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Monte Carlo computation of correlation times of independent relaxation modes at criticality
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Faculty of Applied Sciences, Delft University, P.O. Box 5046, 2600 GA Delft, The Netherlands

Lorentz Institute, Leiden University, Niels Bohrweg 2, P.O. Box 9506, 2300 RA Leiden, The Netherlands
~Received 13 January 2000!

We investigate aspects of the universality of Glauber critical dynamics in two dimensions. We compute the
critical exponentz and numerically corroborate its universality for three different models in the static Ising
universality class and for five independent relaxation modes. We also present evidence for universality of
amplitude ratios, which shows that, as far as dynamic behavior is concerned, each model in a given universality
class is characterized by a single nonuniversal metric factor which determines the overall time scale. This paper
also discusses in detail the variational and projection methods that are used to compute relaxation times with
high accuracy.
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I. INTRODUCTION

Critical-point behavior is a manifestation of power-la
divergences of the correlation length and the correlat
time. The power laws that describe the divergence of
correlation length on approach of the critical point are e
pressed by means of critical exponents that are depende
the direction of this approach, which may, e.g., be orderin
field like or temperature like. The exponents describing
singularities inthermodynamicquantities can be expressed
terms of the same exponents. In addition to the expon
defining these power laws, another critical exponent, viz.,
dynamic exponentz, is required for the singularities in th
dynamics. This exponentz is defined by the relationship tha
holds between the correlation lengthj and the correlation
time t, namely,t}jz.

One of the directions along which one can approach
critical singularity is the finite-size direction; i.e., one in
creases the system sizeL while keeping the independen
thermodynamic variables at their infinite-system critical v
ues. In this case,j}L so thatt}Lz. This relation has been
used extensively to obtain the dynamic exponentz from
finite-size calculations.

In this paper we deal with universality of dynam
critical-point behavior. One would not expect systems in d
ferent static universality classes to have the same dyna
exponents, and even within the same static universality cl
different dynamics may have different exponents. For
stance, in the case of the Ising model, Kawasaki dynam
which satisfies a local conservation law1 has a larger value o
z than Glauber dynamics,2 in which such a conservation law
is absent. Also the introduction of nonlocal spin updates
realized, e.g., in cluster algorithms, is known to lead to
different dynamic universal behavior.3–5

Conservation laws and nonlocal updates tend to hav
large effect on the numerical value of the dynamic exp
nents, but until fairly recently, numerical resolution of th
expected differences of dynamic exponents of systems in
ferent static universality classes for dynamics with local u
PRB 620163-1829/2000/62~2!/1089~13!/$15.00
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dates has been elusive. This is caused by the difficulty
obtaining the required accuracy in estimates of the dyna
critical exponent. Under these circumstances it is evident
only a limited progress has been made with respect to
interesting questions regarding dynamic universality clas

In this paper we present a detailed exposition of a met
of computing dynamic exponents with high accuracy.6,7 We
consider single spin-flip Glauber dynamics. This is defin
by a Markov matrix, and computation of the correlation tim
is viewed here as an eigenvalue problem, since correla
times can be obtained from the subdominant eigenvalue
the Markov matrix.

If a thermodynamic system is perturbed out of equil
rium, different thermodynamic quantities relax back at a d
ferent rates. More generally, there are infinitely many ind
pendent relaxation modes for a system in the thermodyna
limit. Let us label the models within a given universali
class by means ofk, and denote bytLik the autocorrelation
time of relaxation modei of a system of linear dimensionL.
In this paper we present strong numerical evidence that
indeed renormalization group theory suggests, at critica
the relaxation times have the following factorization pro
erty:

tLik'mkAiL
z, ~1!

wheremk is a nonuniversalmetric factor, which differs for
different representatives of the same universality class as
dicated;Ai is a universalamplitude, which depends on th
modei; andz is theuniversaldynamical exponent introduce
above.

While the relaxation time of the slowest relaxation mo
is obtained from the second-largest eigenvalue of the M
kov matrix, lower-lying eigenvalues yield the relaxatio
times of faster modes. To compute these we construct,
ploying a Monte Carlo method, variational approximants
several eigenvectors. These approximants are called o
mized trial vectors. The corresponding eigenvalues can t
be estimated by evaluating with Monte Carlo techniques
1089 ©2000 The American Physical Society
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overlap of these trial vectors and the corresponding ma
elements of the Markov matrix in the truncated ba
spanned by these optimized trial vectors. It should be no
that both the optimization scheme and the evaluation of th
matrix elements critically depend on the fact that the Mark
matrix is sparse. That is, the number of configurations ac
sible from any given configuration is equal to the number
sites only, rather than the number of possible spin confi
rations.

Given such fixed trial vectors, this approach has the
vantage of simplicity and high statistical accuracy, but
disadvantage is that results are subject to systematic, v
tional errors, which only vanish in the ideal limit where th
variational vectors become exact eigenvectors or span a
variant subspace of the Markov matrix. Since the condit
is rarely satisfied in cases of practical interest, a projec
Monte Carlo method is then used, to reduce the system
error, but this is at the expense of an increase of the sta
cal errors. The method we use in this paper is a combina
and generalization of the work of Umrigaret al.8 and that of
Ceperley and Bernu.9

To summarize, the Monte Carlo method discussed h
consists of two phases. In the first phase, trial vectors
optimized. The ultimate, yet unattainable goal of this ph
is to construct exact eigenvectors. In this phase of the c
putation, very small Monte Carlo samples are used, con
ing typically of no more than a few thousand spin config
rations. In the second phase, one performs a standard M
Carlo computation in which one reduces statistical errors
increasing the length of the computation rather than the q
ity of the variational approximation.

The computed correlation times, derived from the par
solution of the eigenvalue problem as sketched above,
used in a finite-size analysis to compute the dynamic crit
exponentz. We verify its universality for several models i
the static universality class of the two-dimensional Isi
model. We also address another manifestation of dyna
universality. As was mentioned, in addition to the usu
static critical exponents, there is only one new exponent
governs the leading singularities of critical dynamics, viz.z.
Similarly, one would expect that, within the context
Glauber dynamics, the description of time-depend
critical-point amplitudes requires only a single nonuniver
metric factor to determine the time scale of each differ
model within a given universality class. Our results corrob
rate this idea, which is the immediate generalization to cr
cal dynamics of work on static critical phenomena by Pr
man and Fisher.10

In this paper we apply the techniques outlined above
three different two-dimensional Ising models subject
Glauber-like spin dynamics. These models are defined o
simple quadratic lattice of sizeL3L with periodic boundary
conditions. The HamiltonianH, defined on a general spi
configurationS5(s1 ,s2 , . . . ), isgiven by

H~S!

kT
52K(̂

i j &
sisj2K8(

[kl]
sksl , ~2!

where the first summation is on all nearest-neighbor pair
sites of the squareL3L lattice, the second summation is o
all next-nearest-neighbor pairs, and the Ising variab
ix
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si , . . . ,sl assume values61. Periodic boundaries are use
throughout. In particular, we focus on models described
three ratios b5K8/K, namely, b521/4, 0 ~nearest-
neighbor model! and 1 ~equivalent-neighbor model!. The
nonplanar models forbÞ0 are not exactly solvable and the
critical points are known only approximately. Yet it wa
demonstrated to a high degree of numerical accuracy
that they belong to the static Ising universality class.11,12 For
the nearest-neighbor model the critical coupling isK
5 1

2 ln(11A2); for the other two models estimates of th
critical points areK50.190 192 6807(2) for b51 and K
50.697 220 7(2) forb521/4.12,13

We use the dynamics of the heat-bath algorithm with r
dom site selection. The single-spin-flip dynamics is det
mined by the Markov matrixP defined as follows. The ele
ment P(S8,S) is the transition probability of going from
configurationS to S8. If S and S8 differ by more than one
spin, P(S8,S)50. If both configurations differ by precisely
one spin,

P~S8,S!5
1

2L2 H 12tanhFH~S8!2H~S!

2kT G J , ~3!

whereL2 is the total number of spins. The diagonal eleme
P(S,S) follow from the conservation of probability,

(
S8

P~S8,S!51, ~4!

whereS8 runs over all possible 2L
2

spin configurations.
We denote the probability of finding spin configurationS

at time t by r t(S). By design, the stationary state of th
Markov process is the equilibrium distribution

r`~S!5
exp@2H~S!/kT#

Z
[

cB~S!2

Z
, ~5!

where the normalization factorZ is the partition function.
The dynamical process defined by Eq.~3! is constructed

so as to satisfy detailed balance, which is equivalent to
statement that the matrixP̂ with elements

P̂~S8,S![
1

cB~S8!
P~S8,S!cB~S! ~6!

is symmetric. Therefore the eigenvalues ofP are real.
The Markov matrix determines the time evolution

r t(S), i.e.,

r t11~S!5(
S8

P~S,S8!r t~S8!. ~7!

The simultaneous probability distributionr t8,t81t(S,S8) that
the system is in stateS at time t8 and in stateS8 at time t8
1t is

r t8,t81t~S,S8!5Pt~S8,S!r t8~S!, ~8!

wherePt(S8,S) denotes the (S8,S) element of thetth power
of the matrixP. For sufficiently large timest8, one may take
r t8(S)5r`(S) so that the autocorrelation functionCA(t) of
an observableA, the average with respect to timet8 of



le

at
y

-
-

e

ltz

re

y
bu
d

d
n
ce
ge
an

t
re
n-

e
p
m
es
n
o

f t

the

. II
this
tive
em
ma-

III.
sed
. V.
n to

ch
rlo
e

is
ma-
cti-
itten;
rlo

-

n

ate
f
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A(t8)A(t1t8), can equivalently be written as the ensemb
averagê A(t8)A(t81t)& for large t8. Thus

CA~ t !5 lim
t8→`

(
S

(
S8

A~S!A~S8!r t8,t81t~S,S8!, ~9!

whereA(S) denotes the value ofA in a spin configurationS.
After substitution of Eq.~9! and expansion ofA(S)r t8(S) in
right-hand eigenvectors of the Markov matrix, it follows
once that the time-dependent correlation functions of a s
tem of sizeL have the following form:

CA~ t !5(
i

ci sgnlLi
t expF2

t

L2tLi
G , ~10!

where the dependence on the specific modelk has been sup
pressed in denoting bytLi the relaxation times of the inde
pendent modes of the equilibration process. ThetLi are de-
termined by the eigenvalues of the Markov matrix. W
denote these eigenvalueslLi ( i 50,1,2, . . . ,2L2

21), and or-
der them so that 15lL0.ulL1u>ulL2u>••• . Note that
conservation of probability implies thatlL051; by construc-
tion, the corresponding right-hand eigenvector is the Bo
mann distribution.

The relaxation times are given by

tLi52
1

L2 lnulLi u
~ i 51,2, . . .!. ~11!

The factorL2 is inserted because, as usual, time is measu
units of one flip per spin, which corresponds toL2 iterations
of the process described by Eq.~7!.

Note that the stochastic matrixP has the same symmetr
properties as the Hamiltonian and the Boltzmann distri
tion. In addition to spin inversion, these symmetries inclu
translations, reflections, and rotations of theL3L lattice. It
follows that each eigenvector ofP, as well as its associate
relaxation mode, has distinct symmetry properties that ca
characterized by a set of ‘‘quantum numbers.’’ For instan
the eigenvector associated with the second-largest ei
value is antisymmetric under spin inversion and invari
under translations, reflections, and rotations. It describes
relaxation of the total magnetization; this process, with
laxation timetL1, is thus the slowest relaxation mode co
tained in the stochastic matrix.

In this work, we restrict ourselves to relaxation mod
that are invariant under geometric symmetries of the s
lattice. However, in addition to eigenvectors that are sy
metric under spin inversion, we include antisymmetric on
so as to obtain the longest relaxation time. As a conseque
of this restriction to geometric invariance, spatially nonh
mogeneous relaxation processes fall outside the scope o
work.

By design, the stationary state of the Markov process
the equilibrium state

r`~S!5
exp@2H~S!/kT#

Z
[

cB~S!2

Z
, ~12!

where the normalization factorZ is the partition function.
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The dynamical process defined by Eq.~3! is constructed
so as to satisfy detailed balance, which is equivalent to
statement that the matrixP̂ with elements

P̂~S8,S![
1

cB~S8!
P~S8,S!cB~S! ~13!

is symmetric.
The layout of the rest of this paper is as follows. In Sec

we discuss the general principles of the method used in
paper. The expressions in this section feature exhaus
summation over all spin configurations, which renders th
useless for practical computations. The Monte Carlo sum
tion methods employed instead are discussed in Sec.
Trial vectors, a vital ingredient of the method, are discus
in Sec. IV, and numerical results are discussed in Sec
Finally, Sec. VI contains a discussion of issues that remai
be addressed by future work.

II. EXACT SUMMATION

A. Variational approximation

Single eigenvector

In this section we discuss trial vector optimization, whi
is used to reduce the statistical errors in the Monte Ca
computation of eigenvalues of the Markov matrix. First, w
review the case of a single eigenvalue,8,14,15 and then we
generalize to optimization of multiple trial vectors. In th
section, we discuss the exact expressions involving sum
tion over all possible spin configurations. In cases of pra
cal interest, these expressions cannot be evaluated as wr
for their approximate evaluation one uses the Monte Ca
methods discussed in Sec. III.

A powerful method of optimizing a single, many
parameter trial vector, say,ucT&, is minimization of the vari-
ance of theconfigurational eigenvalue,which in the context
of quantum Monte Carlo is called thelocal energy. That is,
definecT(S)5^SucT& for an arbitrary configurationS. We
wish to satisfy the eigenvalue equation

cT8~S!5lcT~S!, ~14!

where the prime indicates matrix multiplication byP̂, i.e.,
f 8(S)[(S8P̂(S,S8) f (S8) for any functionf defined on the
spin configurations. Even ifcT is not an eigenvector, one ca
define theconfigurational eigenvalueby

lc~S!5H cT8~S!

cT~S!
, if cT~S!Þ0,

0, otherwise.

~15!

If cT is not an eigenvector, Eq.~14! gives an overdetermined
set of equations forl for a givencT and a sufficiently big set
of configurationsS. One can obtain a least-squares estim
of the eigenvaluel by minimizing the squared residual o
Eq. ~14!. This yields the usual variational estimate
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l~p!5
^cTuP̂ucT&

^cTucT&
5

(
S

cT8~S!cT~S!

(
S

cT~S!2

5

(
S

lc~S!cT~S!2

(
S

cT~S!2

,

~16!

which is the average of the configurational eigenvaluelc .
The standard Rayleigh-Ritz variational method, whi

can be used for the largest eigenvalue, consists in maxim
tion of l̄(p) with respect to the parametersp. However, one
can formulate a different optimization criterion as follow
The gradient ofl̄(p) with respect tocT(S) is

]l̄~p!

]cT~S!
52

cT8~S!2l̄~p!cT~S!

(
S8

cT~S8!2

. ~17!

Clearly, this gradient vanishes forany eigenvector and this
suggests as an alternative optimization criterion minimi
tion of the magnitude of the gradient of a normalized tr
vector cT . With respect to Eq.~14!, this corresponds to
minimization of the normalized squared residual

x2~p!5

(
S

@cT8~S!2l̄~p!cT~S!#2

(
S

cT~S!2

5

(
S

@lc~S!2l̄~p!#2cT~S!2

(
S

cT~S!2

5
^cTu~ P̂2l̄ !2ucT&

^cTucT&
,

~18!

which equals the variance of the configurational eigenva
as shown.

B. Multiple eigenvectors

Minimization of x2(p) is a valid criterion for any eigen
vector, but if this is used without the equivalent of an o
thogonalization procedure, one would in practice sim
keep reproducing an approximation to the same eigenve
the dominant one most of the time. Since orthogonalizat
is not easily implemented with Monte Carlo methods,
utilize straightforward generalizations of Eqs.~14! and ~16!
to deal with more than one eigenvalue and eigenvec
Equation~18! is a little problematic in this respect, as wi
become clear.

Suppose we start from a set ofn trial vectors cTi ( i
50,1, . . . ,n21). We can then write Eq.~14! in matrix form

cTi8 ~S!5 (
j 50

n21

L̂ i j cTj~S!. ~19!

As before, the prime on the left-hand side indicates ma
multiplication by P̂, and again Eq.~19! for all i andS form
an overdetermined set of equations for the matrixL̂ i j . These
equations have no solution, unless then basis vectorscTi
a-

-
l

e,

-
y
or,
n

r.

x

span an invariant subspace of the matrixP̂, which in non-
trivial applications of course is never the case. Again, ho
ever, one can solve for the matrix elementsL̂ i j in a least-
squares sense. This yields

L̂5P̂N̂21, ~20!

where

N̂i j 5(
S

cTi~S!cTj~S!5^cTi ucTj& ~21!

and

P̂i j 5(
S

cTi8 ~S!cTj~S!5^cTi uP̂ucTj&. ~22!

Note that although these matrix elements depend on the
malization of theucTi&, the matrixL̂ is invariant under an
overall change of normalization.

By diagonalization of then3n matrix L̂ one obtains an
approximate, partial eigensystem of the Markov matr
More specifically, suppose that

L̂5D21diag~ l̃0 , . . . ,l̃n21!D. ~23!

The eigenvaluesl̃0.l̃1>•••>l̃n21 of L̂ are variational
lower bounds for the exact eigenvalues of the Markov ma
P, in the sense thatl̃ i<l i ,16 if the exact eigenvalues ar
numbered such thatl̃0.l̃1>•••, in contrast with the con-
vention used in the discussion following Eq.~10!. This prop-
erty is a consequence of the interlacing property of the
genvalues of symmetric matrices and their submatrices,
known as the separation theorem.17 Note that in denoting the
eigenvalues we omit the indexL indicating system size
where this is not confusing. The approximate eigenvectorsc̃ i
are given by

c̃ i5 (
j 50

n21

Di j cTj , ~24!

which can be verified as follows: multiply Eq.~19! through
by Dki , and sum oni to verify that c̃k8 proportional toc̃k .
The expressions derived above are usually9 derived by start-
ing from the linear combinations given in this last equatio
The Di j then are treated as variational parameters, and
determined by requiring stationarity of the Rayleigh qu
tient. This yields the following equation for theDi j :

(
j

Di j P̂ jk5l̃ i(
j

Di j N̂jk , ~25!

a generalized eigenvalue problem equivalent to the eig
value problem defined byL̂ defined in Eq.~20!.

Next we discuss the generalization to more than one t
vector of minimization of the variance as given by Eq.~18!.
In this context it is important to keep in mind that the vari
tional approximation is invariant under replacement of t
basis vectors by a nonsingular linear superposition. T
yields a similarity transformation ofL̂, and leaves invarian
the approximate eigenvalues and eigenvectors. Of cou
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one would like to have an optimization criterion that sha
this invariance. The squared residual of Eq.~19! fails in this
respect. This sum is not even invariant under a simple
caling of the basis functionscTi , and there is no obvious
normalization comparable to the one used in Eq.~18!.

One way to perform the optimization in an invariant w
is for each choice of the optimization parameters to comp
linear combinations( jVi j ucTj&, whereV is then3n matrix,
such thatVL̂V21 is diagonal. Each of these linear combin
tions defines ax2 via Eq. ~18!, and the parameters in th
basis functions can then be optimized by minimization
thesen sums of squares. One may define a convex sum
thesex i

2 and optimize all parameters for all basis functio
simultaneously with respect to this combined object fu
tion, or, as we did in our computations, one can perform
optimization iteratively one vector at a time for eigenvalu
with increasing distance from the top of the spectrum.

Another approach that also yields invariant results is
perform the optimization by dividing the set of configur
tions into several subsets, and computing a matrixL̂ for each
subset. One can then minimize the variance of the eigen
ues over these subsets. This is the procedure we followe
produce the results reported in this paper.

We have not investigated which of the two procedu
described above is superior. Both do have a problem in c
mon, namely, that for a wide class of variational basis v
tors, they give rise to a singular or nearly singular optimiz
tion problem. This is a consequence of the fact that the b
states are not unique, even if the eigenvalue problem h
unique solution. For the optimization problem this mea
that there are many almost equivalent solutions, a prob
commonly encountered when one performs~nonlinear! least-
squares parameter fits.

More specifically, if the basis vectors are such that a
ear combination of trial vectors can be expressed exactly~or
to good approximation! in the same functional form as th
trial vectors themselves, then there is a gauge symmetry~or
an approximate gauge symmetry! that yields a class o
equivalent~or almost equivalent! solutions of the minimiza-
tion problem. That is, ifucTi& is a solution,( jVi j ucTj& is an
equivalent~or almost equivalent! solution for anyV. This
problem can be solved straightforwardly by fixing the gau
and performing the optimization subject to the constraint t
( jVi j ucTj&}ucTi&. If the gauge symmetry holds only ap
proximately, this additional constraint may produce a s
optimal solution.

C. Beyond the variational approximation

The eigenvalues obtained by the variational scheme
cussed in the previous sections have a bias caused by ad
ture of eigenvectors in that part of the spectrum that is be
ignored. This variational bias can be reduced in princi
arbitrarily as follows.9

Let us introduce generalized matrices with elements

N̂i j ~ t !5^cTi uP̂tucTj& ~26!

and

P̂i j ~ t !5^cTi uP̂t11ucTj&. ~27!
s
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For t50 these expressions reduce to Eqs.~21! and ~22!.
One can view the matrix elements fort.0 as having been
obtained by the substitutionucTi&→ P̂t/2ucTi&. Expansion in
the exact eigenvectors immediately shows that the spe
weights are reduced of ‘‘undesirable’’ eigenvectors with le
dominant eigenvalues, so that the vectorsP̂t/2ucTi& span a
more nearly invariant subspace ofP̂ than the original states
This process, however, becomes numerically unstablet
→`, since in that case all basis vectors of the same sym
try collapse onto the corresponding dominant state.

III. MONTE CARLO SUMMATION

Obviously, the summation over all spin configuratio
used in the expressions in the previous section can, in g
eral, be done only for small systems. In this section,
discuss the Monte Carlo estimators of the expressions
sented above. In principle, matrix multiplication involve
summation over all configurations and therefore is not pr
tically feasible. However, for the dynamics we consider
this paper the summation required for the matrix multiplic
tion by P in ^SuP̂ucT& is an exception, since for a givenS
there are onlyL2 configurationsS8 from which S can be
reached with one or fewer spin flips, and these are the o
configurations for whichP(S,S8) does not vanish. For al
other configuration sums a Monte Carlo method is used.

To produce a Monte Carlo estimate ofx2(p) as given in
Eq. ~18!, sample M c spin configurationsSa with a
51, . . . ,M c from the Boltzmann distributioncB(Sa)2. This
yields a Monte Carlo estimate ofl̄(p):

l̄~p!'

(
a

ĉT8~Sa!ĉT~Sa!

(
a

ĉT~Sa!2

, ~28!

where

ĉT~Sa!5
cT~Sa!

cB~Sa!
, ~29!

ĉT8~Sa!5
cT8~Sa!

cB~Sa!
. ~30!

Similarly,

x2~p!'

(
a

@ĉT8~Sa!2l̄ĉT~Sa!#2

(
a

ĉT~Sa!2

. ~31!

Parameter optimization for a single vector is done by g
erating a sample of a few thousand configurations and s
sequently varying the parametersp while keeping this
sample fixed. The same applies to the optimization of m
than one vector, in which case estimates of the required
trix elementsN̂i j and P̂i j are computed by
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N̂i j '(
a

ĉTi~Sa!ĉTj~Sa![Ñi j ~32!

and

P̂i j '(
a

ĉTi8 ~Sa!ĉTj~Sa![P̃i j . ~33!

We attached tildes to the symbols on the right-hand s
of Eqs.~32! and~33! to indicate that the corresponding qua
tities are stochastic variables, which is important to keep
mind for the following discussion.

Since the matrixP̂ is symmetric, one might be inclined t
symmetrize its estimatorP̃i j with respect toi and j. This
symmetrization, however, destroys the zero-variance p
ciple satisfied by the expressions as written. As mentio
before, the eigensystem ofL̂ is obtained exactly and withou
statistical noise, if the basis vectorscTi are linear combina-
tions of n exact eigenvectors. In that ideal case,L̂ is
uniquely determined by Eq.~19! even if it is applied only to
an subset of configurationsS. The same holds for a weighte
subset as represented by a Monte Carlo sample. Even th
the matricesP̂ andN̂ themselves depend on the weights a
the subset, factors responsible for statistical noise canc
the productP̂N̂21. To demonstrate this, we write the estim
tor in matrix form

Ñ5C̃C̃† ~34!

and

P̃5C̃8C̃†, ~35!

where C̃ is a rectangular matrix with elementsC̃ ia

5ĉTi(Sa) andC̃ ia8 5ĉTi8 (Sa). Equation~19! in matrix form
becomes

C̃85L̂C̃. ~36!

Clearly, if this last equation holds, P̃Ñ21

5C̃8C̃†(C̃C̃†)215L̂ without statistical noise, as an
nounced.

We have assumed that one matrix multiplication by
Markov matrix can be done exactly; repeated multiplicatio
rapidly become intractable. This is a problem for the com
tation of the matrix elements given in Eqs.~26! and~27!. To
obtain a statistical estimate of these matrix elements,
generates a time series with the Markov matrixP. One then
exploits the fact that in the steady state of the Markov p
cess, the relative probability of finding configuratio
S1 ,S2 , . . . ,St11 in immediate succession is given by

P~St11uSt!•••P~S2uS1!cB~S1!2. ~37!

For a Monte Carlo run of lengthM c , this property allows
us to write
e

n

-
d

gh

in

e
s
-

e

-

N̂i j
(t)5 (

S0 , . . . ,St

cTi~St!P̂~StuSt21!••• P̂~S1uS0!cTj~S0!

5 (
S0 , . . . ,St

ĉTi~St!ĉTj~S0!P~StuSt21!•••P~S1uS0!

3cB~S0!2 ~38!

'M c
21 (

s51

Mc

ĉTi~Ss1t!ĉTj~Ss! ~39!

Similarly,

P̂i j
(t)5 (

S0 , . . . ,St11

cTi~St11!P̂~St11uSt!••• P̂~S1uS0!cTj~S0!

5 (
S0 , . . . ,St

ĉTi8 ~St!ĉTj~S0!P̂~StuSt21!••• P̂~S1uS0!

3cB~S0!2 ~40!

'~2M c!
21 (

s51

Mc

@ĉTi8 ~Ss1t!ĉTj~Ss!1ĉTi8 ~Ss!

3ĉTj~Ss1t!#. ~41!

The first term in expression~41! follows immediately from
expression~40!; to obtain the second term one has to use
time reversal symmetry of a stochastic process that satis
detailed balance, viz.,

P~St11uSt!•••P~S2uS1!cB~S1!2

5P~S1uS2!•••P~StuSt11!cB~St11!2. ~42!

Again, these estimators satisfy the zero-variance princ
mentioned above, as long as the expressions are used as
ten, i.e., without symmetrization with respect toi and j.

FIG. 1. Prefactorc1 /cB of the first subdominant eigenvector o
the Markov matrix vs total magnetizationM for a 333 nearest-
neighbor Ising (b50) lattice. For each value ofM c1(S)/cB(S) is
plotted for all configurationsS with M (S)5M . All 512 points are
plotted, but because of symmetries, many coincide.
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IV. TRIAL VECTORS

As we mentioned, the form of the trial vectors used
these calculations is a major factor determining the statist
accuracy of the results. It not too difficult to make an init
guess for the form of the eigenvector corresponding to
second largest eigenvalue of the Markov matrix. Nume
cally exact calculations for small systems show that this
genvector is antisymmetric under spin inversion, which i
manifestation of the longevity of fluctuations of the magn
tization and not a peculiarity of small systems.

This suggests the following initial approximation of th
eigenvector belonging to the second largest eigenvector
first subdominant eigenvector of the symmetrized Mark
matrix P̂:

cT1~S!5mcB~S!, ~43!

wherem is the average magnetization. Figures 1–3 are p
of c1(S)/cB(S) versus the total magnetizationM5L2m for
the exact eigenvectorc1 computed for 333, 434, and 5
35 nearest-neighbor Ising systems. For all three, the pre
tor m in Eq. ~43! clearly captures a significant part of th

FIG. 2. Prefactorc1 /cB of the first subdominant eigenvector o
the Markov matrix vs total magnetizationM for a 434 nearest-
neighbor Ising (b50) lattice.

FIG. 3. Prefactorc1 /cB of the first subdominant eigenvector o
the Markov matrix vs total magnetizationM for a 535 nearest-
neighbor Ising (b50) lattice. Although up to 400 configuratio
collapse onto a single point, crowding prevents individual reso
tion of most data points.
al
l
e
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-

he
v

ts

c-

truth, but there are two shortcomings. First of all, there
scatter, which indicates thatc1(S)/cB(S) is a function of
more than just the magnetization. Second, the ‘‘curve’’
nonlinear. The latter problem can be cured quite easily
replacingm in Eq. ~43! by an odd polynomialm(11a2m2

1•••) with coefficientsak to be determined variationally.
Similarly, computations for small systems~see Sec. V A

for further details! suggest that the second largest eigenva
is associated with an eigenvector that is even under s
inversion, as illustrated in Fig. 4. A trial vector of this form
is readily constructed by replacingm on the right-hand side
of Eq. ~43! by a polynomial even inm. It turns out that the
general picture as just described is largely independent oL.

More in general, the plots shown in Figs. 1–7 strong
suggest that the subdominant eigenvectors of the Mar
matrix P, subject to the imposed spin, rotation, and trans
tion symmetries, are reasonably approximated by the Bo
mann distribution multiplied by a mode-dependent functi
of the magnetization. As can be seen in Figs. 1–7, the n
ber of nodes of this prefactor increases by 1 as one s
down the spectrum, but it is also clear that, especially for
less dominant eigenvectors, the residual variance is sig
cant.

To begin to address the problem of the scatter and
improve the trial vector systematically, it is necessary

-

FIG. 4. Prefactorc2 /cB of the second subdominant eigenvect
of the Markov matrix vs total magnetizationM for a 535 nearest-
neighbor Ising (b50) lattice.

FIG. 5. Prefactorc3 /cB of the third subdominant eigenvecto
of the Markov matrix vs total magnetizationM for a 535 nearest-
neighbor Ising (b50) lattice.
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identify other important variables besides the magnetiza
and to incorporate them in the trial vector. We tried mu
spin correlations involving nearby spins but after consid
able failed experimentation we established that lo
wavelength fluctuations of the magnetization are the suita
variables. This is reasonable when one compares, e.g.
eigenvalue equations forc0(S8) and c1(S8) and realizes
that the eigenvalues differ only very little from unity exce
for very small systems. We therefore used the Fourier co
ponents of the spin configuration, which are defined by

mk5L22 (
l 151

L

(
l 251

L

expF2p i

L
~k1l 11k2l 2!Gsl 1l 2

, ~44!

wherek5(k1 ,k2) with 0<k1 ,k2,L, and sl 1l 2
denotes the

spin at lattice site (l 1 ,l 2). Note thatm[m0,0. If we restrict
ourselves to eigenvectors that are translationally invari
the arguments presented in the previous paragraph yield
following trial odd or even vectors:

FIG. 6. Prefactorc4 /cB of the fourth subdominant eigenvecto
of the Markov matrix vs total magnetizationM for a 535 nearest-
neighbor Ising (b50) lattice.

FIG. 7. Prefactorc5 /cB of the fifth subdominant eigenvector o
the Markov matrix vs total magnetizationM for a 535 nearest-
neighbor Ising (b50) lattice.
n

-
-
le
the

-

t,
he

cT~S!5cB~S!Fa6~m!1 ( 8
k1 ,k2

ak1k2

6 ~m!mk1
mk2

dk11k2,0

1 ( 8
k1 ,k2 ,k3

ak1k2k3

7 ~m!mk1
mk2

mk3
dk11k21k3,0

1 . . . G . ~45!

The primes attached to the summation signs indicate
terms with k i5(0,0) are excluded. The coefficien
a6, ak1k2

6 , . . . arepolynomials inm, which are either odd

or even under spin inversion and are to be chosen accor
to the desired symmetry. Rotation and reflection symmet
of the lattice are imposed by equating coefficients of
appropriate monomials inm.

The results reported in Ref. 6 were obtained using a m
complicated version of Eq.~45!, namely,

cT~S!5cB~S!Fa2~m!1 ( 8
k1 ,k2

ak1k2

2 ~m!mk1
mk2

dk11k2,0

1 ( 8
k1 ,k2 ,k3

ak1k2k3

1 ~m!mk1
mk2

mk3
dk11k21k3,01 . . . G

3Fa1~m!1 ( 8
k1 ,k2

ak1k2

1 ~m!mk1
mk2

dk11k2,0

1 ( 8
k1 ,k2 ,k3

ak1k2k3

2 ~m!mk1
mk2

mk3
dk11k21k3,0

1•••G . ~46!

In those calculations also the coupling constant appearin
the Boltzmann factor was treated as a variational parame
but it turned out that the optimal value of this parameter w
indistinguishable from the critical coupling. It does not see
that the more complicated form of expression~46! resulted in
a major improvement, but we did not perform a systema
comparison of these trial vectors.

The coefficients in the trial vector are treated as var
tional parameters. As in all nonlinear fitting problems it
important to use parameters parsimoniously, and to do
one has to establish a hierarchy among these parameters
scheme we used was to iterate the following step:~a! sys-
tematically add terms of increasing degree inm; ~b! when
this saturates, increase the degree of terms with produc
mk with mkÞ(0,0).

The effectivity of this variational approach using low
momentum Fourier components, as described here, beco
apparent when one compares the variational eigenva
with the exact numerical ones. For instance, the differenc
the case of the second eigenvalue of theL55 nearest-
neighbor model was only 231027.

V. NUMERICAL RESULTS

A. Exact eigenvectors for small systems

The full, symmetric Markov matrixP̂ for an L3L Ising
model is a 2L

2
32L2

matrix, so that exact numerical calcula
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tions are possible only for very small systems; see, e.g.,
sults forL<4 in Ref. 18. In the present work, we performe
such exact computations for systems up toL55. In order to
restrict the numerical task, we chose representations ofP̂ in
subspaces with the appropriate symmetries. Two dist
symmetries were chosen, both of which impose invarianc
the eigenvectors ofP̂ with respect to geometric translation
rotation, and mirror inversion. The vectors were chosen to
either even or odd under spin inversion. This reduced
almost a factor 400 the dimensionality ofP̂. In this way, the
computation of a restricted set of eigenvectors became
sible for the resulting matrices of order 86 056 for theL
55 cases. For the diagonalization we made use of spa
matrix methods and the conjugate-gradient method~see, e.g.,
Refs. 19 and 20! which computes the eigenvector with th
largest eigenvalue. Subsequent orthogonalization with
spect to this eigenvector yields the eigenvector with the s
ond largest eigenvalue, and further eigenvectors can be
tained similarly. Thus we obtained exact numerical solutio
for six eigenvalueslLi and their corresponding eigenvecto
c i(S) ( i 50, . . . ,5) of theeigenvalue equation

(
S8

P̂~S,S8!c i~S8!5lLic i~S!. ~47!

The largest eigenvaluelL0 is equal to 1, in accordance wit
the conservation of probability; its corresponding eigenv
tor satisfiesc0(S)5cB(S), as follows from detailed balance
It is even with respect to spin inversion:c0(S)5c0(2S)
where2S is obtained fromS by inverting all spins. For all
system sizes and models included here, we observed tha
six leading eigenvectors, ordered according to magnitud
their eigenvalues, alternate between the odd and even
spaces: the first eigenvector is even, the second one is
the third one is even subspace, and so on, with the ca
that forL52, e.g., the odd subspace contains only two in
pendent states. As we discussed above, the resulting e
vectors provide useful information on how to construct tr
vectors; moreover, knowledge of accurate eigenvalues
L<5 provided an powerful test of the Monte Carlo metho
the results of which are presented in the following subs
tion.

B. Monte Carlo calculations

All simulations took place at the respective critical poin
of the models considered. This point is known exactly in
case of the nearest-neighbor model@Kc5 ln(11A2)/2#, and
was determined numerically12 for the other two models:Kc
50.190 192 6807(2) for theequivalent-neighbor model an
Kc50.697 2207(2) for the model with antiferromagnetic
next-nearest-neighbor interactions. The finite-size sca
analysis presented in Ref. 12 showed that, to the extent
are compatible with the numerical results, deviations fr
Ising universal behavior are extremely small. The raw sim
lation data used in this current paper include the data
which were based the numerical results for the largest re
ation time of the nearest-neighbor model, reported in Ref
The latter results were obtained from 83108 Monte Carlo
samples for systems with finite sizes up toL515. The trial
vector used for these computations consisted was of the f
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given in expression~46! and used up to 36 variational pa
rameters. Also included in the present analysis are the si
lations reported in Ref. 7, which contained 1.23108 Monte
Carlo samples for all three models with system sizes up
L520.

In addition, new simulations for each of the three mod
were performed, with a length of 23108 Monte Carlo
samples for system sizes up toL520 and of 1.63108 Monte
Carlo samples for system sizeL521. These new simulation
used up to 89 variational parameters in the trial functions
each eigenvector of each model.

In order to suppress biases due to deviations of rand
ness, we made use of a random number generator w
combines two different binary shift registers such as
scribed and discussed in Ref. 21.

The required Fourier components of the spatial magn
zation distribution were sampled at intervals of one swe
for the smallest systems up to about 15 sweeps for the lar
ones. The Monte Carlo calculation of the autocorrelat
times ~actually the eigenvalues of the Markov matrix! was
performed for each run as a whole as well as separately f
number of up to 1024 blocks into which the run was sp
This blocking procedure enabled us to estimate the statis
errors. Furthermore, the calculation of the eigenvalues

cording to P̂(t)N̂(t)215L̂ (t) still depends on the time dis

placementst @see Eqs.~39! and~41!#. The calculation ofL̂ (t)

was performed for time displacementstL2250,1,2, . . . up
to 10 or 20 of the above-mentioned intervals. For smat
these eigenvalue estimates reflect variational bias due to
residual contributions of relaxation modes decaying fas
than the mode for which the trial vector was constructed
the relaxation times of these faster modes are consider
shorter than that of the mode under investigation, one
clearly see a fast convergence of the eigenvalue estimate
function of t. Convergence, however, occurs to a level tha
only approximately constant because of the correlated st
tical noise whose effect still depends ont. With increasingt,
one can also observe that the statistical errors increase.
latter effect, which is as slow as the pertinent relaxat
mode, occurs when the autocorrelations of the Monte Ca
sample are decreasing significantly witht. This situation was
indeed observed for the largest eigenvalues; the data
verged well witht before the coherence of the sampled d
was lost. It was thus rather simple to select a ‘‘best estima
of those eigenvalues. However, the situation for the sma
eigenvalues investigated here was much more difficult,
cause the relative differences between subsequent autoc
lation times are much smaller. The numerical results for
eigenvalues are listed in Ref. 22

C. Determination of the dynamic exponent

In two-dimensional Ising models, finite-size correctio
are known that decay with finite size asL22, and integral
powers thereof may also be expected. In the absence o
formation on possible additional finite-size corrections o
different type that could occur in dynamic phenomena,
try to describe the finite-size data for the various autoco
lation times, as given in Eq.~11!, by the formula
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tL'Lz(
k50

nc

akL
22k. ~48!

Herez is the dynamic exponent,ak the finite-size amplitude
andnc is the number of correction-to-scaling terms include
Not explicitly shown in this notation is that the autocorre
tion times depend on the relaxation mode and the mode

On the basis of Eq.~48!, a considerable number of leas
squares fits were applied to the numerical results for the
tocorrelation times. For each model and relaxation mo
one may vary bothnc , the number of correction terms, an
the low-L cutoff specifying the minimal system size include
in the fit. The smaller the number of corrections, the lar
the low-L cutoff must be chosen in order to obtain an acce
able squared residualx2. A selection of fits that display the
numerical trends is presented in Ref. 22

The ‘‘best fits’’ were chosen on the basis of thex2 crite-
rion, the dependence on the low-L cutoff, and the mutual
consistency of fits with differentnc . The fits are summarized
in Table I. Since the errors are not only of a statistical natu
but also depend on residual bias in the autocorrelation ti
and subjective choices made in the selection of the best
we quote error bars equal to two standard deviations as
tained from statistical considerations only. We believe t
these 2s error estimates are conservative in the case of
analysis of the second and third largest eigenvalues of
b>0 models. Theb521/4 model was found to be numer
cally less well behaved: the statistical errors, as well as
corrections to scaling, appear to be larger. Also, the const
tion of trial vectors was somewhat less successful than in
cases of theb>0 models.

The new data are somewhat more accurate than and
sistent with our previous work.7 They are also consisten
with the results of Wang and Hu23 for the slowest relaxation
mode of a different set of Ising-like models. They provide
clear confirmation of universality of the dynamic expone
with regard to relaxation modes as well as models. Our b
estimatez52.1667(5) applies to the slowest~odd! relax-
ation mode of the equivalent-neighbor (b51) model.

This result forz is consistent with most of the recent
published values. This agreement includes the results
Stauffer24 on damage spreading in the Ising model.~The
value listed in Ref. 6 was incorrectly quoted.! It is slightly
larger than the value 2.14 derived by Alexandrowicz25 on the
basis of a scaling argument.

TABLE I. Best estimates for the dynamic exponentz for five
relaxation modes in three Ising-like models. These results were
lected from a much larger set of least-squares fits, obtained
different choices of the minimum system size and of the numbe
corrections taken into account~see Ref. 22!. The error estimate in
the last decimal place of each entry is listed in parentheses, a
taken to be two standard deviations in the best fit.

Mode b521/4 b50 b51

1 2.164 ~3! 2.1660 ~10! 2.1667 ~5!

2 2.166 ~3! 2.167 ~1! 2.167 ~1!

3 2.164 ~5! 2.170 ~2! 2.167 ~1!

4 2.17 ~1! 2.162 ~4! 2.170 ~8!

5 2.15 ~2! 2.17 ~1! 2.17 ~1!
.
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Next we address the question whether the finite-size
vergence of the autocorrelation times at criticality can
described by a dynamic exponentz52 when a logarithmic
factor is included. This possibility was suggested
Domany,26 and pursued by Swendsen27 and Stauffer28, who
used very large lattices and found that this possibility see
inconsistent with one way of simulation, but not with a d
ferent one. Further references concerning this question
given in Ref. 29.

Although the present work is restricted to very small sy
tem sizes, the data are relatively accurate. Thus we tried t
the following form to the finite-size data for the slowest r
laxation mode:

tL'Lz~11b ln L !S (
k50

nc

akL
22kD . ~49!

Fixing z52 and takingb as a variable parameter, we foun
that this form could well describe the data for large enou
nc . The quality, as determined by thex2 criterion, of a num-
ber of such fits is shown in Table II. For comparison w
include fits in whichz is a variable parameter without a loga
rithmic correction.

The results in Table II indicate that the fits with a variab
exponent are usually better than those which include a lo
rithmic term; i.e., the residualx2 decreases faster when th
low-L cutoff is increased. This is especially apparent
small nc and for theb50 andb51 models, where the sta
tistical accuracy is optimal.

Finally we tried a fit according to Eq.~49! with bothz and
b as free parameters. The resolution of both parameters
multaneously is quite hard, and lies near the limit of wh
can be gleaned from the present data. For the nea
neighbor model we find, using system sizesL58 and larger,

e-
or
f

is

TABLE II. Comparison between fits to the autocorrelatio
times, with and without a logarithmic finite-size dependence. Th
fits apply to the slowest relaxation mode. The first column sho
the minimum system size included, the second the number of
rection terms included. The fourth column displays the squared
sidualxz

2 obtained when the dynamic exponentz was left free and
the amplitudeb of the logarithm was fixed at zero. The fifth colum
shows the squared residualxb

2 whenz was fixed at value 2, whileb
was left free. The sixth column lists the number of degrees of fr
dom of the fit for comparison.

L> Model nc xz
2 xb

2 df

5 b50 1 239. 274. 76
6 b50 1 98. 187. 72
7 b50 1 83.5 127. 67
8 b50 1 68.7 87.9 62
9 b50 1 63.8 71.9 57

10 b50 1 55.9 57.5 52

8 b51 1 56.0 71.1 51
9 b51 1 50.1 57.4 47

10 b51 1 49.4 49.7 43

4 b50 2 89.2 341. 76
5 b50 2 85.0 136. 75
6 b50 2 83.3 97.2 71



-like
choices

tandard
model-
this

PRB 62 1099MONTE CARLO COMPUTATION OF CORRELATION . . .
TABLE III. Best estimates for the finite-size amplitudes of five relaxation modes in three Ising
models. These results were selected from a much larger set of least-squares fits obtained for different
of the minimum system size and of the number of corrections taken into account~see Ref. 22!. The error
estimate in the last decimal place of each entry is listed in parentheses, and is taken to be two s
deviations of the best fit. The amplitudes can be written as the product of mode-dependent and
dependent constants~see text!; the difference in the last decimal place between the amplitudes and
product is shown between square brackets.

Mode/model k51 k52 k53

1 ~odd! 6.763 ~6! @-10# 4.4089 ~13! @8# 2.8312 ~5! @0#

2 ~even! 0.2516 ~2! @2# 0.16364 ~5! @0# 0.10510 ~2! @0#

3 ~odd! 0.1188 ~1! @1# 0.07727 ~3! @0# 0.04963 ~1! @0#

4 ~even! 0.07195 ~7! @3# 0.04677 ~4! @-4# 0.03008 ~3! @2#

5 ~odd! 0.0466 ~1! @-1# 0.03041 ~3! @-1# 0.01956 ~2! @2#
.
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and nc51, that z52.1360.07 andb50.0560.09, which
again fails to support the presence of a logarithmic term

D. Universality of finite-size amplitudes

In order to determine the leading amplitudesa0 more
precisely, we repeated the fits as used for the determina
of the dynamic exponent, but with the value of the lat
fixed atz513/6. We note that the combined results forz are
consistent with this fraction. A considerable number of fi
were made, and ‘‘best estimates’’ of the amplitudes are p
sented in Table III.

As mentioned in Ref. 7, according to a modest gener
zation of accepted ideas on universality, the finite-size a
plitudes of the autocorrelation times should satisfya0
5Aimk , where themk are nonuniversal, model-depende
constants; the subscriptk refers to the specific model. W
use the notationk521sgn(b) so thatk51 refers to the
model with ferromagnetic nearest-neighbor and antifer
magnetic next-nearest-neighbor couplings,k52 denotes the
nearest-neighbor model, andk53 refers to the equivalent
neighbor model. TheAi , i 51, . . . ,5, aremode-dependen
constants, whose ratios are universal. Since only the pro
matters, we are free to choose an arbitrary value for on
these constants. We chose to fixA151, so that allAi should
become universal constants.

The remaining constantsAi ( i 52, . . . ,5) andmk were
fitted accordingly to the amplitudes listed in Table III. Th
result of this least-squares fit ism156.77360.003, m2
54.408160.0009, m352.831260.0005, A250.037 123
60.000 008, A350.017 53060.000 004, A450.010 618
60.000 006, andA550.006 90160.000 005. This fit has
eight degrees of freedom andx259.0, in good agreemen
with the assumptions of dynamic universality, and sugge
ing that our 2s error estimates are not unrealistic. The d
ferences between our amplitude estimates and the fi
productAimk are included in Table III, in units of the las
decimal place listed.

VI. DISCUSSION

The analysis presented above produces an appar
highly accurate estimate of the dynamic critical exponenz
52.166760.0005 for the case of the equivalent-neighb
model, where the statistical accuracy and the converge
on
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are best. However, even in this case it is not possible to
out a divergence of the relaxation time of the formL2(1
1b ln L). Nevertheless, our results viewed in their total
make this behavior rather unlikely. First, the assumption
this logarithmic form yields fits that converge less rapidly,
mentioned above. Second, one would have to haveb'1/6
universally, independent of model and relaxation mo
since our results for the range of system size we studied
consistent with a divergence of the formtL}Lz}L13/6

'L2(111/6 lnL). Universality of the amplitude of a loga
rithmic correction would be quite unusual and does not
into any theoretical framework of which we are aware.

Some open questions remain regarding the optimi
variational vectors to which this computation owes its ac
racy. Variational basis vectors of the general form given
Eq. ~45! are special in the sense that all parameters e
linearly. The method outlined here does not require this f
ture and in fact it was not present in previous computatio
reported in Ref. 6.

For most of the results presented here we used trial v
tors with linear parameters optimized by minimization of t
variance of the configurational eigenvalues. As an appare
equivalent alternative, the full set of symmetrized monomi
in the Fourier coefficients of the spin configuration could
chosen as basis vectors rather than the linear combina
defined in Eq.~45!. With this choice, the basis vectors wou
not have contained any parameters, but employing this
ger truncated basis, the same linear parameters would
been reintroduced by computing the matrix elementsN̂i j and
P̂i j and solving the generalized eigenvalue problem defi
by Eq. ~25!. In this way, we would have obtained the coe
ficients for which the Rayleigh quotient is stationary, at le
if the summation over configurations could have been d
exactly. Proceeding in this way, we could have altoget
skipped the optimization scheme based on minimization
the variance of the configurational eigenvalues@cf. Eq. ~18!
and Sec. II B#.

The obvious question is what is accomplished by the n
linear minimization of the variance of the configuration
eigenvalues. We do not yet have a convincing answer to
question. On the one hand, it is not difficult to show that t
zero-variance principle holds for individual eigenstates. T
is, if an eigenvector can represented exactly as a linear c
bination of the basis vectors, the variational (t50) case will
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already produce the exact result even if it the eigenva
problem contains eigenvectors that cannot be represente
actly in the truncated basis. This is in fact precisely wh
happens for the dominant even eigenvector: this vecto
represented exactly even in the truncated basis we use
indeed its eigenvalue is reproduced exactly. On the o
hand, our tentative numerical experiments show that the
timization method produces more accurate results, whic
not surprising when one considers that the optimized b
functions give rise to much smaller truncated basis sets. T
in turn yields a generalized eigenvalue problem involvi
much smaller matrices that are numerically and statistic
much more robust.

A related problem with a large basis set is that the ma
N̂ in the generalized eigenvalue problem of Eq.~25! be-
comes numerically singular. In fact, the only way in whi
we were able to obtain meaningful results at all is by p
forming the inversion in the usual regularized fashion as
lows. Use the fact thatN̂ is symmetric and non-negativ
definite to write it in the form

N̂5W diag~m1
2 , . . . ,mn

2! W†. ~50!

Then define a regularized inverse ofN̂1/2 as follows:

N̄21/25W diag~m̄1
21 , . . . ,m̄n

21! W†, ~51!

wherem̄ i
215m i

21 if m i exceeds a suitable chosen thresho

e.g., the square root of the machine accuracy, andm̄ i
2150

otherwise. The nonvanishing eigenvalues ofN̄2 1/2P̂N̄2 1/2

then yield a subset of the eigenvalues ofP̂ that are least
affected by the numerical singularity ofN̂.

Although further modifications of the computational pr
cedures may lead to additional improvements of our te
nique, the numerical results obtained thus far are alre
quite promising and the question arises what further appl
tions are obvious in the field of dynamics of Monte Ca
methods.

For instance, it seems well possible to apply the pres
techniques in three dimensions and to spin-conserving
wasaki dynamics1 although it is clear that the construction
trial vectors will have to be modified. In the same conte
we note that direct application of the method used in t
paper to the dynamics of cluster algorithms3–5 is frustrated
by the requirement that one should be able to comp

^SuP̂ucT& numerically exactly. An additional problem fo
such dynamics from the perspective of our approach is
the conceptcorrelation timehas to be handled carefully i
this context.

Let us demonstrate this point by means of the followi
thought experiment: the application of the Wolff algorith
to the ferromagnetic, critical Ising model. As usual, we d
fine the autocorrelation times in terms of the eigenvalues
e
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the stochastic matrix. In order to enable a comparison w
other types of dynamics, we choose our unit of time
L2d22yh Wolff steps (L is the linear system size,d the di-
mensionality, andyh the magnetic renormalization expo
nent!. Since the average Wolff cluster consists of a num
of sites proportional toL2yh2d, this choice guarantees tha
under equilibrium conditions, an average number of orderLd

spins is processed per unit of time.
Because of the efficiency of the Wolff algorithm, only

few units of time are needed to generate an independent
configuration under practical circumstances. However, if
fully ordered antiferromagnetic state is chosen as the in
spin configuration, a number of Wolff steps of orderLd is
required to remove the the antiferromagnetic order; i.e.,
relaxation to equilibrium is anomalously slow. A less e
treme but related phenomenon is observed under prac
Wolff simulation conditions at equilibrium: from time to
time large critical fluctuations occur that bring the syste
into a state of relatively large disorder and small magneti
tion. These configurations are relatively long lived. In t
time autocorrelation function of the magnetization, this ph
nomenon translates into a slower-than-exponential deca30

at least on the numerically accessible time scale. In the
guage of Eq.~10! such a situation follows if one assumes t
existence of anomalously large autocorrelation timestLi as-
sociated with anomalously small amplitudesci . Under these
circumstances we cannot exclude the possibility that
longest relaxation time following from the Markov matri
for the Wolff simulation of a finite system corresponds wi
an extremely unlikely deviation from equilibrium. Since th
kind of fluctuations may have too low a probability to be
practical significance, these considerations suggest the p
bility that the time needed to generate an ‘‘independent c
figuration’’ is not simply related to the second largest eige
value of the Markov matrix, but rather to some intrica
average, possibly involving the complete spectrum.
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