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We discuss the sign problem arising in Monte Carlo simulations of frustrated quantum spin systems. We
show that for a class of “semifrustrated” systerftdeisenberg models with ferromagnetic coupliniyér)
<0 along thez axis and antiferromagnetic couplindg,(r) = —J,(r) in thexy plane, for arbitrary distances
r], the sign problem present for algorithms operating inztimasis can be solved within a recent “operator-
loop” formulation of the stochastic series expansion metf@daluster algorithm for sampling the diagonal
matrix elements of the power series expansion of exgH) to all orderd. The solution relies on the identi-
fication of operator loops which change the configuration sign when up¢iatestons™) and is similar to the
meron-cluster algorithm recently proposed by Chandrasekharan and Wiese for solving the sign problem for a
class of fermion model§Phys. Rev. Lett83, 3116 (1999]. Some important expectation values, e.g., the
internal energy, can be evaluated in the subspace with no merons, where the weight function is positive
definite. Calculations of other expectation values require sampling of configurations with only a small number
of merons(typically zero or twg, with an accompanying sign problem which is not serious. We also discuss
problems which arise in applying the meron concept to more general quantum spin models with frustrated
interactions.

[. INTRODUCTION pressing—interacting fermions in more than one dimension
and quantum spin systems with frustrated interacti@ns

Recently, there have been several significant developany number of dimensiohsFor fermions in one dimension,
ments of more efficient Monte Carlo methods for interactingand hopping between nearest-neighbor sites only, the sign
quantum many-body systemsThe Trotter decomposition problem can be avoided because the fermion anticommuta-
formuld®® has traditionally been used as a starting point fortion relations do not come into plagther than introducing a
finite-temperature simulation algorithms, such as thehard-core constraipin the one-dimensional real-space path
worldline® and fermion determinafimethods. It introduces a integral. In two or more dimensior®r even in one dimen-
systematic error that can be removed only by carrying ousion if hopping further than between nearest neighbors is
simulations for several different imaginary time discretiza-included, permutations of fermions during the propagation
tions A 7 and subsequently extrapolatingsa=0. Such ex- in imaginary time leads to a mixed-sign path integral which
trapolations are not necessary with the stochastic series eypically cannot be efficiently evaluated using Monte Carlo
pansion(SSB method>~’ which is based on sampling the methods. The sign problem can be avoided with the fermion
power series expansion of expBH) to all orders and is determinant algorithm in special cases, such as the half-filled
related to a less general method proposed much earlier iyubbard modelbecause of particle-hole symmetfybut in
Handscomi3~1° Results that are exact to within statistical other cases simulations are restricted to high temperatures
errors can also be directly obtained with recentand/or small system sizé® For frustrated spin systems the
worldlinet**3and fermion determinatftalgorithms formu-  source of the sign problem is different. A minus sign appears
lated in continuous imaginary time. Even more significantfor every event in the path integral in which two antiferro-
are generalizations to the quantum ¢as&'27of cluster al-  magnetically interacting spins are flippEtThis causes an
gorithms developed for the classical Monte Carlo method. overall minus sign if the total number of spin flips is odd,
These “loop algorithms”(so called because the clusters arewhich can be the case, e.g., for a triangular lattice or a square
loops on a space-time latticean reduce the autocorrelation lattice with both nearest- and next-nearest-neighbor interac-
times by orders of magnitude and enable highly accuratéions. Simulations of quantum spin systems are, therefore,
studies of systems in parameter regimes where previous alestricted to models with no frustratidin the off-diagonal
gorithms encountered difficulties due to long autocorrelatiorpart of the Hamiltoniay) such as ferromagnets, or antiferro-
and equilibration times. magnets on bipartite lattices.

In spite of these developments, the class of models which A promising approach to solving the sign problem was
can be studied using quantum Monte Carlo methods is stiltecently suggested by Chandrasekharan and VifeSaey
severely restricted due to the “sign problenf®i.e., the considered a system of spinless fermions on a two-
non-positive-definiteness of the weight function that candimensional square lattice within the context of the worldline
arise in transforming a quantum problem into a form resemioop algorithm®® They showed that, for this particular model
bling a classical statistical mechanics problem. There are twand for a certain range of nearest-neighbor repulsion
classes of systems for which this issue is particularlystrengths, the properties of the loops can be used to eliminate
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the sign problem. Flipping a loop can change the number ofjated in this context as a possible mechanism to render a
fermion permutations from odd to even, or vice versa,disordered bosonic ground statesrustration in the hopping
thereby also changing the overall sign of the configuration[the xy term in Eq.(1)] should decrease the tendency to
Such sign-changing loops are called “merons.” The magni-forming off-diagonal long-range order and could then lead to
tude of the weight is not affected by flipping a meron and,a normal fluid(nonsuperfluigl However, the highly symmet-
therefore, all configurations with one or more merons cancetic case considered here has a trivial, ordered ground state;
in the partition function. The subspace of zero merons ighe fully polarized ferromagnetic stateorresponding to a
positive definite and can be sampled without a sign problemcompletely filled lattice of hard-core bosons; a trivial case of
Typical operator expectation values of interest also contaimormal solid. Effects of frustration only come into play at
contributions from configurations with two merons which, finite temperature, where the model is different from the cor-
therefore, also have to be included in the simulation andesponding isotropic ferromagng@tn nonfrustrated, bipartite
introduce a “mild” sign problem. The relative weights of lattices the two models are equivalent, since the sign of the
the zero- and two-meron subspaces to be sampled can furthey term can be switched by a spin rotation on one of the
be chosen in an optimum way using a reweighting techniquesublattices
which further reduces the sign problem. Although we have not been able to solve the sign problem
In this paper we explore an analogous method for solvingor other cases, such as the Heisenberg model with com-
the sign problem for frustrated quantum spin models. Wepletely antiferromagnetic interactiongJ,(1)=J,,(1)>0
consider the operator-loop formulation of the SSE method,and JZ(\/E):JXV(\/E)>0], our work nevertheless gives
in which sequences of two-spin operators are sampled byome further insights into the meron concept and what is
forming clusters(loops of operators that can be simulta- required in order to solve the sign problem for arbitrary cou-
neously updated without changes in the weight function. Thelings.
updated clusters contain operators acting on the same spins, The outline of the rest of the paper is the following: In
but diagonal operators may be changed to off-diagonal oneSec. Il we review the basics of the stochastic series expan-
and vice versa. For a model with frustrated interactions agion method and discuss operator-loop updating schemes for
operator-loop update can lead to a sign change. In analogyoth ferromagnetic and antiferromagnetic couplings. In Sec.
with Chandrasekharan and Wié%ave will refer to such ||| we present the solution of the sign problem for the
sign-changing loops as “merons.” The sign problem can bey,(r)=—J,,(r) model. The reweighting technique is ana-
solved if the operator loops for a given configuration can béyzed in some detail in Sec. IV. In Sec. V we discuss some
uniquely defined and the weight function is positive definitesimulation results for the semifrustrated model and make
in the configuration subspace containing no merons. Unforcomparisons with the isotropic Heisenberg ferromagnet. We
tunately, we find that these criteria are in general difficult tosummarize our work in Sec. VI.
satisfy. Operator-loop algorithms with uniquely determined
loops are typically nonergodic for frustrated systems, and
with supplemental local updates for ergodicity there are
mixed signs in the zero-meron subspace. In fact, in such |n this section we first briefly review the expansion un-
cases merons typically do not even exist, i.e., none of theerlying the SSE method and then discuss the operator-loop
operator loops can change the sign when flipped. We havgpdates used to efficiently sample the expansion. We here
found only one spin system for which the sign problem carassume a nonfrustrated case and postpone the discussion of
be eliminated using merons— the Heisenberg model withhe sign problem for frustrated models to Sec. Ill. For defi-
ferromagnetic couplingd,(r)<0 along thez axis and frus-  niteness we consider ti&=1/2 Heisenberg model
trated antiferromagnetic couplingd(r)=—J,(r) in the
plane perpendicular to this axis, i.e., the Hamiltonian

II. OPERATOR-LOOP ALGORITHM

H=+J> S-S, )
@)
H=—2 J;[SIS'-5(S'S +S 51, (1) where(ij) denotes a pair of nearest-neighbor spins on a
h cubic lattice(in an arbitrary number of dimensionsand J
>0. Depending on the sign, the model is an antiferromagnet
whereJ;; >0 and the range of the couplings is arbitrary. We(+) or a ferromagnet<). To construct the SSE configura-
have implemented a meron algorithm for this model on ajon space the Hamiltonian is rewritten as a sum of diagonal
square lattice with nearest- and next-nearest-neighbor cound off-diagonal operators
plings J(1) andJ(+2). Standard algorithms for this model
have a severe sign problem when using thaxis as the
guantization axis, however, it can be avoided by a simple H=-
rotation to thex representation. Using the SSE algorithm and
the meron concept, the sign problem can be eliminated also _ . . :
in the z representation. With both representations accessibl¢€re the indexb denotes an interacting spin pabond
in simulations, correlation functions both parallel and per-!(P).i(b)) andC is an irrelevant constant equal ¥J/4,
pendicular to the direction can be easily evaluated. Where_M is the total number of pairs of interacting spins. The
The model, Eq(1), can be mapped onto a hard-core bo-Pond-indexed operators are given by
son model with attractive interactions and frustrated hop-
ping. Frustration in the potential energy has been investi- Hlvb=2(%IS|Z(b)SJ-Z(b)), 4
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M
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Note that the eigenvalues of both the diagort4 ) and the lo(1)> AV ﬂ Has
off-diagonal H,,,) operators are 0 and 1, both for the anti- 2> A V V A
ferromagnet and the ferromagnet. The partition functfon 3> A V V A Hu
=Tr{exp(—BH)! is expanded as — H:
1exp(=pBH)} p od> A V A Y H23
S (=) aO> AV AV

z=> 2 (a|H"a), (6) 1(0)

FIG. 1. Representation of a term in the SSE expansion of a
in the basig|a)}=1|S;,S5, . .. ,S’Z\‘)}, whereN is the num- four-site antiferromagnet. Up and down spins are represented as
ber of spins. Terms of order greater than-rNB give an solid and open triangles, respectively. The horizontal bars indicate
exponentially vanishing contribution and for the purpose of 4he presence of diagonéhin lines and off-diagonalthick lines
stochastic sampling the expansion can, therefore, be trufPPerators.

cated at somen=L of this order without loss of accuracy . . .
(see, e.g., Ref. 6 for details on how to choose a sufficiently!Pdated every time an off-diagonal operator is encountered

high truncation power Additional unit operatorsH =1 SO _that the ;tatéa(p)) is_ available when needed. With the
are introduced to rewrite E@6) as ' weight function(10) detailed balance can be seen to be sat-

isfied if the acceptance probabilities are taken to be

- (T2 L-m! [ |+ MJ H
Z—}C; g:, Ll <a Il:Il Ha, b, > P[(0,0),—(Lb),]= 5<ab(E)_| nl,b|ab(p)>’ (11
(7
whereS, denotes a sequence of operator indices PL(1b),—(0.0).]= L—n+1 12)
Hp—= (B Y)pl=

MJIB(an(p)|H1plap(p))

_ Note that the diagonal update changes the expansion power
with a;e{1,2; andbje{l,... M}, or (a;,b)=(0,0). The  p +1 Off-diagonal operators cannot be introduced one-by-
number of nort0,0) elements inS, is denotedn, while N, gne pecause of the periodicity conditida(L))=|a(0)).
denotes the number of off-diagonal operators in the Serqcq| ypdates involving two operators can be used for this
quence. Note that since the expectation value in #Ris 5 rose but are more complicated and far less efficient than
always qual to zero or one, the sign of a term is negative, o operator-loop updafewhich is discussed next.
only if n, is odd. This sign problem occur®nly) when We use a largely pictorial description of the operator
frustration is present and is the main topic of this paperjoops. First we consider the antiferromagnet. Note that in this

However, for the discussion of the sampling procedures, iRase the only nonzero matrix elements of the bond operators
this section we assume a positive definite expansion. Wg,¢

introduce the notatioha(p)) for a propagated state

S =(a;,b1)1,(a2,b2)2, ... (a, b)), (8)

(LTHLLTY=(TLHq|T ) =1,

p
=|lH
() =11 Ha 0 © (LHIHATLY=(TLIHA 11 =1, 13
where for an allowed configuratiofw(0))=|a(L))=|a) i.e., they can act only on antiparallel spins. An example of a

and the weight function corresponding to E@). is given by  term in the expansion for a four-site antiferromagnet is de-
picted in Fig. 1. This representation makes evident the close
(IB)"(L—n)! relationship between the SSE expansion and the Euclidean
oo (10 path integral. An imaginary time separatiercorresponds to
a distribution of propagationAp between states, centered
Having established the framework we will proceed to de-aroundAp= (7/8)n.>* We will for convenience here refer
scribe the procedures for importance sampling of the termg the propagation as the time dimension.
(@,S,) according to the weightl0). The initial state can be The general id€d behind the loop update is to flip a
a sequence of the form (00)0,0),, . ..,(0,0) (subscripts cluster of spins in the configuration in such a way that the
on the index pairs will sometimes be used to denote theveight is not changed. With the SSE method there will also
position inS;) and a random stater). An ergodic procedure have to be changes made to the operators acting on the spins,
for sampling the terms is achieved using two types of basisince otherwise operatoks; or H, may act on parallel spins,
updates; a simple substitution of single diagonal operatorgesulting in zero-valued matrix elements. Since one of the
and the operator-loop update which involves simultaneoustates|a(p)) and the operator sequenge uniquely define
updates of a numbém principle, varying between 1 anmg the whole spin configuration, the SSE loops are in practice

W(OZ,SL):

of diagonal and off-diagonal operators. treated as loops of operators, the exact meaning of which
The diagonal update is carried out by traversing thewill be made clear below.
operator-index sequenc® from beginning p=1) to end Consider one of the operatoks$, ; in Fig. 1. It can be

(p=L). Operator substitutions of the form (0,8} (1), depicted as a “vertex” with four legs associated with spin
are attempted where possible, while the stored dtateis  states| or 1. If we flip the upper left spin, a vanishing matrix
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AV VA
el — -
AV AV
FIG. 2. Spin flip and accompanying operator exchange during a

loop update for an antiferromagnet. The dashed line indicates pa|
of the loop.

) 1
A A V. A
< -
AA AV
FIG. 4. Spin flip and accompanying operator exchange during a
H)op update for a ferromagnet. The dashed line indicates part of the
loop.

element results. But if we flip both uppeer lowen) spins the operators ir5, . Hence, the operator-loop update can be

and also change the operator type to off-diagdgh, an carried out using only a linked list of of operators, i.e., an

allowed matrix element is generated; see Fig. 2. Using th'%\rray of vertices with four spin states and associated pointers
idea we can form a cluster of spins by choosing a randong

g ) i . ) o the “previous” and “next” vertices associated with the
spin S(p) in the configuration and traversing up or down same spin. The storage requirements and the number of op-
until we encounter an operatébond acting on that spin,

erations needed for carrying out a full operator-loop update
then switch to the second spin of the bond and change t ying P B uP

S . i : _"fhen scale as-Ng instead of~N?g if the full spin configu-
direction of traversing the list. Eventually we will necessarily ation were to be used
arrive back at the initial starting point, whereupon a cIoseJ In a simulation we .first make a full cycle of diagonal
loop has formed. All the spins on this Ipop can be flipped Ifupdates in the sequen& and then create the linked list of
the operators encountered are also SW'W@)H(ZP)]' . vertices in which the operator-loop updates are carried out.
Note that the same operator can be encountered twice, whi

Its i h f h . I e vertex list is then mapped back onto the sequ&@nd
results in no net change of operator bypert the spins at a the statg «(0)). Alternatively, the linked list can be updated
four vertex legs are flipped

The whol " i b iquelv divided int simultaneously with each diagonal operator substitution, so
€ whole configuration can be uniquely divided up IO, a¢ jt goes not have to be recreated for each Monte Carlo
a set of loops, so that each spin belongs to one and only o

cluster; see Fig. 3, where our example configuration has benﬁep—dependlng on the model studied there may be signifi-

&hnt differences in execution time between the two ap-
divided up into three clusters. All loops can be flipped mde'proaches P

pendently with probability 1/2—in Fig. 3 we depict the result For the ferromagnet we can construct the loops in a simi-

of flipping the largest loop of the example_ (_:onﬁguration. Alar manner, but the nonzero matrix elements are now
full operator-loop update amounts to dividing up the con-

figuration into all of its loops which are flipped with prob- (LLH LD =1IH 1 1) =1,

ability 1/2. The(randomn) decision of whether or not to flip a

loop can be made before the loop is constructed, so that each (LTIHL T D=1 LHal 1 1) =1, (14)
loop has to be traversed only once. Spin “lineS’(p), p i i ) ,
=0, ... n, which are not acted upon by any of the operators-€- the off-diagonal operators act only on antiparallel spins,

in S, will not be included in any of the operator loops. They &S before, whereas the diagonal ones can act only on parallel
correspond to “free” spins which can be flipped with prob- configurations. This |mpI|_es qu_allte_mve changes in the struc-
ability 1/2. Such a line can also be considered a loop, an{"® Of the loops, as depicted in Fig. 4. If we again consider
then it will always be true that every spBf(p) belongs to an operat_OtHl and flip t_he upper left spin, we note that we
one loop. Free spins appear frequently at high temperature eed to flip the lower right spin and change the operator to

when the total number of operatarssN, but are rare at low 2 Hen_ce, in_stead of changing the dire(;tion of traversing
temperatures ' the configuration every time an operator is encountered we
Note that the spin states at the four legs of the operato'iJOW continue in the same direction _after .SW'tCh'ng to the
vertices completely determine the full spin configuration, ex_se_cond spin of the_ bond. Any conf|gurat_|on can still be
iquely divided up into loops that can be flipped with prob-

cept for free spins that happen not to be acted upon by any ability 1/2. An example of a ferromagnetic configuration

with its loops is shown in Fig. 5.
Note that since the loops for the ferromagnet never

»_
&
>.
&<
<r]_
>
t-<
>

_ ! — change direction as they go through the lattice, every single
A— - loop has to traverse each st p)) at least once. It follows
— —_— that the number of siteN is an upper bound of the number
N\ N\ of loops. The antiferromagnetic loops, on the other hand,
- — traverse the lattice in both directions and the number of loops
- is, therefore, instead limited by the total number of operators

n~Ng. As a consequence of the change of direction, for the
antiferromagnet the linked list of vertices must to be bidirec-
tional, whereas for the ferromagnet it is sufficient to keep a
singly directional list.

The diagonal and operator-loop updates satisfy detailed

FIG. 3. The SSE space-time configuration of Fig. 1 is uniquelybalance and the combination of them leads to ergodic sam-
divided up into loops(left). The right-hand configuration results pling for a ferromagnet on any lattice, and for antiferromag-
from flipping the loop indicated by the dashed line. Note the peri-nets on bipartite lattices—for frustrated antiferromagnets
odic boundary conditions in the verticaftime” ) direction. there are complications, in addition to the sign problem,
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decreases exponentially to zero as a function of inverse tem-
perature and system size, and the relative statistical errors of
calculated quantities increase exponentially.

A meron-cluster solution to the sign problem using loop
updates of fermion world-line configurations was recently
proposed by Chandrasekharan and W@skhis approach is
based on the idea that if it is possible to map every configu-
ration with negative weight uniquely to a corresponding con-
figuration with equal weight magnitude but opposite sign,
then the partition function can be sampled without a sign
problem simply by not including any configuration which is
a member of such a canceling pair. In the meron-cluster al-
gorithm, flipping a loop of spins can lead to a sign change

FIG. 5. SSE space-time configurations uniquely divided intoyjthout change in the magnitude of the weight, and such a
loops for the case of a ferromagnet. The left- and right-hand con“meron™ hence identifies a canceling pair of configurations.
figurations differ by flipping the loop indicated by a dashed line. Hare we will present a similar approach within the SSE
, i , i ) operator-loop method for frustrated quantum spins.
which will be discussed further in the next section. The * ot ;s consider the Heisenberg antiferromagnet discussed
operator-loop sampling is highly efficient, with integrated , e previous section. From E€) we see that a configu-
autocorrelation times typically less than one updating cyclg ion has negative weight if the total numbes of off-
(Monte Carlo step , _ diagonal operators is odd. This can only be the case on frus-
_ The loop construction described here relies on the rotag e |attices. As described in the previous section, any SSE
tional invariance of the models, i.e., the fact that both the,,hdguration can be divided up uniquely into a number of
diagonal and off-diagonal matrix elements in E4E3) and 5505 Flipping a loop interchanges the diagonal and off-
(14) are equal to one. For a general anisotropic case, or in thgaqonal operators, but leaves the total number of operators
presence of fields, the loops will lead to weight change§nchanged. It follows that the sign will change if and only if
when flipped and must then be assigrefosterioriaccep- 5 |oon passing through an odd number of operators is flipped
tance probabilities which typically become small for Iarge(tWO passes through the same operator is counted as two
lattices at low temperaturéé Other types of loops avoiding operators Since the total weight remains unchanged we
this problem have been proposedut will not be discussed have thus found the desired mapping between positive and
here. negative configurationgassuming that there exist loops

which change the sign when flipped, which in fact is not
IIl. THE SIGN PROBLEM always the caseln analogy with previous work we call such
sign-flipping loop a “meron.” Let us now see how we can
se this concept to calculate observables.

As in Ref. 20 we consider improved estimators that aver-
ages over all loop configurations. Denote the number of
loops in the syster\, . Since each loop can be in one of two
states there is a total of™2 configurations that can be
reached by flipping all combinations of the loops present.
> AX)W(X) The improved estimate therefore takes the form

(A)= ————————=(A))w, (15
Ei: W(x;)

The notorious sign problem arises in stochastic sampling
when the function used to weight the different configuration
is not positive definite. A typical quantity that can be calcu-
lated by Monte Carlo methodsmportance samplingis of
the form

((AC)S(X)) ) wi

A=————,
| | | | | A= 00w
where W is the weight function and\(x) is the estimator

corresponding to the measured quantity, which both depeng@here the double brackets denote an average over all the

on the general coordinate of the configuration space |oop states for each generated SSE configuration, e.g.,
sampled. When the coordinates are sampled according to

relative weight, the desired quantity is simply the arithmetic N,
average of the estimat@(x), as indicated by the notation 1 2
((s(x)))= N :

17

(A(x))w above. If the weight function is not positive defi- >, s(x) (18

. . . =1
nite, the sampling can be done using the absolute value of

the weight, and the expectation value can be calculated ac- . ) .
The general coordinatehere refers to the SSE configuration

cording to !
space @,S,) andx, refers to one out of the™2 possible
€.S) and fers t t of the™ bl
(AX)S(X) ) 1w outcomes of “flipping” a number of loops.
( >:—| I’ (16) Let us consider this average. Denote the state of a loop
(s(X))w

with &, with two possible “orientations”de{1,|}. Since
wheres(x) equals*=1, depending on whether the sign of the flipping one loop does not affect any other lodpsterms of
weight function is positive or negative. For most models,their paths taken the sign of a configuration factors accord-
where a sign problem is present, the average §§R))w ing to
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NL corresponding to the susceptibility the numerator can hence
S(61,8,, ... ,5NL)=H s(5;), (199  be written as
B B =1 . N
wheres(6) = *=s(6), wheres denotes a flipped loop, and the i 2 [m(X)+ ... +my (x)12s(x) ), (25
sign is negative for merons and positive otherwise. Since 2N =1 L

flipping any meron leads to two terms that cancel, it followstpe magnetization on a loop always changes sign when a

that loop is flipped; the overall sigs(x,) only changes sign when
N, a meron is flipped. Therefore, in summing over all loops in
1 2 . (25), a nonzero value results only if the configuration has
E = s(x) == S0 (20 zero or two merons. The full susceptibility estimator there-
fore takes the form
whereny, denotes the total number of merons. The sign in N )
front of the delta function is the “inherent” sign of the con- (Z5Imi[=6n, o 2[m [[My,| 85, 2)
figuration, independent of the loop orientation when there are X= <5HM ) ' (26)

no merons present. This sign has to be positive for the meron

solution to be applicable in practice, and then the partitiovhereM; andM are the indices of the loops corresponding

function can be sampled in the positive definite subspace dP merons in a two-meron configuration. Here we have as-

configurations with no merons. sumed that all non-meron loop signs in E£ﬂ19).are positive
Having found an expression for the denominator in Eq2nd thatmy my,=0 when the two-meron sign product is

(17) we need to consider the numerator for cases of interespositive (the latter assumption is not necessary but is typi-

SSE estimators for a number of important operators havéally true in cases where the first condition holddence,

been discussed, e.g., in Ref. 6. The internal energy is giveHnlike in the case of the total energy, the sign problem has
by here not been completely eliminated, since the zero- and
two-meron configuration contribute 1 and 0, respectively, to

the average sign. When the SSE configuration voliwne
E=- E(”)w' (21)  grows the relative weight of the zero-meron sector should
diminish, leading to a decreasing average sign. Chan-
where n denotes the total number of operators in the sedrasekharan and Wiese found that the statistical fluctuation
quenceS, . This number is not affected by the loop updates,in the improved susceptibility estimator increases quadrati-

and hence it follows that cally with Ng, i.e., much slower than the conventional ex-
ponential increase. They also argued that this remaining sign
1 {(n(x)s(X)))|w 1 (n(x) 5nM,O>\W| problem can be solved by reweighting the zero- and two-
=73 (S0 w =3 oo (22 meron sectors with external weight factar§0) andw(2).

This changes the above formula to

Assuming that this sector has positive definite weight we

NL 2
have therefore completely eliminated the sign problem by _ _ (223 mi[*6n,, W(2)+ 2| M, 1M, | 8n, W(0))

restricting the simulation to the zero-meron sector. The en- X= <5nM‘0W(2)>
ergy is then simply given by (27
(n(x°)> In the next section we will say more about reweighting.
=_ —W, (23 As we have shown above, the meron concept within the
B SSE method formally leads to exactly the same equations as
where the superscript 0 indicates the restriction of the simul? the world-line simulations of fermion systems considered
lation to the zero-meron sector. in Ref. 20. The difference is only in the structure of the
Next we will consider the magnetic susceptibility meron itself; the fermionic meron changes the number of

particle permutations from even to odd, or vice versa,
B 2\ B whereas the SSE meron in the case of a frustrated spin sys-
X:N<(2 S,Z) >=N<M2). (24)  tem instead changes the number of antiferromagnetic spin
! flips from even to odd or vice versa. Applying the SSE
Since M is conserved by the Hamiltonian its value is the OPerator-loop algorithm to a fermion system would lead to
same in all propagated statesM(p)=M(0)=M,p merons of exactly the same kind as those existing within the
=1,...n. In a configuration uniquely divided up into World-line framework, and, conversely, applying a world-
loops, every spit(p) belongs to one and only one loop, if line loop alg_onthm to afrl_Jstrated spin system shou_ld lead to
we count as loops also all “lines” of free spins, i.e., the merons similar to those discussed héhere are no diagonal

- = ST -~ operators in the world-line configurations, but spin flip
spinsS(p), p=1, ... n for all sitesi which are not associ- gyents correspond to the SSE off-diagonal operators and can
ated with any operator in the sequeriaed therefore can be change from even to odd, or vice versa, in loop updates

flipped. It follows that the change iM(p) when flipping @  These similarities are not surprising, considering the close

loop must be the same for g] and hence only loops that go relationship between the SSE expansion and the Euclidean
through all state$a(p)) (at least oncecan changéM when  path integral®

flipped. We can, therefore, introduce a loop magnetization Now consider the application of the above ideas to the
m_, which is simply equal to the sum of the spins traversedHeisenberg model on a square lattice with nearest- and next-
by the loop for an arbitrarya(p)). In the estimator(17) nearest-neighbor couplingg1)>0 andJ(y/2)>0 (antifer-



1108 PATRIK HENELIUS AND ANDERS W. SANDVIK PRB 62

On a nonfrustrated lattice this model is equivalent to an iso-
tropic Heisenberg ferromagnet, singg is always even and
the sign in front of the operatots,, in Eq.(28) is irrelevant
as (—1)"=1 in Eq. (7)—the sign can also be transformed
away by a spin rotation on one of the two sublattices. On a
frustrated lattice, on the other hamg, can be oddthe lattice
is no longer bipartite so that the transformation mentioned
above does not remove all signand the system is no longer
equivalent to the isotropic ferromagnet. The model has a
FIG. 6. Three off-diagonal operators acting on a triangle ofclassical twofold degenerate ferromagnetic ground state, but
spins. The left- and right-hand configurations differ by flipping the at finite temperatures the transverse spin components are
loop indicated by a dashed line. Note the periodic boundary condifrustrated, and the behavior will be different from the isotro-
tions. pic ferromagnet. When simulated in tlebasis using stan-
dard algorithms the semifrustrated model has a severe sign
romagnetig. This model has a sign problem since the totalproblem, but the zero-meron sector is positive definite and
numbern, of spin-flipping operators in a configuration can the SSE meron solution can be applied. The structure of the
be odd, e.g., three operators on a triangle of spins, as showaperator loops is the same as for the ferromagnet and the
in Fig. 6. Already this simple example illustrates that theloop algorithm is therefore ergodic for any lattice and range
operator-loop algorithm discussed above does not sample i@ the interaction. We have used this model to explore the
full configuration space and that the meron concept thereforgroperties of the meron method.
cannot be applied to solving the sign problem. Since all three  The meron solution can be implemented in several differ-
bonds are antiferromagnetic, a loop will change directiorent ways and we briefly describe how it was done in this
every time an operator is encountered. In order for the loogvork: During the sequential diagonal updates the linked list,
to close, it therefore has to pass through an even number ¢¢presenting the loop structure, is updated simultaneously
operators and hence flipping the loop cannot change thwith each accepted diagonal update. The loops are numbered
numbern, of off-diagonal operators from odd to even, or and information is stored on whether each loop is a meron or
vice versa. This is illustrated in Fig. 6, where the only effectnot. During an attempted diagonal update only the loops di-
of flipping the single loop in the system is to flip all the rectly affected by the operator substitution are updated. This
spins, with the operators remaining unchanged. Hencepermits easy and fast checking of whether the number of
merons do not even exist within the operator-loop algorithmmerons in the system has changed or not. If the new number
for this model, and the sampling is nonergodic. A local up-of merons is different from zero or two the update is rejected,
date can, in principle, be used in combination with the op-whereas if the number of merons changes froto j it is
erator loops in order to make the sampling ergodic. How-accepted with probabilityv(j)/w(i), wherei,j €{0,2, and
ever, a configuration can then have a negative @fmhich ~ w(i) is the reweighting factor assigned to meron sector
Fig. 6 is an exampleeven though there are no merons The number of operations needed for carrying out a full
present. The principal requirement of positive definiteness ipperator-loop update now depends on the number of opera-
the zero-meron subspatehich in this case is the full space tors in each loop. If each loop passes only once through the
is hence not fulfilled. A similar problem seems to affect all System in the imaginary time direction, the scaling will
models with frustration in all of the spin components. It is change fromgN to 8°N. If a few large loops dominate, the
possible that some other way of constructing the loops coulgcaling will assume the worst case foreN)2. In most
remedy this, e.g., by switching to some other, nontrivial ba<cases of interest the scaling is likely to be somewhere be-
sis in which the SSE expansion could be carried out. Othetween these two limits.
ways proposed for constructing loops in the standard basis Note that the sign problem for the semifrustrated model
considered here remedy the ergodicity problem but do notan also be very easily transformed away by rotating the
uniquely define the set of loopand can therefore not easily ferromagnetic component to thg direction. The Hamil-
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be used with the meron concept. tonian then takes the form

We have found one class of spin models for which the 3 M
meron ideas can be successfully applied to solve the sign He — = H! +H. )+ 1
problem: Heisenberg models which are antiferromagnetic in 2 g‘l (HyptHzp)+C, (3D

the xy plane but ferromagnetic along tleaxis., i.e., the

“semifrustrated” model(1), which can be written as where the bond-indexed operators are given by

M H:’L,bzz(%_slz(b)sjz(b))v (32
- _ “b _ , o
H= bzl o (Hip=Hap) +C, 8 H25=S0)Simy TS Sim » (33
_ _ and the fundamental spin-flips and operator exchange during
where the bond-indexed operators are given by a loop update is shown in Fig. 7. Being able to work in both
bases we can easily measure all components of the suscepti-
Hyp=2(2+ Sy S ), (29)  bility. Our main motivation for studying this model is to

illustrate how the sign problem can be removed in the
o . basis. Nevertheless, we will also show some results calcu-
H26= Si(6)Sj0) + Si(0)Sj(b) - (300 Jated in thex basis.
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FIG. 7. Spin flip and the accompanying operator exchange dur-

ing a loop update for model with a ferromagneticomponent, but 0

antiferromagneticy and z components. The dashed line indicates 1 [

part of the loop.

IV. REWEIGHTING £
An important technical aspect of the meron solution is the
reweighting of the zero- and two-meron sectors, which was 0 . . .
briefly mentioned in the previous section. Equati27) 0 50 100 150 200
gives the correct estimator for the susceptibility after re- MC steps

weighting, but it gives no information on how to do the
reweighting in practice. How to determine the optimal re-
weighting and whether reweighting changes the scaling o
the relative error are important questions to be considered ine

FIG. 8. Fluctuations o during a random process with two
utcomes §=0,2). The upper graph shows results W= 0.5 and
,=0.5, while in the lower grap/,=0.01 andW,=0.99 and a
weighting factoW=199 is usedresulting inWy=W,=0.5).

this section.

As a first example of how reweighting affects the statis- (845 W5, )
tics of a simulation we will discuss a simple random process. (fy= 1On0 7 7702/ (40)
Consider a random variable which can take two different (n0)

values, 0 or 2. LeW, andW, designate the probability for \when calculating the standard deviation for this case we

these two outcomes. The expected fractions and standard dgayve to be careful since the reweighting introduces correla-
viations of these outcomes froM random selections are tions into the system. This is clearly visualized in Fig. 8,

given by where in the upper graph a series of independent outcomes
YEYVE with equal probability Wo=W,=0.5) are shown, while in
(800)=Wo* WOWZ, (34  the lower graph a case witW,=0.01 is shown with a re-

JN weighting factor ofW=99 (leading toW,=W5=0.5).
Let us now calculate the standard deviation and its statis-
VWoW, tical error for this case. In a standard MC simulation one
(39 usually wants to calculate the average and the standard de-
viation of the average for some quantity This is typically
We consider an expectation value of a form similar to theachieved by dividing the run into a number of bimg, and

susceptibility, Eq(26); saving the average of for each bin. If the bins are statisti-
cally independent the final average and standard deviation
(f)= (Onotdnz 1 1 W, 1 39 N be calculated according to
(On0 Wo ~ Wo ¥ Wo N’ LN
with a relative standard deviation )=y ;1 X; (41)
or W, 1 37 and
fTWolN o)~ ()
This formula becomes valid for largd, when the standard 0= N : (42)

deviation is small. ASN, decreases the standard deviation ) , L
increases and we will consider whether reweighting can hel/nen studying the behavior of the standard deviation itself,

in this situation. The two outcomes can be reweighted byVe @lS0 want to obtain an estimate of the accuracy of the
assigning an additional weigh to then=0 outcome such standard deviation. This can be done by dividing khbins

that a transition from=0 to n=2 is accepted with prob- into M sets containindN/M bins each. For each set a stan-
ability 1\W, while a transition frorn=2 ton=0 is always dard deviatioro, can be calculated according to

accepted. After such a reweighting the probabilities of ob- v ey
tainingn=0 andn=2 are given by ox= N = 0% (43)
where the brackets denote an average of\Hé bins within
WoW the set. The final standard deviation and its statistical fluc-

WO:W0W+ W,’ 38 yation are then given by
M
W, 1
A =_— i 44
W, WoW+W,’ (39 <0'x> M ;1 Oxi (44

andf is given by and



1110 PATRIK HENELIUS AND ANDERS W. SANDVIK PRB 62

1.00

o/f

& 0.10 |

0.2 . . . . 0.01

“00 01 02 03 04 05 0 50 100 150 200
w, MC steps

FIG. 10. Autocorrelation function, Eq47), as a function of
W . Shown are results foy=0.02, 0.05, 0.1, 0.2, 0.3, 0.4, and
0.5 (curves left to righk

FIG. 9. The relative standard deviationfais a function of\/;,
Calculations are performed over bins containig,=2000 MC
steps.

transition rates equal. The reweighting therefore decreases

(02— (0y)? the transition rates between the sectors, which leads to longer
Ty~ M : (49 autocorrelation times.

This simple example seems to indicate that reweighting

Equation(44) represents the standard deviation of the distri-does not decrease the statistical errors. However, in a stan-
bution of the binned values and not the standard deviation dard Monte Carlo simulation the measured quantities are
of an average of these. It does not decrease as the numbertypically correlated even with no reweighting, and formula
binsN is increased, but it is dependent on the number of MCEQ- (27) contains measured quantities different from &)
steps in each bir\,;,, and will decrease as N, Hence considered above. The cost of lower transition rates between

it is important to state the number of MC steps in the bins fort€ Sectors can be outweighed by a more efficient sampling
which the deviation is calculated. The statistical error of thisOf the separate sectors. Therefore, the reweighting will affect

standard deviationg will. on the other hand. decrease autocorrelation times differently than in the above example,
(g > T ' and reweighting can actually decrease the standard @rror.

as 1AN. Using the above technique we can study how the relative

In this manner we can calculate the standard deviation fog - i the susceptibility of the semifrustrated model is af-
f.In Qrder to show t_he st/andard deviation asa function of thgg ey by reweighting. An initial run without reweighting has
reweighted probabilityVy, Eq. (38) can be inverted to eX- 5 pe done first to determine the average sigho)=Wo.

press the necessary weight factor that causes the averagefiRereafter, Eq(46) can be used to determine the desired

change from\W, to Wy; weight factors. In Fig. 11 the average sign in a simulation of
the semifrustrated model with(1)=J(y/2)=J is shown as
W (1—Wp) a function of lattice volumé&/=L XL at a temperaturd/J
=—. (46)  =1.0. For comparison we first performed a standard simula-
Wo(1—Wo) tion by sampling all meron sectors, which leads to a severe

. . . sign problem with a sign that decreases exponentially in sys-
Simulation results for the standard deviationfafs a func-

tion of W( is shown in Fig. 9. We see that the reweighting 10°
actually increases the standard deviation. This is due to the &
rapidly increasing auto correlation times. The autocorrelation g
function 107 | =

(8no(i +1) 8 o(i))—(8no(i))? 8 102

Cslt)= — - (47 v
<5n,0(|) >_<5n,0(|)>

: - . 10°
is shown in Fig. 10, and one can see that the autocorrelation
times (proportional to the slopes in Fig. L@re proportional
to W{ . Notice that the longest autocorrelation times are sig- 107 ‘ s ‘
nificantly shorter than the individual birisonsisting of 2000 1 10 100 1000

MC step$ used above, a criteria for the analysis to be valid. v

The increasing autocorrelation time can be easily understood Fig. 11. The average sign as function of system volume at
by considering the case depicted in Fig. 8. After reweightingtemperatureT/J=1. Shown are results of an unrestricted simula-
the probability of a transition froom=0 to n=2 remains tjon (circles, and a simulation restricted to the 0- and 2-meron
0.01, while the probability of a transition from=2 to n  sectors without reweightingsquares The line shows a slope of
=0 is decreased from 0.99 to 0.01, thereby making the two-2.
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FIG. 12. Relative standard deviation of theusceptibility of the FIG. 13. The standard deviation of the susceptibility as a func-

semifrustrated model as a function of reweighting. Shown are retion of system volume V. Shown are: ttecomponent for the
sults for systems of linear size @ircles, 12 (squares 16 (dia-  semifrustrated model withoutircles and with (squares optimal
monds, and 20(triangles. The standard deviation is calculated for reweighting, thex component for the semifrustrated modelia-
bins containingNp,,= 10> MC steps at temperatuf®/J=1.0. monds, and the rotationally invariant susceptibility of the ferro-
magnetic mode(triangles. Statistical errors are smaller than sym-
tem volume. Next we sampled only the zero- and two-merorbol size.
sectors without reweighting, which dramatically increases
the average sign. The scaling changes from exponential to Let us first consider the component of the susceptibility
inverse quadratic in the volume, as can clearly be seen frorior the semifrustrated model without and with optimal re-
the graph. weighting. Forboth cases the graph suggests a linear in-
Having determined the average sign without reweightingcrease in relative error. We have to keep in mind that Eq.
we now use Eq(46) to determine the desired weight factors. (48 does not have to be valid, since there are autocorrela-
Figure 12 shows the standard deviatidd) of the suscepti- tions in the simulation, and the results in Fig. 13 do not
bility, calculated using bins containing 1000 MC steps. Re-€xclude that the scaling changes when approaching the ther-
sults are shown for systems of linear slze 8, 12, 16, and modynamic limit(due to increasing autocorrelation times
20 at temperaturd/J=1.0. Reweighting clearly helps to but both results do support an approximately linear increase.
reduce the standard deviation, and there is a definite minit appears that the reweighting in this case changes only the
mum in all these curves indicating an optimal reweighting.Prefactor of the volume scaling, but not the exponent. This
The optimally reweighted sign always appears to be less thageems to indicate that the reweighting has not completely
0.5, and decreases with decreasing s@md increasing vol- €liminated the remaining sign problefthe error remains
ume. much larger than that for the ferromagnet susceptibilitly
Ha\/ing determined that there is an 0pt|ma| reweightingis, however, clear that the reweighting reduces the standard
we will next consider whether reweighting changes the scaldeviations by a significant factor. In any case, an algorithm
ing with system size of the relative statistical error. Let usthat changes the functional dependence of the size scaling of
first consider how the standard deviation scales with no rethe statistics from exponential to polynomial can be consid-
weighting. Since the sign decreases quadratically in the volered a solution to the problem.
umeV we can derive the scaling of the relative error in the ~ TheXx susceptibility of the semifrustrated model, which is
Sign, under the ideaﬂand typ|Ca||y fa|5¢ assumption that evaluated with an algorithm without Sign prOblemS, shows a
individual measurements are completely independent. Usingonstant standard deviation, which may be related to the fact

thats=s? we arrive at that 'the. s.usceptibility itself ha_ls converged to'its thermody-
namic limit for these system sizésee next sectionFor the
TN T2 isotropic ferromagnetic model, the susceptibility still shows
s _ (s9=(s) ~ ! =l, (48) a linearly increasing error, but as already noted the slope is
(s) (s)VN VSN N much smaller than for the semifrustrated case.

o ] ] o ~ This concludes our discussion of the reweighting tech-
creases quadratically in system volume, as also stated in Rghe optimal reweighting can be determined directly from
20. quantities measured during one single test run, rather than by

_In order to study the scaling, the standard deviation foreypjicitly measuring the standard deviations as we have done
bins containingN,;,=10* MC measurements of the suscep- here.

tibility is shown in Fig. 13. Four susceptibilites are shown:
the z component for the semifrustrated model without and
with optimal reweighting, thex component for the semifrus-
trated model and the rotationally invariant susceptibility of In this section we will present results for the semifrus-
the isotropic ferromagnetic model. The two latter quantitiestrated and isotropic ferromagnetic models. We will demon-
can be obtained in simulations without sign problems, astrate that it is feasible to obtain accurate results for large
discussed in the previous section systems in the basis by using the meron solution. The main

V. RESULTS
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FIG. 14. Energy for the semifrustratéfilled circles and ferro- FIG. 16. Thex component of the susceptibility for the semifrus-

magnetic(empty circle model, withJ(1)=J(1/2)=J. Statistical  trated model, withJ(y2)=J(1) (empty circles and J(y2)=0
errorbars are not visible in the plot, and the curves have convergedilled circles. Statistical errorbars are not visible.
to the thermodynamic limit.

for these models, but this cannot be clearly seen in Fig. 15
motivation for this study is to analyze the meron solution,dué to the strong finite-size effects. o
and we will only briefly comment on the physics of the semi-  In Fig. 16 thex component of the susceptibility for the
frustrated model and how it differs from the isotropic ferro- Semifrustrated model is shown. This quantity has converged
magnet. We will primarily consider the case witH1) to its thermodynamic limit, and it exhibits a Curle_dlver-
= J(y2)=J. To verify the correctness of our codes we havedence at low temperatures. The ground-state value is depen-

compared simulation results with exact diagonalization datétjent on the next—nearest—ne_lghbor CO.UDI'ﬂ'G\/E) : 85 IS
for systems with & 4 spins clearly demonstrated by plotting two different ratid&,2)

In Fig. 14 the internal energy per spin is shown for the.:‘](.l)' andJ(y/2)=0 (only nearest-neighbor interactions

semifrustrated and ferromagnetic model. The statistical er! Fig. 16.

rorbars are smaller than the sym_bol_ si_ze and the results have VI. CONCLUSION

converged to the thermodynamic limit. The largest system

size used had 128128 spins. It can be seen that thermal We have studied a recently introduced meron soldtitm

fluctuations and finite-temperature quantum fluctuationghe sign problem within the SSE method. We investigated

more effectively destroy the fully ferromagnetic state for thethe sign problem arising in frustrated spin systems and

isotropic ferromagnet than for the semifrustrated model. ~ Showed that the meron solution can be applied to a particular
The z component of the susceptibility is shown for both Semifrustrated model. The problems arising when applying

models in Fig. 15. The low-temperature susceptibility forthe meron ideas to more general models of frustrated spins

finite-size systems will approagdiN/4 for the semifrustrated were diSC.USSEd' We found that Ioc_)p algorithms typically are
model, and3N/12 for the ferromagnetic modéleduced by a not ergodic and merons do not exist. The sign problem then

. A d persists.
factor 1/3 due to rotational averaging in the latter ¢a§_&a|_s_ For models where the meron solution works we showed

itinlied b h | Ihat the sign problem can be completely eliminated for cer-
muftiplied by temperature, so that a constant at low tempergt-ain variables and largely eliminated for other variables. This

tures indicates a Curie divergence. In the thermodynamigya| and partial elimination comes from a mapping of
limit the uniform susceptibility should diverge exponentially positive- to negative-weight contributions and involves no
approximation. For the variables where the sign problem is

1000 ‘ : - ' almost eliminated the statistical errors can be reduced using a
reweighting techniqué® We studied how the relative statis-
tical error behaves as a function of lattice size with and with-
out reweighting, and showed that the reweighting does not
change the scaling behavior but significantly reduces the
overall magnitude of the fluctuations.

It is evident that the meron solution suffers from the same
problem in both frustrated spin and fermionic systems—it is
confined to a few special cases. It would be of great impor-
tance to be able to extend it to more general cases, e.g., by
10 } ‘ . . . working in basis where the required loop structure appears.

0.0 02 0.4 06 0.8 1.0 The possibility of finding such bases should be explored.
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