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Polarization-flip phase transitions under an electric field in displacive
systems with competing periodicities
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As an alternative to the usual Landau-Ginzburg-type continuous field approximation, a free energy featuring
two anticrossed phonon branches and defined in a discrete lattice is proposed for dealing with modulated
phases with inherent discrete lattice effects. Using this approach, it is shown that, at some threshold electric~or
conjugate! field, phases may appear in the phase diagram of solids having several modulated phases of
different periods. These phases are the result of the sign-reversal of a particular polar local mode in a spinlike
modulation of the order parameter, and have indeed been recently observed in the modulated ferroelectric
betaine calcium chloride dihydrate~BCCD!. This type of field-drivenpolarization-flip transition had not been
anticipated by previous theoretical approaches, including microscopic ones such as the ANNNI model. The
model proposed also explains the quite peculiar topological features of the phase diagram under the electric
field observed in BCCD.
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I. INTRODUCTION

Solids with an incommensurate structural thermal ins
bility can exhibit complex phase sequences as a functio
temperature. In many of these materials, several intermed
commensurate phases exist where the structural modula
locks into different multiples of the period of the underlyin
basic lattice.1 BCCD ~betaine calcium chloride dihydrate! is
the most conspicuous experimental case with more than
intermediate phases of different periods between room t
perature and 0 K.2 The instability mechanism is displaciv
with a clear soft-phonon branch,3 but spin lattice models
with competing interactions favoring different periods, as
ANNNI ~axial next nearest neighbor Ising! model and its
derivatives4 seem sufficient to explain the basic features
its temperature phase diagram, in particular the polariza
modulation in the different phases and the resulting dielec
properties.2,5 The spins are associated to each semicell al
the z direction and are identified with the~discrete! ampli-
tude of a local mode, polar along they direction. The local
polarization, in general modulated along thez direction, is
then represented by the average value of the spins
~semi!lattice xy planes. The polarization modulation is sin
soidal close to the initial incommensurate instability. B
according to dielectric and diffraction measurements, and
agreement with the ANNNI model, at lower temperatures
subsequent commensurate phases, adquires simple sp
one-dimensional commensurate sequences along thez direc-
tion. Thus, phases having modulation wave vectorsq[gc*
with g5 1

4 and 1
5 ~hereafter phases14 and 1

5 have local-mode
or spin sequenceŝ 4up4down& and ^5up5down&, respec-
tively, or in short^4& and ^5&. The validity of this approxi-
mate description of the structual modulation has been
cently confirmed by neutron diffraction experiments.6 The
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modulation orspin sequences for phases corresponding
intermediate wave vectors can be readily envisaged from
of the simpler neighboring ones. Thus, for the phase2

9, with
g in between1

4 and 1
5, the sequence would bê54&.7 As the

spin represents a local mode which is polar along they di-
rection, it comes out naturally from these rules that on
phases with modulation wave vectorsg5n/m with n even
andm odd can bey polar, in agreement with more rigorou
arguments.8

However, the microscopic or phenomenological mod
considered up to now have not anticipated the rece
reported9 peculiar features of the phase diagram of BCC
under electric field along they direction ~see Fig. 1!. At
nonzero field, the expected increase of the ranges ofy-polar
commensurate phases at the cost of the nonpolar one
observed. But at some threshold fields new phases appea
particular, above 17 kV/cm, approximately where the tran
tion lines between phases211-

1
5 and 1

5-
2
9 are about to meet, a

new phase seems to exist in Fig. 1. From dielectric meas
ments Le Maireet al.9 conjectured that this field-stabilize
phase corresponds to a polar configuration^64&, being the
result of a spin flip in thê5& sequence of the nonpolar pha

FIG. 1. Experimental phase diagram of BCCD as a function
temperature and electric fieldEb as reported in Ref. 9.
11 418 ©2000 The American Physical Society
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1
5. Its polarization, larger than those of the neighbori
phases2

11 ~^65&! and 2
9 ~^54&!, would explain the steady in

crease of its stability range at higher fields. Neutron scat
ing measurements under electric field have recently c
firmed this hypothesis and directly detected the polariza
flip change in the polarization modulation.10 This transition
has not been foreseen in studies of field effects on ANN
type Hamiltonians or in other microscopic displaci
models.11 Even Landau-type phenomenological analys
specially developed to derive electric field effects on BCC
have failed to predict such polar phases.12

Using an alternative quite general free-energy function
we show here that, under some conditions, this kind
polarization-flip phase transitions under conjugate field
be, in fact, rather common in displacive systems with co
peting periodicities. The proposed potential reproduces
basic low-energy lattice-dynamics common to all these m
terials, while keeping, in contrast to the usu
approaches,12,13 the lattice discreteness of the order para
eter configuration. This is sufficient for predicting the ex
tence in the lowest temperature range of several comme
rate phases with spinlike modulations, while the presenc
flip transitions under a conjugate field seems rather ubiq
tuous.

II. A DISCRETE GENERALIZED LANDAU-GINZBURG
POTENTIAL

The essential mechanism for the appearance of modul
phases~incommensurate and commensurate! in many dielec-
tric systems is a strong coupling of a phonon branch, th
mally soft at theG point, with a second low-energy stab
phonon branch; both branches being, however, uncouple
the G point. This basic scheme~which may be complicated
by the presence of additional branches! is present in very
different materials such as K2SeO4,

14 thiourea,15 or BCCD.3

Hence, a local description requires, at least, two local mo
which generate the configuration subspace associated to
two relevant branches. As the static modulation in the diff
ent phases takes place along a single direction, the con
ration for a given thermodynamic phase can be described
the average value of the two local variables, sayhn andjn ,
in lattice planesn along the modulation direction, and th
problem becomes essentially one dimensional. A Land
Ginzburg-type potential with an underlying one-dimensio
discrete lattice can then be postulated for these local o
parameters. This potential is expressed more efficiently u
the so-called internal coordinate introduced in the supersp
description of modulated structures:16 if gc* is the primary
wave vector of the modulation, the configuration of the ord
parameterh can in general be described by a modulati
functionh(v) of period 1 along the internal coordinatev, so
that the average value of the order parameter at the la
point n, hn , is given byh(vn) with vn5gn ~mod 1!. An
analogous function can be defined for thej configuration.
The use here of a continuous ‘‘internal’’ coordinate to lab
the cells along the modulation direction does not imply a
continuous approximation of the lattice, but allows us
separate on the real-space configuration the effect of
wave vector~real space period! from that coming from the
particular form of the modulation. In the case of commen
r-
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rate configurations, the number of physically relevant poi
in h(v) andj(v), vn5gn, is discrete and finite, while in an
incommensurate configuration the set of distinct pointsvn
forms a dense set in the period@0, 1!. In terms of these
modulation functions, the postulated free energy~per unit
cell! is

F5
1

N (
n

F~g,vn!5
1

N (
n

H 2~t21!h~vn!21h~vn!4

1j~vn!21
b8

4
j~vn!41s$@h~vn1g!2h~vn!#j~vn!

2h~vn!@j~vn1g!2j~vn!#%1
d

2
@h~vn1g!2h~vn!#2

1
d8

2
@j~vn1g!2j~vn!#22Eh~vn!J , ~1!

wheret is a normalized temperature. The coupling terms
between the two local variables vanishes for homogene
configurations favoring modulated ones. Anharmonicity
only included at a local level. Equation~1! is closely related
with the Landau potential proposed by Levanyuk a
Sannikov17 for incommensurate systems of the so-called ty
II. Here, however, no continuous approximation is intr
duced; theh andj configurations are discrete although th
are described along the continuous internal coordinate of
superspace formalism. Notice that the dependence on
wave vector parameterg is here explicit and the real-spac
nearest neighbor of a given site with valuev5vn , having
vn1g as internal coordinate, is not necessarily the nea
site along the internal cordinate. Thus, thes and d terms,
coupling neighboring sites, cannot in general be appro
mated by gradient terms, as done in usual Landau-Ginzb
type functionals. In Fourier space, Eq.~1! represents two
~anharmonic! phonon branches bilinearly coupled forkÞ0
through the terms, only one of them being a soft-phono
branch. We use reduced units so that the number of
coefficients in the potential is limited to a minimum. Equ
tion ~1! also contrasts with more complex microscopic effe
tive Hamiltonians proposed in the literature:18 the energetics
has been reduced to its bare essentials with couplings
up to nearest neighbors and two modes per cell; the lo
variables have displacive character and noa priori spinlike
feature is introduced; instead of an effective Hamiltonian,
reduce the problem to a Landau-type thermodynamic po
tial through thead hoc introduction of the usual Landau
hypothesis of a single quadratic coefficient linearly dep
dent with temperature and unstable below a certain temp
ture. For a given commensurate wave vectorg5n/m, the
sum in Eq.~1! is reduced tom distinct terms, while ifg is
incommensurate, it can be replaced by an integral along
internal coordinate

F inc5E
0

1

dvF~g,v !,

which for a given temperature should be minimized not o
with respect theh(v) andj(v) configurations, but also with
respect to the wave vectorg.
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III. PHASE DIAGRAM

Within quite wide ranges for the values of the potent
coefficients, a minimization at zero field of Eq.~1! and its
incommensurate counterpart as a function of tempera
yields a sequence of several phases, namely, an initia
commensurate phase plus several subsequent commen
ones, with a final lock-in into a nonmodulated phase w
hÞ0, j50. The potential coefficients were fixed tob8
590, s50.7076, d50.2, and d851; they were chosen
without pretending to reproduce any real system in parti
lar, only searching a maximal number of distinct commen
rate modulated phases while keeping as ground state a
modulatedhÞ0, j50 configuration. The first instability a
t I51.0755 into an incommensurate modulated phase
wave numberg I50.16 can be derived analytically. The su
sequent phase diagram as a function of temperature and
was calculated numerically. As we were only interested
the relative stability of the commensurate phases well be
Ti and their variation under theh-conjugate field~E!, no
effort was done to locate the stability range of the inco
mensurate phase, which in any case is limited to the hig
temperature interval. As expected, close tot I , the spontane-
ous modulationh(vn) has a sinusoidal form, but quite rap
idly, at lower temperatures well above the stability range
the commensurate phase18, the modulation function ofh
takes a steplike approximate form with two equal regions
opposite sign~see Fig. 2!. The form of the modulationh(v)
hardly varies as temperature is further lowered, despite
eral transitions into different commensurate phases. T
the modulation attains asoliton regime1 with respect to the
final lock-in phase~the unmodulated polar ground state! and
in all intermediate phases the local values of the order
rameter can take essentially only two opposite values, ac
de factoas a spin. Figure 2 shows the equilibrium valu
h(vn) for the 1

8 phase, where a sequence^4& can be clearly
seen. This compares well with the solitonlike atomic mod

FIG. 2. Equilibrium configuration of the order parameterh in
the modulated phase withg5

1
8 at a temperaturet50.25 under a

field E5431023 ~solid points! for the model described in the tex
This configuration coincides essentially with that derived at z
field. The empty circles correspond to theh configuration at the
same temperature under a fieldE5531023, showing the abrupt
change of the modulation which can be described as a disc
‘‘flip’’ of a local mode value.
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lation functions observed in BCCD forg5 1
4 ~Ref. 6! ~the

factor 2 between the two wave vectors comes from the
that in BCCD the local mode is defined at every semice!.
The invariance of the modulation functionh(v) at low tem-
peratures explains the numerical rules relating thespin se-
quences in different phases.

The calculated phase diagram as a function of theh con-
jugate field is shown in Fig. 3 for the lower temperatu
range where locally the local modeh is close to saturation
In this temperature range, the transition lines between c
mensurate phases can be approximated by straight li
Rather systematically at some threshold field, when two
lar phases are about to ‘‘squeeze out’’ an intermediate n
polar phase, a new polar phase with the same wave num
is stabilized through the flip of a local-mode in the nonpo
sequence. As the local mode is nearly saturated at all site
all competing phases, the equilibrium configuration har
changes when the field is applied, except abruptly at th
polarization-flip transitions. Thus, atE'431023 a phase of
wave vector1

8 ~called 1
8

1) with sequencê53& instead of̂ 4&
is stabilized~see Fig. 2! and its temperature stability rang
steadily grows at higher fields at the cost of the polar nei
boring phases19 ^54& and 1

7 ^43&. A similar flip transition from
the ^5& to a ^64& sequence happens for the110 phase.

The reasons for the peculiar topology of the phase d
gram in Fig. 3, analogous to the one observed in the low
temperature range of the experimental case of Fig. 1, are
approximate saturation of the local mode values in all r
evant phases and the Clausius-Clapeyron-type rela
dE/dTc52(DS12DS2)/(P12P2), whereDSi and Pi are
the ~temperature constant! excess entropies and polarizatio
of the two neighboring phases.9 Except for a common con
stant, the~approximate! polarization of a given commensu
rate phase can be derived directly from its wave vectorg i
and the resulting spin sequence. The excess entropy o
commensurate phases can, on the other hand, be assum
vary smoothly with the wave number, i.e.,DSi5Ag i where

o

te

FIG. 3. Calculated low temperature (t,E) phase diagram for the
model described in the text. The wave vectorg and theh configu-
ration for each phase is indicated; polarization-flipped phases
labeled by adding a sign1 to theg value. The scaling relations fo
the slopes of the interphase lines are shown in square frames.t and
E are dimensionless.
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A is common to all phases andg i is the wave vector of the
particular commensurate phase. In fact, this approximate
ear relation is confirmed in our model and is known to
also approximately valid in a real system such as BCCD19

We expect then (dE/dTc)1—2}(g22g1)/(P12P2) and ex-
cept for a common constant, the slopes only depend on
wave vectors of the two neighboring phases. Thus, we h

(dE/dTc) 1
8 – 1

7
52( 1

8 )A, while (dE/dTc) 1
9 – 1

8
51( 1

8 )A,
explaining the symmetry of the triangular squeezing of
nonpolar phase1

8 in Fig. 3. This rule also explains othe
regularities of the line slopes both in the phase diagram
the model~Fig. 3! and in the experimental results of BCC
~Fig. 1!. Note for instance in Fig. 3 the parallelism of th

lines between phases 0-1
8

1, 1
8

1- 1
7 and 1

7-
4
25, all having a

slope (16 )A according to the rule above.
Although no effort was made to replicate any particu

system, the phase diagram for the free-energy~1!, already
exhibits topological features analogous to those in BCC
demonstrating in a general simple context that polarizati
flip transitions are rather commonplace. An Heuristic arg
ment can be considered to explain the fact that the flip tr
sition takes place when the stability ranges of t
neighboring polar phases are about to cross. At the cros
point both phases could in principle coexist, and this wo
stabilize the polarization-flipped configuration at a local le
as an interface. Thus, for the case of phases1

9,
1
8, and1

7 in Fig.
3, the coexistence of configurations^54& and^43& would im-
ply at the interfaces local configurations^53& corresponding
to the spin-flipped phase18

1. Note, however, that the appa
ent quadruple point in Fig. 3 resolves into two triple points
a larger scale. Probably these rather plausible flip transit
were not foreseen in previous studies because situations
not considered where the order parameter is close to l
saturation in a large part of the phase diagram. It is intri
ing, however, that in analogous modulated magnetic syst
with competing periodicities such as CeSb no analog
s
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magnetic field-driven transitions have been observed.
though phases related by a spin flip can be observed in
phase diagram of this magnetic system, the topology of
diagram is rather different and the magnetic field alone d
not transform from one configuration to the spin-flipp
one.20

IV. CONCLUSIONS

Summarizing, a free-energy potential with a displaci
order parameter defined in a discrete lattice and featu
two anticrossed phonon branches is sufficient to reprod
the thermal stabilization of spinlike order-parameter modu
tions with different commensurate periods. The poten
does not introduce a continuous approximation in real sp
and includes in a single framework both the free-energy
incommensurate and commensurate configurations thro
the use of the internal coordinate of superspace formalism
field conjugate to the order parameter stabilizes additio
‘‘polar’’ phases through the ‘‘flip’’ of one local order param
eter without changing the periodicity of the system. T
present model reduces the mechanism of the structural in
bility to its bare essentials within a lattice-dynamical a
proach, and shows that these polarization-flip phase tra
tions can be a rather universal feature in systems w
competing periodicities. The model also explains the pe
liar topological features of the phase diagram under elec
field observed in BCCD, which can be described by appro
mate scaling rules of general validity.
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Dusek, J. M. Kiat, and J. M. Ezpeleta, Phys. Rev. B60, 7025
~1999!.
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