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Quasilinear magnetoresistance in an almost two-dimensional band structure
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~Received 15 February 2000!

We present a theoretical study of the orbital magnetoresistance in a uniaxial anisotropic metal within the
relaxation-time approximation. The appearance of a new dimensionless scale,d54t' /eF , allows the possi-
bility of a new region at intermediate fields where the magnetoresistance is linear in applied magnetic field for
currents flowing along the uniaxial direction.~Here, t' characterizes the bandwidth along the uniaxial direc-
tion.! In the limit of large anisotropy~small d!, corresponding to a quasi-two-dimensional metal made up of
weakly coupled layers, we obtain an analytic expression for the magnetoresistance valid for all magnetic fields.
We test our analytic results numerically and we compare our expressions with thec-axis magnetoresistance of
Sr2RuO4.
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I. INTRODUCTION

A growing number of compounds have been synthesi
whose crystal structure consists of weakly coupled meta
layers. Foremost among these are the cuprate metals w
the two-dimensional nature electronic structure has provo
much speculation about the nature of the resulting meta
state. The issue of whether in-plane excitations can m
coherently between copper oxide planes rema
contentious.1 Several other metallic compounds with a la
ered structure—for example, organic compounds based
the bis-ethylenedithiotetrathiafulvalene molecule and ot
metallic oxides such as Sr2RuO4—do possess a Fermi su
face that is shaped like a slightly warped cylinder.2 In this
paper we study magnetotransport in a quasi-two-dimensi
~2D! metal in order to provide a benchmark against wh
more exotic types of behavior can be compared. Specific
we study out-of-plane transport using the relaxation-time
proximation in the presence of an in-plane magnetic fie
Our main result is that there is a ‘‘Kapitza’’ region3 where
the transverse magnetoresistanceDrc /rc is proportional to
the applied magnetic field. We justify this with an analy
expression for the magnetoresistance in the quasi-t
dimensional limit, which is valid forarbitrary magnetic
fields. We also obtain an expression for the magnetore
tance with any degree of uniaxial anisotropy that can
evaluated numerically.

The study of magnetotransport within the Boltzmann f
malism is long established and is well described in a num
of classic texts.4,5 Interpreting magnetoresistance measu
ments is complicated by the fact that the magnetoresista
is identically zero for an isotropic metal. The amount of a
isotropy determines the measured magnetoresistance, w
is there fore rather sensitive to the detailed properties of
material. Analytic results are usually limited to the ve
weak or very high-magnetic-field regimes. At low fields t
Zener-Jones expansion yields a magnetoresistance qua
in the magnetic field with a coefficient depending on t
variation of the mean-free-path around the Fermi surface
PRB 620163-1829/2000/62~16!/10779~6!/$15.00
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high fields the magnetoresistance saturates when current
is along closed Fermi-surface directions or maintains a q
dratic field dependence for currents along open Fer
surface directions~see page 118 of Ref. 4!. To our knowl-
edge, there have been no analytic expressions for
magnetoresistance of a realistic band structure, which in
polate between these known limits.

In this paper we present a calculation which, while r
specting the high- and low-field results mentioned abo
also applies at intermediate fields where we find a lin
magnetoresistance. We have obtained an analytic expres
for the magnetoresistance, valid in the limit of strong anis
ropy, which we believe to be the first straightforward e
ample of a magnetoresistance formula valid for all magne
fields. This result should prove useful in characterizing
properties of quasi-two-dimensional metals using transp
measurements. The paper is organized as follows. We
present a simple calculation of the magnetoconductance
illustrates how having a warped cylindrical Fermi surfa
can give rise to a linear magnetoresistance. We then pre
a more formal solution of the Boltzmann equation and der
the conductivity tensor for arbitrary levels of anisotropy. O
analytic result emerges as a limiting case. Finally we disc
the implications of these results for experiment and comp
with known data.

II. SIMPLE PICTURE

We consider a metal with the following dispersion rel
tion:

e~kW !5
\2

2m0
~kx

21ky
2!22t' cos~kzc!12t' . ~1!

We have adopted the customary notation that directions
reciprocal space are labeledx, y, andz while the correspond-
ing real space lattice is defined by thea, b, andc directions.
It describes free particles in theab plane coupled by a per
pendicular transfer integral,t' in the c direction to adjacent
10 779 ©2000 The American Physical Society
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10 780 PRB 62A. J. SCHOFIELD AND J. R. COOPER
planes. The magnitude ofc gives the spacing between plan
that can be combined witht' to form an effective mass fo
out-of-plane motion

m'5\2/2t'c2. ~2!

~This is thez-axis band mass in the limiteF!t' when the
Fermi surface forms a closed spheroid.!

We begin with an approximate derivation of the new
gime by considering the magneto-conductance to lowest
der in t' . Chambers’ expression6 for the components of the
conductivity tensor in a magnetic field within the relaxatio
time approximation is

s i j 5
e2

4p3 R dS

\uvW u E0

`

v i~0!v j~ t !e2t/tdt. ~3!

For each area element of the Fermi surface,dS, we integrate
the velocityvW (t) measured along a semiclassical quasipa
cle orbit. These orbits are defined by the Lorentz equation
motion

\
dkW

dt
52evW 3BW , ~4!

wherevW 5¹W ke(kW )/\. In this paper we will be interested i
configurations where the magnetic field is parallel to
planes and the current is flowing perpendicular to the pla
@see Fig. 1~a!#.

To lowest order int' we can ignore both thez-axis dis-
persion in the equation of motion and the closed orbits. T
rate of change ofkW then only depends on the angleu between
the magnetic field and the in-plane Fermi velocity of an el
tron @see Fig. 1~b!#. So we have

\
dkz

dt
52ev0B sinu, ~5!

where the in-plane Fermi velocity,v0 , is constant here
Hence we see that

FIG. 1. The field geometry and approximate quasiparti
orbits—here shown ford52/3. ~a! The magnetic field lies in the
plane and the current flows out of the plane. The linear magnet
sistance regime occurs when the magnetic flux through a loop
fined by the in-plane mean-free-path,l 0 , and the plane separation
c, becomes of the order of a flux quantum or greater.~b! In the limit
of large anisotropy, we can approximate the quasiparticle orbit
lines on the Fermi surface with constant radial angleu and constant
in-plane velocityv0 . This gives an approximate derivation of th
low-field (B2) and intermediate-field~uBu! regions.
-
r-

i-
of

e
s

e

-

ckz~ t !5ckz~0!1Vct sinu. ~6!

We can determine how the velocity in thec direction
changes as the quasiparticle moves across the Fermi su
by combining the above result with Eq.~1! giving

vc~ t !5
2t'c

\
sin@kzc 1Vct sinu#. ~7!

Here we have defined a ‘‘cyclotron’’ frequency

Vc5
ev0Bc

\
, ~8!

which is the fastest rate at which quasiparticles traverse
Brillouin zone. It turns out that this sets the scale of t
crossover from weak (Vct!1) to intermediate fields (Vct
*1).

Substituting this velocity,vc(t), into the expression for
the conductivity Eq.~3!, we may integrate over time andkz
to give the out-of-plane conductivity expressed as an inte
over the orbits, namely,

sc~B!5
e2t'

2 tkfc

\3p2vo
E

0

2p du

11Vc
2t2 sin2 u

. ~9!

Integrating this is straightforward and yields the followin
magnetoconductance:

Dsc~B!

sc~0!
5

1

A11Vc
2t2

. ~10!

At low fields (Vct!1) this gives the usual quadratic fiel
dependence as obtained by the Zener-Jones expansion.
ever in the intermediate field regime (Vct*1) the magne-
toconductivity falls off as 1/B. This is the essential result o
this paper. It arises because there is a range of cyclo
frequencies for traversing the Brillouin zone. Note too th
the magnetoconductance becomes universal, independe
the degree of anisotropy and depending only on the in-pl
properties. We can emphasize this by writing the crosso
condition in terms of the magnetic lengthl B

25\/eB, namely,
Vct51 corresponds to

l 0c

l B
2 51. ~11!

So the linear region is reached when approximately one
quantum threads an area formed by the in-plane mean-f
path (l 05v0t) and the interplanar spacing. For a typical la
ered oxide (c;12 Å) one can expect to see this regime at
Tesla when the in-plane mean-free-path reaches around
Å. As discussed later, experiments7 on Sr2RuO4 provide evi-
dence for the validity of this expression.

However, this cannot be the complete story since v
general arguments show thatsc must go as 1/B2 at high
fields.4 Since the conductivity is the sum of the conductiv
ties from all orbits, the high-field form cannot be recover
simply by including the contribution of the closed orbits:
1/B2 contribution from closed orbits will never dominate th
1/B from open orbits. The correct high-field result emerg
when we consider higher-order effects int' for both the

e

e-
e-

as
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PRB 62 10 781QUASILINEAR MAGNETORESISTANCE IN AN ALMOST . . .
open and closed orbits in the exact solution of Sec. III. W
will see that the high-field 1/B2 regime occurs whenVct
@AeF /t'.

A further reason for a more detailed treatment is that
magnetoresistance is identically zero for an ellipsoidal Fe
surface with a constantt. This is because of a cancellatio
between the Hall and magnetoconductance. We there
would like to verify that there is no such cancellation he
We will do this through an exact solution of the Boltzma
equation in which we compute all components of the c
ductivity tensor and hence the magnetoresistance.

III. SOLVING THE BOLTZMANN EQUATION

Our treatment will follow closely that of Abrikosov.4 In
the previous section we only treated the quasiparticle or
approximately. Since the Lorentz force in Eq.~4! acts per-
pendicular to the electron motion, energy is conserved
the electron is constrained to move along a constant en
line with fixed momentum in theBW direction. Here we takeB
to be parallel toa. For finitet' , u is no longer constant alon
the orbits and there are some closed orbits as illustrate
Fig. 2~a!.

Quasiparticles at the Fermi surface determine the tra
port properties and we may identify two regions depend
on the degree of anisotropy. We introduce a parame
which is a measure of this anisotropy

d5
4t'
eF

. ~12!

If d.1, the Fermi surface is closed and the trajectory of
quasiparticles in momentum~and real! space follows closed
loops. While the system may have an anisotropic effec
mass, the qualitative features of transport will not be mu
modified from a typical three-dimensional metal. Ifd,1,
then we still have some closed orbits but there are now s
trajectories that extend across the Brillouin zone in thec

FIG. 2. The exact orbits over the Fermi surface withd52/3. ~a!
The quasiparticle moves along lines defined by the intersectio
the Fermi surface and planes perpendicular to the field direct
These orbits can be either open or closed and are describe
Jacobi elliptic functions.~b! We can label these orbits by a param
etera, the parameter of the Jacobi elliptic function. Here we illu
trate orbits wherea50.7, 0.9, 0.99, 1.01, 1.5, and 4. Ford<a
<1 the orbits are open. For 1<a,` the orbits are closed.
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direction@see Fig. 2~a!#. Only these orbits have been treate
in Sec. II ~and then only approximately!. We now aim for a
more complete analysis.

To consider the conductivity tensor we must solve t
Boltzmann equation. Rather than use the momentum com
nentskx , ky , andkz , in the presence of a magnetic field,
is more convenient to work in terms of a new coordina
systemkx , e, and t. Here t is the time taken to move alon
the momentum orbits defined by the equation of motion,
~4!. The advantage of this coordinate system is that the m
netic field is included implicitly and does not appear in t
Boltzmann equation. Within the relaxation-time approxim
tion, one may write the Boltzmann equation as4

]c

]t
1

c

t
5eEW •vW , ~13!

where the electron distribution function has been written
f 5 f (0)2c]e f (0). This first-order differential equation ma
be solved straightforwardly.

Substituting into Eq.~4! gives

dt52
m0\

eB

dkz

A2m0e2\2kx
214m0t'@cos~kzc!21#

,

~14!

52
Aa

vc

c

2

dkz

A12a sin2~kzc/2!
, ~15!

where

a5
8t'm0

2m0eF2\2kx
2 . ~16!

We have defined a new cyclotron frequency8

vc5
eBc

\
A2t'

m0
5

eB

Am0m'

5VcAd

4
, ~17!

the fastest rate at which quasiparticles perform closed orb
This is the natural scale for cyclotron motion perpendicu
to the plane. As might be anticipated from a Bohr quanti
tion picture, it also sets the scale for Landau-level quanti
tion and hence the quantum effects which signal the bre
down of quasiclassical transport theory. The variablea
labels each cyclotron orbit. It is bounded from below byd
and we will use it to substitute forpa :

\kx5A2m0e28t'm0 /a. ~18!

The orbits are open ford,a,1 and closed for 1,a,`.
It is very unusual that Eq.~15! is both integrableand its

solution is invertible so that a closed form expression for
orbits may be found. The solution can be written in terms
the Jacobian elliptic functions

kz~ t !52
2

c
JacobiAmplitudeFvct

Aa
,aG , ~19!

of
n.
by

-



tio
f
e

ric
ob
tic

n

th
s

e
el
bi

-
g
th
e

be

tr

by
vity

nd

(

alf-

l
re

ple
it

a
ll

10 782 PRB 62A. J. SCHOFIELD AND J. R. COOPER
vc~ t !52
2\

cm'

JacobiCNFvct

Aa
,aGJacobiSNFvct

Aa
,aG ,

~20!

vb~ t !5
2\

cAam'm0

JacobiDNFvct

Aa
,aG . ~21!

These equations exactly describe the quasiparticle’s mo
over the Fermi surface defined by Eq.~1! in the presence o
a magnetic field along thea direction. We have adopted th
notation of Mathematica9 and Abromowitz and Stegun10 in
using the parametera rather than the modulus,k5Aa, to
define these functions.

These periodic functions play the role of the trigonomet
functions that appear in the solution of the spherical pr
lem. To make this more explicit, we can map the ellip
functions when the parametera is greater than one~describ-
ing closed orbits! to those with a parameterb51/a less than
one 10. We may then write

vc~ t !52
2Ab\

cm'

JacobiDN@vct,b#JacobiSN@vct,b#,

~22!

lim
b→0

2
2\

c

Ab

m'

sin~vct !, ~23!

vb~ t !5
2\

c
A b

m'mi
JacobiCN@vct,b#, ~24!

5 lim
b→0

2\

c
A b

m'm0
cos~vct !. ~25!

The limiting case ofb→0 describes all of the orbits whe
the Fermi surface becomes spheroidal (d→`).

To compute the conductivities we use the solution of
Boltzmann equation@Eq. ~13!# and compute the current. Thi
gives the Chambers’ formula@Eq. ~3!# which may be written
as ~see Ref. 4!

j a5
2e2B

~2p\!3 E
2pa

0

pa
0

dpaE
0

T~pa!

dtE
2`

t

dt8

3va~ t !vb~ t8!Ebe~ t82t !/t. ~26!

This triple integral can be drastically simplified when w
recall that the orbits are all periodic and so have a w
defined Fourier series. The Fourier series for the Jaco
elliptic functions are all tabulated.11 This allows one to do
the integral overt8 and, using the orthogonality of the com
ponents of the Fourier series, one can also do the inte
over t. The algebra is somewhat tedious but the result is
the conductivity can be expressed as a rapidly converg
sum followed by a single integral overpa .

We will use the definition of the tensor conductivityj a
5sabEb with the magnetic field along thea direction. The
only nonzero components of the conductivity tensor will
saa , sbb , scc , and sbc52scb . There is no longitudinal
magnetoresistance for the dispersion of Eq.~1! so saa is
unaffected by the magnetic field and, by rotational symme
n

-

e

l-
an

ral
at
nt

y

in the ab plane, will be equal tosbb in the absence of a
magnetic field. We can simplify some of the expressions
introducing a number of parameters: a universal conducti
and the effective-mass ratio

s05
2e2t

c3m'

, r 5
m0

m'

. ~27!

For the exact solution of the conductivity tensor we fi
the following components:

saa5
s0

p3Ad
F4E

min~1,d!

1 K~a!Aa2d

a2 da

1E
0

min~1,d21!
K~b!A12bddbG , ~28!

sbb5
s0Ad

p F E
min~1,d!

1 118S1~a,vct/Aa!

K~a!Aa2d
da

18E
0

min~1,d21! S̃1~b,vct!

K~b!A12bd
dbG , ~29!

scc52prs0AdF4E
min~1,d!

1 S2~a,vct/Aa!

K~a!3a3Aa2d
da

1E
0

min~1,d21! S̃2~b,vct!

K~b!3A12bd
dbG . ~30!

The remaining Hall component is given simply by

sbc5
eBt

m0
scc . ~31!

In these expressions,K(a) is the elliptic integral and we
have defined the following sums that involve,q, the nome of
the elliptic integralq(a)5exp@2pK(12a)/K(a)#:

S1~a,x!5(
n

F q~a!n

11q~a!2nG2 1

11S npx

K~a! D
2 , ~32!

S2~a,x!5(
n

F nq~a!n

11q~a!2nG2 1

11S npx

K~a! D
2 . ~33!

The summations above are over the positive integersn

51,2,...,̀ ). The sumsS̃1 andS̃2 are the same asS1 andS2 ,
respectively, except they are summed over the positive h
integers (n51/2,3/2,5/2,...,̀ ).

Equations~28! to ~33! are the exact solution for electrica
transport within the relaxation-time approximation and a
valid for arbitrary values ofeF and t' . To make further
progress and to make contact with the result of the sim
calculation outlined previously, we need to work in the lim
of large anisotropy:d!1. In this limit, the dominant term in
the conductivity tensor comes fromscc @Eq. ~30!# and, in
particular the smalla range of the integral. It is therefore
good approximation to replace the integrand with its smaa
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PRB 62 10 783QUASILINEAR MAGNETORESISTANCE IN AN ALMOST . . .
limit @i.e., take only the first term in the sum, and letK(a)
→p/2#. Doing this gives the following approximate form fo
the conductance:

scc~B!;
s0r

2p2 arctanS A1/d21

A11~Vct!2D 1

A11~Vct!2
.

~34!

This result recovers the form of our approximate derivat
of the result@Eq. ~10!# but remains correct in the extrem
high-field limit. With 1/Ad@Vct@1 we can replace arcta
by p/2 and we have the linear magnetoresistance regim
before. However, the correct 1/B2 asymptote is recovere
whenVct@1/Ad.

This is a better approximation than our previous treatm
because we are giving an exact treatment of the lowest F
rier component of the open orbits. We are dividing the co
ductivity into a sum over quasiparticle orbits and now ea
of these becomes a Fourier series. The additive nature o
conductivity and the Fourier series means that each com
nent must contain the physics of the high-field asympto
limit as well as the linear intermediate field regime. We c
compare the role of higher-order Fourier components, wh
are neglected in deriving Eq.~34! by comparing with nu-
merical treatment of Eqs.~28! to ~33!. The dashed line in
Fig. 3 shows the magnetoresistance keeping only the low
order component~Eq. 34! for d51024. The deviation from

FIG. 3. A numerical treatment of the magnetoresistance for
bitrary fields and Fermi-surface topologies. These are comp
using the results of Eqs.~28! to ~33!. In the limit of d@1 the
magnetoresistance vanishes as expected in limit of a spher
Fermi surface. The previously known asymptotic regimes are
shaded@alwaysB2 at weak fields with a high-field asymptote that
B2 for open Fermi surfaces (d,1) or saturates for a closed Ferm
surface (d.1)#. The linear regime is heavily shaded while th
crossovers are lightly shaded. The dashed line shows the resul~for
d51024! from the lowest Fourier component of the open orb
@Eq. ~34!#. Adding a numerical factor based on the asymptotic lim
from all orbits @Eq. ~35!# is also shown for thisd but is indistin-
guishable from the numerical result. Note thatd,1022 for all three
bands of Sr2RuO4.
n
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-
h
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st-

the numerically exact result indicates where high-order co
ponents become important. However, since all of th
higher-order terms contribute to theB2 asymptote, they can
be taken into account by including an extra numerical fac
in Eq. ~34! so that the numerical and analytic results ma
in the high-field, smalld limit. This gives the following in-
terpolating expression:

Drc

rc
.

pA11~Vct!2

2 arctan@1/Ad10.0263d~Vct!2#
21, ~35!

where the factor of 0.0263 is obtained by summing all orb
numerically in the high-field and smalld limit. This function
is plotted in Fig. 3 but is virtually indistinguishable from th
numerical result. The appearance of a new region where
magnetoresistance is linear inB may clearly be seen~Fig. 3!
as the dispersion becomes more two dimensional.

For completeness we consider also the Hall resistiv
with current alongc and the Hall voltage being develope
along theb direction. We find

rH5
2sbc

sbbscc1sbc
2 .2

eBt

m0sbb
. ~36!

Thus there is no anomalous regime in the Hall resistiv
which remains linear at all magnetic fields and reflects
carrier concentration in the usual way.

IV. COMPARISON WITH EXPERIMENT

Sr2RuO4 is probably the best characterized tw
dimensional metal. The current experimentalc-axis
magnetoresistance7 clearly shows the linear magnetoresi
tance regime we have discussed@see Fig. 4#. We now discuss
what quantitative information we may determine from thi

Detailed de Haas van Alphen studies give a very cl

r-
d

al
-

t

FIG. 4. The transversec-axis magnetoresistance of Sr2RuO4

~data after Husseyet al. Ref. 7!. This clearly shows the linear re
gime we have predicted. The development of the regime at r
tively low values ofDrc /rc;0.2 as opposed to;1 is an indication
that more than one band with differing mean-free-paths are
volved in thec-axis conductivity. This is demonstrated by the fi
which includes a band with lowc-axis conductivity and short-
mean-free-path. This is consistent with the band structure~Ref. 12!
and the Hall coefficient~Ref. 13!.
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picture of the degree of warping of the Fermi-surfa
sheets.12 These are expressed as variations in the radiu
the Fermi surface in thexy plane as the Brillouin zone is
traversed along thez direction. To translate to our notatio
we note that

DkF

kF
.

2t'
eF

5
d

2
. ~37!

In general terms, in thec-axis dispersion can involve
cos(nkzc) wheren is an integer. Thus far we have consider
n51. Terms with n.1 increase thec-axis conductivity,
which depends on the square of thec-axis velocity (;n2).
Furthermore, there can also be an angular variation of
c-axis dispersion,t' , within the plane. This not only modi
fies the numerical prefactor in the conductivity but genera
means that thec-axis magnetoresistance becomes depend
on the orientation of the field within theab plane. This is
known to be important in the cuprate superconductors.14 Fi-
nally, for the particular case of Sr2RuO4, there are three
bands which give additive contributions to the total cond
tivity.

Because of the three bands and angular variation oft' , it
is misleading to use the formulas we have developed to
termine a quantitative measure of Fermi-surface anisotr
from the magnetoresistance. Indeed we have argued tha
magnetoresistance becomes universal for each band in
d→0 limit. Instead we can use the experiments as a prob
in-plane properties—the mean-free path.

To obtain a good fit to data while introducing a minimu
of free parameters, we consider

scc~B!5b11
b2

A11a1
2B2

. ~38!

This represents one fluid of electrons (b1) with a short
mean-free-path,l ! l B

2/c, and therefore insensitive to th
fields, and second (b2) with a much longer mean-free-pat
s
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@following Eq. ~10!#. The magnetoresistance depends only
b1 /b2;0.1 anda1;A0.04. This is consistent with de Haa
van Alphen measurements,12 which suggest that one Ferm
surface sheet,g, is considerably less dispersive in thec di-
rection than the other two. In addition, the assumption o
small mean-free-path on that sheet is also consistent with
Hall coefficient that remains strongly temperature depend
in the regime of this experiment.13 a1 may be related to the
mean-free-path usingl 05a1\/ec, which gives a value of
l 0;2000 Å at 3 K on the twosheets with the mostz-axis
dispersion. This is consistent with the observation of unc
ventional superconductivity in this sample at around 1 K.15

V. CONCLUSION

So to summarize: we have given an exact solution
electrical transport within a quasi-2D band structure. In d
ing so we find that the new dimensionless parameted
54t' /eF is important. This leads to a new region (Ad
&vct&1) in the magnetoresistance where thec-axis trans-
verse magnetoresistance is large (Drc /rc*1) and linear in
the applied field. An asymptotically exact expression for t
magnetoresistance has been obtained in the limit of smad,
i.e., the limit of weakly coupled 2D planes. This new regi
has been observed at low temperatures in the quasi-2D m
Sr2RuO4. For the overdoped thallium cuprate there are sig
that one is beyond the low-field regime at 11 Tesla.16
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