
PHYSICAL REVIEW B 1 NOVEMBER 2000-IVOLUME 62, NUMBER 17
Magnetotransport in nearly superconducting Fermi liquids
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The quasiparticle contribution to the conductivity of a nearly superconducting two-dimensional Fermi liquid
in a perpendicular magnetic fieldB is studied. The Boltzmann equation for the case of scattering on the pair
fluctuations is shown to be the same as for forward scattering on a particle-hole collective mode. It is shown
that in both cases, the Jones-Zener expansion of the conductivity tensor in powers ofB is severely modified.
Implications for some theories of the normal state in the cuprates and also for nearly ferromagnetic systems are
discussed.
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The nature of the electron dynamics in the normal state
the cuprates remains an open subject.1 Anderson has pro-
posed that on the phenomenological level the in-plane m
netotransport data can be analyzed in terms of two lifetim
one of which determines the response to the electric field
the other one to the magnetic field.2 Soon after this proposa
it has been suggested that these two different lifetimes ca
realized in a quite conventional way: different parts of t
Fermi surface can support different lifetimes.3 Such aniso-
tropic situations appear quite naturally in models with larg
momentum scattering.4,5 However, it has been pointed ou
that even the description of the simplest quantity of intere
rxx , is not free of problems in such theories, since su
scattering can affect only a small~hot! part of the Fermi
surface. The remaining~cold! Fermi-surface electrons do no
experience singular scattering and short circuit the contr
tion of the hot electrons at low temperatures.6

Some of the problems of the hot-spot models have b
overcome in a phenomenological model due to Ioffe a
Millis, in which the whole Fermi surface of the cuprates
supposed to be hot, except for a small number of electron
the vicinity of the (61,61) directions, which are suppose
to be cold.7 Ioffe and Millis argue that this so-called cold
spot model may result from the scattering of electrons on
pair fluctuations of ad-wave superconductor.

Anderson has proposed different microscopics.2 The ori-
gin of his holon-spinon picture lies in a singular forwa
scattering of the electrons. Unfortunately, Anderson’s s
gestion has not been studied in much detail so far. We
aware only of Ref. 8 which shows that strong forward sc
tering can lead in a layered system to a divergent resisti
anisotropyrzz/rxx as the temperature is lowered, in agre
ment with experiment.

In this paper we elaborate on the following observatio
an electron with momentumk scatters on a superconductin
fluctuation in that it annihilates another electron with m
mentumk8'2k. Since the total momentum of the annih
lated pair of electrons is close to zero, the electric curr
changes only little due to such scattering. We show that
Boltzmann equation for scattering on superconducting fl
tuations is equivalent to the forward scattering case. We
the expansion of the conductivity tensor in powers of
magnetic field for a general forward-scattering mechani
We argue that, on the level of the Boltzmann equation, f
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ward scattering~and, hence, also superconducting fluctu
tions! do not lead to the two-lifetime phenomenology of th
cuprates.

Boltzmann equation.Let us start by reviewing the case o
electrons scattering on a bosonic mode which can be a p
non or a particle-hole collective mode of the electron syste
Throughout this paper we assume that the bosons relax
ficiently fast so that they can be assumed to be in equilibri
even in an applied electric fieldE and magnetic fieldB. Let
us write the electron distribution functionf k of the electron
gas in the formf k5 f k

02Fk] f k
0/]«k , where f k

0 is the equi-
librium distribution function.Fk is a function to be deter-
mined from the Boltzmann equation,9 which to linear order
in E reads

eFE1
]F

]k
3BG•vkd~«k!5(

k8
Wk,k8

ph
~Fk2Fk8!.

The functionWk,k8
ph describes the scattering of electrons

the bosonic mode6 andvk is the electron group velocity.
From now on, let us specialize to a two-dimensional s

tem with square symmetry and lattice constanta. We assume
that the electric fieldE ~magnetic fieldB) is parallel ~per-
pendicular! to the electron system.

The sum overk8 in the collision term of the Boltzmann
equation can be written(k85(a/2p)2r(dk8/vk8)*d«k8 . Let
us take the integral*d«k of both sides of the Boltzmann
equation and define a dimensionless scattering func
Ak,k8

ph
5(a2/2pvkvk8)*d«k*d«k8Wk,k8

ph . Making use of the
well-known result for the functionWk,k8

ph ~see, e.g., Ref. 6!
we have

Ak,k8
ph

5
ugk,k8

ph u2a2

4pvkvk8
E

2`

` dvvImxph~k82k,v!

T sinh2~v/2T!
,

where Imxph(q,v) is the spectral function of the boson mod
andgk,k8

ph describes the coupling of electrons and bosons.
have assumed that the scattering is quasielastic and ther
we can neglect the dependence of Imxph(k82k,v) on
«k ,«k8 . All momenta are taken at the Fermi surface.

Let us consider an electron-like Fermi line and define
‘‘Fermi wave vector’’ kF5rdk/2p, where the integration is
taken along the Fermi line. The Fermi points shall be labe
11 365 ©2000 The American Physical Society
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11 366 PRB 62BRIEF REPORTS
by a new angular variablew defined bydk5kFdw, and we
setw50 along one of the crystal axes. We assume furth
more thatE is parallel to thew50 direction. SinceFk is
proportional toE5uEu, we can replace it by a new dimen
sionless functiongk by settingFk5(eE/kF)gk . With the
above definitions, the Boltzmann equation can be written

cosc~w!1b
dg

dw
5 R dw8

2p
Aph~w,w8!@g~w!2g~w8!#,

~1!

where cosc5E•vk /(Evk) andb5euBu/\kF
2 is a dimension-

less magnetic field.
Scattering on superconducting fluctuations.Following

Ref. 7, we consider the case when the quasiparticle co
bution to the conductivity dominates over the paraconduc
ity. We assume that the interaction of the electrons with
superconducting fluctuations can be described by the Ha
tonian

H5
1

A2
(
k,q

gk
pp@~c2k1q/2↓ck1q/2↑2c2k1q/2↑ck1q/2↓!

3~aq
†1b2q!1H.c.#,

wheregk
pp is a form factor which depends on the symme

of the pairing state andaq
† and bq

† create particlelike and
holelike pair fluctuations, respectively.

In order to stress the similarity to the case of scattering
phonons, for the moment being, let us assume that
particle- and hole-like pair fluctuations have sharply defin
spectrava,b . Then the collision terms for scattering of th
electrons on thea andb bosons are, respectively,

S ] f k

]t D
a

52p(
q

ugk2q/2
pp u2@~12 f k!~12 f 2k1q!na,q

2 f k f 2k1q~na,q11!#d~«k1«2k1q2va,q!,

S ] f k

]t D
b

52p(
q

ugk2q/2
pp u2@~12 f k!~12 f 2k1q!~nb,q11!

2 f k f 2k1qnb,q#d~«k1«2k1q1vb,q!,

wherena,b is the Bose-Einstein distribution function, sinc
we assume again that the collective modes are in equ
rium.

If we write f k5 f k
02Fk] f k

0/]«k , then to linear order in
the deviation from equilibrium,Fk , the Boltzmann equation
can be written

eFE1
]F

]k
3BG•vkd~«k!5(

k8
Wk,k8

pp
~Fk1Fk8!,

where

Wk,k8
pp

5
2

T
ug(k8Àk)/2

pp u2f k
0f k8

0
@n~«k1«k8!11#

3Imxpp~k1k8,«k1«k8!.
r-

ri-
-
e
il-

n
e

d

b-

Here we have relaxed our requirement of sharply defin
energies of the pair fluctuations which are now described
the spectral function Imxpp(q,v).

Assuming quasielastic scattering, the Boltzmann equa
can be cast in the form

cosc~w!1b
dg

dw
5 R dw8

2p
App~w,w8!@g~w!1g~w8!#,

~2!

where

Ak,k8
pp

5

ugppS k82k

2 D u2a2

4pvkvk8
E

2`

` dvvImxpp~k1k8,v!

T sinh2~v/2T!

and the notation is the same as for scattering on a part
hole-like collective mode.

Let us comment on the symmetries ofAa(w,w8) (a
5pp,ph). We require Aa(w,w8)5Aa(w8,w), Aa(w,w8)
5Aa(w1p/2,w81p/2), andAa(w,w8)5Aa(2w,2w8). In
addition to the functionsAa(w,w8) it is convenient to con-
sider also the functionsAa(w̄,u)5Aa(w,w8), whereu5w8

2w and w̄5(w81w)/2. The above symmetries allow us t
write Aa(w̄,u)5(m,n50

` Cm,n
a cos 4mw̄ cosnu. As regards

c(w), we requirec(w)52c(2w) andc(w1p/2)5c(w)
1p/2. Therefore the deviation from a circular Fermi surfac
a(w)5c(w)2w, can be expanded as a(w)
5(n51

` an sin 4nw.
Making use of the symmetries ofc(w) and Aa(w,w8),

one can show readily that Eqs.~1! and~2! are consistent with
g(w)52g(w1p). That is why, in the general case whe
both thepp and theph scattering is present, the Boltzman
equation can be written as

cosc~w!1b
dg

dw
5 R dw8

2p
A~w,w8!@g~w!2g~w8!#,

~3!

where A(w,w8)5Aph(w,w8)1App(w,w81p). Note that
both for dominant forward scattering and for scattering
the superconducting fluctuations,A(w,w8) is substantial
only for w8'w.

Once we have solved forg(w), the conductivity tensor
can be calculated from

s5
2e2

h E
0

2pdw

2p
g~w!S cosc~w!, sinc~w!

2 sinc~w!, cosc~w!
D . ~4!

Equations~3! and ~4! solve ~in principle! the magnetotrans
port problem.

Let us return to the symmetry analysis. It is easy to s
that A(w,w8) has the same symmetries asAa(w,w8). More-
over, if we explicitly take into account the dependence
g(w) on the parameterb, we find that g(w,b)5g(2w,
2b). In weak applied magnetic fields it is convenient
expand the functiong(w) in powers ofb, g5g01g11g2
1 . . . , wheregn}bn. This is the so-called Jones-Zener e
pansion. From Eq.~4! it follows that gn with even~odd! n
determine the diagonal~off-diagonal! components of the
conductivity tensor.
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Approximate solution for dominant forward scatterin
Let us introduceu5w82w so that we can writeA(w,w8)
5A(w1u/2,u). For dominant forward scattering, the sca
tering functionA(w̄,u) is non-negligible only foruuu smaller
than a characteristic angleu0!1. We shall assume further
more thatA(w̄,u) is a weak function ofw̄ on the scaleu0. In
this case we can expand in powers ofu the functions enter-
ing the collision integral on the right-hand side of Eq.~3!,
namelyA(w1u/2,u) ~as a function of its first argument! and
g(w1u). Keeping only terms}u2, the Boltzmann equation
simplifies to

2~Gtr
21~w!g8!85 cosc1bg8, ~5!

whereGtr(w) is a dimensionless ‘‘transport mean free path
Gtr

21(w)5r(du/2p)A(w,u)(12 cosu). The solution of Eq.
~5! can be expanded in powers ofb as follows:

g0~w!52E
p/2

w

dw8Gtr~w8!E
0

w8
dw9 cosc~w9!,

gn11~w!52bE
np/2

w

dw8Gtr~w8!gn~w8!, n50,1, . . . .

~6!

Using the above solution for the electron distributi
function in Eq.~4! we find that the conductivity in the ab
sence of the magnetic field is

sxx5
2e2

h E
0

2pdw

2p
Gtr~w!S2~w!,

where S(w)5*0
wdt cosc(t). For a circular Fermi surface

e.g.,S(w)5 sinw andsxx is given by the standard formul
sxx5(e2/h)*0

2pdwGtr(w)/2p. Contributions tos which are
of a higher order inb are given by multiple angular integra
tions.

Cold-spot model.Ioffe and Millis7 have proposed recentl
that the anomalous in-plane magnetotransport propertie
the cuprates can be understood in the framework of a ne
superconducting Fermi liquid. In Ref. 7 the relaxation-tim
approximation is adopted, i.e., it is implicitly assumed th
for all w,

R dw8A~w,w8!g~w8!'0. ~7!

In this case Eq.~3! simplifies to

G21~w!g5 cosc1bg8, ~8!

where the prime denotes a derivative with respect tow, g8
5dg/dw, and G(w) is a dimensionless ‘‘single-particl
mean free path,’’G21(w)5r(dw8/2p)A(w,w8). Equation
~8! can be solved by variation of constants, but here we s
discuss only the Jones-Zener expansion which reads

g05G cosc,

gn115bGgn8 , n50,1, . . . . ~9!

Note the difference of this standard result with respect to
Zener-Jones expansion for forward scattering, Eq.~6!. From
’

of
rly

t

ll

e

Eq. ~9! it follows that ~within the relaxation-time approxima
tion! the conductivity can be written, to orderb2, in the form

sxx5
e2

h R dw

2p
G$12b2@~Gc8!21~G8!2#1•••%,

sxy5
e2

h R dw

2p
G$2bGc81•••%. ~10!

In calculatingG(w), Ioffe and Millis take into account the
d-wave symmetry of the superconducting fluctuation
gpp(w)5gpp

(0) cos 2w, and for the spectral function of the su
perconducting fluctuations they take Imxpp(q,v)
5F@v2/u2(q21j22)#/(q21j22), where u!vF is the ve-
locity andj;u/T@kF

21 is the correlation length of the pai
fluctuations.F(x) is a fairly general scaling function.

A straightforward calculation leads then to the inver
mean free path G21(w);l cos2 2w, where l is a
T-independent constant. Taking into account the finite an
lar resolution,u0;1/kFj, Ioffe and Millis obtain G21(w)
;l(T/ukF)2 in the cold spots~i.e., for w such that cos 2w
50). As the temperature is lowered, the mean free path
comes progressively more and more anisotropic and, as I
and Millis have shown, the angular integrations in Eq.~10!
lead to transport coefficients in agreement with experime
data~except for the magnetoresistance!.

Unfortunately, for scattering on superconducting fluctu
tions, the criterion Eq.~7! for the applicability of the
relaxation-time approximation is not satisfied. Instead, o
should use the scheme for dominant forward scattering
straightforward calculation shows that, due to the factor
2 cosu);u0

2;(T/ukF)2, the inverse transport mean free pa
for the model spectral function of Ioffe and Millis i
Gtr

21(w);l(T/ukF)2 cos2 2w, i.e., Fermi-liquid like even in
the ‘‘hot’’ region!

The above discussion shows clearly that the microsco
picture proposed in Ref. 7 does not lead to agreement w
the cuprate in-plane transport data. In what follows we sh
argue that, quite generally, neither the scattering on su
conducting fluctuations, nor the dominant forward scatteri
lead to the two-lifetime phenomenology observed in the
prates.

Let us discuss the transport properties for the case
dominant forward scattering assuming a temperatu
dependent anisotropy of the transport mean free pathGtr(w).
In order to present a closed-form analytic solution, we
strict ourselves to the case of a circular Fermi surface, wh
is however not such a bad approximation to the actual Fe
surface observed experimentally in the cuprates~if a simple
particle-hole transformation is performed!. Moreover, we
discuss only two extreme cases ofGtr(w): ~i! a completely
isotropic mean free pathGtr(w)5Ḡtr , corresponding to a
high-temperature state and~ii ! a simple soluble example o
an extremely anisotropic low-temperature mean free p
Gtr(w)5(p/2)Ḡtr(nd@w2(2n11)p/4#, which corresponds
to a Fermi line with cold spots atw5(2n11)p/4 and an
average transport mean free pathrdwGtr(w)/2p5Ḡtr .

Making use of Eqs.~6! we find that both the high-T and
the low-T mean free paths lead to the same resistivity ten
rxx5ryy5r0Ḡtr

21 , rxy52ryx5r0c(T)b, wherer05h/e2.
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The only difference between the two cases is that at h
temperatures~for an isotropic lifetime! c(T)51, whereas at
low temperatures~in the anisotropic case! c(T)5p/4. Thus
the Hall numberRH5rxy /B increases slightly with tempera
ture ~if we assume that the electron concentration does
change withT). This suggests that the strange magnetotra
port behavior of the cuprates~in which RH}T21 has been
observed1! is inconsistent with forward scattering.

We believe that the nearT independence ofRH is a ge-
neric property of systems with dominant forward scatteri
To illustrate this point, consider an example of a hot-s
model with a temperature-dependent anisotropy of the m
free path and a circular Fermi surface. For a system w
dominant forward scattering andGtr(w)5G01G1 cos 4w,
we find

rxx5r0G0
21@11~bG1/30!2~342G1

2/G0
2!#,

rxy5r0b@12~1/30!~G1 /G0!2#.

Note that sinceuG1 /G0u,1 @in order thatGtr(w).0], RH is
nearly independent of temperature. Within the relaxati
time approximation, the same anisotropy of the mean f
pathG(w)5G01G1 cos 4w leads to a much larger deviatio
of r i j from the isotropic case:

rxx5r0G0
21@11~bG1/2!2~342G1

2/G0
2!#,

rxy5r0b@11~1/2!G1
2/G0

2#.

Conclusions.The recent ARPES data of Vallaet al.10

suggest that the single-particle scattering rate in the cupr
exhibits a linear temperature dependence over most of
er
h

ot
s-

.
t

an
h

-
e

es
he

Fermi surface, including the (61,61) directions. Our analy-
sis shows that sinceG(w)ÞGtr(w) for superconducting fluc-
tuations, the results of Ref. 10 by themselves do not excl
the cold-spot picture.

Nevertheless, within standard transport theory we h
shown that the in-plane magnetotransport in tw
dimensional systems with dominant forward scatter
and/or scattering on superconducting fluctuations, is differ
from the phenomenology observed in the cuprates. Altho
rxx may deviate from the canonical Landau Fermi-liquid r
sult rxx}T2, the Hall number depends only weakly on tem
perature.

Thus it appears that none of the proposed theories of
normal state of the cuprates which invoke singular scatte
of the electrons on a collective mode is free of proble
when applied to the in-plane magnetotransport. In fact,
seems to be the case if the exchanged boson is a
fluctuation,7 spin fluctuation,4 charge fluctuation,5 a mode
leading to singular forward scattering2, or a collective exci-
tation leading to the marginal Fermi-liquid phenomenolo
~for a recent formulation, see Ref. 11!.

Finally, let us point out that the results obtained in th
paper should directly apply to nearly ferromagnetic tw
dimensional systems. In that case one expects in the cri
fluctuation-dominated region an anomalous resistivityrxx
}T4/3 ~see Ref. 12!, whereas wepredict that in the same
region there is no temperature dependence to the Hall e
which would be caused by the orbital effects of the magne
field.
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