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Sign problem in Monte Carlo simulations of frustrated quantum spin systems
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We discuss the sign problem arising in Monte Carlo simulations of frustrated quantum spin systems. We
show that for a class of ‘‘semifrustrated’’ systems@Heisenberg models with ferromagnetic couplingsJz(r )
,0 along thez axis and antiferromagnetic couplingsJxy(r )52Jz(r ) in the xy plane, for arbitrary distances
r #, the sign problem present for algorithms operating in thez basis can be solved within a recent ‘‘operator-
loop’’ formulation of the stochastic series expansion method@a cluster algorithm for sampling the diagonal
matrix elements of the power series expansion of exp(2bH) to all orders#. The solution relies on the identi-
fication of operator loops which change the configuration sign when updated~‘‘merons’’! and is similar to the
meron-cluster algorithm recently proposed by Chandrasekharan and Wiese for solving the sign problem for a
class of fermion models@Phys. Rev. Lett.83, 3116 ~1999!#. Some important expectation values, e.g., the
internal energy, can be evaluated in the subspace with no merons, where the weight function is positive
definite. Calculations of other expectation values require sampling of configurations with only a small number
of merons~typically zero or two!, with an accompanying sign problem which is not serious. We also discuss
problems which arise in applying the meron concept to more general quantum spin models with frustrated
interactions.
lo
ing

fo
th

ou
a

e
e

r
al
n

n

d.
re
n
ra
s
io

ic
st

a
m
tw
rl

ion

,
sign
uta-

th

is
on
ch
rlo
ion
lled

ures
e
ars
o-

d,
are

rac-
ore,

o-

as

o-
ne
el
ion
nate
I. INTRODUCTION

Recently, there have been several significant deve
ments of more efficient Monte Carlo methods for interact
quantum many-body systems.1 The Trotter decomposition
formula2,3 has traditionally been used as a starting point
finite-temperature simulation algorithms, such as
worldline3 and fermion determinant4 methods. It introduces a
systematic error that can be removed only by carrying
simulations for several different imaginary time discretiz
tionsDt and subsequently extrapolating toDt50. Such ex-
trapolations are not necessary with the stochastic series
pansion~SSE! method,5–7 which is based on sampling th
power series expansion of exp(2bH) to all orders and is
related to a less general method proposed much earlie
Handscomb.8–10 Results that are exact to within statistic
errors can also be directly obtained with rece
worldline11–13 and fermion determinant14 algorithms formu-
lated in continuous imaginary time. Even more significa
are generalizations to the quantum case15,16,12,7of cluster al-
gorithms developed for the classical Monte Carlo metho17

These ‘‘loop algorithms’’~so called because the clusters a
loops on a space-time lattice! can reduce the autocorrelatio
times by orders of magnitude and enable highly accu
studies of systems in parameter regimes where previou
gorithms encountered difficulties due to long autocorrelat
and equilibration times.

In spite of these developments, the class of models wh
can be studied using quantum Monte Carlo methods is
severely restricted due to the ‘‘sign problem,’’18,19 i.e., the
non-positive-definiteness of the weight function that c
arise in transforming a quantum problem into a form rese
bling a classical statistical mechanics problem. There are
classes of systems for which this issue is particula
PRB 620163-1829/2000/62~2!/1102~12!/$15.00
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pressing—interacting fermions in more than one dimens
and quantum spin systems with frustrated interactions~in
any number of dimensions!. For fermions in one dimension
and hopping between nearest-neighbor sites only, the
problem can be avoided because the fermion anticomm
tion relations do not come into play~other than introducing a
hard-core constraint! in the one-dimensional real-space pa
integral. In two or more dimensions~or even in one dimen-
sion if hopping further than between nearest neighbors
included!, permutations of fermions during the propagati
in imaginary time leads to a mixed-sign path integral whi
typically cannot be efficiently evaluated using Monte Ca
methods. The sign problem can be avoided with the ferm
determinant algorithm in special cases, such as the half-fi
Hubbard model~because of particle-hole symmetry!,4 but in
other cases simulations are restricted to high temperat
and/or small system sizes.18 For frustrated spin systems th
source of the sign problem is different. A minus sign appe
for every event in the path integral in which two antiferr
magnetically interacting spins are flipped.19 This causes an
overall minus sign if the total number of spin flips is od
which can be the case, e.g., for a triangular lattice or a squ
lattice with both nearest- and next-nearest-neighbor inte
tions. Simulations of quantum spin systems are, theref
restricted to models with no frustration~in the off-diagonal
part of the Hamiltonian!, such as ferromagnets, or antiferr
magnets on bipartite lattices.

A promising approach to solving the sign problem w
recently suggested by Chandrasekharan and Wiese.20 They
considered a system of spinless fermions on a tw
dimensional square lattice within the context of the worldli
loop algorithm.15 They showed that, for this particular mod
and for a certain range of nearest-neighbor repuls
strengths, the properties of the loops can be used to elimi
1102 ©2000 The American Physical Society
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the sign problem. Flipping a loop can change the numbe
fermion permutations from odd to even, or vice ver
thereby also changing the overall sign of the configurati
Such sign-changing loops are called ‘‘merons.’’ The mag
tude of the weight is not affected by flipping a meron an
therefore, all configurations with one or more merons can
in the partition function. The subspace of zero merons
positive definite and can be sampled without a sign probl
Typical operator expectation values of interest also con
contributions from configurations with two merons whic
therefore, also have to be included in the simulation a
introduce a ‘‘mild’’ sign problem. The relative weights o
the zero- and two-meron subspaces to be sampled can fu
be chosen in an optimum way using a reweighting techniq
which further reduces the sign problem.

In this paper we explore an analogous method for solv
the sign problem for frustrated quantum spin models.
consider the operator-loop formulation of the SSE metho7

in which sequences of two-spin operators are sampled
forming clusters~loops! of operators that can be simulta
neously updated without changes in the weight function. T
updated clusters contain operators acting on the same s
but diagonal operators may be changed to off-diagonal o
and vice versa. For a model with frustrated interactions
operator-loop update can lead to a sign change. In ana
with Chandrasekharan and Wiese20 we will refer to such
sign-changing loops as ‘‘merons.’’ The sign problem can
solved if the operator loops for a given configuration can
uniquely defined and the weight function is positive defin
in the configuration subspace containing no merons. Un
tunately, we find that these criteria are in general difficult
satisfy. Operator-loop algorithms with uniquely determin
loops are typically nonergodic for frustrated systems, a
with supplemental local updates for ergodicity there
mixed signs in the zero-meron subspace. In fact, in s
cases merons typically do not even exist, i.e., none of
operator loops can change the sign when flipped. We h
found only one spin system for which the sign problem c
be eliminated using merons— the Heisenberg model w
ferromagnetic couplingsJz(r ),0 along thez axis and frus-
trated antiferromagnetic couplingsJxy(r )52Jz(r ) in the
plane perpendicular to this axis, i.e., the Hamiltonian

H52(
i , j

Ji j @Si
zSj

z2 1
2 ~Si

1Sj
21Si

2Sj
1!#, ~1!

whereJi j .0 and the range of the couplings is arbitrary. W
have implemented a meron algorithm for this model on
square lattice with nearest- and next-nearest-neighbor
plings J(1) andJ(A2). Standard algorithms for this mode
have a severe sign problem when using thez axis as the
quantization axis, however, it can be avoided by a sim
rotation to thex representation. Using the SSE algorithm a
the meron concept, the sign problem can be eliminated
in the z representation. With both representations access
in simulations, correlation functions both parallel and p
pendicular to thez direction can be easily evaluated.

The model, Eq.~1!, can be mapped onto a hard-core b
son model with attractive interactions and frustrated h
ping. Frustration in the potential energy has been inve
of
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gated in this context as a possible mechanism to rend
disordered bosonic ground state.21 Frustration in the hopping
@the xy term in Eq. ~1!# should decrease the tendency
forming off-diagonal long-range order and could then lead
a normal fluid~nonsuperfluid!. However, the highly symmet
ric case considered here has a trivial, ordered ground s
the fully polarized ferromagnetic state~corresponding to a
completely filled lattice of hard-core bosons; a trivial case
normal solid!. Effects of frustration only come into play a
finite temperature, where the model is different from the c
responding isotropic ferromagnet~on nonfrustrated, bipartite
lattices the two models are equivalent, since the sign of
xy term can be switched by a spin rotation on one of
sublattices!.

Although we have not been able to solve the sign probl
for other cases, such as the Heisenberg model with c
pletely antiferromagnetic interactions@Jz(1)5Jxy(1).0
and Jz(A2)5Jxy(A2).0#, our work nevertheless give
some further insights into the meron concept and wha
required in order to solve the sign problem for arbitrary co
plings.

The outline of the rest of the paper is the following:
Sec. II we review the basics of the stochastic series exp
sion method and discuss operator-loop updating scheme
both ferromagnetic and antiferromagnetic couplings. In S
III we present the solution of the sign problem for th
Jz(r )52Jxy(r ) model. The reweighting technique is an
lyzed in some detail in Sec. IV. In Sec. V we discuss so
simulation results for the semifrustrated model and ma
comparisons with the isotropic Heisenberg ferromagnet.
summarize our work in Sec. VI.

II. OPERATOR-LOOP ALGORITHM

In this section we first briefly review the expansion u
derlying the SSE method and then discuss the operator-
updates used to efficiently sample the expansion. We h
assume a nonfrustrated case and postpone the discussi
the sign problem for frustrated models to Sec. III. For de
niteness we consider theS51/2 Heisenberg model

H56J(
^ i , j &

Si•Sj , ~2!

where ^ i j & denotes a pair of nearest-neighbor spins on
cubic lattice~in an arbitrary number of dimensions!, andJ
.0. Depending on the sign, the model is an antiferromag
(1) or a ferromagnet (2). To construct the SSE configura
tion space the Hamiltonian is rewritten as a sum of diago
and off-diagonal operators

H52
J

2 (
b51

M

~H1,b7H2,b!1C, ~3!

where the indexb denotes an interacting spin pair~bond!
^ i (b), j (b)& and C is an irrelevant constant equal toMJ/4,
whereM is the total number of pairs of interacting spins. T
bond-indexed operators are given by

H1,b52~ 1
4 7Si (b)

z Sj (b)
z !, ~4!
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H2,b5Si (b)
1 Sj (b)

2 1Si (b)
2 Sj (b)

1 . ~5!

Note that the eigenvalues of both the diagonal (H1,b) and the
off-diagonal (H2,b) operators are 0 and 1, both for the an
ferromagnet and the ferromagnet. The partition functionZ
5Tr$exp(2bH)% is expanded as5

Z5(
a

(
n50

`
~2b!n

n!
^auHnua&, ~6!

in the basis$ua&%5$uS1
z ,S2

z , . . . ,Sz
N&%, whereN is the num-

ber of spins. Terms of order greater thann;Nb give an
exponentially vanishing contribution and for the purpose o
stochastic sampling the expansion can, therefore, be t
cated at somen5L of this order without loss of accurac
~see, e.g., Ref. 6 for details on how to choose a sufficie
high truncation power!. Additional unit operatorsH0,0[1
are introduced to rewrite Eq.~6! as

Z5(
a

(
SL

~71!n2~Jb!n~L2n!!

2nL!
K aU)

i 51

L

Hai ,biUaL ,

~7!

whereSL denotes a sequence of operator indices

SL5~a1 ,b1!1 ,~a2 ,b2!2 , . . . ,~aL ,bL!L , ~8!

with aiP$1,2% and biP$1, . . . ,M %, or (ai ,bi)5(0,0). The
number of non-~0,0! elements inSL is denotedn, while n2
denotes the number of off-diagonal operators in the
quence. Note that since the expectation value in Eq.~7! is
always equal to zero or one, the sign of a term is nega
only if n2 is odd. This sign problem occurs~only! when
frustration is present and is the main topic of this pap
However, for the discussion of the sampling procedures
this section we assume a positive definite expansion.
introduce the notationua(p)& for a propagated state

ua~p!&5)
i 51

p

Hai ,bi
ua&, ~9!

where for an allowed configurationua(0)&5ua(L)&5ua&
and the weight function corresponding to Eq.~7! is given by

W~a,SL!5
~Jb!n~L2n!!

2nL!
. ~10!

Having established the framework we will proceed to d
scribe the procedures for importance sampling of the te
(a,SL) according to the weight~10!. The initial state can be
a sequence of the form (0,0)1 ,(0,0)2 , . . . ,(0,0)L ~subscripts
on the index pairs will sometimes be used to denote
position inSL) and a random stateua&. An ergodic procedure
for sampling the terms is achieved using two types of ba
updates; a simple substitution of single diagonal opera
and the operator-loop update which involves simultane
updates of a number~in principle, varying between 1 andn)
of diagonal and off-diagonal operators.

The diagonal update is carried out by traversing
operator-index sequenceSL from beginning (p51) to end
(p5L). Operator substitutions of the form (0,0)p↔(1,b)p
are attempted where possible, while the stored stateua& is
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updated every time an off-diagonal operator is encounte
so that the stateua(p)& is available when needed. With th
weight function~10! detailed balance can be seen to be s
isfied if the acceptance probabilities are taken to be

P@~0,0!p→~1,b!p#5
MJb^ab~p!uH1,buab~p!&

L2n
, ~11!

P@~1,b!p→~0,0!p#5
L2n11

MJb^ab~p!uH1,buab~p!&
. ~12!

Note that the diagonal update changes the expansion pown
by 61. Off-diagonal operators cannot be introduced one-
one because of the periodicity conditionua(L)&5ua(0)&.
Local updates involving two operators can be used for t
purpose,6 but are more complicated and far less efficient th
the operator-loop update,7 which is discussed next.

We use a largely pictorial description of the opera
loops. First we consider the antiferromagnet. Note that in
case the only nonzero matrix elements of the bond opera
are

^↓↑uH1u↓↑&5^↑↓uH1u↑↓&51,

^↓↑uH2u↑↓&5^↑↓uH2u↓↑&51, ~13!

i.e., they can act only on antiparallel spins. An example o
term in the expansion for a four-site antiferromagnet is
picted in Fig. 1. This representation makes evident the cl
relationship between the SSE expansion and the Euclid
path integral. An imaginary time separationt corresponds to
a distribution of propagationsDp between states, centere
aroundDp5(t/b)n.5,13 We will for convenience here refe
to the propagation as the time dimension.

The general idea15 behind the loop update is to flip
cluster of spins in the configuration in such a way that
weight is not changed. With the SSE method there will a
have to be changes made to the operators acting on the s
since otherwise operatorsH1 or H2 may act on parallel spins
resulting in zero-valued matrix elements. Since one of
statesua(p)& and the operator sequenceSL uniquely define
the whole spin configuration, the SSE loops are in prac
treated as loops of operators, the exact meaning of wh
will be made clear below.

Consider one of the operatorsH1,1 in Fig. 1. It can be
depicted as a ‘‘vertex’’ with four legs associated with sp
states↓ or ↑. If we flip the upper left spin, a vanishing matri

FIG. 1. Representation of a term in the SSE expansion o
four-site antiferromagnet. Up and down spins are represente
solid and open triangles, respectively. The horizontal bars indic
the presence of diagonal~thin lines! and off-diagonal~thick lines!
operators.
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element results. But if we flip both upper~or lower! spins
and also change the operator type to off-diagonalH2,1, an
allowed matrix element is generated; see Fig. 2. Using
idea we can form a cluster of spins by choosing a rand
spin Si

z(p) in the configuration and traversing up or dow
until we encounter an operator~bond! acting on that spin,
then switch to the second spin of the bond and change
direction of traversing the list. Eventually we will necessar
arrive back at the initial starting point, whereupon a clos
loop has formed. All the spins on this loop can be flipped
the operators encountered are also switched@(1,b)↔(2,b)#.
Note that the same operator can be encountered twice, w
results in no net change of operator type~but the spins at all
four vertex legs are flipped!.

The whole configuration can be uniquely divided up in
a set of loops, so that each spin belongs to one and only
cluster; see Fig. 3, where our example configuration has b
divided up into three clusters. All loops can be flipped ind
pendently with probability 1/2—in Fig. 3 we depict the resu
of flipping the largest loop of the example configuration.
full operator-loop update amounts to dividing up the co
figuration into all of its loops which are flipped with prob
ability 1/2. The~random! decision of whether or not to flip a
loop can be made before the loop is constructed, so that
loop has to be traversed only once. Spin ‘‘lines’’Si

z(p), p
50, . . . ,n, which are not acted upon by any of the operat
in SL will not be included in any of the operator loops. The
correspond to ‘‘free’’ spins which can be flipped with pro
ability 1/2. Such a line can also be considered a loop,
then it will always be true that every spinSi

z(p) belongs to
one loop. Free spins appear frequently at high temperatu
when the total number of operatorsn&N, but are rare at low
temperatures.

Note that the spin states at the four legs of the oper
vertices completely determine the full spin configuration, e
cept for free spins that happen not to be acted upon by an

FIG. 2. Spin flip and accompanying operator exchange durin
loop update for an antiferromagnet. The dashed line indicates
of the loop.

FIG. 3. The SSE space-time configuration of Fig. 1 is uniqu
divided up into loops~left!. The right-hand configuration result
from flipping the loop indicated by the dashed line. Note the pe
odic boundary conditions in the vertical~‘‘time’’ ! direction.
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the operators inSL . Hence, the operator-loop update can
carried out using only a linked list of of operators, i.e.,
array of vertices with four spin states and associated poin
to the ‘‘previous’’ and ‘‘next’’ vertices associated with th
same spin. The storage requirements and the number o
erations needed for carrying out a full operator-loop upd
then scale as;Nb instead of;N2b if the full spin configu-
ration were to be used.

In a simulation we first make a full cycle of diagon
updates in the sequenceSL and then create the linked list o
vertices in which the operator-loop updates are carried
The vertex list is then mapped back onto the sequenceSL and
the stateua(0)&. Alternatively, the linked list can be update
simultaneously with each diagonal operator substitution,
that it does not have to be recreated for each Monte C
step—depending on the model studied there may be sig
cant differences in execution time between the two
proaches.

For the ferromagnet we can construct the loops in a si
lar manner, but the nonzero matrix elements are now

^↓↓uH1u↓↓&5^↑↑uH1u↑↑&51,

^↓↑uH2u↑↓&5^↑↓uH2u↓↑&51, ~14!

i.e., the off-diagonal operators act only on antiparallel spi
as before, whereas the diagonal ones can act only on par
configurations. This implies qualitative changes in the str
ture of the loops, as depicted in Fig. 4. If we again consi
an operatorH1 and flip the upper left spin, we note that w
need to flip the lower right spin and change the operato
H2, Hence, instead of changing the direction of travers
the configuration every time an operator is encountered
now continue in the same direction after switching to t
second spin of the bond. Any configuration can still
uniquely divided up into loops that can be flipped with pro
ability 1/2. An example of a ferromagnetic configuratio
with its loops is shown in Fig. 5.

Note that since the loops for the ferromagnet ne
change direction as they go through the lattice, every sin
loop has to traverse each stateua(p)& at least once. It follows
that the number of sitesN is an upper bound of the numbe
of loops. The antiferromagnetic loops, on the other ha
traverse the lattice in both directions and the number of lo
is, therefore, instead limited by the total number of operat
n;Nb. As a consequence of the change of direction, for
antiferromagnet the linked list of vertices must to be bidire
tional, whereas for the ferromagnet it is sufficient to keep
singly directional list.

The diagonal and operator-loop updates satisfy deta
balance and the combination of them leads to ergodic s
pling for a ferromagnet on any lattice, and for antiferroma
nets on bipartite lattices—for frustrated antiferromagn
there are complications, in addition to the sign proble

a
art

y

-

FIG. 4. Spin flip and accompanying operator exchange durin
loop update for a ferromagnet. The dashed line indicates part o
loop.
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which will be discussed further in the next section. T
operator-loop sampling is highly efficient, with integrate
autocorrelation times typically less than one updating cy
~Monte Carlo step!.

The loop construction described here relies on the ro
tional invariance of the models, i.e., the fact that both
diagonal and off-diagonal matrix elements in Eqs.~13! and
~14! are equal to one. For a general anisotropic case, or in
presence of fields, the loops will lead to weight chang
when flipped and must then be assigneda posterioriaccep-
tance probabilities which typically become small for lar
lattices at low temperatures.22 Other types of loops avoiding
this problem have been proposed,7 but will not be discussed
here.

III. THE SIGN PROBLEM

The notorious sign problem arises in stochastic samp
when the function used to weight the different configuratio
is not positive definite. A typical quantity that can be calc
lated by Monte Carlo methods~importance sampling! is of
the form

^A&5

(
i

A~xi !W~xi !

(
i

W~xi !

5^A~x!&W , ~15!

where W is the weight function andA(x) is the estimator
corresponding to the measured quantity, which both dep
on the general coordinatex of the configuration space
sampled. When the coordinates are sampled accordin
relative weight, the desired quantity is simply the arithme
average of the estimatorA(x), as indicated by the notatio
^A(x)&W above. If the weight function is not positive defi
nite, the sampling can be done using the absolute valu
the weight, and the expectation value can be calculated
cording to

^A&5
^A~x!s~x!& uWu

^s~x!& uWu
, ~16!

wheres(x) equals61, depending on whether the sign of th
weight function is positive or negative. For most mode
where a sign problem is present, the average sign^s(x)& uWu

FIG. 5. SSE space-time configurations uniquely divided i
loops for the case of a ferromagnet. The left- and right-hand c
figurations differ by flipping the loop indicated by a dashed line
e
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decreases exponentially to zero as a function of inverse t
perature and system size, and the relative statistical erro
calculated quantities increase exponentially.

A meron-cluster solution to the sign problem using lo
updates of fermion world-line configurations was recen
proposed by Chandrasekharan and Wiese.20 This approach is
based on the idea that if it is possible to map every confi
ration with negative weight uniquely to a corresponding co
figuration with equal weight magnitude but opposite sig
then the partition function can be sampled without a s
problem simply by not including any configuration which
a member of such a canceling pair. In the meron-cluster
gorithm, flipping a loop of spins can lead to a sign chan
without change in the magnitude of the weight, and suc
‘‘meron’’ hence identifies a canceling pair of configuration
Here we will present a similar approach within the SS
operator-loop method for frustrated quantum spins.

Let us consider the Heisenberg antiferromagnet discus
in the previous section. From Eq.~7! we see that a configu
ration has negative weight if the total numbern2 of off-
diagonal operators is odd. This can only be the case on f
trated lattices. As described in the previous section, any S
configuration can be divided up uniquely into a number
loops. Flipping a loop interchanges the diagonal and o
diagonal operators, but leaves the total number of opera
unchanged. It follows that the sign will change if and only
a loop passing through an odd number of operators is flip
~two passes through the same operator is counted as
operators!. Since the total weight remains unchanged
have thus found the desired mapping between positive
negative configurations~assuming that there exist loop
which change the sign when flipped, which in fact is n
always the case!. In analogy with previous work we call suc
a sign-flipping loop a ‘‘meron.’’ Let us now see how we ca
use this concept to calculate observables.

As in Ref. 20 we consider improved estimators that av
ages over all loop configurations. Denote the number
loops in the systemNL . Since each loop can be in one of tw
states there is a total of 2NL configurations that can be
reached by flipping all combinations of the loops prese
The improved estimate therefore takes the form

^A&5
^^A~x!s~x!&& uWu

^^s~x!&& uWu
, ~17!

where the double brackets denote an average over all
loop states for each generated SSE configuration, e.g.,

^^s~x!&&5K 1

2NL
(
l 51

2NL

s~xl !L . ~18!

The general coordinatex here refers to the SSE configuratio
space (a,SL) and xl refers to one out of the 2NL possible
outcomes of ‘‘flipping’’ a number of loops.

Let us consider this average. Denote the state of a l
with d, with two possible ‘‘orientations’’dP$↑,↓%. Since
flipping one loop does not affect any other loops~in terms of
their paths taken!, the sign of a configuration factors accor
ing to
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s~d1 ,d2 , . . . ,dNL
!5)

i 51

NL

s~d i !, ~19!

wheres(d)56s( d̄), whered̄ denotes a flipped loop, and th
sign is negative for merons and positive otherwise. Si
flipping any meron leads to two terms that cancel, it follo
that

1

2NL
(
l 51

2NL

s~xl !56dnM ,0 , ~20!

wherenM denotes the total number of merons. The sign
front of the delta function is the ‘‘inherent’’ sign of the con
figuration, independent of the loop orientation when there
no merons present. This sign has to be positive for the me
solution to be applicable in practice, and then the partit
function can be sampled in the positive definite subspac
configurations with no merons.

Having found an expression for the denominator in E
~17! we need to consider the numerator for cases of inter
SSE estimators for a number of important operators h
been discussed, e.g., in Ref. 6. The internal energy is g
by

E52
1

b
^n&W , ~21!

where n denotes the total number of operators in the
quenceSL . This number is not affected by the loop updat
and hence it follows that

E52
1

b

^^n~x!s~x!&& uWu

^^s~x!&& uWu
52

1

b

^n~x!dnM ,0& uWu

^dnM ,0& uWu
. ~22!

Assuming that this sector has positive definite weight
have therefore completely eliminated the sign problem
restricting the simulation to the zero-meron sector. The
ergy is then simply given by

E52
^n~x0!&W

b
, ~23!

where the superscript 0 indicates the restriction of the sim
lation to the zero-meron sector.

Next we will consider the magnetic susceptibility,

x5
b

N K S (
i

Si
zD 2L 5

b

N
^M2&. ~24!

Since M is conserved by the Hamiltonian its value is t
same in all propagated states;M (p)5M (0)[M ,p
51, . . . ,n. In a configuration uniquely divided up int
loops, every spinSi

z(p) belongs to one and only one loop,
we count as loops also all ‘‘lines’’ of free spins, i.e., th
spinsSi

z(p), p51, . . . ,n for all sitesi which are not associ
ated with any operator in the sequence~and therefore can be
flipped!. It follows that the change inM (p) when flipping a
loop must be the same for allp, and hence only loops that g
through all statesua(p)& ~at least once! can changeM when
flipped. We can, therefore, introduce a loop magnetizat
mL , which is simply equal to the sum of the spins travers
by the loop for an arbitraryua(p)&. In the estimator~17!
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corresponding to the susceptibility the numerator can he
be written as

K 1

2NL
(
l 51

2NL

@m1~xl !1 . . . 1mNL
~xl !#

2s~xl !L , ~25!

The magnetization on a loop always changes sign whe
loop is flipped; the overall signs(xl) only changes sign when
a meron is flipped. Therefore, in summing over all loops
~25!, a nonzero value results only if the configuration h
zero or two merons. The full susceptibility estimator the
fore takes the form

x5
^( l 51

NL uml u2dnM ,012umM1
uumM2

udnM ,2&

^dnM ,0&
, ~26!

whereM1 andM2 are the indices of the loops correspondi
to merons in a two-meron configuration. Here we have
sumed that all non-meron loop signs in Eq.~19! are positive
and thatmM1

mM2
>0 when the two-meron sign product

positive ~the latter assumption is not necessary but is ty
cally true in cases where the first condition holds!. Hence,
unlike in the case of the total energy, the sign problem
here not been completely eliminated, since the zero-
two-meron configuration contribute 1 and 0, respectively,
the average sign. When the SSE configuration volumeV
grows the relative weight of the zero-meron sector sho
diminish, leading to a decreasing average sign. Ch
drasekharan and Wiese found that the statistical fluctua
in the improved susceptibility estimator increases quadr
cally with Nb, i.e., much slower than the conventional e
ponential increase. They also argued that this remaining
problem can be solved by reweighting the zero- and tw
meron sectors with external weight factorsw(0) andw(2).
This changes the above formula to

x5
^( l 51

NL uml u2dnM ,0w~2!12umM1
uumM2

udnm,2w~0!&

^dnM ,0w~2!&
~27!

In the next section we will say more about reweighting.
As we have shown above, the meron concept within

SSE method formally leads to exactly the same equation
in the world-line simulations of fermion systems consider
in Ref. 20. The difference is only in the structure of th
meron itself; the fermionic meron changes the number
particle permutations from even to odd, or vice ver
whereas the SSE meron in the case of a frustrated spin
tem instead changes the number of antiferromagnetic
flips from even to odd or vice versa. Applying the SS
operator-loop algorithm to a fermion system would lead
merons of exactly the same kind as those existing within
world-line framework, and, conversely, applying a worl
line loop algorithm to a frustrated spin system should lead
merons similar to those discussed here~there are no diagona
operators in the world-line configurations, but spin fl
events correspond to the SSE off-diagonal operators and
change from even to odd, or vice versa, in loop update!.
These similarities are not surprising, considering the cl
relationship between the SSE expansion and the Euclid
path integral.13

Now consider the application of the above ideas to
Heisenberg model on a square lattice with nearest- and n
nearest-neighbor couplingsJ(1).0 andJ(A2).0 ~antifer-
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1108 PRB 62PATRIK HENELIUS AND ANDERS W. SANDVIK
romagnetic!. This model has a sign problem since the to
numbern2 of spin-flipping operators in a configuration ca
be odd, e.g., three operators on a triangle of spins, as sh
in Fig. 6. Already this simple example illustrates that t
operator-loop algorithm discussed above does not sample
full configuration space and that the meron concept there
cannot be applied to solving the sign problem. Since all th
bonds are antiferromagnetic, a loop will change direct
every time an operator is encountered. In order for the lo
to close, it therefore has to pass through an even numbe
operators and hence flipping the loop cannot change
numbern2 of off-diagonal operators from odd to even,
vice versa. This is illustrated in Fig. 6, where the only effe
of flipping the single loop in the system is to flip all th
spins, with the operators remaining unchanged. Hen
merons do not even exist within the operator-loop algorit
for this model, and the sampling is nonergodic. A local u
date can, in principle, be used in combination with the o
erator loops in order to make the sampling ergodic. Ho
ever, a configuration can then have a negative sign~of which
Fig. 6 is an example! even though there are no mero
present. The principal requirement of positive definitenes
the zero-meron subspace~which in this case is the full space!
is hence not fulfilled. A similar problem seems to affect
models with frustration in all of the spin components. It
possible that some other way of constructing the loops co
remedy this, e.g., by switching to some other, nontrivial b
sis in which the SSE expansion could be carried out. Ot
ways proposed for constructing loops in the standard b
considered here remedy the ergodicity problem but do
uniquely define the set of loops7 and can therefore not easil
be used with the meron concept.

We have found one class of spin models for which
meron ideas can be successfully applied to solve the
problem: Heisenberg models which are antiferromagneti
the xy plane but ferromagnetic along thez axis., i.e., the
‘‘semifrustrated’’ model~1!, which can be written as

H52 (
b51

M
Jb

2
~H1,b2H2,b!1C, ~28!

where the bond-indexed operators are given by

H1,b52~ 1
4 1Si (b)

z Sj (b)
z !, ~29!

H2,b5Si (b)
1 Sj (b)

2 1Si (b)
2 Sj (b)

1 . ~30!

FIG. 6. Three off-diagonal operators acting on a triangle
spins. The left- and right-hand configurations differ by flipping t
loop indicated by a dashed line. Note the periodic boundary co
tions.
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On a nonfrustrated lattice this model is equivalent to an i
tropic Heisenberg ferromagnet, sincen2 is always even and
the sign in front of the operatorsH2,b in Eq. ~28! is irrelevant
as (21)n251 in Eq. ~7!—the sign can also be transforme
away by a spin rotation on one of the two sublattices. O
frustrated lattice, on the other hand,n2 can be odd~the lattice
is no longer bipartite so that the transformation mention
above does not remove all signs!, and the system is no longe
equivalent to the isotropic ferromagnet. The model ha
classical twofold degenerate ferromagnetic ground state,
at finite temperatures the transverse spin components
frustrated, and the behavior will be different from the isotr
pic ferromagnet. When simulated in thez basis using stan-
dard algorithms the semifrustrated model has a severe
problem, but the zero-meron sector is positive definite a
the SSE meron solution can be applied. The structure of
operator loops is the same as for the ferromagnet and
loop algorithm is therefore ergodic for any lattice and ran
of the interaction. We have used this model to explore
properties of the meron method.

The meron solution can be implemented in several diff
ent ways and we briefly describe how it was done in t
work: During the sequential diagonal updates the linked l
representing the loop structure, is updated simultaneo
with each accepted diagonal update. The loops are numb
and information is stored on whether each loop is a meron
not. During an attempted diagonal update only the loops
rectly affected by the operator substitution are updated. T
permits easy and fast checking of whether the number
merons in the system has changed or not. If the new num
of merons is different from zero or two the update is reject
whereas if the number of merons changes fromi to j it is
accepted with probabilityw( j )/w( i ), wherei , j P$0,2%, and
w( i ) is the reweighting factor assigned to meron sectoi.
The number of operations needed for carrying out a
operator-loop update now depends on the number of op
tors in each loop. If each loop passes only once through
system in the imaginary time direction, the scaling w
change frombN to b2N. If a few large loops dominate, th
scaling will assume the worst case form (bN)2. In most
cases of interest the scaling is likely to be somewhere
tween these two limits.

Note that the sign problem for the semifrustrated mo
can also be very easily transformed away by rotating
ferromagnetic component to they direction. The Hamil-
tonian then takes the form

H52
J

2 (
b51

M

~H1,b8 1H2,b8 !1C, ~31!

where the bond-indexed operators are given by

H1,b8 52~ 1
4 2Si (b)

z Sj (b)
z !, ~32!

H2,b8 5Si (b)
1 Sj (b)

1 1Si (b)
2 Sj (b)

2 , ~33!

and the fundamental spin-flips and operator exchange du
a loop update is shown in Fig. 7. Being able to work in bo
bases we can easily measure all components of the susc
bility. Our main motivation for studying this model is t
illustrate how the sign problem can be removed in thez
basis. Nevertheless, we will also show some results ca
lated in thex basis.

f
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IV. REWEIGHTING

An important technical aspect of the meron solution is
reweighting of the zero- and two-meron sectors, which w
briefly mentioned in the previous section. Equation~27!
gives the correct estimator for the susceptibility after
weighting, but it gives no information on how to do th
reweighting in practice. How to determine the optimal r
weighting and whether reweighting changes the scaling
the relative error are important questions to be considere
this section.

As a first example of how reweighting affects the stat
tics of a simulation we will discuss a simple random proce
Consider a random variablen, which can take two differen
values, 0 or 2. LetW0 andW2 designate the probability fo
these two outcomes. The expected fractions and standar
viations of these outcomes fromN random selections ar
given by

^dn,0&5W06
AW0W2

AN
, ~34!

^dn,2&5W26
AW0W2

AN
. ~35!

We consider an expectation value of a form similar to
susceptibility, Eq.~26!;

^ f &5
^dn,01dn,2&

^dn,0&
5

1

W0
6

1

W0
AW2

W0

1

AN
, ~36!

with a relative standard deviation

s f

f
5AW2

W0

1

AN
. ~37!

This formula becomes valid for largeN, when the standard
deviation is small. AsW0 decreases the standard deviati
increases and we will consider whether reweighting can h
in this situation. The two outcomes can be reweighted
assigning an additional weightW to then50 outcome such
that a transition fromn50 to n52 is accepted with prob
ability 1/W, while a transition fromn52 to n50 is always
accepted. After such a reweighting the probabilities of o
taining n50 andn52 are given by

W085
W0W

W0W1W2
, ~38!

W285
W2

W0W1W2
, ~39!

and f is given by

FIG. 7. Spin flip and the accompanying operator exchange
ing a loop update for model with a ferromagneticx component, but
antiferromagneticy and z components. The dashed line indicat
part of the loop.
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^ f &5
^dn,01Wdn,2&

^dn,0&
. ~40!

When calculating the standard deviation for this case
have to be careful since the reweighting introduces corr
tions into the system. This is clearly visualized in Fig.
where in the upper graph a series of independent outco
with equal probability (W05W250.5) are shown, while in
the lower graph a case withW050.01 is shown with a re-
weighting factor ofW599 ~leading toW085W2850.5).

Let us now calculate the standard deviation and its sta
tical error for this case. In a standard MC simulation o
usually wants to calculate the average and the standard
viation of the average for some quantityx. This is typically
achieved by dividing the run into a number of bins,N, and
saving the average ofx for each bin. If the bins are statisti
cally independent the final average and standard devia
can be calculated according to

^x&5
1

N (
i 51

N

xi ~41!

and

s^x&5A^x2&2^x&2

N
. ~42!

When studying the behavior of the standard deviation its
we also want to obtain an estimate of the accuracy of
standard deviation. This can be done by dividing theN bins
into M sets containingN/M bins each. For each set a sta
dard deviationsx can be calculated according to

sx5A^x2&2^x&2, ~43!

where the brackets denote an average of theN/M bins within
the set. The final standard deviation and its statistical fl
tuation are then given by

^sx&5
1

M (
i 51

M

sxi ~44!

and

r-

FIG. 8. Fluctuations ofn during a random process with tw
outcomes (n50,2). The upper graph shows results forW050.5 and
W250.5, while in the lower graphW050.01 andW250.99 and a
reweighting factorW599 is used~resulting inW085W2850.5).
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s^sx&5A^sx
2&2^sx&

2

M
. ~45!

Equation~44! represents the standard deviation of the dis
bution of the binned valuesx, and not the standard deviatio
of an average of these. It does not decrease as the numb
binsN is increased, but it is dependent on the number of M
steps in each bin,Nbin , and will decrease as 1/ANbin. Hence
it is important to state the number of MC steps in the bins
which the deviation is calculated. The statistical error of t
standard deviation,s^sx& , will, on the other hand, decreas

as 1/AN.
In this manner we can calculate the standard deviation

f. In order to show the standard deviation as a function of
reweighted probabilityW08 , Eq. ~38! can be inverted to ex
press the necessary weight factor that causes the avera
change fromW0 to W08 ;

W5
W08~12W0!

W0~12W08!
. ~46!

Simulation results for the standard deviation off as a func-
tion of W08 is shown in Fig. 9. We see that the reweighti
actually increases the standard deviation. This is due to
rapidly increasing auto correlation times. The autocorrelat
function

Cd~ t !5
^dn,0~ i 1t !dn,0~ i !&2^dn,0~ i !&2

^dn,0~ i !2&2^dn,0~ i !&2
~47!

is shown in Fig. 10, and one can see that the autocorrela
times~proportional to the slopes in Fig. 10! are proportional
to W08 . Notice that the longest autocorrelation times are s
nificantly shorter than the individual bins~consisting of 2000
MC steps! used above, a criteria for the analysis to be va
The increasing autocorrelation time can be easily unders
by considering the case depicted in Fig. 8. After reweighti
the probability of a transition fromn50 to n52 remains
0.01, while the probability of a transition fromn52 to n
50 is decreased from 0.99 to 0.01, thereby making the

FIG. 9. The relative standard deviation off as a function ofW08 ,
Calculations are performed over bins containingNbin52000 MC
steps.
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transition rates equal. The reweighting therefore decrea
the transition rates between the sectors, which leads to lo
autocorrelation times.

This simple example seems to indicate that reweight
does not decrease the statistical errors. However, in a s
dard Monte Carlo simulation the measured quantities
typically correlated even with no reweighting, and formu
Eq. ~27! contains measured quantities different from Eq.~36!
considered above. The cost of lower transition rates betw
the sectors can be outweighed by a more efficient samp
of the separate sectors. Therefore, the reweighting will af
autocorrelation times differently than in the above examp
and reweighting can actually decrease the standard erro20

Using the above technique we can study how the rela
error in the susceptibility of the semifrustrated model is
fected by reweighting. An initial run without reweighting ha
to be done first to determine the average sign^dn,0&5W0.
Thereafter, Eq.~46! can be used to determine the desir
weight factors. In Fig. 11 the average sign in a simulation
the semifrustrated model withJ(1)5J(A2)5J is shown as
a function of lattice volumeV5L3L at a temperatureT/J
51.0. For comparison we first performed a standard simu
tion by sampling all meron sectors, which leads to a sev
sign problem with a sign that decreases exponentially in s

FIG. 10. Autocorrelation function, Eq.~47!, as a function of
W08 . Shown are results forW0850.02, 0.05, 0.1, 0.2, 0.3, 0.4, an
0.5 ~curves left to right!.

FIG. 11. The average sign as function of system volume
temperatureT/J51. Shown are results of an unrestricted simu
tion ~circles!, and a simulation restricted to the 0- and 2-mer
sectors without reweighting~squares!. The line shows a slope o
22.
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tem volume. Next we sampled only the zero- and two-me
sectors without reweighting, which dramatically increas
the average sign. The scaling changes from exponentia
inverse quadratic in the volume, as can clearly be seen f
the graph.

Having determined the average sign without reweight
we now use Eq.~46! to determine the desired weight factor
Figure 12 shows the standard deviation~44! of the suscepti-
bility, calculated using bins containing 1000 MC steps. R
sults are shown for systems of linear sizeL58, 12, 16, and
20 at temperatureT/J51.0. Reweighting clearly helps t
reduce the standard deviation, and there is a definite m
mum in all these curves indicating an optimal reweightin
The optimally reweighted sign always appears to be less
0.5, and decreases with decreasing sign~and increasing vol-
ume!.

Having determined that there is an optimal reweight
we will next consider whether reweighting changes the s
ing with system size of the relative statistical error. Let
first consider how the standard deviation scales with no
weighting. Since the sign decreases quadratically in the
umeV we can derive the scaling of the relative error in t
sign, under the ideal~and typically false! assumption that
individual measurements are completely independent. U
that s5s2 we arrive at

ss

^s&
5

A^s2&2^s&2

^s&AN
;

1

A^s&N
5

V

AN
, ~48!

and this indicates that in this case the statistics needed
creases quadratically in system volume, as also stated in
20.

In order to study the scaling, the standard deviation
bins containingNbin5104 MC measurements of the susce
tibility is shown in Fig. 13. Four susceptibilites are show
the z component for the semifrustrated model without a
with optimal reweighting, thex component for the semifrus
trated model and the rotationally invariant susceptibility
the isotropic ferromagnetic model. The two latter quantit
can be obtained in simulations without sign problems,
discussed in the previous section

FIG. 12. Relative standard deviation of thez susceptibility of the
semifrustrated model as a function of reweighting. Shown are
sults for systems of linear size 8~circles!, 12 ~squares!, 16 ~dia-
monds!, and 20~triangles!. The standard deviation is calculated f
bins containingNbin5103 MC steps at temperatureT/J51.0.
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Let us first consider thez component of the susceptibility
for the semifrustrated model without and with optimal r
weighting. Forboth cases the graph suggests a linear
crease in relative error. We have to keep in mind that
~48! does not have to be valid, since there are autocorr
tions in the simulation, and the results in Fig. 13 do n
exclude that the scaling changes when approaching the
modynamic limit ~due to increasing autocorrelation times!,
but both results do support an approximately linear increa
It appears that the reweighting in this case changes only
prefactor of the volume scaling, but not the exponent. T
seems to indicate that the reweighting has not comple
eliminated the remaining sign problem~the error remains
much larger than that for the ferromagnet susceptibility!. It
is, however, clear that the reweighting reduces the stand
deviations by a significant factor. In any case, an algorit
that changes the functional dependence of the size scalin
the statistics from exponential to polynomial can be cons
ered a solution to the problem.

Thex susceptibility of the semifrustrated model, which
evaluated with an algorithm without sign problems, show
constant standard deviation, which may be related to the
that the susceptibility itself has converged to its thermo
namic limit for these system sizes~see next section!. For the
isotropic ferromagnetic model, the susceptibility still show
a linearly increasing error, but as already noted the slop
much smaller than for the semifrustrated case.

This concludes our discussion of the reweighting te
nique. In future work it would be interesting to explore ho
the optimal reweighting can be determined directly fro
quantities measured during one single test run, rather tha
explicitly measuring the standard deviations as we have d
here.

V. RESULTS

In this section we will present results for the semifru
trated and isotropic ferromagnetic models. We will demo
strate that it is feasible to obtain accurate results for la
systems in thez basis by using the meron solution. The ma

-
FIG. 13. The standard deviation of the susceptibility as a fu

tion of system volume V. Shown are: thez component for the
semifrustrated model without~circles! and with ~squares! optimal
reweighting, thex component for the semifrustrated model~dia-
monds!, and the rotationally invariant susceptibility of the ferro
magnetic model~triangles!. Statistical errors are smaller than sym
bol size.
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motivation for this study is to analyze the meron solutio
and we will only briefly comment on the physics of the sem
frustrated model and how it differs from the isotropic ferr
magnet. We will primarily consider the case withJ(1)
5J(A2)5J. To verify the correctness of our codes we ha
compared simulation results with exact diagonalization d
for systems with 434 spins.

In Fig. 14 the internal energy per spin is shown for t
semifrustrated and ferromagnetic model. The statistical
rorbars are smaller than the symbol size and the results
converged to the thermodynamic limit. The largest syst
size used had 1283128 spins. It can be seen that therm
fluctuations and finite-temperature quantum fluctuatio
more effectively destroy the fully ferromagnetic state for t
isotropic ferromagnet than for the semifrustrated model.

The z component of the susceptibility is shown for bo
models in Fig. 15. The low-temperature susceptibility
finite-size systems will approachbN/4 for the semifrustrated
model, andbN/12 for the ferromagnetic model~reduced by a
factor 1/3 due to rotational averaging in the latter case!. This
can be clearly seen from Fig. 15, where the susceptibilit
multiplied by temperature, so that a constant at low tempe
tures indicates a Curie divergence. In the thermodyna
limit the uniform susceptibility should diverge exponentia

FIG. 14. Energy for the semifrustrated~filled circles! and ferro-
magnetic~empty circles! model, withJ(1)5J(A2)5J. Statistical
errorbars are not visible in the plot, and the curves have conve
to the thermodynamic limit.

FIG. 15. Thez component of the susceptibility for the semifru
trated ~filled symbols! and the ferromagnetic model~empty sym-
bols!. The size effects are shown for linear system sizesL516
~circles!, 32 ~squares!, and 64~diamonds, shown only for the ferro
magnetic model!. Statistical errorbars are not visible on this sca
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for these models, but this cannot be clearly seen in Fig.
due to the strong finite-size effects.

In Fig. 16 thex component of the susceptibility for th
semifrustrated model is shown. This quantity has conver
to its thermodynamic limit, and it exhibits a Curie dive
gence at low temperatures. The ground-state value is de
dent on the next-nearest-neighbor couplingJ(A2), as is
clearly demonstrated by plotting two different ratiosJ(A2)
5J(1), andJ(A2)50 ~only nearest-neighbor interactions!
in Fig. 16.

VI. CONCLUSION

We have studied a recently introduced meron solution20 to
the sign problem within the SSE method. We investiga
the sign problem arising in frustrated spin systems a
showed that the meron solution can be applied to a partic
semifrustrated model. The problems arising when apply
the meron ideas to more general models of frustrated s
were discussed. We found that loop algorithms typically
not ergodic and merons do not exist. The sign problem t
persists.

For models where the meron solution works we show
that the sign problem can be completely eliminated for c
tain variables and largely eliminated for other variables. T
total and partial elimination comes from a mapping
positive- to negative-weight contributions and involves
approximation. For the variables where the sign problem
almost eliminated the statistical errors can be reduced usi
reweighting technique.20 We studied how the relative statis
tical error behaves as a function of lattice size with and wi
out reweighting, and showed that the reweighting does
change the scaling behavior but significantly reduces
overall magnitude of the fluctuations.

It is evident that the meron solution suffers from the sa
problem in both frustrated spin and fermionic systems—i
confined to a few special cases. It would be of great imp
tance to be able to extend it to more general cases, e.g
working in basis where the required loop structure appe
The possibility of finding such bases should be explored
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FIG. 16. Thex component of the susceptibility for the semifru
trated model, withJ(A2)5J(1) ~empty circles! and J(A2)50
~filled circles!. Statistical errorbars are not visible.
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