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Quasilinear magnetoresistance in an almost two-dimensional band structure
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We present a theoretical study of the orbital magnetoresistance in a uniaxial anisotropic metal within the
relaxation-time approximation. The appearance of a new dimensionless &ealé, /eg, allows the possi-
bility of a new region at intermediate fields where the magnetoresistance is linear in applied magnetic field for
currents flowing along the uniaxial directiofiHere,t, characterizes the bandwidth along the uniaxial direc-
tion.) In the limit of large anisotropysmall §), corresponding to a quasi-two-dimensional metal made up of
weakly coupled layers, we obtain an analytic expression for the magnetoresistance valid for all magnetic fields.
We test our analytic results numerically and we compare our expressions witkaiti® magnetoresistance of
SKLRUG,.

I. INTRODUCTION high fields the magnetoresistance saturates when current flow
is along closed Fermi-surface directions or maintains a qua-
A growing number of compounds have been synthesizedlratic field dependence for currents along open Fermi-
whose crystal structure consists of weakly coupled metallisurface directiongsee page 118 of Ref.)4To our knowl-
layers. Foremost among these are the cuprate metals whegége, there have been no analytic expressions for the
the two-dimensional nature electronic structure has provokefagnetoresistance of a realistic band structure, which inter-
much speculation about the nature of the resulting metalli®olate between these known limits.
state. The issue of whether in-plane excitations can move In this paper we present a calculation which, while re-
coherently between copper oxide planes remain$Pecting the high- and low-field results mentioned above,
contentious. Several other metallic compounds with a lay- @lso applies at intermediate fields where we find a linear
ered structure—for example, organic compounds based ofagnetoresistance. We have obtained an analytic expression
the bis-ethylenedithiotetrathiafulvalene molecule and othefor the magnetoresistance, valid in the limit of strong anisot-
metallic oxides such as §tuO,—do possess a Fermi sur- fopy, which we believe to be the first straightforward ex-
face that is shaped like a slightly warped cylinddn this ~ ample of a magnetoresistance formula valid for all magnetic
paper we study magnetotransport in a quasi-two-dimensionalelds. This result should prove useful in characterizing the
(2D) metal in order to provide a benchmark against whichProperties of quasi-two-dimensional metals using transport
more exotic types of behavior can be compared. Specificalljnasurements. The paper is organized as follows. We first
we study out-of-plane transport using the relaxation-time apPresent a simple calculation of the magnetoconductance that
proximation in the presence of an in-plane magnetic fieldillustrates how having a warped cylindrical Fermi surface
Our main result is that there is a “Kapitza” regiomwhere ~ Can give rise to a linear magnetoresistance. We then present
the transverse magnetoresistange. /p. is proportional to @ more formal solution of the Boltzmann equation and derive
the applied magnetic field. We justify this with an analytic the conductivity tensor for arbitrary levels of anisotropy. Our
expression for the magnetoresistance in the quasi-twodnalytic result emerges as a limiting case. Finally we discuss
dimensional limit, which is valid forarbitrary magnetic th_e implications of these results for experiment and compare
fields. We also obtain an expression for the magnetoresigVith known data.
tance with any degree of uniaxial anisotropy that can be
evaluated numerically. II. SIMPLE PICTURE
The study of magnetotransport within the Boltzmann for- ) ) ) _ _
malism is long established and is well described in a number We consider a metal with the following dispersion rela-
of classic text$:® Interpreting magnetoresistance measurellon:
ments is complicated by the fact that the magnetoresistance
is identically zero for an isotropic metal. The amount of an-
isotropy determines the measured magnetoresistance, which
is there fore rather sensitive to the detailed properties of the
material. Analytic results are usually limited to the very We have adopted the customary notation that directions in
weak or very high-magnetic-field regimes. At low fields the reciprocal space are labelgdy, andz while the correspond-
Zener-Jones expansion yields a magnetoresistance quadraitig real space lattice is defined by tagb, andc directions.
in the magnetic field with a coefficient depending on thelt describes free particles in thab plane coupled by a per-
variation of the mean-free-path around the Fermi surface. Apendicular transfer integral, in the c direction to adjacent

. A2
e(k)= Z—mO(k§+ k?)—2t, cogk,Cc)+2t, . (N
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cky(t)=ck,(0)+Q.tsing. (6)

We can determine how the velocity in the direction
changes as the quasiparticle moves across the Fermi surface
by combining the above result with E€l) giving

2t,c | .
vc(t)=TS|r{kzc +Q.tsing]. )

Here we have defined a “cyclotron” frequency
B| ‘a _ ev OBC

(a) Qe=——, (8

FIG. 1. The field geometry and approximate quasiparticle = . . . . .
orbits—here shown fos=2/3. (a) The magnetic field lies in the which is the fastest rate at which quasiparticles traverse the

plane and the current flows out of the plane. The linear magnetore3fillouin zone. It turns out that this sets the scale of the
sistance regime occurs when the magnetic flux through a loop desrossover from weak(.7<1) to intermediate fields(¥.r
fined by the in-plane mean-free-path, and the plane separation, =1).

¢, becomes of the order of a flux quantum or gregtarin the limit Substituting this velocityp(t), into the expression for

of large anisotropy, we can approximate the quasiparticle orbits athe conductivity Eq(3), we may integrate over time ang

lines on the Fermi surface with constant radial angjénd constant  to give the out-of-plane conductivity expressed as an integral
in-plane velocityvy. This gives an approximate derivation of the over the orbits, namely,

low-field (B?) and intermediate-fieldB|) regions.

e’t? 7kc IZW de

planes. The magnitude ofgives the spacing between planes o(B)= 73 2 o 1+ 022SP 0" (€)
that can be combined with to form an effective mass for 0 ¢
out-of-plane motion Integrating this is straightforward and yields the following
magnetoconductance:
ml:hZ/ZtLCZ. (2)
(This is thez-axis band mass in the limiéz<t, when the Ao(B) 1 10
Fermi surface forms a closed spherpid. o.(0) /1t 0272 (10

We begin with an approximate derivation of the new re-
gime by considering the magneto-conductance to lowest or- At low fields (. 7<1) this gives the usual quadratic field
der int, . Chambers’ expressibiior the components of the dependence as obtained by the Zener-Jones expansion. How-
conductivity tensor in a magnetic field within the relaxation- ever in the intermediate field regim&{r=1) the magne-

time approximation is toconductivity falls off as B. This is the essential result of
5 ds (= this paper. It arises because there is a range of cyclotron
A S , , —t/r frequencies for traversing the Brillouin zone. Note too that
Tij 3 = Ul(o)vj(t)e dt. 3 . .
4 hlol Jo the magnetoconductance becomes universal, independent of

For each area element of the Fermi surfat®,we integrate the deg_ree of anisotropy anq dep(_andlng o_n_Iy on the in-plane
properties. We can emphasize this by writing the crossover

the velocityo (t) measured along a semiclassical quasiparti- o .
cle orbit. These orbits are defined by the Lorentz equation o&ond't'on in terms of the magnetic Ieng@rnz #/eB, namely,
<7=1 corresponds to

motion

C loC
dk - 0= 1 (11)
= 2 T
h dt ep X B, (4) | B
So the linear region is reached when approximately one flux

wheres =V e(k)/%. In this paper we will be interested in - ead ; d bv the in-ol ¢
configurations where the magnetic field is parallel to theduantum threads an area formed by the in-plane mean-free-

planes and the current is flowing perpendicular to the planeg""th (o=vo7) and the interplanar spacing. For a typical lay-
[see Fig. 18)]. ered oxide ¢~12A) one can expect to see this regime at 10

Tesla when the in-plane mean-free-path reaches around 500
é&. As discussed later, experimehtn SpRuQ, provide evi-
dence for the validity of this expression.

However, this cannot be the complete story since very

To lowest order int, we can ignore both the-axis dis-
persion in the equation of motion and the closed orbits. Th
rate of change df then only depends on the angldetween
the magnetic field and the in-plane Fermi velocity of an elec-

. general arguments show that must go as B? at high
tron [see Fig. b)]. So we have fields? Since the conductivity is the sum of the conductivi-
dk, ties from all orbits, the high-field form cannot be recovered
ﬁﬁz —evBsiné, (5)  simply by including the contribution of the closed orbits: a

1/B? contribution from closed orbits will never dominate the
where the in-plane Fermi velocityy,, is constant here. 1/B from open orbits. The correct high-field result emerges
Hence we see that when we consider higher-order effects tin for both the
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direction[see Fig. 2a)]. Only these orbits have been treated
in Sec. Il (and then only approximatelyWe now aim for a
more complete analysis.

To consider the conductivity tensor we must solve the
Boltzmann equation. Rather than use the momentum compo-
nentsk,, ky, andk,, in the presence of a magnetic field, it
is more convenient to work in terms of a new coordinate
systemk, , €, andt. Heret is the time taken to move along
the momentum orbits defined by the equation of motion, Eq.
(4). The advantage of this coordinate system is that the mag-
netic field is included implicitly and does not appear in the
(b) Boltzmann equation. Within the relaxation-time approxima-
tion, one may write the Boltzmann equatiorf as

(a)

FIG. 2. The exact orbits over the Fermi surface with2/3. ()
The quasiparticle moves along lines defined by the intersection of oy .
the Fermi surface and planes perpendicular to the field direction. —+—=eE-v, (13
These orbits can be either open or closed and are described by aH 7
Jacobi elliptic functions(b) We can label these orbits by a param-
eter a, the parameter of the Jacobi elliptic function. Here we illus-
trate orbits wherew=0.7, 0.9, 0.99, 1.01, 1.5, and 4. Fé=«
=<1 the orbits are open. Forsla<« the orbits are closed.

where the electron distribution function has been written as
f=10—yo O, This first-order differential equation may
be solved straightforwardly.

Substituting into Eq(4) gives

open and closed orbits in the exact solution of Sec. Ill. We

will see that the high-field B? regime occurs whet) .7 dt=— Moft dk,
> eIt . eB \/2mye—#2k2+4mgt, [cogk,c)— 1]

A further reason for a more detailed treatment is that the (14
magnetoresistance is identically zero for an ellipsoidal Fermi
surface with a constant This is because of a cancellation Ja c dk
between the Hall and magnetoconductance. We therefore === z , (15)
would like to verify that there is no such cancellation here. we 21— asirf(k,c/2)
We will do this through an exact solution of the Boltzmann
equation in which we compute all components of the conWhere
ductivity tensor and hence the magnetoresistance.

_ 8t, my 16
« 2m06F_ hzkx ’ (

Ill. SOLVING THE BOLTZMANN EQUATION

Our treatment will follow closely that of Abrikoscvin ~ We have defined a new cyclotron frequehcy
the previous section we only treated the quasiparticle orbits
approximately. Since the Lorentz force in Eg) acts per- eBc /2t eB )
pendicular to the electron motion, energy is conserved and Q" N e ~ o e Ny
the electron is constrained to move along a constant energy f 0 Mo,

line with fixed momentum in th® direction. Here we takB  the fastest rate at which quasiparticles perform closed orbits.

to be parallel ta. For finitet, , #is no longer constant along This is the natural scale for cyclotron motion perpendicular

the orbits and there are some closed orbits as illustrated if the plane. As might be anticipated from a Bohr quantiza-

Fig. 2. tion picture, it also sets the scale for Landau-level quantiza-
Quasiparticles at the Fermi surface determine the transjon and hence the quantum effects which signal the break-

port properties and we may identify two regions dependintjown of quasiclassical transport theory. The variable

on the degree of anisotropy. We introduce a parametefapels each cyclotron orbit. It is bounded from below &y

(17)

which is a measure of this anisotropy and we will use it to substitute fqu, :
4tL ﬁkxz \/2m06_8tlm0/a’. (18)
=—". (12)
F

The orbits are open fof<a<1 and closed for £ a<<oo.
) ) i It is very unusual that Eq15) is both integrableand its
If 6>1, the Fermi surface is closed and the trajectory of allso|ution is invertible so that a closed form expression for the

quasiparticles in momenturiand real space follows closed = orhits may be found. The solution can be written in terms of
loops. While the system may have an anisotropic effectivehe jacobian elliptic functions
mass, the qualitative features of transport will not be much

modified from a typical three-dimensional metal. 41, 5 t
then we still have some closed orbits but there are now some k,(t)=— — JacobiAmplitud w_c,a , (19)
trajectories that extend across the Brillouin zone in the c NP
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in the ab plane, will be equal tary, in the absence of a

2h w.t wt
ve(t)=— Jacobicr‘{—c,a Jacobi8+i,a , magnetic field. We can simplify some of the expressions by
cm, Va Va introducing a number of parameters: a universal conductivity
(20 and the effective-mass ratio
® 2% JacobiD wct 2 2e’r Mg -
Up(t)= —=———==JacobiDN—,«/|. oo=——, I=—.
i c\am, my Ja o c3m, m,

These equations exactly describe the quasiparticle’s motion For the exact solution of the conductivity tensor we find
over the Fermi surface defined by Hd) in the presence of the following components:
a magnetic field along tha direction. We have adopted the

notation of Mathematicaand Abromowitz and Stegdhin o0 1 K(a)Ja—2o
using the parametew rather than the modulug= \a, to Taa= 575 4f oz da
define these functions. 7 minLo)
These periodic functions play the role of the trigonometric min(1,5~ 1)
functions that appear in the solution of the spherical prob- f K(ﬁ)\/l—ﬂﬁdﬁ}, (28
lem. To make this more explicit, we can map the elliptic 0

functions when the parametaris greater than onéescrib-

ing closed orbitsto those with a parametgt= 1/« less than B oo8| (1 1+8Sy( @, w1l \a) q
one 10. We may then write Tob= minLs  K(a)Ja—o @
2\ph ] ) 1 &
ve(t)=— o, JacobiDN w.t, 3]JacobiSNw,t, 3], +8fm'”(1"s )_Si(Bywer) sl (29
22 0 K(B8)\V1—ps
2% B fl Sy, we7la)
im — — 7 o =2m7r ol 4 ——d
;.Lno ~sin(oc), (23) Tee=2mr o\5 1ok (aPa da 5"
1Y Sy wcT)
on [ B _ +fm'”<” |22 8T a1 30
Ub(t):T mimHJaCObIC[‘ﬂwct,B], (29 0 K(,B)3 1-Bs B (30
The remaining Hall component is given simply by
= lim— cod w.t). (25 eB
g—o0 C m; Mo ch:_TO'cc- (31

The limiting case of3—0 describes all of the orbits when Mo

the Fermi surface becomes spheroidg{). In these expressionss («) is the elliptic integral and we
To compute the conductivities we use the solution of thehave defined the following sums that invoheg the nome of

Boltzmann equatiofEg. (13)] and compute the current. This the elliptic integralg(a) =exd — 7K(1—a)/K(a)]:

gives the Chambers’ formul&q. (3)] which may be written

[ 12
as(see Ref. ¥ _ q(a)" 1
Si(ax) ; 1+q(a)®" nawx |2’ (32)
. 2e’B (2 g fT(paod Jt av ] S 1+ )
Ja_(zﬂ_h)g _pg Pa 0 t e t
. [ ng(a) 12 1
X0 (D gt )Eget 07, (26) Sy(ax)=2 ) (33)

¥ | 1+g(a)®"] nwx |2

This triple integral can be drastically simplified when we +(K(a))
recall that the orbits are all periodic and so have a well-
defined Fourier series. The Fourier series for the Jacobiahh€ summations above are over the positive integers (
elliptic functions are all tabulatett. This allows one to do  =1,2,...%0). The sumsS; andS, are the same &8, andS,,
the integral ovet’ and, using the orthogonality of the com- respectively, except they are summed over the positive half-
ponents of the Fourier series, one can also do the integrahtegers 0=1/2,3/2,5/2,..%).
overt. The algebra is somewhat tedious but the result is that Equations(28) to (33) are the exact solution for electrical
the conductivity can be expressed as a rapidly convergentansport within the relaxation-time approximation and are
sum followed by a single integral ove, . valid for arbitrary values ofex andt, . To make further

We will use the definition of the tensor conductivity progress and to make contact with the result of the simple
=0 ,5E with the magnetic field along the direction. The  calculation outlined previously, we need to work in the limit
only nonzero components of the conductivity tensor will beof large anisotropys<1. In this limit, the dominant term in
Taar Obb, Occ, aNd ope=—0,. There is no longitudinal the conductivity tensor comes from,. [Eg. (30)] and, in
magnetoresistance for the dispersion of Eh. so o,, is  particular the smallx range of the integral. It is therefore a
unaffected by the magnetic field and, by rotational symmetrygood approximation to replace the integrand with its small
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, 4 . . FIG. 4. The transverse-axis magnetoresistance of,BuQ,

0.000001 0.0001 0.01 1 100 10000 (data after Hussewt al. Ref. 7). This clearly shows the linear re-
w,. T gime we have predicted. The development of the regime at rela-
tively low values ofAp./p.~0.2 as opposed te-1 is an indication
FIG. 3. A numerical treatment of the magnetoresistance for arthat more than one band with differing mean-free-paths are in-
bitrary fields and Fermi-surface topologies. These are computedolved in thec-axis conductivity. This is demonstrated by the fit,
using the results of Eqg28) to (33). In the limit of $>~1 the  which includes a band with love-axis conductivity and short-
magnetoresistance vanishes as expected in limit of a spheroidaiean-free-path. This is consistent with the band strudfed. 12
Fermi surface. The previously known asymptotic regimes are unand the Hall coefficientRef. 13.
shadedalwaysB? at weak fields with a high-field asymptote that is
B2 for open Fermi surfacessk 1) or saturates for a closed Fermi the numerically exact result indicates where high-order com-
surface §>1)]. The linear regime is heavily shaded while the ponents become important. However, since all of these
crossovers are lightly shaded. The dashed line shows the (&sult higher-order terms contribute to 2 asymptote, they can
6=10"7) from the lowest Fourier component of the open orbits be taken into account by including an extra numerical factor
[Ed. (34)]. Adding a numerical factor based on the asymptotic limitin Eq. (34) so that the numerical and analytic results match
from all orbits[Eq. (35)] is also shown for thisy but is indistin-  jn the high-field, smalld limit. This gives the following in-

guishable from the numerical result. Note tidat 10~ for all three terpolating expression:

bands of SIRuQ,.

R ) . A mV1+(Qe7)?
limit [i.e., take only the first term in the sum, and keta) Pe_ (€er)

— 1r/2]. Doing this gives the following approximate form for Pc 2 arctafl/y8+0.0263(Qc7)?]
the conductance:

1, (39

where the factor of 0.0263 is obtained by summing all orbits
numerically in the high-field and smafllimit. This function

oeo(B)~ U—Orzarcta V1o 1 ! _ is plotted in Fig. 3 but is virtually indistinguishable from the
e 2m VI+(Q.7)?) V1+(Q7)? numerical result. The appearance of a new region where the

(39 magnetoresistance is linearBmay clearly be see(fig. 3
This result recovers the form of our approximate derivation®® the dispersion becomes more two dimensional. s
of the result[Eq. (10)] but remains correct in the extreme _Eor complelteness Wehcon5||c|ier ?ISO the_ Hall resl,lstlwty
high-field limit. With 1A/6>Q.7>1 we can replace arctan with current alongc and the Hall voltage being developed
by /2 and we have the linear magnetoresistance regime aaslong theb direction. We find

y g g
before. However, the correct B asymptote is recovered S eBr
whenQ > 1/\/6. PH= 7= . (36)

This is a better approximation than our previous treatment TbbTcct The  MoTbb

because we are giving an exact treatment of the lowest Fourhus there is no anomalous regime in the Hall resistivity,
rier component of the open orbits. We are dividing the conwhich remains linear at all magnetic fields and reflects the
ductivity into a sum over quasiparticle orbits and now eachcarrier concentration in the usual way.
of these becomes a Fourier series. The additive nature of the
conductivity and the Fourier series means that each compo-
nent must contain the physics of the high-field asymptotic
limit as well as the linear intermediate field regime. We can Srb,bRuQ, is probably the best characterized two-
compare the role of higher-order Fourier components, whicldimensional metal. The current experimentalaxis
are neglected in deriving Eq34) by comparing with nu- magnetoresistanéeclearly shows the linear magnetoresis-
merical treatment of Eqg28) to (33). The dashed line in tance regime we have discusgsde Fig. 4 We now discuss
Fig. 3 shows the magnetoresistance keeping only the lowestvhat quantitative information we may determine from this.
order componentEq. 34 for 5=10 4. The deviation from Detailed de Haas van Alphen studies give a very clear

IV. COMPARISON WITH EXPERIMENT
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picture of the degree of warping of the Fermi-surface[following Eq.(10)]. The magnetoresistance depends only on
sheets? These are expressed as variations in the radius g8, /8,~0.1 anda;~ /0.04. This is consistent with de Haas
the Fermi surface in they plane as the Brillouin zone is van Alphen measurementswhich suggest that one Fermi
traversed along the direction. To translate to our notation surface sheety, is considerably less dispersive in theli-

we note that rection than the other two. In addition, the assumption of a
small mean-free-path on that sheet is also consistent with the
&: ZL: f (37) Hall coefficient that remains strongly temperature dependent
Ke e 27 in the regime of this experimeft.a; may be related to the

mean-free-path usinty= «4%/ec, which gives a value of
lo~2000A & 3 K on the twosheets with the most-axis
dispersion. This is consistent with the observation of uncon-
ventional superconductivity in this sample at around K.

In general terms, in thec-axis dispersion can involve
cos@k,C) wherev is an integer. Thus far we have considered
v=1. Terms with »>1 increase thec-axis conductivity,
which depends on the square of thaxis velocity (~ v?).
Furthermore, there can also be an angular variation of the

c-axis dispersiont, , within the plane. This not only modi- V. CONCLUSION

fies the numerical prefactor in the conductivity but generally 5o to summarize: we have given an exact solution for
means that the-axis magnetoresistance becomes dependemjectrical transport within a quasi-2D band structure. In do-
on the orientation of the field within thab plane. This is  jhg so we find that the new dimensionless parameter
known to be important in the cuprate superconductbs- =4t /e is important. This leads to a new region/q
nally, for the particular case of SuQ, there are three _ , 1) in the magnetoresistance where thaxis trans-
bands which give additive contributions to the total conduc-versce magnetoresistance is largeo(/p.=1) and linear in
tivity. o the applied field. An asymptotically exact expression for the

_ Because of the three bands and angular variatidn pft  magnetoresistance has been obtained in the limit of séall

is misleading to use the formulas we have developed t0 d&-¢ “the |imit of weakly coupled 2D planes. This new region
termine a quantitative measure of Fermi-surface anisotrop)as neen observed at low temperatures in the quasi-2D metal

from the magnetoresistance. Indeed we have argued that the £, For the overdoped thallium cuprate there are signs
magnetoresistance becomes universal for each band in thes: one is beyond the low-field regime at 11 Té€la.
6—0 limit. Instead we can use the experiments as a probe of

in-plane properties—the mean-free path.
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