phonon branches and defined in a discrete lattice is proposed for dealing with modulated
phases with inherent discrete lattice effects. Using this approach, it is shown that, at some thresholdcelectric
conjugate field, phases may appear in the phase diagram of solids having several modulated phases of
different periods. These phases are the result of the sign-reversal of a particular polar local mode in a spinlike
modulation of the order parameter, and have indeed been recently observed in the modulated ferroelectric
betaine calcium chloride dihydratBCCD). This type of field-driverpolarization-fliptransition had not been
anticipated by previous theoretical approaches, including microscopic ones such as the ANNNI model. The
model proposed also explains the quite peculiar topological features of the phase diagram under the electric
field observed in BCCD.

[. INTRODUCTION modulation orspin sequences for phases corresponding to
intermediate wave vectors can be readily envisaged from that
Solids with an incommensurate structural thermal insta.of the simpler neighboring ones. Thus, for the ph@seith
bility can exhibit complex phase sequences as a function of in between; and 2, the sequence would b&4).” As the
temperature. In many of these materials, several intermediaf#®in represents a local mode which is polar alongtfus-
commensurate phases exist where the structural modulatidgction, it comes out naturally from these rules that only
locks into different multiples of the period of the underlying Phases with modulation wave vectoys=n/m with n even
basic latticet BCCD (betaine calcium chloride dihydrates andm odd can bey polar, in agreement with more rigorous
the most conspicuous experimental case with more than 18rguments. _ _ _
intermediate phases of different periods between room tem- However, the microscopic or phenomenological models

perature and 0 K.The instability mechanism is displacive consideared up to now have not a”tiCip"?‘ted the recently
with a clear soft-phonon branchbut spin lattice models reported peculiar features of the phase diagram of BCCD

: L ) . ; : under electric field along thg direction (see Fig. 1 At
with competing interactions favoring different periods, as thenonzero field, the expected increase of the rangaspmfiar
ANNNI (axial next nearest neighbor Isingnodel and its : P 998

derivatived ficient t lain the basic feat fcommensurate phases at the cost of the nonpolar ones is
ervatives seem suflicient 1o explain the basic 1ealures oly,qareq. Byt at some threshold fields new phases appear. In

its temperature phase diagram, in particular the pOIarizatiOBarticular, above 17 kV/cm, approximately where the transi-
modulation in the different phases and the resulting dielectri¢io, ines between phase-1 and 1-2 are about to meet, a
propert_iesz.'? The spins are associated to each semicell alonge\ phase seems to exist in Fig. 1. From dielectric measure-
the z direction and are identified with theliscrete¢ ampli-  ments Le Maireet al® conjectured that this field-stabilized

tude of a local mode, polar along tlyedirection. The local
polarization, in general modulated along thelirection, is

(semilattice xy planes. The polarization modulation is sinu-
soidal close to the initial incommensurate instability. But,

according to dielectric and diffraction measurements, and in
agreement with the ANNNI model, at lower temperatures, in

phase corresponds to a polar configurat{éd), being the
result of a spin flip in th&5) sequence of the nonpolar phase
then represented by the average value of the spins on

30

20

]
L2
>
o
m

10 ¢

ol

1/4

~~

AT

subsequent commensurate phases, adquires simple spinlike - TR
one-dimensional commensurate sequences alongdirec- 00 e o
tion. Thus, phases having modulation wave vectpesyc* -20 Y 3
with y=3% andi (hereafter phasesand : have local-mode i
. -30
or spin sequences4up4down and (5up5down, respec- " 100 T(K)

tively, or in short(4) and(5). The validity of this approxi-

mate description of the structual modulation has been re- FIG. 1. Experimental phase diagram of BCCD as a function of
temperature and electric fiel§, as reported in Ref. 9.

cently confirmed by neutron diffraction experimeht$he
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i. lts polarization, larger than those of the neighboringrate configurations, the number of physically relevant points

phasess ((65)) and § ({(54)), would explain the steady in- in 7(v) andé(v), v,= yn, is discrete and finite, while in an
crease of its stability range at higher fields. Neutron scatterincommensurate configuration the set of distinct points
ing measurements under electric field have recently conforms a dense set in the peri¢@, 1). In terms of these
firmed this hypothesis and directly detected the polarizatioomodulation functions, the postulated free enefger unit
flip change in the polarization modulatidhThis transition  cell) is
has not been foreseen in studies of field effects on ANNNI-
type Hamiltonians or in other microscopic displacive 1 1
modelst! Even Landau-type phenomenological anaIysesFZNE ‘b(%vn):NE [2(7— 1) (v)?+ n(vy)?
specially developed to derive electric field effects on BCCD " "
have failed to predict such polar phagés. '

Using an alternative quite general free-energy functional,  +£&(vn)?+ Ig(vn)4+ o{[n(vnty)—n(vy)]&(vn)
we show here that, under some conditions, this kind of

polarization-flip phase transitions under conjugate field can S

be, in fact, rather common in displacive systems with com-  — 7(vn)[&(vnty)—E@n) I} + 5[ n(vnty) - n(vn)]?
peting periodicities. The proposed potential reproduces the

basic low-energy lattice-dynamics common to all these ma- o' )

terials, while keeping, in contrast to the usual + 5 [Evnty)— )" En(vn) [, ey

approache$?*3 the lattice discreteness of the order param-
eter configuration. This is sufficient for predicting the exis-where 7 is a normalized temperature. The coupling tesm
tence in the lowest temperature range of several commensietween the two local variables vanishes for homogeneous
rate phases with spinlike modulations, while the presence afonfigurations favoring modulated ones. Anharmonicity is
flip transitions under a conjugate field seems rather ubiquienly included at a local level. Equatidt) is closely related
tuous. with the Landau potential proposed by Levanyuk and
Sannikov’ for incommensurate systems of the so-called type
Il. Here, however, no continuous approximation is intro-
IIl. A DISCRETE GENERALIZED LANDAU-GINZBURG duced; they and ¢ configurations are discrete although they
POTENTIAL are described along the continuous internal coordinate of the

The essential mechanism for the appearance of modulate&¥Perspace formalism. Notice that the dependence on the
phasegincommensurate and commensuyatemany dielec- Wave vector parametey is here explicit and the real-space
tric systems is a strong coupling of a phonon branch, therfearest neighbor of a given site with value=v,,, having
mally soft at thel” point, with a second low-energy stable Unt ¥ as mtern_al coordlnat_e, is not necessarily the nearest
phonon branch; both branches being, however, uncoupled &tt¢ along the internal cordinate. Thus, theand 6 terms,
the I' point. This basic schem@vhich may be complicated coupling neighboring sites, cannot in general be approxi-
by the presence of additional branchés present in very mated by gradlent terms, as done in usual Landau-Ginzburg-
different materials such as,&eQ, ' thioureal® or BCCD3  type functionals. In Fourier space, E(l) represents two
Hence, a local description requires, at least, two local mode$@nharmonig phonon branches bilinearly coupled floe0
which generate the configuration subspace associated to tiferough the termo, only one of them being a soft-phonon
two relevant branches. As the static modulation in the differPranch. We use reduced units so that the number of free
ent phases takes place along a single direction, the configgoefficients in the potential is limited to a minimum. Equa-
ration for a given thermodynamic phase can be described bjjon (1) also contrasts with more complex microscopic effec-
the average value of the two local variables, sgyandé,, Ive Hamiltonians prop_osed in the I|teratdrget_he energetics
in lattice planesn along the modulation direction, and the has been reduceq to its bare essentials with couplings only
problem becomes essentially one dimensional. A LandaudP 0 nearest neighbors and two modes per cell; the local
Ginzburg-type potential with an underlying one-dimensionalvariables have displacive character andanpriori spinlike
discrete lattice can then be postulated for these local orddfature is introduced; instead of an effective Hamiltonian, we
parameters. This potential is expressed more efficiently usingfduce the problem to a Landau-type thermodynamic poten-
the so-called internal coordinate introduced in the superspadt! through thead hoc introduction of the usual Landau
description of modulated structurdsif yc* is the primary hypoth§S|s of a single quadratic coefficient Imearly depen-
wave vector of the modulation, the configuration of the orde/dent with temperature and unstable below a certain tempera-
parametery can in general be described by a modulationturé: For a given commensurate wave vecjorn/m, the
function 7(v) of period 1 along the internal coordinateso ~ SUM in Eq.(1) is reduced tam distinct terms, while ify is
that the average value of the order parameter at the lattidecommensurate, it can be replaced by an integral along the
point n, 7,, is given by 7(v,) with v,=yn (mod 1. An  internal coordinate
analogous function can be defined for theconfiguration.

The use here of a continuous “internal” coordinate to label Fo— fldUQD( v)

the cells along the modulation direction does not imply any " )o Ladd

continuous approximation of the lattice, but allows us to

separate on the real-space configuration the effect of thehich for a given temperature should be minimized not only
wave vector(real space perigdirom that coming from the with respect thep(v) andé(v) configurations, but also with
particular form of the modulation. In the case of commensu+espect to the wave vector
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FIG. 2. Equilibrium configuration of the order parametgin <6 <5

a1 _
the modulated phase with= 3 at a temperature=0.25 under a FIG. 3. Calculated low temperature,E) phase diagram for the

. _ 73 . . . .

f|el_d E_4.X 10 . (sollq p(_)lnts) for the_muodel. c:}es;}:nbed In the text. model described in the text. The wave vecjoand then configu-
Th's configuration _comcndes essentially with that de_rlved at Z€M%ation for each phase is indicated; polarization-flipped phases are
field. The empty circles correspond to theconfiguration at the

labeled by adding a sigft to the y value. The scaling relations for
same temperature under a fiel=5x 102, showing the abrupt y g g 4 g

- . : : the slopes of the interphase lines are shown in square franaes!
change of the modulation which can be described as a dISCI’GIE are dimensionless

“flip” of a local mode value.

Ill. PHASE DIAGRAM lation functions observed in BCCD foy=3% (Ref. 6 (the
factor 2 between the two wave vectors comes from the fact

Within quite wide ranges for the values of the potentialthat in BCCD the local mode is defined at every semijcell
coefficients, a minimization at zero field of El) and its  The invariance of the modulation functiof(v) at low tem-
incommensurate counterpart as a function of temperaturgeratures explains the numerical rules relating shan se-
yields a sequence of several phases, namely, an initial irquences in different phases.
commensurate phase plus several subsequent commensurateThe calculated phase diagram as a function ofzlwn-
ones, with a final lock-in into a nonmodulated phase withjugate field is shown in Fig. 3 for the lower temperature
n#0, £&=0. The potential coefficients were fixed '  range where locally the local modgis close to saturation.
=90, 0=0.7076, 6=0.2, and §'=1; they were chosen In this temperature range, the transition lines between com-
without pretending to reproduce any real system in particumensurate phases can be approximated by straight lines.
lar, only searching a maximal number of distinct commensuRather systematically at some threshold field, when two po-
rate modulated phases while keeping as ground state a nolar phases are about to “squeeze out” an intermediate non-
modulatedn# 0, £&=0 configuration. The first instability at polar phase, a new polar phase with the same wave number
71=1.0755 into an incommensurate modulated phase of stabilized through the flip of a local-mode in the nonpolar
wave numbery,=0.16 can be derived analytically. The sub- sequence. As the local mode is nearly saturated at all sites for
sequent phase diagram as a function of temperature and fieddl competing phases, the equilibrium configuration hardly
was calculated numerically. As we were only interested inchanges when the field is applied, except abruptly at these
the relative stability of the commensurate phases well belovpolarization-flip transitions. Thus, &~4x 10 2 a phase of
T; and their variation under therconjugate field(E), no  wave vector; (called3 ) with sequenc&53) instead of(4)
effort was done to locate the stability range of the incom-is stabilized(see Fig. 2 and its temperature stability range
mensurate phase, which in any case is limited to the highesteadily grows at higher fields at the cost of the polar neigh-
temperature interval. As expected, closerto the spontane- boring phaseg (54) and3 (43). A similar flip transition from
ous modulationp(v,) has a sinusoidal form, but quite rap- the (5) to a(64) sequence happens for thgphase.
idly, at lower temperatures well above the stability range of The reasons for the peculiar topology of the phase dia-
the commensurate phage the modulation function ofy  gram in Fig. 3, analogous to the one observed in the lowest
takes a steplike approximate form with two equal regions otemperature range of the experimental case of Fig. 1, are the
opposite sigr(see Fig. 2 The form of the modulatiory(v) approximate saturation of the local mode values in all rel-
hardly varies as temperature is further lowered, despite sevevant phases and the Clausius-Clapeyron-type relation
eral transitions into different commensurate phases. ThuslE/dTc=—(AS;—AS,)/(P;—P,), whereAS, andP; are
the modulation attains soliton regimé with respect to the the (temperature constanéxcess entropies and polarizations
final lock-in phasedthe unmodulated polar ground staged  of the two neighboring phas@sExcept for a common con-
in all intermediate phases the local values of the order pastant, the(approximate polarization of a given commensu-
rameter can take essentially only two opposite values, actingate phase can be derived directly from its wave veagtor
de factoas a spin. Figure 2 shows the equilibrium valuesand the resulting spin sequence. The excess entropy of the
n(v,) for the § phase, where a sequen@ can be clearly commensurate phases can, on the other hand, be assumed to
seen. This compares well with the solitonlike atomic modu-vary smoothly with the wave number, i.AS =Ay; where



PRB 62 POLARIZATION-FLIP PHASE TRANSITIONS UNDER.. .. 11421

A is common to all phases ang is the wave vector of the magnetic field-driven transitions have been observed. Al-
particular commensurate phase. In fact, this approximate linthough phases related by a spin flip can be observed in the
ear relation is confirmed in our model and is known to bephase diagram of this magnetic system, the topology of the
also approximately valid in a real system such as BGED. diagram is rather different and the magnetic field alone does
We expect thendE/dTc);_,x(y,—v1)/(P;—P,) and ex- not transform from one configuration to the spin-flipped
cept for a common constant, the slopes only depend on thene?°

wave vectors of the two neighboring phases. Thus, we have

(dE/dTC)%_%=—(%)A, while (dE/ch)g_%=+(%)A, IV. CONCLUSIONS
explaining the symmetry of the triangular squeezing of the . ¢ ial with isplaci
nonpolar phase in Fig. 3. This rule also explains other Summarizing, a free-energy potential with a displacive

regularities of the line slopes both in the phase diagram of"de’ parameter defined in a discrete lattice and featuring
the model(Fig. 3 and in the experimental results of BCCD two anticrossed phonon branches is sufficient to reproduce

(Fig. 1. Note for instance in Fig. 3 the parallelism of the the ther_mal gtabilization of spinlike order_-parameter modu!a—
. o141 14 . tions with different commensurate periods. The potential
lines between phases 9%, §'-7 and 7-, all having a 4565 1ot introduce a continuous approximation in real space
slope ¢)A according to the rule above. and includes in a single framework both the free-energy of
Although no effort was made to replicate any particularincommensurate and commensurate configurations through
system, the phase diagram for the free-endiy already the use of the internal coordinate of superspace formalism. A
exhibits topological features analogous to those in BCCDfield conjugate to the order parameter stabilizes additional
demonstrating in a general simple context that polarization“polar” phases through the “flip” of one local order param-
flip transitions are rather commonplace. An Heuristic argu-eter without changing the periodicity of the system. The
ment can be considered to explain the fact that the flip tranpresent model reduces the mechanism of the structural insta-
sition takes place when the stability ranges of thebility to its bare essentials within a lattice-dynamical ap-
neighboring polar phases are about to cross. At the crossingoach, and shows that these polarization-flip phase transi-
point both phases could in principle coexist, and this wouldtions can be a rather universal feature in systems with
stabilize the polarization-flipped configuration at a local levelcompeting periodicities. The model also explains the pecu-
as an interface. Thus, for the case of phasésands in Fig. liar topological features of the phase diagram under electric
3, the coexistence of configuratioff4) and(43) would im-  field observed in BCCD, which can be described by approxi-
ply at the interfaces local configuratiofs3) corresponding mate scaling rules of general validity.
to the spin-flipped phasg®. Note, however, that the appar-
ent quadruple point in Fig. 3 resolves into two triple points in ACKNOWLEDGMENTS
a larger scale. Probably these rather plausible flip transitions
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