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Third-order renormalization group applied to the attractive one-dimensional Fermi gas

Paolo Carta*
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We consider a Callan-Symanzik and Wilson renormalization-group~RG! approach to the infrared problem
for interacting fermions in one dimension with backscattering. We compute the third-order~two-loop! approxi-
mation of theb function using both methods, and compare it with the well-known multiplicative Gell–Mann
Low approach. We point out a previously unnoticed strong instability of the third-order fixed point with respect
to an arbitrary dimensionless parameter, which suggests a RG flow toward a strong-coupling phase.
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I. INTRODUCTION

The problem of the one-dimensional Fermi-gas mode
a metallic conductor, in the low-energy approximation, h
been approached using three methods: conventional m
body techniques1 and, mainly, bosonization2–4 and
renormalization-group~RG! methods.5–10 In this paper we
will be concerned with the latter approach. A formulation
the Gell–Mann Low multiplicative RG for this problem wa
introduced in Ref. 5. The model considered was
g-ological model, which describes a weakly interacting on
dimensional fermion system with Tomonaga-type (g2 ,g4)
and backscattering (g1) interactions. Phonons are neglecte
That method provided a satisfactory understanding of
infrared behavior in the case of a weakrepulsive~effective!
interaction. A short list of the most relevant results in th
case may be the following~for extensive reviews see, e.g
Refs. 6 and 11!: ~i! the RG flows toward theLuttinger
liquid12 fixed point;13,14 ~ii ! there is a line of nontrivial fixed
points; and~iii ! in the infrared limit the system is not asymp
totically free, as in theFermi-liquid case, but is described b
anomalous exponents. These results also were recovere
rigorously proved in the case of a periodic potential using
Wilson RG.15

Things change considerably if we consider a weakattrac-
tive interaction. Since in this case there is not a second-o
~one-loop! finite fixed point, in Ref. 6 the computation of th
beta function was carried to third order~two loops!. The
authors found aO(1) third-order fixed point. This result, i
reliable, would be of extreme physical interest becaus
would signal a behavior completely different from th
Luttinger-liquid paradigm. One should expect the opening
a gap in the dispersion relations, while the Luttinger sp
trum is gapless, and an exponential decay of the correla
functions, while in the Luttinger case there is only a pow
law decay with increasing distance. The problem is,
course, how seriously one should take the very existenc
an attractive perturbative fixed point on the basis of the th
order result. The computation of the fourth-order~three-
loop! approximation of theb function was discussed in Refs
16–18. A smaller but stillO(1) fixed point was found.
Moreover only the first two terms of theb function are uni-
versal. The computation of the third term is useful provid
there is some evidence of a perturbatively tractable ph
PRB 620163-1829/2000/62~16!/10687~9!/$15.00
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interacting attractively. In this case a precise determinat
of the renormalized couplings would be important in co
puting the response functions.

It is useful to make a comparison with the results obtain
with the bosonization method. Withbosonizationit is meant
the bosonic representation of fermion field operators.19,20,4,3

This method is in some sense the inverse of the one use
solve exactly the Luttinger model,14 where bosonic degree
of freedom are expressed in terms of fermionic operato
Probably the most important result of the bosonization is
exact solution of the model with backscattering3 (g1 andg2

terms; see below! in the particular case whereg152 6
5 p.

Actually the decoupling between charge and spin degree
freedom, crucial for an exact solution, is open to question21

Moreover there are problems in the limiting procedu
employed,22 and the ladder operators restoring the corr
occupation numbers12 are not discussed.~A version of the
bosonization free from this problems was proposed.23 It
should be noted that this version does not deal with the c
cial backscattering interaction term: in Ref. 23 only the Lu
tinger model is considered.! Taking for granted the Luther
Emery solution,3 the RG method should fill the missin
information for value ofg1 in the neighborhood of the exac
solution. From the bosonized representation of the inter
tion it is not difficult to derive the third-order scalin
equations,3,24 and the response functions calculated in R
16 are in good agreement with the results of Ref. 3.

From these considerations one may be tempted to giv
heuristic meaning to the large but finite fixed point. In th
paper we want to show that this is not the case. The m
point is that even the sign of the third-order fixed point d
pends on small variations of a parameterg whose value can
be arbitrarily chosen, providedg.1. We will show this both
using the Gell–Mann Low~GML! and Wilson RG.

The paper is organized as follows. In Sec. II we brie
review the multiplicative GML approach. We explain why
is useful to check the results of this approach using ot
methods. Recasting the multiplicative procedure into discr
steps, instead of considering the usual Lie equation, we re
our main conclusion. In Sec. III we formulate a Calla
Symanzik~CS! approach to the problem, and compute theb
function in the two-loop approximation. The same compu
tion is proposed in Sec. IV, employing the Wilson RG in t
10 687 ©2000 The American Physical Society
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multiscale formulation.25,9 Finally in Sec. V we come to the
conclusions.

II. GELL –MANN LOW APPROACH

We briefly recall the GML multiplicative RG for one
dimensional interacting fermions. We will follow closel
Refs. 5 and 6, with the only difference that we find it co
venient to adopt a Euclidean formalism. We consider
g-ological model, defined as follows. The kinetic term
taken linear around the Fermi surface defined by the
points2kF andkF ,

H05 (
k,v,s

~vk2kF!ck,v,s
1 ck,v,s

2 ,

where ck,v,s
6 are creation and annihilation operators f

right-moving (v51) and left moving (v521) fermions
with momentumk and spins (s561/2). We choose units
such thatvF51 (vF is the velocity at the Fermi surface!. The
ultraviolet stability is imposed by bandwidth cutoffs: the m
menta are restricted to the intervals (vkF2kuv ,vkF1kuv)
for ck,v,s

6 . We defineE052kuv . The interaction Hamil-
tonian is

H int5
1

2L (
k,p,v,s,s8

~g1ids,s81g1'ds,2s8!ck1 ,v,s
1

3ck2 ,2v,s8
1 ck212kF1p,v,s8

2 ck1 ,22kF2p,2v,s
2

1
1

2L (
k,p,v,s,s8

~g2ids,s81g2'ds,2s8!ck1 ,v,s
1

3ck2 ,2v,s8
1 ck21p,2v,s8

2 ck12p,v,s
2

1
1

2L (
k,p,v,s,s8

~g4ids,s81g4'ds,2s8!

3~ck1 ,v,s
1 ck2 ,v,s8

1 ck21p,v,s8
2 ck12p,v,s

2 !. ~1!

L is the length of the line. The umklapp interaction term (g3)
is neglected, since it is important only in the half–filled ba
case, which will be excluded. Sinceg1i52g2i it is always
possible to takeg2'5g2i5g2, reducing the independen
couplings tog1i , g1' , andg2. For the sake of simplicity it
is possible to neglect,g4, at least as a first approximation; w
know from the Mattis model26 that g4 does not change th
essence of the problem.

In the Euclidean formalism the free propagator in mom
tum space is given by

Gv~k!5
1

2 ik01vk1
, ~2!

wherek0 is the energy,k1 the momentum~measured from
the Fermi surface!, k5(k0 ,k1), and v51(21) for right
~left! moving fermions. The renormalization procedure is
prescription that defines new couplings for a theory with
lowered UV cutoff E0. In the limit E0→0 we obtain the
renormalized couplings. IfGv

R is the interacting propagator
the d function is defined by the relation
e

o

-

a

Gv
R~k!5dS k1

kuv
,

k0

E0
DGv~k!.

The multiplicative constantsz and zi ( i 51i ,1',2) that re-
late d and the adimensional vertex functionsG̃ i for different
values of the cutoff are defined by

dS k1

kuv8
,

k0

E08
,g8D 5zS E08

E0
,gDdS k1

kuv
,

k0

E0
,gD

G̃ iS kj

kuv8
,
wj

E08
,g8D 5zi

21S E08

E0
,gD G̃ i S kj

kuv
,
wj

E0
,gD

gi85giz
22S E08

E0
,gD zi S E08

E0
,gD , ~3!

where E08,E0 is the lowered cutoff, andg and g8 denote
respective the old and new couplings, respectively. The
variant couplingsgi

R are defined by

gi
RS E

E0
,gD5giz

22S E

E0
,gD zi S E

E0
,gD .

gi
R are invariant in the sense that

gi
RS E

E08
,g8D 5gi

RS E

E0
,gD . ~4!

The couplingsgi8 for the theory with UV cutoffE08 are de-
fined by

gi85gi
RS E08

E0
,gD . ~5!

A differential equation forgi
R is readily derived, and is the

standard Lie equation,

d

dx
gi

R~x,g!5
1

x

d

dj
gi

R@j,gR~x,g!#j51 ,

where x5E08/E0. We are interested in the scaling limitx
→0. The two-loop results are

dg1i
R

dx
5

1

x F 1

p
g1'

R21
1

2p2
g1i

R g1'
R2G ,

dg1'
R

dx
5

1

x F 1

p
g1i

R g1'
R 1

1

4p2
~g1i

R2g1'
R 1g1'

R3!G , ~6!

dg2
R

dx
5

1

x F 1

2p
g1'

R21
1

4p2
g1i

R g1'
R2G .

For spin independent interaction (g1i5g1'5g1) the non-
trivial fixed point is found forg1

!522p.
We now want to recover this result iterating by discre

steps the procedure that defines the new couplings when
cutoff is lowered: we aim to study the dependence on
scaling parameter. Letg.1. In proper units we putE0
5g0 and gi ,05gi(E0) for i 51i ,1',2. gi ,21 is defined as
@see Eq.~5!#
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gi ,215gi
RS g21

g0
,gj ,0D 5gi

RS g21

E0
,gD ,

whereg(0)5g(E0)5g. The procedure is iterated in the fo
lowing way: for n,0, we define

gi ,n215gi
RS gn21

gn
,gj ,nD , i 51i ,1',2.

From Eqs. ~4! and ~5! we have thatgi ,n for n521,
22 . . . are the couplings corresponding to the cutoff
quence$gn%:

gi
RS gn21

gn
,gj ,nD 5gi

RS gn21

g0
,gj ,0D 5gi~gn21!.

In the limit n→2`, we obtain the renormalized coupling
We have

g1i ,n215g1i ,n2
g1',n

2

p
ln g1

1

p2
g1i ,ng1',n

2 S ln2 g2
1

2
ln g D

g1',n215g1',n2
1

p
g1',ng1i ,n ln g

1
1

2p2
~g1i ,n

2 g1',n1g1',n
3 !S ln2 g2

1

2
ln g D

g2,n215g2,n2
1

2p
g1',n

2 ln g

1
1

2p2
g1i ,ng1',n

2 S ln2 g2
1

2
ln g D . ~7!

It is easily checked that in the limitg→11 Eqs. ~6! are
recovered. In general the fixed point depends ong ~let us
remember that it is a third-order fixed point!. For gÞAe, if
g1i5g1'5g1, we have

g1
!5

p

~ ln g21/2!
. ~8!

When g→1 we obtain the previous resultg1
!522p. Lie

equations~6! should not be fundamental, and we find n
reason to use the continuous RG instead of its discrete
sion. The dependence ong will be discussed in Sec. V.

As a final comment on this method, we note that Eqs.~3!
rely on neglecting small contributions that would not allo
one to set multiplicative relations where thez factors do not
depend on the external momenta. For example, in the cas
the one-loop approximation of the four-point vertex functio
proportional to

2
1

2p
lnS k0

E0
D1

1

4p
lnS 11

k0
2

E0
2D

(k0 is the external energy; see Fig. 1!, the second term is
neglected. This is to say that the vertex functions can
divided into scaling terms and ‘‘not scaling’’ terms. The fir
-

r-

of
,

e

were taken into account while the second were not discus
in Refs. 5 and 6. For this reason we find useful to check E
~6! using other methods.

III. CALLAN-SYMANZIK APPROACH

Within the framework of the multiplicative RG, it is no
difficult to formulate a Callan-Symanzik approach for o
problem. We follow a common procedure: first we renorm
ize the theory in the UV with a fixed~renormalized! IR cut-
off m; then we compute the beta function and study the
behavior for m→0. This approach, devised for a fiel
theory, in our case may be considered unnecessary. Ne
theless we consider it a way to support the GML result.

The IR regularized free propagator is defined by insert
a bare massm0 in propagator~2!,

Gv~k,m0
2!5

ik01vk1

k21m0
2

,

wherek25k0
21k1

2 and againv51(21) for right ~left! mov-
ing fermions. We know that the Luttinger model with a loc
interaction is not renormalizable in the UV27 ~this is also
seen from the exact solution14!. In order to impose the UV
stability we choose a nonlocal interaction whose stren
decreases with increasing distance. The interaction Ha
tonian of the model is

H int5 (
v,s5s8

E d2x d2ycx,v,s
1 cy,2v,s8

1 V1i~x2y!

3cy,v,s8
2 cx,2v,s

2 1 (
v,sÞs8

E d2x d2ycx,v,s
1 cy,2v,s8

1

3V1'~x2y!cy,v,s8
2 cx,2v,s

2

1 (
v,s,s8

E d2x d2ycx,v,s
1 cy,2v,s8

1 V2~x2y!

3cy,2v,s8
2 cx,v,s

2 1 (
v,sÞs8

E d2x d2y

3cx,v,s
1 cy,v,s8

1 V4~x2y!cy,v,s8
2 cx,v,s

2 ,

where cx,v,s
6 are the fermion field operators in coordina

space. The potentialsVi may be chosen, for instance, as

Vi~x!5
gi

4
p e2pux1ud~x0!, i 51i ,1',2,4, ~9!

FIG. 1. One-loop diagram contributing to the four-point vert
function. The full ~dashed! lines represent right~left! moving fer-
mions. The value of the graph is proportional
2(1/2p)ln(k0 /E0)1(1/4p)ln@11(k0

2/E0
2)#.
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wherep.0 is fixed;x0 andx1 are the time and space coo
dinates. In momentum space the model is the same as
~1!, with the only difference that the bandwidth cutoffs a
replaced by the nonlocal couplings

gi→gi

p2

k1
21p2

,

wherek1 is the exchanged momentum in the given inter
tion vertex andp is introduced in Eq.~9!. In the limit p
→` we recover the local couplings of Eq.~1!.

Fermion loops are logarithmically divergent. The theo
is regularized introducing a cutoffL by the means of the
standard Schwinger parametrization:

1

k21m0
2

5E
0

`

da e2a(k21m0
2)→E

L22

`

da e2a(k21m0
2).

In order to renormalize the theory we find it convenient
follow the scheme for the local (p5`) case, even if whenp
is finite we make more subtractions than strictly necessar
is a simple exercise of standard power counting to find
superficial degree of divergenceD for the n-point vertex
functions in the local case:

D~Gn!522
n

2
.

We renormalize the couplings (gi→gi
R), the mass (m0

→m) and the wave function (c6→c6R). The multiplica-
tive constantZ is formally introduced by the relationc6

5Z1/2c6R. Let Gn
R be the renormalized propern-point vertex

functions. The relation between bare and renormalized
tex functions is

Gn~q,m0 ,g,L!5Z2n/2Gn
R~q,m,gR!, ~10!

whereq denotes then21 independent external momenta
Gn , andg5$g1i ,g1' ,g2 ,g4%. Of courseGn are functions of
the spin andv indices attached to the external fields. F
simplicity we have not indicated this explicitly in Eq.~10!.
For the four-point functions the different possible cases
labeled by a single indexi 51i ,1',2,4. It should be noted
that whileG4,i do not depend on the value ofv, G2 does, so
we need anv label for this vertex function. It proves usefu
to introduce the reduced two-point vertex functionĜ2(k):

Ĝ2~k!5~ ik01vk1!G2,v~k!. ~11!

In the local caseĜ2(k) does not depend onv. In the nonlo-
cal case the nonvanishing terms in the infrared limit will
v independent, so we will neglect thev dependence o
Ĝ2(k). The normalization conditions, which definegi

R , m,
and the finite part~zero-loop term! of Z, are

G4,i
R ~0!5gi

R, ~12a!

Ĝ2
R~0!5m2, ~12b!

1

2k0

]

]k0
Ĝ2

R~k!U
k5(0,0)

51. ~12c!
q.

-

It
e

r-

r

e

The CS equations are derived considering insertions of
erators related to the derivatives of the vertex functions w
respect to the IR cutoffm0. To this end we introduce the
operatorO:

O~z!5(
v,s

E d2x

2p

cx,v,s
1 cz,v,s

2

x02z02 iv~x12z1!
.

The corresponding source term in the action has the fo
*d2x v(x)O(x) with @v#52. In momentum space the oper
tor O is

Õ~q!5(
v,s

E d2k

~2p!2

ck1q,v,s
1 ck,v,s

2

@ i ~k01q0!1v~k11q1!#
,

whereck,v,s are the field operators in momentum space, a
q is the external momentum of the insertedÕ operators.
WhenO is inserted into a vertex functionGn , the value ofD
for Gn,O is

D~Gn,O!522
n

2
1~@O#22!52

n

2
.

The previous relation means that no new UV divergen
appear due toO insertions~we do not considerG0,O . We
remember that the vertex functions with insertions are
fined as usual by the Legendre transformation on the fi
source only and not on the source of the inserted operato!.
Since O does not introduce new divergences, we haveO
5ZOR. The insertion ofs operatorO in a vertex functionGn
will be denoted withGn,s . In analogy with Eq.~11! we de-
fine Ĝ2,s(q,k) andĜ2,s

R (q,k), wherek denotes thes external

momenta of thes insertedÕ operators. Equation~10! gener-
alizes into

Gn,s~q,k,m0 ,g,L!5Z2n/2ZsGn,s
R ~q,k,m,gR!. ~13!

It is easily deduced that

]

]m0
2
Gn~q!5Gn,1~q,0!, ~14!

where the insertion ofÕ on the right-hand side is made a
zero momentum, as indicated. From Eqs.~13!, ~14!, and
~11!, we have

Ĝ2,1
R ~0!51,

m25Zm0
2 , ~15!

where the second relation follows fromĜ2
R(0)5ZĜ2(0).

From Eq.~14! we have

m
]

]m
Gn~q,m0 ,g,L!U

g,L

5m
]m0

2

]m
U

g,L

Gn,1~q,0,m0 ,g,L!.

~16!

From Eqs.~16! and ~13!, with the definitions

g15
1

Z
m

]Z

]mU
g,L

,
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b i5m
]gi

R

]m
U

g,L

(g1, defined in the previous equations should not be c
fused with the RG rescaling factorg), we obtain

S m
]

]m
1(

i
b i~gR!

]

]gi
R

2
n

2
g1D Gn

R~q,m,gR!

5ZS m
]m0

2

]m
U

g0 ,L
D Gn,1

R ~q,0,m,gR!. ~17!

It is easy to eliminate any reference to the bare theory. F
Eq. ~17!, written for n52, we have

S m
]

]m
1(

i
b i~gR!

]

]gi
R

2g1D Ĝ2
R~q,m,gR!

5ZS m
]m0

2

]m
U

g0 ,L
D Ĝ2,1

R ~q,0,m,gR!.

From Eqs.~12b! and the first of Eqs.~15!, we conclude

ZS m
]m0

2

]m
U

g0 ,L
D 5~22g1!m2,

so that Eq.~17! can be written as

S m
]

]m
1(

i
b i~gR!

]

]gi
R

2
n

2
g1D Gn

R~q,m,gR!

5~22g1!m2Gn,1
R ~q,0,m,gR!.

The generalization of Eq.~17! to the case ofs insertions is
immediate:

Fm
]

]m
1(

i
b i~gR!

]

]gi
R

1S 2
n

2
1sDg1GGn,s

R ~q,k,m,gR!

5~22g1!m2Gn,s11
R ~q,k,0,m,gR!.

Having set the general definitions and relations of the
approach we can proceed. We will limit ourselves to t
computation of theb function, which is our problem. The
normalization conditions~12! fix the zero-loop terms in the
loopwise expansion ofgi , m0, andZ:

gi
R5gi

(0) ,

m25m0
2(0) ,

Z(0)51.

One-loop calculations are easily done. Of coursem0
2(1)50

andZ(1)50. This implies that up to one loopg150 „that is,
g15O(g2)…. It is convenient to write the results for the co
plings in terms ofg4 , g1' , g2 and g̃[g22g1i . We find
-

m

S
e

g1'
(1)52

1

p
@ ln m2~ ln n21 ln p21!#g1'

R g2
R

1
1

p F ln m2S ln 21 ln p2
1

2D Gg1'
R g̃R2

1

2p
g1'

R g4
R ,

g2
(1)52

1

2p
@ ln m2~ ln 21 ln p21!#g1'

R2

g̃(1)5
1

2p F ln m2 ln L1
1

2
~11C1 ln 2!Gg1'

R2 ,

g4
(1)52

1

4p
g1'

R2 , ~18!

whereC is the Euler constant. In Eq.~18! we note the pres-
ence of p. However simply on the basis of dimension
analysis we can exclude thatp will appear in the final result.
Two-loop calculations are tedious, and we will omit the d
tails. We calculate only the singular terms inm since we do
not plan to go beyond the two-loop approximation. We
port the results forZ andg1' :

Z(2)5
1

23p2
ln m~g1'

R21g1i
R212g2

R222g1i
R g2

R!, ~19!

g1'
(2)5

1

2p2
@ ln2 m22 lnm~ ln 21 ln p21!#g1'

R g2
R2

1H 1

2p2
ln m2

1

p2 F ln2 m22 lnmS ln 21 ln p2
3

4D G J
3g1'

R g2
Rg̃R1

1

2p2
ln m g1'

R g2
Rg4

R2
1

2p2
ln m g1'

R g̃Rg4
R

1
1

2p2 F ln2 m22 lnmS ln 21 ln p2
3

4D Gg1'
R3

1
1

2p2 F ln2 m22 lnmS ln 21 ln p2
1

2D Gg1'
R g̃R2

2
1

22p2
ln m~g1'

R21g1i
R212g2

R222g1i
R g2

R!. ~20!

From Eqs.~20! and~18! we deriveb1'
(2)(gR). The final result

is

b1'~gR!5
1

p
g1i

R g1'
R 1

1

4p2
~g1i

R2g1'
R 1g1'

R3!1O~g4!.

~21!

It can be noted thatp does not appear in Eq.~21!, as ex-
pected. A crucial use in deriving Eq.~21! is made of Eq.
~19!, which is responsible for the cancellations expec
from the exact solutions of the Luttinger and Matt
models,13,14,26and for the anomalous behavior of the theo
Of course the anomalous exponenth5g1(g!) derived from
Eq. ~19! when 0,g1!1 is in agreement with the exact so
lution of the Luttinger model, whereg150 andg450.
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Equation~21! is the same as Eq.~6! for theg1' coupling.
For g2 andg1i the same conclusion holds: theb function of
the GML method is recovered. The present CS approa
admittedly too involved, has perhaps the only value in t
no use is made of approximate multiplicative relations.

IV. WILSON APPROACH

The multiscale formulation of the Wilson RG~Ref. 25! is
particularly well suited to study the running of the couplin
constants by discrete steps. The application of this metho
interacting one-dimensional fermionic systems started w
Refs. 8 and 10, and was thoroughly developed and applie
various problems.28–31 Here we give a short and simplifie
account of the method, and refer to the cited papers for
details.

In the coordinate space the free propagatorGv(x) for v
particles~againv561 andvF51) is

Gv~x!5
1

~2p!2E dk0 dk1

e2 i (k0x01k1x1)

2 ik01vk1
.

Actually it is not necessary to start with a kinetic term li
earized around the Fermi surface: the RG can deal with
alistic quadratic dispersion relations.8 This simplification is,
however, inessential for our purposes. Letp be an arbitrary
momentum scale which, for instance, may be chosen equ
the inverse of the range of the potential. The propagato
decomposed in the sum

Gv~x!5 (
h52`

1

Gv
(h)~x!,

with

Gv
(1)~x!5

1

~2p!2E dk e2 ikx
12e2p22(k0

2
1k1

2)

2 ik01vk1
,

Gv
(h)~x!5

1

~2p!2E dk
e2 ikx

2 ik01vk1

3@e2p22g22h(k0
2
1k1

2)2e2p22g22h12(k0
2
1k1

2)#,

~22!

whereh<0, g.1 andkx5k0x01k1x1. This decomposition
divides the UV from the IR singularity of the propagato
Gv

(1) is singular in the UV while(h52`
0 Gv

(h)5Gv
IR is singu-

lar in the IR. It is important to note thatGv
(h)(x), the propa-

gator on scaleh, for h<0 has an UV and an IR cutoff
Gv

(h)(x) is essentially different from 0 only forx;g2h (k
;gh in momentum space!.

One imagines that this decomposition stems from a si
lar decomposition of the fields,

cx,v,s
6 5 (

h52`

1

cx,v,s
6(h) ,

such that the pairings in the Grassmannian Wick rule are
h,
t

to
h
to

e

e-

to
is

i-

E P~dcv
(h)!cx,v,s

1(h) cy,v8,s8
2(h8) [^cx,v,s

1(h) cy,v8,s8
2(h8) &

[dv,v8ds,s8dh,h8Gv
h ~x2y!.

We are interested in studying the IR effective potentialV(0)

arising from the integration of the UV componentcv
(1) from

the effective potentialVeff(w) defined by

e2Veff(w)5
1

NE P~dc!e2V(c1w),

whereN is a normalization constant andV is the interaction
potential. The ultraviolet integration was actually perform
for the spinless model.10 In the following we start directly
with V(0).

The core of this method consists of a procedure that,
tegrating out fields from higher to lowerscales h(h→
2`), constructs a well-defined dynamical system of runn
coupling constantsgh , whose iteration map is theb func-
tional. The operatorsL and R512L are introduced.R is
the usual renormalization operator of the BPHZ scheme
action on a given vertexG, in momentum space for instanc
is given byR(G)5G2tG(G), wheretG denotes the Taylor
series with respect to the external momenta ofG up to order
D(G), if D(G) is theG superficial degree of divergence. O
courseL(G)5tG(G).

The couplingsgh on a given scaleh are defined by an
inductive scheme. Let us assume we have constructed
effective potentialV(h)(cv

(<h) ,gh11 , . . . ,g0) on scale h,
where cv

(<h)5(n<hcv
(n) and gh11 , . . . ,g0 are the previ-

ously defined couplings on scalesh11, . . . ,0. Wedefine

V̄(h)~cv
(<h) ,gh![LV(h)~cv

(<h) ,gh11 , . . . ,g0!.

The previous relation introduces thegh and relates them to
the gh11 , . . . ,g0 through the beta functionalBh : gh
5gh111Bh(gh11 , . . . ,g0). The effective potentialV(h21)

on scaleh21 is defined by

e2V(h21)(c(<h21))

[
1

N8
E P~dc (h)!e2LV(h)(c(<h))2RV(h)(c(<h)). ~23!

Of courseV(h21)5V(h21)(cv
(<h21) ,gh , . . . ,g0). The pro-

cedure is then iterated. The starting point is given by
couplingsg0 of LV(0). The final goal is to find a region in
the space of parametersg0 where each initial value generate
a trajectory gh5gh111Bh(gh11 , . . . ,g0) such that the
Schwinger functions are analytical ingh .

Unfortunately this scheme in our problem requires em
dation. From the second-order result it becomes clear thaah
andzh grow too quickly independently on the initial cond
tions. The point is that we know that the interacting prop
gator has an anomalous behavior: asymptotically for la
distances it decays faster than the free propagator. The w
function renormalization necessary to cure this problem
accomplished by an inductive procedure that redefines
by step the free measure of the functional integral and
couplings by the means of a sequence of parametersZh with
h50,21, . . . . Let us assume we have introduce
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Zh ,Zh11 , . . . ,Z0 and applied our procedure integrating o
the scales from 0 toh11 (h,0). We obtain an effective
potentialṼ(<h) @different fromV(<h), defined by Eq.~23!#.
We denote byPZh

(cv
(h)), PZh

(cv
(<h21)), and P̃Zh

(cv
(h)) the

free measures with propagators, respective
Gv

(h)/Zh , Gv
(<h21)/Zh , and G̃v

(h)/Zh , where the last one is
the modified propagator on scaleh and Gv

(<h21)

5( i<h21Gv
( i ) . V̂(h21) is defined by

E PZh
~dcv

(<h21)!e2V̂(h21)(AZhcv
(<h21))

5E PZh
~dcv

(<h21)!P̃Zh
~dcv

(h)!e2Ṽ(<h)(AZhcv
(<h)). ~24!

V̂(h21)(Zh
1/2c (<h21)) has the form

V̂(<h21)~Zh
1/2cv

(<h21)!

5~L1R!V̂(<h21)~Zh
1/2cv

(<h21)!

5ZhH nh21(
v,s

E d2k

~2p!2
ck,v,s

(<h21)1ck,v,s
(<h21)2

1zh21(
v,s

E d2k

~2p!2
ck,v,s

(<h21)1~2 ik0!ck,v,s
(<h21)2

1ah21(
v,s

E d2k

~2p!2
ck,v,s

(<h21)1~vk1!ck,v,s
(<h21)2J

1••• .

Now we add and subtract fromV̂(h21) the term
}Zhzh21ck,v,s

1(<h21)(vk1)ck,v,s
2(<h21) and insert the term

}Zhzh21ck,v,s
1(<h21)(2 ik01vk1)ck,v,s

2(<h21) in the free mea-
sure. LetPZh

8 (cv
(<h21)) be the measure changed this wa

We defineZh215Zh(11zh21), and write

E PZh
~dcv

(<h21)!e2V̂(h21)(AZhcv
(<h21))

5E PZh
8 ~dcv

(<h21)!e2V8(h21)(AZhcv
(<h21)) ~25!

5E PZh21
~dcv

(<h22)!P̃Zh21
~dcv

(h21)!

3e2V8(h21)(AZhcv
(<h21)) ~26!

5E PZh21
~dcv

(<h22)!P̃Zh21
~dcv

(h21)!

3e2Ṽ(h21)(AZh21cv
(<h21)). ~27!

In Eq. ~25! V8(h21) is obtained fromV̂(h21) dropping the
zh21 term and substitutingah212zh21 for ah21. In Eq.
~26! P̃Zh21

(dcv
(h21)) is the free measure with propagat

G̃v
(h21)/Zh21 defined such that the remaining part of the fr

measure is exactlyPZh21
(dcv

(<h22)). Finally Eq. ~27! de-
,

.

fines Ṽ(h21), and the right-hand side has the same struct
as the right-hand side of Eq.~24!, so the procedure may b
reiterated. The starting points areZ051 and G̃v

(0)5Gv
(0) .

The relations between the couplings
LV̂(<h21)(cv

(<h21)), gi ,h218 ( i 51,2,4), ah21 and zh21,

and the couplings ofLṼ(<h21)(cv
(<h21)), gi ,h21 anddh21,

are easily found:

dh215
Zh

Zh21
~ah212zh21!,

gi ,h215S Zh

Zh21
D 2

gi ,h218 , i 51,2,4.

Of coursezh21 is no longer present inṼ(<h21)(cv
(<h21)),

but Zh21 is introduced. The replacementah→dh drastically
improves the convergence properties in the limith→2`.

Now we have the full recipe to proceed. Needless to s
a crucial use of the linked cluster theorem will be made. F
brevity only the calculation for theg1 coupling is sketched
~we takeg1'5g1i5g1).

Let Ci , j denote the loop of Fig. 2,

Ci , j5Ci 2 j5E d2k

~2p!2
Gv

( i )~k!G2v
( j ) ~k!, ~28!

wherei , j <0, andGv
( i ) is the propagator in momentum spa

on scalei. It is immediate to verify that the right-hand side o
Eq. ~28! does not depend onv nor on the scalep @see Eq.
~22!#, and that it is a function only of the differencei 2 j . In
particularCi ,i5C0 , i<0. The second-order calculation fo
g1 gives

g1,h215g1,h1
1

2
KS Ch,hg1,h

2 12 (
h, j <0

Ch, jg1,j
2 D . ~29!

K is a combinatorial factor:K54. The previous relations
give the second-order approximation for theb functional.
Since we are interested in theb function, in Eq. ~29! we
write g1,j for j .h as functions ofg1,h . This inversion gen-
erates a correction to the higher orders, in particular to
third order. We have@up to O(g1

4) terms#

g1,h215g1,h1
1

2
KS Ch,h12 (

h, j <0
Ch, j Dg1,h

2 2K2 (
h, i<0

Ch,i

3S (
h, j < i

Cj , j12 (
h,k< i

(
k, j <0

Ck, j Dg1,h
3 . ~30!

Using Eq.~22! for Gv
(h) , we find

FIG. 2. One-loop contribution definingCi , j . k is the internal
momentum. The two propagators are on scalesi and j.
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Ch,h12 (
h, j <0

Ch, j5
1

2p
@1 ln g2 ln~11g222h!

1 ln~11g22h!#

52
1

2p
ln g1O~g2h!. ~31!

From Eqs.~30! and~31! we obtain the second-orderdiscrete
b function, up tog2h terms~let us remember thatg.1, and
that we are interested in theh→2` limit !:

g1,h215g1,h2
ln g

p
g1,h

2 1O~g3!.

The second line of Eq.~30! gives the corrections to the third
order result. We find

(
h, i<0

Ch,i S (
h, j < i

Cj , j12 (
h,k< i

(
k, j <0

Ck, j D
5

1

2p (
h, i<0

Ch,i@2 ln~11g2i !1~ i 2h!ln g#,

where the right-hand side is easily calculated:

U (
h, i<0

Ch,i ln~11g2i !U<Agh (
h, i<0

1, ~32!

(
h, i<0

~ i 2h!Ch,i5
ln 2

4p
. ~33!

A is a constant. We neglect the right-hand side of Eq.~32!.
Equation~33! is also derived neglecting terms exponentia
vanishing withh. Putting all together we find a correctionc
to the third order given by

c52
2 ln 2 lng

p2
g1,h

3 .

The computation of the third order is tedious. We will lim
ourselves to note that exists a contribution} ln 2 lng of two-
loop diagrams that cancels exactlyc. This is important be-
cause there is no such term in Eqs.~6!, ~7!, or ~21!. It comes
from the diagramsD1 andD2 of Fig. 3, which are related by
D1522D2. We will consider the simplerD1. The contri-
butions toD1 given by

FIG. 3. Two-loop graphs contributing to theb function: D1

diagrams~a! and D2 ~b! give a simply related contribution:D15
22D2.
(
h, i<0

Ch,h2Ch,i1 (
h, i<0

(
h, j , i

2Ch,i2Ch, j

1 (
h, i<0

(
h, j ,k,1

Ch,i2Cj ,k

1 (
h, i<0

(
h, j , i

(
h,k< j

2Ch, j2Ck,i

amount to

1

~2p!2
ln 2 lng2

1

2p (
h, i ,0

2Ci ,h ln~11g2i !. ~34!

The second term of Eq.~34! can be neglected as for Eq.~32!,
and the first term gives the desired cancellation~taking into
account the combinatorial factors!. The final result is the
same as Eqs.~7! or ~21!, with g1i

5g1'5g1. Again we find

the fixed pointg1
! of Eq. ~8!, and we recover Eqs.~6! in the

limit g→1.

V. CONCLUSIONS

We have computed the third-order~two-loop! approxima-
tion of theb function for a one-dimensional model of inte
acting fermions, aiming in particular at studying the case
attractive interaction. An existing result,6,7 derived making
use of tacitly assumed approximations, pointed out aO(1)
fixed point. We tried to support this conclusion setting
Callan–Symanzik approach and using the Wilson RG form
lated as in Refs. 25, 8, and 10. In each case we recovere
aforementioned result.

An attempt to pursue further the examination of the pro
lem was made in Refs. 16–18, where the fourth-order
proximation, which is by no means universal, was comput
We propose a different approach focused on the study of
dependence ong, the rescaling factor of the RG group.
similar idea was discussed in Ref. 32, where the depende
of the fixed points on the parameters of the RG was a
lyzed. Our simple idea is that the stability of the result w
respect tog should indicate how reliable one should consid
the perturbative result. It was expected that a third-order
sult would be dependent ong, but we found too strong a
dependence: the fixed point happens to change signg
.Ae, which is still ;1 ~of course takingg@1 and, at the
same time, truncating at the third order would be questi
able!. Nothing similar happens to the nontrivial fixed poin
for repulsive interaction$g1

!50,g2
!%, which are in some

sense insensitive to the value ofg.
Which conclusions can be drawn? It is useful to comp

the one-dimensional interacting Fermi gas with the we
known Kondo problem. It can be noted that the scaling eq
tion for g1 ~Fermi gas! and the one for the impurity coupling
l ~Kondo model! have the same structure~see, e.g., Ref. 33
for a review in the modern language of conformal fie
theory!. The Kondo effect was thoroughly investigated. T
ferromagnetic case corresponds to a Fermi gas with repul
interaction (g1.0): the RG flow is such thatl→0. If the
coupling is antiferromagnetic the system flows toward
strong coupling phase (l→`).34 Moreover the infrared di-
vergences induce a scale, the Kondo temperatureTK , char-
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acterizing the low-energy physics.
In our case the particular instability of the perturbativ

result with respect tog, a dimensionless parameter without
physical meaning, should indicate that the RG flow do
not actually stop at a finite value, and suggests a co
clusion similar to the previous one. In our case the char
teristic scale should be a gapD for the spin degrees of
freedom, whose expression, according to Ref. 35, sho
have for small coupling an expression of the typeD
}Ag1 exp(21/g1).
a

s
-
-
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