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~Received 30 May 2000!

We calculate the nonlinear dipole and quadrupole moments induced at the second-harmonic~SH! frequency
2v in a small dielectric sphere by an inhomogeneous monochromatic electric field of frequencyv. We neglect
finite-size effects and assume that the selvedge region of the sphere is thin enough so that the surface may be
considered locally flat. The second-order dipole displays resonances corresponding to the excitation of dipolar
and quadrupolar plasmons atv and a dipolar plasmon at 2v, besides the resonances in the nonlinear surface
response parametersa, b, andf. The second-order quadrupole, on the other hand, has resonances corresponding
to those ofa, b, andf, and to the excitation of dipolar surface plasmons atv only. Depending on the relation
between the size of the sphere and the spatial scale of variation of the field, the SH radiation may be dominated
by either dipolar or quadrupolar scattering, with a crossover region. As an application, we calculate the SH
scattering of a Si sphere lying at various distances above a dielectric substrate.
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I. INTRODUCTION

The use of nonlinear optical techniques to study surf
phenomena has gained a lot of attention in recent years
particular, second-harmonic generation~SHG! has been es
tablished as a very powerful spectroscopy to study a w
range of physical and chemical phenomena at the surfac
centrosymmetric materials.1–7 The surface sensitivity o
SHG is due to the fact that within the dipole approximation
centrosymmetric environment does not radiate SH, while
inversion symmetry is broken at its surface, thus allow
the radiation of SH. On the experimental side, the new t
able high intensity laser systems have made SHG spec
copy readily accessible and applicable to a wide range
systems.1–7 However, the theoretical development of th
field is still an ongoing subject of research. Some rec
advances for the case of semiconducting and metallic
tems have appeared in the literature, where the confronta
of theoretical models with experiment has succeeded, yi
ing correct physical interpretations for the SHG spectra.8–13

Most of the SHG studies, both theoretical and experimen
have been concerned with planar surfaces, and much
attention has been paid to nonplanar systems. Novel n
fabrication techniques are now capable of producing na
particles with controlled structures which include small clu
ters, self-assembled particles, quantum dots, vesicles,
The nonlinear optical properties of these structures are
portant for applications, and can be used for their phys
characterization.14

There have been few theoretical investigations dea
with the SH behavior of small spheres. Most of them ma
use of very restrictive models for the intrinsic bulk15,16 or
surface17,18 nonlinear optical response of the sphere. T
PRB 620163-1829/2000/62~16!/11152~11!/$15.00
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centrosymmetry of a nanoparticle is locally disrupted by
surface. However, it is regained globally for a spheric
shape. Thus, a homogeneous polarizing field induces m
ally canceling polarizations at opposite sides of the sph
and would be incapable of producing dipolar radiation;
would produce only higher multipolar radiation with a pow
of leading orderk6, wherek is the wave number. However
for a nonuniform polarizing field, this cancellation is n
longer exact and dipolar radiation becomes possib
Recently Dadapet al.19,20 presented a model that permits a
arbitrary nonlinear intrinsic response, and calculated
second-harmonic~SH! Rayleigh scattering from a sma
sphere of centrosymmetric material illuminated by a linea
or circularly polarized plane wave. Retardation of the inco
ing field across the particle leads to a total dipole mom
that scales asR/l for small spheres, whereR is the radius of
the sphere andl the wavelength. Thus, although retardati
leads to dipolar radiation, it is of orderk6, and therefore
comparable to the quadrupolar radiation, instead of the u
linear dipolar Mie scattering which is of orderk4 and domi-
nates over the quadrupolar scattering.

The field variations of a plane wave due to retardat
take place necessarily along its wave vector, which is p
pendicular to the polarizing field, and with a concomita
length scalel. However, in many systems of interest, su
as in the neighborhood of other particles or of a substrate,
field may have variations with other length scales and alo
different directions. Since for small length scales the pol
izing field is mostly longitudinal, our purpose in this paper
the full calculation of the SHG by a small spherical partic
subject to an inhomogeneous longitudinal field. To this e
we extend thecontinuous dipoliummodel developed origi-
nally to obtain SHG and the sum and/or difference freque
11 152 ©2000 The American Physical Society
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PRB 62 11 153SECOND-HARMONIC GENERATION FROM SPHERICAL . . .
generation~SFG/DFG! for a semiinfinite homogeneous iso
tropic dielectric.21,22 This model allowed a closed analytic
solution for the surface and bulk nonlinear susceptibilities
terms of the linear dielectric function of the system. Here,
consider a particle of radiusR!l but large enough so tha
we may assume those results to be locally valid inside an
the surface of the sphere. Thus, we obtain simple analy
expressions for the dipolar and quadrupolar nonlinear s
ceptibilities of the sphere. Their use permits a detailed an
sis of the spectral features of the SHG radiated power an
the radiation patterns. As a realistic application, we anal
the SHG of a Si nanosphere placed above an inert diele
substrate.

The structure of the paper is the following: In Sec. II w
develop the theory for the nonlinear response of an isola
single sphere and its SHG efficiency. In Sec. III we use th
results to calculate the response of a sphere placed abo
semiinfinite inert dielectric substrate with a flat surface,
teracting at the fundamental and SH frequencies with its o
dipole and quadrupole image fields. In Sec. IV we obt
numerical results for the SH radiation by a simple syst
with a single Lorentzian linear resonance and identify
origin of all the spectral features~Sec. IV A!. We then study
in detail the radiation of a Si nanosphere above an inert s
strate~Sec. IV B!. Finally, Sec. V is devoted to conclusion

II. NONLINEAR RESPONSE OF A SINGLE SPHERE

We first consider a small polarizable sphere of radiusR
centered at the origin and subject to an inhomogeneous
larizing external fieldEW ex(rW) which oscillates at frequencyv.
Due to the overall centrosymmetry of the system, its q
dratic dipole momentpW has no local contribution propor-
tional to EW exEW ex. Thus, pW is a nonlocal quantity which de-
pends on the spatial variation of the field and can be writ
aspW }EW ex(0)¹EW ex(0)1•••, where we only keep the lowes
order spatial derivatives. Due to the spherical symmetry
the system, we write23

pW 5gd~v!EW ex~0!•¹EW ex~0!, ~1!

wheregd is a scalar. Here, we have ignored a contribut
proportional tok1EW ex3BW ex since we are neglecting retard
e
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tion, i.e., we assumeu¹Eexu@Bex/l1, whereBW ex is the exter-
nal magnetic field,l152p/k1 the fundamental wavelength
andkm5mv/c the free-space wave number of themth har-
monic (m51,2). We have also dropped a third contrib
tion compatible with spherical symmetry, proportional
EW ex¹•EW ex, assuming no external charges within the sphe

Similarly, the quadrupole moment of the sphereQJ

}EW ex(0)EW ex(0) may be written as

Qi j 5gQ~v!@Ei
ex~0!Ej

ex~0!2 1
3 d i j „E

ex~0!…2#. ~2!

The purpose of this section is the calculation of the nonlin
dipolar and quadrupolar polarizabilitiesgd andgQ.

We describe the fundamental field close to the sphere b
scalar potential

fex~r ,u,w!5(
lm

Almr lYlm~u,w!, ~3!

where r, u, and w are spherical coordinates andYlm are
spherical harmonics. For our purposes, it is enough to res
our attention to a simple, cylindrically symmetric linear
varying field,

fex5A10rY101A20r
2Y20. ~4!

In this case, we identify

EW ex52A 3

4p
A10ẑ, ~5!

and

EW ex~0!•¹EW ex~0!5
A15

2p
A10A20ẑ. ~6!

Consistently with Eqs.~1! and ~2!, in the following results
we only keep nonlinear terms proportional toA10

2 and
A10A20, and drop all others.

Solving Laplace’s equation and imposing boundary co
ditions at r 50, R, and ` yields the self-consistent linea
potential
f15H A10F12
e121

e112 S R

r D 3G rY101A20F122
e121

2e113 S R

r D 5G r 2Y20, r .R

A10

3

e112
rY101A20

5

2e113
r 2Y20, r ,R,

~7!
-
whereem[e(mv) is the dielectric function at themth har-
monic.

Following Ref. 21, this inhomogeneous potential induc
a nonlinear macroscopic polarization

PW nl5npW nl2
1

2
n¹•qJ nl ~8!
s

within the sphere, wheren is the number density of the po
larizable entities~‘‘molecules’’! that make up the system,

pW nl52
1

2e
a1a2¹E1

2 ~9!

is the nonlinear dipole moment of a single molecule,
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11 154 PRB 62BRUDNY, MENDOZA, AND MOCHÁN
qJ nl52
1

e
a1

2EW 1EW 1 ~10!

is the second moment of the induced molecular cha
closely related to its quadrupole moment24 Qi j

nl53qi j
nl

2d i j qkk
nl , am[a(mv) is the linear molecular polarizability

related to the dielectric function byem5114pnam , 2e is
the charge of an electron, andEW 152¹f1 is the driving
linear field.

The macroscopic polarization~8! yields a nonlinear
charge densityrnl52¹•PW nl. For our linearly varying funda-
mental field,

rnl52
375n

4pe

a1~a122a2!

~312e1!2
A20

2 ~11!

turns out to be independent ofrW and proportional tou¹Eexu2,
and therefore negligible.

Now we turn our attention to the surface of the sphe
There, we find a bulk originated nonlinear surface cha
snl b5PW nl(R2)• r̂ due to the termination of the bulk nonlin
ear polarization, wherer̂ is a radial unit vector andR6 de-
note the outer and/or inner side of the surface. We obtai

snl b5
5n

16pe
a1~a122a2!S 12A15cosu

~e12!~2e13!
A10A20

125
~3 cos 2u15!

~2e13!2
RA20

2 D , ~12!

from which we need only keep the first term. Notice th
only the second term contributes to the total charge at
surface, which, as expected, is canceled by the bulk cha
We remark that Eqs.~11! and~12! contain the contributions
from the bulk quadrupole moment density and its truncat
at the surface.

There is also a ‘‘surface-originated’’ surface charge

ss52¹ i•PW i
s , ~13!

wherePW i
s is the projection of the surface nonlinear polariz

tion onto the surface of the sphere and¹ i denotes the gradi
ent operator along the surface. Since the centrosymmet
locally broken close to the surface of the sphere, we cons
a surface nonlinear polarization of a dipolar form, namel

Pi
s5x i jk

s F jFk . ~14!

Here,xJs denotes the local nonlinear susceptibility of the s
face, defined as the response to the fieldFW 5„DW 1(R)…'
1„EW 1(R)…i , made up of the normal projection (') of the
displacement field and the parallel projection (i) of the linear
electric field evaluated at the surface. Defining the surf
response in this way, i.e., in terms of quantities that are c
tinuous across the surface, eliminates the ambiguities a
where in the selvedge the fields should be evaluated. In
case,FW 5EW 1(R1)5e1„EW 1(R2)…'1„EW 1(R2)…i .

Now, we assume that the width of the selvedge is sm
compared toR and we neglect finite-size effects, so thatxJs is
given locally by the response of a flat semiinfinite syste
e,

.
e

t
e
e.

n

-

is
er

-

e
n-
to
ur

ll

.

Thus, if we consider a local reference frame in which t
outgoing radial direction' is along one of the Cartesia
axis, we may write the surface nonlinear susceptibility of
isotropic material as

x i jk
s 5

~e121!2

64p2ne
S d i'd j'dk'

a

e1
2

1@~12d i'!~12d j'!dk'

1~12d i'!d j'~12dk'!#
b

e1

1d i'~12d j'!~12dk'! f D , ~15!

wherea5a(v), b5b(v), and f 5 f (v) are dimensionless
functions which are commonly employed to parametrize
response of the surface.25

Substituting Eq.~15! into Eq. ~13! yields

ss5
3~e121!2b

256nep3R
S 9

~113 cos 2u!

~e112!2
A10

2

120A15R
2 cosu13 cos 3u

~e112!~2e113!
A10A201 . . . D , ~16!

where, as discussed above, we have omitted a term pro
tional to A20

2 . Finally, we also write down the surface pola
ization normal to the surface,

P'
s 5

~e121!2

256nep3 S 27
a cos2u1 f sin2u

~e112!2
A10

2

115A15R cosu
4a16~ f 2a!sin2u

~e112!~2e113!
A10A201 . . . D .

~17!

We now consider the potentialf25f(2v) induced in the
system at the second-harmonic frequency. Notice thatrnl

@Eq. ~11!# and snl b @Eq. ~12!# play the role of external
sources forf2 and have to be screened by the linear
sponse of the systeme2, while ss @Eq. ~16!# and P'

s @Eq.
~17!# are self-consistent in the sense of being alrea
screened by the surface response. Thus, it is convenie
separate

f25fb1fs, ~18!

where fb is produced by the unscreened bulk originat
sources andfs is due to the screened surface contributio
The equations to be solved are thus

¹2fb5H 24prnl/e2 ~ inside!

0 ~outside!
~19!

and

¹2fs50 ~ inside and outside! ~20!

with boundary conditions

fb~R1!2fb~R2!50, ~21!
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fs~R1!2fs~R2!54pP'
s , ~22!

]

]R
fb~R1!2e2

]

]R
fb~R2!524psb, ~23!

and

]

]R
fs~R1!2

]

]R
fs~R2!524pss. ~24!

Expanding the potentialsfl(rW)5( lmf lm
l (r )Ylm(u,w)

(l5s,b) and their sourcess(u,w)5( lmslmYlm(u,w) (s
5snl b,ss,P'

s ) in spherical harmonics, we obtain

f l0
l 5H Fl0

l r l ~ inside!

4p

2l 11

ql0
l

r l 11
~outside!

~25!

for l>1, and the boundary conditions become

4p

2l 11

ql0
b

Rl 11
2Fl0

b Rl50, ~26!

4p

2l 11

ql0
s

Rl 11
2Fl0

s Rl54p~P'
s ! l0 , ~27!

4p
l 11

2l 11

ql0
b

Rl 12
2e2lF l0

b Rl 21524ps l0
nl b , ~28!

4p
l 11

2l 11

ql0
s

Rl 12
2 lF l0

s Rl 21524ps l0
s . ~29!

The solutions of this system yield the potential amplitud
Flm

l inside, and the nonlinear~screened, self-consisten!
spherical multipole moments induced on the sphereql0

5ql0
b 1ql0

s , with

ql0
b 5

2l 11

l e21 l 11
Rl 12s l0

nl b ~30!

and

ql0
s 5 lRl 11~P'

s ! l01Rl 12s l0
s . ~31!

We have skipped the analysis of the monopolarl 50 fields,
since the sphere remains globally neutral.

From Eqs.~12! and ~16! we have

s10
nl b5

15

32p2ne
A5

p

~e121!~e122e211!

~e112!~2e113!
A10A20,

~32!

s10
s 5

3

32p2ne
A5

p

~e121!2

~e112!~2e113!
bA10A20, ~33!

s20
s 5

27

32p2ne

1

A5p

~e121!2

~e112!2

b

R
A10

2 1•••, ~34!
s

~P'
s !105

3

32p2ne
A5

p

~e121!2

~e112!~2e113!
~2a13 f !RA10A20,

~35!

and

~P'
s !205

9

64p2ne

1

A5p

~e121!2

~e112!2
~a2 f !A10

2 1•••,

~36!

which yield

q10
b 5

45

32p2ne
A5

p

~e121!~e122e211!

~e112!~2e113!~e212!
R3A10A20,

~37!

q10
s 5

3

32p2ne
A5

p

~e121!2

~e112!~2e113!

3~2a1b13 f !R3A10A20, ~38!

q20
s 5

9

32p2ne

1

A5p

~e121!2

~e112!2
~a13b2 f !R3A10

2 1•••,

~39!

where we have neglected terms of orderA20
2 and multipolar

moments that go to zero faster thanR3 asR→0.
Finally, we identify the Cartesian components of the

pole and quadrupole momentspz5A4p/3q10 and Qzz

52A4p/5q20 and employ Eqs.~1!, ~2!, ~5!, and~6! to write
down the dipolar and quadrupolar nonlinear polarizabilitie

gd5
1

8pne

e121

~e112!~2e113! S 15
e122e211

e212

1~e121!~2a1b13 f ! DR3, ~40!

and

gQ5
9

20pne

~e121!2

~e112!2
~a13b2 f !R3. ~41!

One can identify bulk and surface contributions togd, the
latter being proportional to the surface parametersa, b, andf.
It is interesting to note thatbothcontributions scale with the
volume of the sphere and not with its area. Althoughss has
a term}1/R @Eq. ~16!# andP'

s has a term independent ofR
@Eq. ~17!#, both of which could have contributed to a dipo
moment}R2, these contributions are canceled out due to
overall centrosymmetry of the sphere. The surface contri
tion to gd inherits the resonant structure ofa, b, andf, while
its bulk contribution has resonances at frequencies for wh
the second-harmonic depolarization field excites a dipo
plasmon, given by the conditione2522. There are further
resonances in both terms corresponding to the excitatio
dipolar and quadrupolar plasmons at the fundamental
quency, given by the conditionse1522 ande1523/2, re-
spectively.

The quadrupolar response@Eq. ~41!# also scales with the
volume of the sphere. It may seem paradoxical that it c
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11 156 PRB 62BRUDNY, MENDOZA, AND MOCHÁN
tains only a ‘‘surface’’ term, since each ‘‘molecule’’ within
the sphere has a finite quadrupole moment@Eq. ~10!#. The
reason is thata, b, and f necessarily contain bulk contribu
tions besides intrinsic surface contributions,26 so that the
bulk quadrupolar contribution is actually present but hidd
within the ‘‘surface contribution.’’ Besides the resonances
the surface parameters,gQ has only a dipolar~double! reso-
nance at the fundamental frequency.

Finally, the radiated electromagnetic field at 2v may be
calculated from

BW 25k2
2n̂3pW ef

eik2r

r
, ~42!

EW 25BW 23n̂, ~43!

wheren̂ is a unit vector in the direction of observation an
the effective dipole moment is given by

pi
ef5S pi2

i

6
k2Qi j n̂j D

5FgdEj
ex] jEi

ex2
i

6
k2gQS Ei

exEj
exn̂ j2

1

3
Ek

exEk
exn̂i D G .

~44!

Equations~42! and ~43! contain both the electric dipole an
quadrupole fields. These contributions might be compara
or one might dominate over the other, depending on the
of the field gradient. The SH power radiated per unit so
angle is

dP
dV

5
c

8p
k2

4u~ n̂3pW ef!3n̂u2. ~45!

The SH power is proportional to I 1
2, where I 1

5(c/8p)uEexu2 is the intensity of a plane wave with ampl
tude EW ex, so that, in analogy to the definition of the line
scattering cross section, we define a nonlinear differen
efficiency as

ds

dV
[

1

I 1
2

dP
dV

5
8p

c
k2

4 u~ n̂3pW ef!3n̂u2

uEexu4
~46!

with units@s#5cm4/W. Out of resonance, we expects to be
of order between (k2R)4(R/ l )2/(cn2e2) for dipole-
dominated and (k2R)6/(cn2e2) for quadrupole-dominated
radiation, wherel is the length scale of the field spatial vari
tion.

III. NONLINEAR RESPONSE OF A SPHERE
ABOVE A SUBSTRATE

In the preceding section we have obtained the SH non
ear dipole and quadrupole moments induced on a sm
sphere by an applied inhomogeneous field. Our deriva
assumes that the field gradient is large enough so that r
dation effects may be neglected, but small enough so
only terms of first order in the field derivatives need to
kept. Thus, as opposed to Refs. 19 and 20, we consid
field inhomogeneity that is not due to the finite wave num
of a free field but to a material inhomogeneity close by. T
n
f

le
ze

al

-
ll
n
ar-
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most simple of such inhomogeneities is the presence of a
surface nearby. In this section we consider a sphere loc
at rWd5(0,0,d), a distanced above a flat substrate occupyin
the z<0 half-space and illuminated by a plane wa
EW i(rW,t)5EW iei (kW i

•rW2vt) incident at an angleu i with wave vec-
tor kW i5(v/c)(sinui ,0,2cosui) ~see Fig. 1!. For convenience
and without loss of generality we assume that the incide
plane lies on the x-z plane. Here, EW i5(cosuiE

p,
2Es,sinuiE

p) is the amplitude of the incident field, whereEs

andEp denote itss- andp-polarized components. The role o
the external field in Eqs.~1! and ~2! is played by the local
field, EW loc, defined as

EW loc5EW M1TJ I
•pW l . ~47!

The macroscopic field

EW M5@~12r p!cosu iE
p,2~11r s!Es,~11r p!sinu iE

p#
~48!

is the nearly homogeneous field that would be present in
absence of the sphere, wherer s andr p are the Fresnel reflec
tion amplitudes of the substrate fors and p polarizations,

respectively.27 The substrate mediated self-fieldTJ I
•pW l

5TJ•pW I is produced by the image

pW I5
12e1

s

11e1
s

SJ•pW l , ~49!

of the linear dipole

pW l5b1
dEW loc ~50!

induced on the sphere, which is located atrW I5SJ•rWd, where

Ti j 5] i] j

1

urWd2rW I u
~51!

is the interaction tensor between two dipoles separated
rWd2rW I5(0,0,2d), while

TJ I[TJ•SJ
12e1

s

11e1
s

~52!

FIG. 1. Sphere of radiusR and dielectric functione a distanced
above a substrate of dielectric responsees and illuminated with a
plane wave at angleu i with s andp contributions.
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is the image-mediated dipolar self-interaction tensor. H
we introduced the dielectric functionem

s [es(mv) of the

substrate. We abbreviate the gradients] i[]/]r i
d acting onrWd

while keeping the position of the imagerW I constant. SJ

5diag(1,1,21) is the z→2z reflection operator, and th
linear dipolar polarizabilitybm

d 5bd(mv) is given by27

bd~v!5
e~v!21

e~v!12
R3. ~53!

According to Eqs.~1! and ~2!, the nonlinear dipole and
quadrupole induced on the sphere by the inhomogeneou
cal field may be written as

pi85x i jk
d Ej

MEk
M ~54!

and

Qi j8 5x i jkl
Q Ek

MEl
M , ~55!

where

x i jk
d 5gdh l j h l ik ~56!

and

x i jkl
Q 5

1

2
gQS h ikh j l 1h i l h jk2

2

3
d i j hmkhmlD ~57!

represent the nonlinear response of the sphere to the m
scopic field. Here,

h i j 5~d i j 2Ti j
I b1

d!21 ~58!

is the ‘‘quotient’’ between the local and the macroscop
fields,Ei

loc5h i j Ej
M , and

h i jk[] ih jk5h j l Tilm
I b1

dhmk ~59!

with

Ti jk
I [] iTjk

I 5Ti jl Slk

12e1
s

11e1
s

~60!

and

Ti jk5] iTjk5] i] j]k

1

urWd2rW I u
. ~61!

We have denoted the nonlinear dipole (pW 8) and quadru-

pole (QJ 8) with a prime in Eqs.~54! and ~55! to point out
that, even thoughgd andgQ given by Eqs.~40! and~41! do
incorporate the depolarization effects of an isolated sph
and that the driving fieldEW loc includes the interaction of the
linearly induced dipole atv with its image, we have no
accounted yet for the linear interaction between the dip
and quadrupole moments induced at 2v and their images
‘‘reflected’’ from the substrate. Thus, the total dipole a
quadrupole induced at 2v are given by

pi5pi81b2
d

12e2
s

11e2
s S Ti j Sjkpj2

1

6
Ti jkSjl SkmQlmD , ~62!
e

lo-

ro-

e,

le

Qi j 5Qi j8 1b2
Q

12e2
s

11e2
s S Ti jkSklpl2

1

6
Ti jkl SkmSlnQmnD ,

~63!

where

Ti jkl 5] iTjkl5] i] j]k] l

1

urWd2rW I u
, ~64!

and bm
Q[bQ(mv) is the quadrupolar linear polarizability

defined as the ratio of the linearly induced quadrupole m
ment to the gradient of the field, which is given by

bQ~v!5
e~v!21

e~v!13/2
R5. ~65!

As the results forgd andgQ given by Eqs.~40! and~41! are
correct only to orderR3, we should neglectb2

Q , which is of
orderR5 and simplify Eq.~63! to

Qi j 5Qi j8 . ~66!

Notice that fors-polarized incoming light,pW points along the

z direction andQJ has cylindrical symmetry along they di-
rection, so that Eq.~62! simplifies to

pz5pz82b2
d

12e2
s

11e2
s S pz

4d3
1

3Qyy

64d4 D ~s polarization!.

~67!

On the other hand, forp-polarized incoming light,py50 and
Qxy5Qyz50, so that

px5px82b2
d
12e2

s

11e2
s S px

8d3
2

Qxz

16d4D ~p polarization!,

~68!

pz5pz82b2
d
12e2

s

11e2
s S pz

4d3
2

3Qzz

32d4D ~p polarization!.

~69!

Finally, the electromagnetic field radiated above the s
face at 2v may be calculated from Eqs.~42! and ~43!, but
replacing the effective dipole@Eq. ~44!# by

pi
ef5S pi2

i

6
k2Qi j n̂j D1

12e2
s

11e2
s S Sikpk2

i

6
k2SikSjl Qkln̂j D ,

~70!

which contains both the electric dipole and the electric qu
rupole of the sphere, accounting for the field radiated direc
from the sphere towards the observer, and the correspon
image multipoles, which account for the field radiated
wards the substrate and then linearly reflected, as illustra
in Fig. 2.

The SH power radiated per unit solid angle is given
Eq. ~45! and, since the system is in this case illuminated
a plane wave of amplitudeEW i , we redefine the efficiency@Eq.
~46!# as
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ds

dV
5

8p

c
k2

4u~ n̂3pW ef!3n̂u2

uEi u4
. ~71!

IV. RESULTS

A. Single sphere

To get insight into our results, in Fig. 3 we have plott
the SH radiation patternds/dV vs the polar angleu pro-
duced by a dielectric sphere with a dispersionless dielec
function e15e252 and, assuming a frequency-independ
a parameter,a522, and, as is usual for microscopical
smooth surfaces,b521 and f 50. Introducing a distance
scalel 5uEexu/u¹Eexu we observe a dipolar pattern forl 50
that turns into a quadrupolar pattern asl increases. Both con
tributions are present whenk1l is of order one. Notice that

since in this case bothpW andQJ are real, their contributions to
pW ef are 90° out of phase and therefore no interference
tween the dipolar and quadrupolar fields is present.

In Ref. 21 acontinuous dipoliummodel for a flat homo-
geneous surface was solved and an explicit expression
the a(v) parameter was obtained,

a52~@e22e1#@2e12e22e1e2#

1@e1#2@12e2# log@e1 /e2# !/@e22e1#2, ~72!

as well as the usual resultsb521, f 50. To illustrate the
analytical structure of the response of a sphere, in Fig. 4
display the absolute value and the phase of the dipolar
sponsegd @Eq. ~40!# using the result for the continuous d
polium ~72! and a simple Lorentzian dielectric function28

FIG. 2. The SH field radiated by a sphere, illuminated by lig
of frequencyv ~long-wavelength, wiggly line! above a substrate
contains direct~solid line! and image~dashed line! dipole ~single
arrow! and quadrupole~double-headed arrows! contributions~short-
wavelength, wiggly lines!.

FIG. 3. Normalized SH radiation patternds/dV vs u for a
small dispersionless sphere withe15e252 and nonlinear surface
parametersa522, b521, andf 50 illuminated by a field in the
z ~vertical! direction which varies alongz with a characteristic
length scalel for different values ofk1l .
ic
t

e-

or

e
e-

e(v)5(vL
22v2)/(vT

22v2) with transverse and longitudi
nal frequenciesvT and vL . As discussed in Ref. 21, th
imaginary parta9 of a has two broad peaks. One of the
extends fromvT/2 to vL/2 and the other fromvT to vL . Its
real parta8 has peaks atvT/2, vL/2, andvT and a small
slope discontinuity atvL . The structure ofgd has features
inherited froma. Its phase changes from2p to 0 through
the region (vT/2,vL/2) and from 0 top through the region
(vT ,vL) and is constant outside of these regions, while
magnitude has a small peak atvL/2. However, there is a
much larger structure consisting of peaks at the frequen
vD andvQ of the dipolar and the quadrupolar plasmons
the sphere, given bye(vD)522 ande(vQ)523/2. There
is also a peak at the subharmonicvD/2 of the dipolar plas-
mon, but no structure whatsoever at the subharmonicvQ/2
of the quadrupolar plasmon, as discussed above.

In Fig. 5 we show the quadrupolar responsegQ for the
same system as in Fig. 4. As before, we notice struct
inherited from that ofa betweenvT/2 andvL/2 and between
vT andvL , as well as a change in sign slightly abovevL/2
and an irrelevant 2p phase shift slightly belowvT . There is
also a much larger structure at the dipolar plasmon freque

t

FIG. 4. Absolute value~solid line! and phase~dashed line! of
the quadratic dipolar polarizabilityg d of a small sphere with a
Lorentzian dielectric function with transverse frequencyvT and
vL5A2vT . The small vertical arrows denote the transverseT and
longitudinalL frequencies, as well as the dipolarD and quadrupolar
Q resonances. The corresponding subharmonics are labeledT8, L8,
D8, andQ8.

FIG. 5. Absolute value~solid line! and phase~dashed line! of
the quadratic quadrupolar polarizabilitygQ of a small sphere. The
system and the labels are the same as those in Fig. 4.
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vD . Notice that as this is a double resonance, the co
sponding phase shift across the resonance is 2p. Unlike gd,
gQ has no resonance at the quadrupolar plasmon frequ
vQ nor at the subharmonicsvD/2 nor vQ/2.

As the frequency dependence ofgQ differs from that of
gd, the spectrum of the SH dipolar radiation intensity diffe
from that of its quadrupolar counterpart. In Fig. 6 we plot t
ratio of the total quadrupolar contribution to the radiat
power27 P Q5ck2

6( i j uQi j u2/360 to the total dipolar contribu
tion P d5ck2

4upu2/3 for the same system as in Fig. 4, illum
nated by a field in thez direction with an inhomogeneity
along z with length scalel as in Fig. 3. The figure has
baseline that gradually changes from 1021 to 101, so that
both contributions are comparable fork1l of order one. Su-
perimposed on this baseline, there are additional structu
the slope changes atvT/2 andvL/2 and the negative peak a
vT is due to similar structures in thea parameter; the nega
tive peaks atvD/2 andvQ are due to the dipolar plasmon 2v
resonance and the quadrupolarv resonance ingd, and the
negative peak abovevL/2 is due to the zero ingQ. The
positive peak at vD is due to the dipolar plasmo
v-resonance ofgQ. Notice thatgd also has a dipolar plas
mon v-resonance atgQ. However, the resonance ingd is
simple while that ofgQ is double and therefore dominate
@see denominators in Eqs.~40! and ~41!#.

We remark that, in contrast to the situation in Fig. 3,
generalgd andgQ might differ not only in absolute size bu
also in phase. For example, a phase difference close top/2
may be expected atvQ due to the different nature of th
resonances, as discussed above. Therefore, in general th
radiation pattern is not symmetric as in Fig. 3. In Fig. 7 w
show schematically the radiation pattern corresponding
p/2 phase difference for different values of the length scal.
For small l ~large gradient!, the radiation pattern is dipola
with its characteristic two lobes. Asl increases the angl
between the two lobes closes asymmetrically. For e
largerl, the quadrupolar radiation dominates for some ang
and two new small lobes appear, until, for large enougl
symmetry is restored and the typical quadrupolar four-lob
pattern emerges.

B. Si sphere over a dielectric substrate

Recently, SHG experiments have been performed14 in
composite media consisting of Si nanoparticles embedde

FIG. 6. Ratio of the total quadrupolarP Q to the dipolarP d

radiated power for the same system as in Fig. 4, illuminated by
same field as in 3, normalized to the fundamental wave numbek1

and the length scale of variation of the fieldl.
e-

cy

s:

SH

a

n
s

d

in

a thin-film matrix above a substrate. To explore the nonlin
response of this class of materials, in this section we conc
trate on the SH radiation of a single Si nanosphere abov
substrate, employing the results of Sec. III. The only qua
ties required to this end are the bulk linear dielectric respo
of Si, taken from Ref. 29, its nonlinear surface responsea,
calculated with Eq.~72!, b521 andf 50, and the response
of the substrate, which, to simplify the spectra analysis,
take as an inert dielectric withes52.34.

In Fig. 8 we plot the efficiencyds/dV @Eq. ~71!# of the
SH radiation scattered by a sphere illuminated bys-polarized
light as a function of the azimuthal anglew and of the in-
coming photon energy\v. To reduce the simplek2

4 (k2
6)

dependence of the dipolar~quadrupolar! contributions to
ds/dV, and to further enhance its structure, we have n
malized the results byv5. Notice that in this case the SH
dipole moment is normal to the surface of the substratez
axis!, while the quadrupole moment has cylindrical symm
try along the normal to the incidence plane (y axis!. Thus,
the dipolar radiation pattern has cylindrical symmetry arou
the z axis while there is no quadrupolar radiation along t
x-z plane. Therefore, the dipolar and quadrupolar contri

e

FIG. 7. Schematic radiation patternsds/dV vs u for a small
dispersionless sphere illuminated by a field as in Fig. 7, assumi
p/2 phase difference between the dipolar and quadrupolar respo
for different values of the field inhomogeneity length scalel, in-
creasing left to right and top to bottom. The direction of the dipo
moment is indicated by an arrow and that of the quadrupole m
ment by a double-headed arrow.

FIG. 8. Normalized SH efficiency (ds/dV)/v5 scattered by a
Si sphere of radiusR54 nm a distancez51.2R above an inert
substrate withes52.34, illuminated withs-polarized light at an
angle of incidenceu i545°, radiated at a polar angleu545° as a
function of the azimuthal anglew and of the incident photon energ
\v. The plane of incidence isx-z. We indicate the Cartesian axis
theE1 andE2 resonances of bulk Si, their subharmonics, and th
of the dipolarD and quadrupolarQ resonances of the sphere.
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tions to the radiation may be extracted from the right and
borders of the 90° cutout in Fig. 8. Following the right bo
der, we notice that the dipolar radiation shows a clear p
close to the critical pointE153.4 eV of e(v) and a slope
change corresponding toE254.3 eV. The latter is overshad
owed by a large and wide resonance at the subharmon
the dipolar plasmon of the sphere, at\vD/2'10 eV. There
are also noticeable features at the subharmonics of the
cal pointsE1 andE2. All of these features are present ingd

@Eq. ~40!#. As expected, there is no structure correspond
to the subharmonic of the quadrupolar plasmon of the sph
at \vQ/2'5.35 eV. Following now the left border, we fin
much stronger features atE1 and E2 which arise from the
quadrupolar responsegQ @Eq. ~41!#, as well as the reso
nances atE1/2, E2/2, and\vD/2 also visible on the right
border. We remark that the resonance of the quadrupol
E2 is now comparable to the resonance of the dipole
\vD/2.

In Fig. 9 we plot the SH efficiencyds/dV as in Fig. 8,
but for p-polarized illumination. In contrast to thes-polarized
case, the direction of the dipole momentpW is now frequency

dependent, and the quadrupole momentQJ has no axial sym-
metry. Thus, the dipolar and quadrupolar contributions to
SH radiation cannot be simply identified from thew depen-
dence ofds/dV ~there is, though, a purely dipolar contribu
tion in the grazing direction normal to the incidence plan
u590°, f5690° which always correspond to an eigenve

tor of QJ ). Furthermore, there is a clear asymmetry betwe
the SH radiation in the forward (w50) and the backward
(w5180°) directions, as evidenced by the 180° cutout
the left side of Fig. 9. Forp polarization we found a dipole
moment about an order of magnitude larger than fors polar-
ization, while the quadrupole moments remain compara
In order to have similar dipolar and quadrupolar contrib
tions to the radiation we increasedz from 1.2R in Fig. 8 to
1.4R in Fig. 9. The latter shows qualitatively the same sp
tral features as the former (E1/2, E2/2, E1, andE2) except
for the peak at\vD/2 which is hidden by the now muc
larger peaks atE1 andE2 and by ourv5 normalization.

The full angular dependence of the SH radiation patter
shown for different distancesd from the surface in Figs. 10
and 11 corresponding to the cases ofs and p incoming po-
larizations. Ford5R the pattern fors polarization~Fig. 10!
is dominated by dipolar radiation with the dipole mome
normal to the surface; its constant height lines are deform
circles and there is no radiation along the surface normal

FIG. 9. Normalized SH efficiency (ds/dV)/v5 as in Fig. 8, but
for p-polarized incident light. The sphere is at a distancez51.4R
over the substrate.
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d is increased the relative intensity of the radiation along
incidence plane and along they axis diminishes, and ford
51.6R the typical double-cone pattern corresponding to
cylindrically symmetric quadrupole with axis normal to th
incidence plane is clearly seen. On the other hand, fop
polarization, the pattern is completely dipole dominated
d5R, althoughpW is slightly tilted from the surface normal
As d increases, the radiation pattern acquires peculiar sha
as the quadrupolar radiation becomes comparable and i
feres with the dipolar radiation. We remark that in this ca
the principal axes of the induced quadrupole are not sim
related to the direction of the induced dipole. Furthermo
they are given by complex vectors without a real direction

FIG. 10. Efficiencyds/dV of the SH radiation patterns pro
duced by a 4-nm Si nanosphere at several distancesd51.0R, 1.2R,
1.4R, and 1.6R ~clockwise from upper left! over a dielectric sub-
strate (es52.34) illuminated bys-polarized light of energy\v
5E1 as a function of the outgoing directionu andw. We indicate
the surface~solid rectangle!, the plane of incidence~dashed rect-
angle!, the direction of the induced dipole moment~single-headed
arrow!, and the axis of the induced quadrupolar moment~double-
headed arrow!.

FIG. 11. Efficiencyds/dV of the SH radiation patterns pro
duced by a 4-nm Si nanosphere at several distancesd51.0R, 1.4R,
1.6R, and 1.8R ~clockwise from upper left! over a dielectric sub-
strate (es52.34) illuminated byp-polarized light of energy\v
5E1 as a function of the outgoing directionu andw. We indicate
the surface~solid rectangle! and the plane of incidence~dashed
rectangle!. For d5R we show the direction of the induced dipo
moment~single-headed arrow!. For d51.8R we show with double-
headed arrows the approximate principal directions along~solid
line! and normal to~dashed line! the incidence plane. Their siz

indicates that of the corresponding eigenvalues ofQJ ; converging
arrows correspond to nearly opposite phases than diverging arr
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their real and imaginary parts are not parallel. Ford51.8R
the radiation has already become quadrupolar and the q
rupole moment has almost real eigenvectors and alm
imaginary eigenvalues, indicated in Fig. 11. In this case
radiation pattern looks like a tilted double cone revolvin
around the axis with the odd phase, and it is unevenly tr
cated by the surface of the substrate. The cone is deform
as the other two principal axes are not equivalent.

V. CONCLUSIONS

In this paper we have obtained analytical expressions
the dipolar and quadrupolar second-order susceptibilitiesgd

and gQ of a small dielectric sphere in terms of its linea
dielectric functione. To this end we employed a continuou
dipolium model in which the sphere is considered to be ma
up of a continuous distribution of polarizable molecul
whose density decays to zero abruptly within a thin selved
at the border of the sphere. We further assumed that
selvedge may be considered locally flat and we neglec
finite-size effects. We considered a longitudinal inhomog
neous polarizing fieldEW ex and, without further approxima-
tions we obtained the leading-order contribution to the dip
moment, proportional toEW ex

•¹EW ex, and to the quadrupole
moment, proportional toEW exEW ex.

We identified surface and bulk contributions togd and
gQ, and we found that they are all of the same order
magnitude'R3/(ne), wheren is the density of polarizable
entities within the sphere ande is the electronic charge. Eve
the surface contributions turn out to be proportional to t
volume of the particle'R3 and not to its area, whereR is
the radius. The scattering efficiency is of orders
'(R/l)62z(R/ l )z/(cn2e2) wherel is the length scale of the
spatial variation of the field, andz ranges from 2 for dipole-
dominated radiation to 0 for quadrupole dominated radiati
The surface contributions have a resonant structure simila
that of the surface nonlinear susceptibility of a flat semiin
nite system made up of the same material. The bulk con
bution togd also has a resonance at the subharmonic of
sphere dipolar plasmon, given bye(2v)522. Both contri-
butions togd also have resonances at the dipolar plasm
frequency, wheree(v)522 and at the quadrupolar plasmo
frequency, wheree(v)523/2. On the other hand,gQ dis-
plays only an additional feature at the dipolar plasmon f
quency, which turns out to be a double resonance.

We have used these results to calculate the SH radia
patterns for an isolated sphere for different length scalel.
We obtained a dipolar pattern for smalll which evolves con-
tinuously into a quadrupolar pattern asl is increased. Forkl
g
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of order one, both contributions are comparable and the
tern may be symmetric or not, depending on the relat
phases ofgd andgQ and the relative orientation of the fiel
and its gradient.

As a realistic application of our theory, we have calc
lated the SHG of a Si sphere lying above a substrate. In
case, the polarizing field is the local field with a spatia
varying contribution arising from the image of the linear
induced dipole moment. We solved this problem se
consistently, accounting also for the images of the seco
order dipole and quadrupole moments. For a sphere ly
very close to the surface we obtained almost dipolar SH
diation patterns as the system is illuminated with eithers- or
p-polarized light. As the sphere is moved away from t
surface, the radiation rapidly evolves into a quadrupolar p
tern. The patterns are more complex in the case ofp polar-
ization, since the orientation of the induced moments w
respect to the surface and the plane of incidence is less s
metric. An analysis of the azimuthal dependence of the
radiation intensity shows that fors polarization it is feasible
to obtain the separate spectral dependence of the dipolar
quadrupolar contributions to the radiation. Forp-polarized
illumination, such separation is not simple. For\v between
1 and 6 eV, we found spectral features associated with
bulk critical pointsE1 andE2 of Si, their subharmonics, an
the subharmonic of the dipolar plasmon of the sphere.

Although our theory could be extended to incorporate
tardation effects and to overcome the long-wavelength
sumption, there are many systems of interest, besides t
explored in this paper, in which small particles are excited
inhomogeneous fields with small length scales. For instan
ordered or disordered ensembles of spherical particles in
or three dimensions could be fabricated using procedu
such as colloidal aggregation, ion implantation followed
thermal annealing, etc. The corresponding polarizing field
then the local field produced partly by neighboring partic
and has a length scale of variation of the order of the in
particle distance. We believe that the theory developed in
present paper will prove useful for the understanding of
tical nonlinear processes in such complex systems. Eve
the simple situations studied here, our results show very
spectra and nontrivial radiation patterns, whose experime
verification should be pursued.
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