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We calculate the nonlinear dipole and quadrupole moments induced at the second-h&BHpfriequency
2w in a small dielectric sphere by an inhomogeneous monochromatic electric field of frequeWsy neglect
finite-size effects and assume that the selvedge region of the sphere is thin enough so that the surface may be
considered locally flat. The second-order dipole displays resonances corresponding to the excitation of dipolar
and quadrupolar plasmons @tand a dipolar plasmon at«? besides the resonances in the nonlinear surface
response parametedish, andf. The second-order quadrupole, on the other hand, has resonances corresponding
to those ofa, b, andf, and to the excitation of dipolar surface plasmonsainly. Depending on the relation
between the size of the sphere and the spatial scale of variation of the field, the SH radiation may be dominated
by either dipolar or quadrupolar scattering, with a crossover region. As an application, we calculate the SH
scattering of a Si sphere lying at various distances above a dielectric substrate.

[. INTRODUCTION centrosymmetry of a nanoparticle is locally disrupted by its
surface. However, it is regained globally for a spherical
The use of nonlinear optical techniques to study surfacehape. Thus, a homogeneous polarizing field induces mutu-
phenomena has gained a lot of attention in recent years. lally canceling polarizations at opposite sides of the sphere,
particular, second-harmonic generati®HG) has been es- and would be incapable of producing dipolar radiation; it
tablished as a very powerful spectroscopy to study a wid&vould produce only higher multipolar radiation with a power
range of physical and chemical phenomena at the surface 6f leading ordeik®, wherek is the wave number. However,
centrosymmetric materials’ The surface sensitivity of for @ nonuniform polarizing field, this cancellation is no
SHG is due to the fact that within the dipole approximation alonger exact and dipolar radiation becomes possible.
centrosymmetric environment does not radiate SH, while thé&ecently Dadafet al1*? presented a model that permits an
inversion symmetry is broken at its surface, thus allowingarbitrary nonlinear intrinsic response, and calculated the
the radiation of SH. On the experimental side, the new tunsecond-harmoniadSH) Rayleigh scattering from a small
able high intensity laser systems have made SHG spectrosphere of centrosymmetric material illuminated by a linearly
copy readily accessible and applicable to a wide range ofr circularly polarized plane wave. Retardation of the incom-
systems:’ However, the theoretical development of theing field across the particle leads to a total dipole moment
field is still an ongoing subject of research. Some recenthat scales aB/\ for small spheres, wheiR s the radius of
advances for the case of semiconducting and metallic syshe sphere andl the wavelength. Thus, although retardation
tems have appeared in the literature, where the confrontatioeads to dipolar radiation, it is of ordée®®, and therefore
of theoretical models with experiment has succeeded, yieldsomparable to the quadrupolar radiation, instead of the usual
ing correct physical interpretations for the SHG speltfd. linear dipolar Mie scattering which is of ordkf and domi-
Most of the SHG studies, both theoretical and experimentalpates over the quadrupolar scattering.
have been concerned with planar surfaces, and much less The field variations of a plane wave due to retardation
attention has been paid to nonplanar systems. Novel nantake place necessarily along its wave vector, which is per-
fabrication techniques are now capable of producing nanopendicular to the polarizing field, and with a concomitant
particles with controlled structures which include small clus-length scalex. However, in many systems of interest, such
ters, self-assembled particles, quantum dots, vesicles, etas in the neighborhood of other particles or of a substrate, the
The nonlinear optical properties of these structures are imfield may have variations with other length scales and along
portant for applications, and can be used for their physicatlifferent directions. Since for small length scales the polar-
characterization? izing field is mostly longitudinal, our purpose in this paper is
There have been few theoretical investigations dealinghe full calculation of the SHG by a small spherical particle
with the SH behavior of small spheres. Most of them makesubject to an inhomogeneous longitudinal field. To this end,
use of very restrictive models for the intrinsic btik® or  we extend thecontinuous dipoliunmodel developed origi-
surfacé’!® nonlinear optical response of the sphere. Thenally to obtain SHG and the sum and/or difference frequency
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generation(SFG/DFQ for a semiinfinite homogeneous iso- tjon, i.e., we assumg/E®|>B®/\,, whereB® s the exter-
tropic dielectric>** This model allowed a closed analytical na| magnetic fieldx ;= 2/k, the fundamental wavelength,
solution for the surface and bulk nonlinear susceptibilities ingngk .= mew/c the free-space wave number of teh har-
terms of the linear dielectric function of the system. Here, Wemonic (m=1,2). We have also dropped a third contribu-
consider a particle of radiug<\ but large enough so that tijon compatible with spherical symmetry, proportional to

we may assume those results to be locally valid inside and exy . Eex assuming no external charges within the sphere
the surface of the sphere. Thus, we obtain simple analytical . ' '

expressions for the dipolar and quadrupolar nonlinear sussiMilarly, the quadrupole moment of the spher@
ceptibilities of the sphere. Their use permits a detailed analyx E®(0)E®(0) may be written as
sis of the spectral features of the SHG radiated power and of

the radiation patterns. As a realistic application, we analyze Qij= yQ(w)[EieX(O)EfX(O)— %&J-(EQX(O))Z]. 2
the SHG of a Si nanosphere placed above an inert dielectric . o ) )
substrate. The purpose of this section is the calculation of the nonlinear

The structure of the paper is the following: In Sec. Il we dipolar and quadrupolar polarizabilities' and y©.
develop the theory for the nonlinear response of an isolated We describe the fundamental field close to the sphere by a
single sphere and its SHG efficiency. In Sec. Ill we use thesgcalar potential
results to calculate the response of a sphere placed above a
semiinfinite inert dielectric substrate with a flat surface, in-
teracting at the fundamental and SH frequencies with its own
dipole and quadrupole image fields. In Sec. IV we obtain
numerical results for the SH radiation by a simple systenwherer, 6, and ¢ are spherical coordinates and,, are
with a single Lorentzian linear resonance and identify thespherical harmonics. For our purposes, it is enough to restrict
origin of all the spectral featurgSec. IV A). We then study our attention to a simple, cylindrically symmetric linearly
in detail the radiation of a Si nanosphere above an inert subvarying field,
strate(Sec. IV B). Finally, Sec. V is devoted to conclusions.

¢6«r.0,¢>=% A 'Y im(6,9), ®3)

%= A1 Y 107 Agel 2Y 5. (4)

Il. NONLINEAR RESPONSE OF A SINGLE SPHERE . . .
In this case, we identify

We first consider a small polarizable sphere of radfus
centered at the origin and subject to an inhomogeneous po- . 3 .
larizing external fielE®(r) which oscillates at frequenay. EY=— Vg%
Due to the overall centrosymmetry of the system, its qua-

dratic dipole momenﬁ has nolocal contribution propor- and

tional to E¥E®*. Thus, p is a nonlocal quantity which de- /i

perldsaon the §patial variation of the field and can be written EeX(O) ) VEeX(O) =—15A10A202. (6)
aspxE®(0)VE®{(0)+ - - -, where we only keep the lowest- 2m

order spatial derivatives. Due to the spherical symmetry o
the system, we wrifé

®

Eonsistently with Egs(1) and (2), in the following results
we only keep nonlinear terms proportional mﬁo and
5: ,yd(w)EeX(O) .VE™0), (1) A10A20,_ and drop all others_. _ _
g _ o Solving Laplace’s equation and imposing boundary con-
where y" is a scalar. Here, we have ignored a contributionditions atr=0, R, and« yields the self-consistent linear

proportional tok,E®*x B since we are neglecting retarda- potential

i Yoot A 1221 R|® 2y, >R

r) |t At Tl T T e

¢1= 3 (7)
r<R,

A 1 61_1 R
L _61+2 T

5
I + 2
A1061_’_2"\(10 A20261+3" Y20,

where €,,= e(mw) is the dielectric function at thenth har-  within the sphere, whera is the number density of the po-
monic. larizable entitieg“molecules”) that make up the system,

Following Ref. 21, this inhomogeneous potential induces
a nonlinear macroscopic polarization

5= — -, VE? 9
2¢e 142 1

. -1
nl_ n_ — Nl
PT=np 2 nv-g ® is the nonlinear dipole moment of a single molecule,
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. Thus, if we consider a local reference frame in which the
ﬁn':—gaiElEl (100 outgoing radial directionL is along one of the Cartesian
axis, we may write the surface nonlinear susceptibility of an
is the second moment of the induced molecular chargesotropic material as
closely related to its quadrupole moméntQf=3qj]

— 80fk, am=a(mo) is the linear molecular polarizability . (e—1)? a
related to the dielectric functiorl by, =1+4mnea,,, —eis Xijk_—64«772ne oL 5J-L6kl6—§+[(l— 61 )(1=06j1) o1
the charge of an electron, arie,=—V ¢, is the driving

linear field.
The macroscopic polarizatiori8) yields a nonlinear

charge densitp"'=—V. P". For our linearly varying funda-
mental field, +5il(1_5jl)(1_5kl)f)y (15)

37N ay(a;—2a3) , ) _
e > A% (11 wherea=a(w), b=b(w), andf=f(w) are dimensionless
(3+2¢€) functions which are commonly employed to parametrize the
response of the surfaée.
Substituting Eq(15) into Eq. (13) yields

b
+(1=6i,) 65, (1— 5u)]6_1

nl_—

turns out to be independent bfand proportional tgV E®4?,
and therefore negligible.

Now we turn our attention to the surface of the sphere.
There, we find a bulk originated nonlinear surface charge s

3(e,—1)% ( (1+3cos)

. R J 10
a"P=P"(R7)-r due to the termination of the bulk nonlin- 256nem°R (e1+2)?
ear polarization, where is a radial unit vector an®” de- 2
. . : cos6é+ 3 cos F
note the outer and/or inner side of the surface. We obtain + o
20V15R (e,72)(2¢,+3) A10A20 , (16
onlb— on ay(ay—2a,) _12y15coss 10A% where, as discussed above, we have omitted a term propor-
16me (e+2)(2€+3) tional to A3,. Finally, we also write down the surface polar-

3 +5) ization normal to the surface,
cos 29+
2

R 2
(2e+3)?

: 12

(e—1)? 27acosz0+fsin29
o5aend| (e+2)?

2
10

S

from which we need only keep the first term. Notice that
only the second term contributes to the total charge at the 4a+6(f—a)sirPo
surface, which, as expected, is canceled by the bulk charge. +15{15R cos# AoAoot .. .

We remark that Eqg11) and(12) contain the contributions (€6,+2)(2€,+3)

from the bulk quadrupole moment density and its truncation (17)
at the surface.

There is also a “surface-originated” surface charge We now consider the potentigh, = ¢(20) induced in the
< 2 system at the second-harmonic frequency. Notice pHiat

o==V|-PJ, (13 [Eq. 11] and ¢"? [Eq. (12)] play the role of external
sources forg, and have to be screened by the linear re-
sponse of the systens,, while o° [Eq. (16)] and P} [Eq.
QJ)] are self-consistent in the sense of being already
esrcreened by the surface response. Thus, it is convenient to
Separate

wherelsﬁ is the projection of the surface nonlinear polariza-
tion onto the surface of the sphere angddenotes the gradi-

ent operator along the surface. Since the centrosymmetry
locally broken close to the surface of the sphere, we consid
a surface nonlinear polarization of a dipolar form, namely,

— b+ S
PS=x3FFy. (14) b=+ &7, (18)
where ¢ is produced by the unscreened bulk originated

sources andp® is due to the screened surface contributions.
The equations to be solved are thus

Here, ¥° denotes the local nonlinear susceptibility of the sur-
face, defined as the response to the fi€leF(D4(R)),

+(I§1(R))”, made up of the normal projection_ § of the

displacement field and the parallel projectidi ¢f the linear 5 b —4mp"e, (inside

electric field evaluated at the surface. Defining the surface Vi =1 (outside (19

response in this way, i.e., in terms of quantities that are con-

tinuous across the surface, eliminates the ambiguities as &nd

where in the selvedge the fields should be evaluated. In our ) s o _

case,lf=I§1(R+)=el(ﬁl(R‘))LJr(El(R‘))H. V<¢*=0 (inside and outside (20
Now, we assume that the width of the selvedge is smaljyjth boundary conditions

compared tdR and we neglect finite-size effects, so tiyatis

given locally by the response of a flat semiinfinite system. H°(RT)— p”(R7)=0, (21
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#(R")— p%(R™)=4mP% (22) ) 3 \ﬁ (e,—1)2 (284 3NRAA
— —_— a s
; J 1 3o02ne V (€11 2) (26, +3) 107720
T oabptYy o bRy — b 35
RPR) - g d®(R)=—4ma®, (23 @9
and
and
) 9 1 (e-— 1)2( ChAZs.
¢5(R+)— S(R™)=— 4", (24) Y G artne B (e,+2)? 10
(36)
Expanding the potentialsp™(r)=3mdh(r)Yim(6,¢)  Which yield
(A=s,b) and their sourcess(0,¢)==\mSimYm(0,¢) (s _ _
=a"®,0%,P%) in spherical harmonics, we obtain A= i \E (e17D)(e1 =261 1) R3A 10A 0,
32m%ne ¥ m(€1+2)(2€;+3)(e212)
Flor! (inside (37)
N _ A
r 10 3002ne V m(€1+2)(2€,+3)
for =1, and the boundary conditions become X (2a+b+3f)R3A10As0, (39)
4w qu | 9 1 2
e—1
irigei FOR=0 26 o= () ab—f)RAZ+ -,
32mne 57 (€,+2)2
(39
4’7T qfo . .
1ol —FR'=4m(P?))0, (277 where we have neglected terms of or@éf, and multipolar
R moments that go to zero faster thRA asR—0.
Finally, we identify the Cartesian components of the di-
[+1 Q|o e dFP R 1= — 4o 28 pole and quadrupole moments,=4m/3q,, and Q,,
Tol+1 Rtz 2o Tl > =2./47/5q,, and employ Eqs(1), (2), (5), and(6) to write
down the dipolar and quadrupolar nonlinear polarizabilities
[+1 qIO _IFS Rlil:_47TO'S (29) d 1 El_l _262+1
T2+1R+2 10 10 Y=
8mne (e;+2)(2€;+3) €+2
The solutions of this system yield the potential amplitudes 5
F)\, inside, and the nonlineatscreened, self-consistent +(e1—1)(2a+b+3f) IR (40)
spherical multipole moments induced on the spharg
=djo+ Gy, with an
2
2| + 1 Q 9 (El_ 1) 3
b _ I+2 _nlb = ———(a+3b—f)R". 41
Bo=fe,71+17 7o (30 7" 20mne (¢, + 27! : “
and One can identify bulk and surface contributionsyty the
s i1 os o s latter being proportional to the surface parametets andf.
Aro=IR"*(PI)jo+ R "“oyp. (3D 1tis interesting to note thaioth contributions scale with the
We have skipped the analysis of the monopota0 fields, volume of the sphere and not with its area. Althoughhas
since the sphere remains globally neutral. a term=1/R [Eq. (16)] andP$ has a term independent Bf
From Eqs.(12) and(16) we have [Eq. (17)], both of which could have contributed to a dipole
momenteR?, these contributions are canceled out due to the
PR -2 VIS DN Al e g b v
© " 3on2ne Vo (e+2)(26,+3) 1072 ’ '

its bulk contribution has resonances at frequencies for which
(32 the second-harmonic depolarization field excites a dipolar
plasmon, given by the conditioa,= —2. There are further
s 3 \F (e,-1)? bA (39) resonances in both terms corresponding to the excitation of
7107 25 2ne (€,+2)(2€,+3) 10A20, dipolar and quadrupolar plasmons at the fundamental fre-
quency, given by the conditions = —2 ande;=—3/2, re-
2 spectively.
S0= 21 1 (=170 A2+, (34) The quadrupolar respon$Eq. (41)] also scales with the
32n’ne 5 (e,+2)2R volume of the sphere. It may seem paradoxical that it con-
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tains only a “surface” term, since each “molecule” within
the sphere has a finite quadrupole momgty. (10)]. The
reason is thag, b, andf necessarily contain bulk contribu-
tions besides intrinsic surface contributidfisso that the
bulk quadrupolar contribution is actually present but hidden
within the “surface contribution.” Besides the resonances of
the surface parameterg® has only a dipolatdouble reso-

nance at the fundamental frequency. o
Finally, the radiated electromagnetic field ab 2nay be
calculated from d
. R . eier av; s
B,=k3nx p*'—, (42) Y €

FIG. 1. Sphere of radiuR and dielectric functiore a distancel
E,=B,xn, (43)  above a substrate of dielectric resporseand illuminated with a
. plane wave at anglé; with s andp contributions.
wheren is a unit vector in the direction of observation and

the effective dipole moment is given by most simple of such inhomogeneities is the presence of a flat
. surface nearby. In this section we consider a sphere located

pief: ( pi— '_szijﬁj) atrid= (0,0d), a distanced apove a flat substrate occupying

6 the z<0 half-space and illuminated by a plane wave

; i A A Ei(r,t)=E'eK 7= incident at an angl@, with wave vec-
_ ex ex exeée ex-e .
_[7 Ej0iE; _gkﬁQ( EFE™N; - §Ek Ek"ni”. tor k'=(w/c)(sin6;,0,— cosé,) (see Fig. 1L For convenience
and without loss of generality we assume that the incidence
(44 plane lies on the x-z plane. Here, E= (cos6EP,
Equations(42) and(43) contain both the electric dipole and —ESsin4EP) is the amplitude of the incident field, whelg
quadrupole fields. These contributions might be comparablandEP denote itss- andp-polarized components. The role of

or one might dominate over the other, depending on the sizthe external field in Eqs(1) and (2) is played by the local
of the field gradient. The SH power radiated per unit solidfig|q E'°c defined as

angle is
4P c Ee=EM+T'.p'. (47)
— e - 212
a0~ ga kel pe)xn?. 49 The macroscopic field
The SH power is proportional tolf, where I, EM=[(1-rP)cosf,EP,— (1+rS)ES,(1+rP)sin6,EP]
= (c/8m)|E®{? is the intensity of a plane wave with ampli- (48)

tude E®, so that, in analogy to the definition of the linear

. . . . ) . is the nearly homogeneous field that would be present in the
scattering cross section, we define a nonlinear differenti Y 9 b

bsence of the sphere, whefeandrP are the Fresnel reflec-

efficiency as tion amplitudes of the substrate fgrand p polarizations,
do  1dP 8w ,|(Nxphxnl|? respectively’’ The substrate mediated self-field'-p'
a0 - 12dQ - TkZ EE 46 7. p' is produced by the image
1
with units[ o]=cm*/W. Out of resonance, we expaetto be 2 1-€ - -
of order between K,R)*(R/1)?/(cn?e?) for dipole- P e S-p, (49)
dominated and K,R)®/(cne?) for quadrupole-dominated !
radiation, wheré is the length scale of the field spatial varia- of the linear dipole
tion.
5| — Bgéloc (50)
[IIl. NONLINEAR RESPONSE OF A SPHERE . o S 2 ey
ABOVE A SUBSTRATE induced on the sphere, which is located &t S-r®, where
In the preceding section we have obtained the SH nonlin- 1
ear dipole and quadrupole moments induced on a small Tij= ;9 m (52)

sphere by an applied inhomogeneous field. Our derivation
assumes that the field gradient is large enough so that retag the interaction tensor between two dipoles separated by
dation effects may be neglected, but small enough so thEFfd_I?I:(O,O,Zd), while
only terms of first order in the field derivatives need to be

kept. Thus, as opposed to Refs. 19 and 20, we consider a 1=
field inhomogeneity that is not due to the finite wave number T=T. !

(52)
of a free field but to a material inhomogeneity close by. The 1+€
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is the image-mediated dipolar self-interaction tensor. Here e 1
we introduced the dielectric functios;,= eS(mw) of the Qj Q,]+[32 TijSapi— ,]k,SkmS, Qmnl»

substrate. We abbreviate the gradients o/ &r acting onr¢

(63)
while keeping the position of the |mag|é constant. S
=diag(1,1- 1) is the z— —z reflection operator, and the Where
linear dipolar polarizability3% = 8% mw) is given by’
_ Tk =0 Ti = 0;9; 00| =———=—, (64
q _6((1)) 1 3 ijkl iljkl i0j0k ||rd—r'|
B (w)= e(w)+2R . (53

and ﬂ%EﬁQ(mw) is the quadrupolar linear polarizability,
According to Egs(1) and (2), the nonlinear dipole and defined as the ratio of the linearly induced quadrupole mo-
quadrupole induced on the sphere by the inhomogeneous lgent to the gradient of the field, which is given by
cal field may be written as

VY e(w)—1 5
p/ = xiikE)'EX (54) Bw)= mR (65)
and As the results for® and y? given by Eqs(40) and(41) are
Qi,j :Xi(j?klEI’glElM , (55) correctsonly to_ord(_eR3, we should neglecﬂg, which is of
orderR> and simplify Eq.(63) to
where
Qij= Qi,j . (66)
lek 7 i Mik (56) .
and Notice that fors-polarized incoming lightp points along the
z direction and6 has cylindrical symmetry along thedi-
9 1 o 2 rection, so that Eq(62) simplifies to
Xijk =5 Y 77ik77j|+77i|7/jk_§5ij TmkTml (57)

. 1 62 P ny . .
represent the nonlinear response of the sphere to the macro- p,= ,82 —t— (s polarization.
scopic field. Here, 4d 64d

I pdy—1 (67)
7= (0 = Tii ) (58 On the other hand, fas-polarized incoming lightp,=0 and
is the “quotient” between the local and the macroscopicQxy=Qy,=0, so that
fields, E”°= »;;E}", and
1-¢€ p Q
’ d 2 X XZ . .
=i m=ny T Bin (59) Px= Py~ B> —— ) (p polarization,
ijk i7jk it HilmP 1 mk X 1+ 2 8d3 16d4
with (68)
1- ei p 3Q
Th=aTi=Tiji Sk —— (60) : 2 olarization.
J TSI s ,32 4d3 300 (pp n
and (69)
1 Finally, the electromagnetic field radiated above the sur-
Tik=0Tj= 9, e (62) face qt 2v may be _calcu_lated from Eq$42) and (43), but
[rd—r"| replacing the effective dipolEEq. (44)] by

We have denoted the nonlinear dipolé’I and quadru- i - 3 i N
I . : pf'={ pi— zkQiny | + Skp k QuiN;
pole (Q') with a prime in Eqs.(54) and (55) to point out ! IR T Rl SikcSj Quan; |
that, even though® and y® given by Eqs(40) and(41) do (70)

incorporate the depolarization effects of an isolated sphere, . o .
and that the driving fiel&€'°C includes the interaction of the which contains both the electric dipole and the electric quad-

linearly induced dipole ato with its image, we have not rupole of the sphere, accounting for the field radiated directly
accounted yet for the linear interaction between the dipol érom the sphere towards the observer, and the corresponding

and quadrupole moments induced ab 2nd their images 'Ma9€ multipoles, which account for the field radiated to-
“reflected” from the substrate. Thus, the total dipole andwards the substrate and then linearly reflected, as illustrated

. . n Fig. 2.
quadrupole induced atez are given by The SH power radiated per unit solid angle is given by
& Eq. (45 and, since the system is in this case illuminated by

1 o~
=p/ +,82 TiiSikP; — = TijkSjiSkmQim |, (62) a plane wave of amplitudé', we redefine the efficiendyeq.
1+6 (46)] as
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w 2w
VI/L‘ NQ\( 102
2w
Ty Y =
<
[N Q:)IE
,/’_‘s\ /‘-\\\1 10—2
II R4 \‘
N
l\\ /"\\ /1 I T
Y 10~*| T
FIG. 2. The SH field radiated by a sphere, illuminated by light 04 0.6 08 1 12 14
of frequencyw (long-wavelength, wiggly lineabove a substrate w/wr
contains direct(solid line) and image(dashed ling dipole (single
arrow) and quadrupolédouble-headed arrowsontributions(short- FIG. 4. Absolute valudsolid line) and phasddashed ling of
wavelength, wiggly lines the quadratic dipolar polarizability ¢ of a small sphere with a
Lorentzian dielectric function with transverse frequensy and
do 8 |(ﬁ>< l;ef) % ﬁ|2 w_=\2w7. The small vertical arrows denote the transveFsand
= longitudinalL frequencies, as well as the dipolarand quadrupolar
5 2 (71 g , _ .
dQ c |E | Q resonances. The corresponding subharmonics are labgled ,

D’, andQ’.

IV. RESULTS
e(w)=(w?— 0?)/ (03— »?) with transverse and longitudi-
nal frequenciesw and o, . As discussed in Ref. 21, the

To get insight into our results, in Fig. 3 we have plottedimaginary parta” of a has two broad peaks. One of them
the SH radiation patterda/d() vs the polar angled pro-  extends fromw+/2 to w /2 and the other fronw to w, . Its
duced by a dielectric sphere with a dispersionless dielectrigeal parta’ has peaks ab1/2, w /2, andw; and a small
function e;=¢€,=2 and, assuming a frequency-independenisiope discontinuity atw, . The structure ofy® has features
a parametera=—2, and, as is usual for microscopically inherited froma. Its phase changes from 7 to 0 through
smooth surfacesh=—1 andf=0. Introducing a distance the region (/2w /2) and from 0 tor through the region
scalel =|[E®{/|[VE®{ we observe a dipolar pattern fo-0  (wr,w,) and is constant outside of these regions, while its
that turns into a quadrupolar patternlascreases. Both con- magnitude has a small peak ai/2. However, there is a
tributions are present wheiy| is of order one. Notice that, much larger structure consisting of peaks at the frequencies
since in this case both andQ are real, their contributions to @p and wq of the dipolar and the quadrupolar plasmons of

pe’ are 90° out of phase and therefore no interference be€ sphere, given by(wp) = —2 ande(wq) = — 3/2. There

tween the dipolar and quadrupolar fields is present. is also a peak at the subharmomig/2 of the dipolar plas-
In Ref. 21 acontinuous dipoliunmodel for a flat homo- MON, but no structure whatsoever at the subharmanj2

geneous surface was solved and an explicit expression féif the guadrupolar plasmon, as discussed above.

A. Single sphere

the a(w) parameter was obtained, In Fig. 5 we show the quadrupolar respon)s% for the
same system as in Fig. 4. As before, we notice structure
a=2([e,— €1][2€,— €,— €165 inherited from that of betweenw{/2 andw /2 and between

5 5 w1 ande , as well as a change in sign slightly abavg/2
tle]T1-elloglei/ex])/[e2— €], (720 and an irrelevant 2 phase shift slightly belovw,. There is

as well as the usual resulks= —1. f=0. To illustrate the also a much larger structure at the dipolar plasmon frequency
analytical structure of the response of a sphere, in Fig. 4 we

display the absolute value and the phase of the dipolar re- sL L0 T ]
sponsey® [Eq. (40)] using the result for the continuous di- ™D'Q I T
polium (72) and a simple Lorentzian dielectric functién 104
- 2
% 10 c,g
gr&: 100 =)
102
104
0.4
FIG. 3. Normalized SH radiation patteio/d() vs 6 for a w/wr
small dispersionless sphere with=e€e,=2 and nonlinear surface
parametera=—2, b=—1, andf=0 illuminated by a field in the FIG. 5. Absolute valudsolid line) and phasddashed ling of

z (vertical) direction which varies along with a characteristic the quadratic quadrupolar polarizabiliy® of a small sphere. The
length scald for different values ok;l. system and the labels are the same as those in Fig. 4.
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10°

10-2

107 r b LA large
R N D % ;

0.4 0.6 0.8 1 1.2 1.4

w/wr FIG. 7. Schematic radiation patterds/d() vs 6 for a small
dispersionless sphere illuminated by a field as in Fig. 7, assuming a
/2 phase difference between the dipolar and quadrupolar response,
or different values of the field inhomogeneity length schlén-
creasing left to right and top to bottom. The direction of the dipole
moment is indicated by an arrow and that of the quadrupole mo-
wp . Notice that as this is a double resonance, the correment by a double-headed arrow.
sponding phase shift across the resonanceris\nlike v,
¥? has no resonance at the quadrupolar plasmon frequenaythin-film matrix above a substrate. To explore the nonlinear
wq nor at the subharmoniasp/2 nor wq/2. response of this class of materials, in this section we concen-
As the frequency dependence ¢f differs from that of trate on the SH radiation of a single Si nanosphere above a
¥9, the spectrum of the SH dipolar radiation intensity differssubstrate, employing the results of Sec. lll. The only quanti-
from that of its quadrupolar counterpart. In Fig. 6 we plot theties required to this end are the bulk linear dielectric response
ratio of the total quadrupolar contribution to the radiatedof Sj, taken from Ref. 29, its nonlinear surface respoase
power” PO=ck3=;|Q;;|?/360 to the total dipolar contribu- calculated with Eq(72), b=—1 andf=0, and the response
tion %= ckj| p|*/3 for the same system as in Fig. 4, illumi- of the substrate, which, to simplify the spectra analysis, we
nated by a field in the direction with an inhomogeneity take as an inert dielectric wite®= 2.34.
along_z with length scalel as in Fig. 3. The figure has a In Fig. 8 we plot the efficiencglo/dQ [Eq. (71)] of the
baseline that gradually changes from™i0to 10", so that  sH radiation scattered by a sphere illuminatecstpplarized
both contr|but|ons_ are cor_nparable floyl of or_d_er one. Su- light as a function of the azimuthal angle and of the in-
perimposed on this baseline, there are addltlonal structuregbming photon energyiw. To reduce the simpldx‘z‘ (kg)
the slope changes air/2 andw /2 and the negative peak at jonendence of the dipolaiquadrupolar contributions to
wr IS due to similar structures in treeparameter; the néga- ;40 and to further enhance its structure, we have nor-
tive peaks ap/2 andwq are due to the dipolgrg;lasmom)z malized the results bw®. Notice that in this case the SH
resonance and the quadrupolarresonance iny”, and the  ins1e moment is normal to the surface of the substrate (

neg_a_nve peak abova)L_/Z is due to the Z€ro iny2. The axis), while the quadrupole moment has cylindrical symme-
positive peak %t‘”D is due lo the dipolar plasmon  aiong the normal to the incidence plang #xis). Thus,

w-resonance ofy~. Notice thaty” also has a dipolar plas-  he dipolar radiation pattern has cylindrical symmetry around
mon w-resonance ay®. However, the resonance i is  he ; axis while there is no quadrupolar radiation along the

simple while that ofy? is double and therefore dominates _, plane. Therefore, the dipolar and quadrupolar contribu-
[see denominators in Eq&0) and (41)].

We remark that, in contrast to the situation in Fig. 3, in B
generaly® and y® might differ not only in absolute size but
also in phase. For example, a phase difference close/20 =
may be expected abg due to the different nature of the
resonances, as discussed above. Therefore, in general the SH
radiation pattern is not symmetric as in Fig. 3. In Fig. 7 we
show schematically the radiation pattern corresponding to a
/2 phase difference for different values of the length stale
For smalll (large gradient the radiation pattern is dipolar
with its characteristic two lobes. Akincreases the angle
between the two lobes closes asymmetrically. For even
largerl, the quadrupolar radiation dominates for some angles
and two new small lobes appear, until, for large enoligh
symmetry is restored and the typical quadrupolar four-lobe
pattern emerges.

FIG. 6. Ratio of the total quadrupol&®? to the dipolarP®
radiated power for the same system as in Fig. 4, illuminated by th
same field as in 3, normalized to the fundamental wave nuikper
and the length scale of variation of the fidld

B2
Ey/2

FIG. 8. Normalized SH efficiencydg/d)/w® scattered by a
(?i sphere of radiulR=4 nm a distance=1.2R above an inert
Substrate withe®=2.34, illuminated withs-polarized light at an
angle of incidenced,=45°, radiated at a polar angl=45° as a
function of the azimuthal angle and of the incident photon energy
hw. The plane of incidence is-z. We indicate the Cartesian axis,
Recently, SHG experiments have been perforthéd  theE, andE, resonances of bulk Si, their subharmonics, and those

composite media consisting of Si nanoparticles embedded iof the dipolarD and quadrupola® resonances of the sphere.

B. Si sphere over a dielectric substrate
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B

Ey/2
Ey/2

FIG. 9. Normalized SH efficiencydo/dQ)/w® as in Fig. 8, but
for p-polarized incident light. The sphere is at a distaneel.4R
over the substrate.

FIG. 10. Efficiencydo/dQ) of the SH radiation patterns pro-

tions to the radiation may be extracted from the right and Ieftgl{g}da%afg r&&ﬂ;&f?g?;eu?ps‘:}v;?x:;t?ﬁi{niij’b_

borders of t_he 90° cutout_ in Fig. 8._ F_ollowmg the right bor- ¢ -a €=2.34) illuminated bys-polarized light of energyhw
der, we notice .that the_ dipolar radiation shows a clear peak g g a function of the outgoing directighand ¢. We indicate
close to the critical poinE;=3.4 eV of e(w) and a slope  the surface(solid rectangl the plane of incidencédashed rect-
change corresponding t,=4.3 eV. The latter is overshad- angle, the direction of the induced dipole mome(stngle-headed
owed by a large and wide resonance at the subharmonic @frow), and the axis of the induced quadrupolar momftuble-
the dipolar plasmon of the sphere,7ab/2~10 eV. There headed arroyw

are also noticeable features at the subharmonics of the criti-

cal pointsE; andE,. All of these features are presentifl g s increased the relative intensity of the radiation along the
[Eq. (40)]. As expected, there is no structure correspondingncidence plane and along thyeaxis diminishes, and fod

to the subharmonic of the quadrupolar plasmon of the sphere 1 gR the typical double-cone pattern corresponding to a
athwq/2~5.35 eV. Following now the left border, we find cylindrically symmetric quadrupole with axis normal to the
much stronger features &, and E, which arise from the jncidence plane is clearly seen. On the other hand,pfor
quadrupolar response® [Eq. (41)], as well as the reso- polarization, the pattern is completely dipole dominated for

nances ag,/2, E,/2, andfiwp/2 also visible on the right d=R, althoughﬁ is slightly tilted from the surface normal.
border. We remark that the resonance of the quadrupole alg g increases, the radiation pattern acquires peculiar shapes,
E, is now comparable to the resonance of the dipole abg he quadrupolar radiation becomes comparable and inter-
f“"D/Z', . o feres with the dipolar radiation. We remark that in this case
In Fig. 9 we plot the SH efficiencda/d() as in Fig. 8, 1 principal axes of the induced quadrupole are not simply
but for p-polarized illumination. In contrast to thepolarized  rgated to the direction of the induced dipole. Furthermore,
case, the direction of the dipole momegnis now frequency  they are given by complex vectors without a real direction as
dependent, and the quadrupole mom@rttas no axial sym-
metry. Thus, the dipolar and quadrupolar contributions to the
SH radiation cannot be simply identified from tlredepen-
dence ofdg/d() (there is, though, a purely dipolar contribu-
tion in the grazing direction normal to the incidence plane,
0=90°, ¢=*=90° which always correspond to an eigenvec-

tor of 5). Furthermore, there is a clear asymmetry between
the SH radiation in the forwardg=0) and the backward
(¢=180°) directions, as evidenced by the 180° cutout on
the left side of Fig. 9. Fop polarization we found a dipole
moment about an order of magnitude larger thansfpolar-
ization, while the quadrupole moments remain comparable.
In order to have similar dipolar and quadrupolar contribu-
tions to the radiation we increasedrom 1.2R in Fig. 8 to FIG. 11. Efficiencydo/dQ of the SH radiation patterns pro-

1.4R in Fig. 9. The latter shows qualitatively the same specced by a 4-nm Si nanosphere at several distaiees0R, 1.4R,
tral features as the formeE¢/2, E,/2, E;, andE;) except 1R, and 1.& (clockwise from upper leftover a dielectric sub-
for the peak athwp/2 which is hidden by the now much strate €=2.34) illuminated byp-polarized light of energyh o
larger peaks aE; andE, and by oure® normalization. =E, as a function of the outgoing directighand ¢. We indicate
The full angular dependence of the SH radiation pattern ishe surface(solid rectangle and the plane of incidencédashed
shown for different distances from the surface in Figs. 10 rectangl¢. For d=R we show the direction of the induced dipole
and 11 corresponding to the casessa&ndp incoming po-  moment(single-headed arrowFord=1.8R we show with double-
larizations. Ford=R the pattern fors polarization(Fig. 10 headed arrows the approximate principal directions al(sudid
is dominated by dipolar radiation with the dipole momentline) and normal to(dashed ling the incidence plane. Their size
normal to the surface; its constant height lines are deformehdicates that of the corresponding eigenvalueQofconverging
circles and there is no radiation along the surface normal. Aarrows correspond to nearly opposite phases than diverging arrows.
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their real and imaginary parts are not parallel. Her1.8R  of order one, both contributions are comparable and the pat-
the radiation has already become quadrupolar and the quatern may be symmetric or not, depending on the relative
rupole moment has almost real eigenvectors and almogthases ofy® andy® and the relative orientation of the field
imaginary eigenvalues, indicated in Fig. 11. In this case thend its gradient.

radiation pattern looks like a tilted double cone revolving As a realistic application of our theory, we have calcu-
around the axis with the odd phase, and it is unevenly trunkated the SHG of a Si sphere lying above a substrate. In this
cated by the surface of the substrate. The cone is deformedase, the polarizing field is the local field with a spatially

as the other two principal axes are not equivalent. varying contribution arising from the image of the linearly
induced dipole moment. We solved this problem self-
V. CONCLUSIONS consistently, accounting also for the images of the second-

_ ) _ _ order dipole and quadrupole moments. For a sphere lying
In this paper we have obtained analytical expressions fofery close to the surface we obtained almost dipolar SH ra-

the dipolar and quadrupolar second-order susceptibilitfes giation patterns as the system is illuminated with eitheor
and y? of a small dielectric sphere in terms of its linear p-polarized light. As the sphere is moved away from the
dielectric functione. To this end we employed a continuous Surface’ the radiation rap|d|y evolves into a quadrupo'ar pat_
dlpOlIUm model in which the Sphere is considered to be mad%rn_ The patterns are more Comp|ex in the casp pﬁ|ar-
up of a continuous distribution of polarizable moleculesjzation, since the orientation of the induced moments with
whose density decays to zero abruptly within a thin selvedgeespect to the surface and the plane of incidence is less sym-
at the border of the sphere. We further assumed that thgetric. An analysis of the azimuthal dependence of the SH
selvedge may be considered locally flat and we neglecteghdiation intensity shows that farpolarization it is feasible
finite-size effects. We considered a longitudinal inhomoge+o obtain the separate spectral dependence of the dipolar and
neous polarizing fielde® and, without further approxima- quadrupolar contributions to the radiation. Repolarized
tions we obtained the leading-order contribution to the dipoldllumination, such separation is not simple. Fap between
moment, proportiona] téex.VEeX, and to the quadrupo]e 1 and 6 eV, we found Spectral features associated with the
moment, proportional &€ bulk critical pointsE, and E, of Si, their subharmonics, and
We identified surface and bulk contributions 4§ and  (he Subharmonic of the dipolar plasmon of the sphere.
4R, and we found that they are all of the same order of Although our theory could be extended to incorporate re-
magnitude~R®/(ne), wheren is the density of polarizable tardation effects and to overcome the long-wavelength as-
entities within the sphere aras the electronic charge. Even sumption, thgre are many systems of Interest, beS|d¢s those
the surface contributions turn out to be proportional to theexplored in this paper, |n_wh|ch small particles are exqted by
volume of the particle=R® and not to its area, wher is mhomogenepus fields with small length sqales. qu |nst.ance,
the radius. The scattering efficiency is of order ordered or_dlsord_ered ensembles of_spherlcal_partlcles in two
~(RIN)S~ (RN (cn2e?) wherel is the length scale of the or three d|m(_anS|0ns could_ be_fab_rlcated using procedures
spatial variation of the field, and ranges from 2 for dipole- such as colloidal aggregation, ion implantation followed by

dominated radiation to O for quadrupole dominated radiationthermal annealing, etc. The corresponding polarizing field is

The surface contributions have a resonant structure similar t@en the local field produced partly by neighboring particles

. . - . and has a length scale of variation of the order of the inter-
that of the surface nonlinear susceptibility of a flat semiinfi particle distance. We believe that the theory developed in the

nite system made up of the same material. The bulk contrit : .
. d . resent paper will prove useful for the understanding of op-
bution to y“ also has a resonance at the subharmonic of th . : .
ical nonlinear processes in such complex systems. Even in

sphere d'pocljar plasmon, given aY2w)=—2. Both contri- simple situations studied here, our results show very rich
butions toy“ also have resonances at the dipolar plasmon

f - spectra and nontrivial radiation patterns, whose experimental
requency, where(w)=—2 and at the quadrupolar plasmon verification should be pursued

frequency, wheres(w)=—3/2. On the other handy® dis- P :

plays only an additional feature at the dipolar plasmon fre-
guency, which turns out to be a double resonance.

We have used these results to calculate the SH radiation We acknowledge partial support from Conacyt under
patterns for an isolated sphere for different length schles Grants Nos. 31120-EV.L.B.) and 26651-HB.S.M.), from
We obtained a dipolar pattern for smhiivhich evolves con- DGAPA-UNAM under Project No. IN110998V.L.M.), and
tinuously into a quadrupolar pattern s increased. Fokl from UBACYT (V.L.B.). V.L.B. is a member of CONICET.
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