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Third-order renormalization group applied to the attractive one-dimensional Fermi gas
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We consider a Callan-Symanzik and Wilson renormalization-g&®@) approach to the infrared problem
for interacting fermions in one dimension with backscattering. We compute the third{braeloop approxi-
mation of theg function using both methods, and compare it with the well-known multiplicative Gell-Mann
Low approach. We point out a previously unnoticed strong instability of the third-order fixed point with respect
to an arbitrary dimensionless parameter, which suggests a RG flow toward a strong-coupling phase.

I. INTRODUCTION interacting attractively. In this case a precise determination
of the renormalized couplings would be important in com-
The problem of the one-dimensional Fermi-gas model ofputing the response functions.

a metallic conductor, in the low-energy approximation, has It is useful to make a comparison with the results obtained
been approached using three methods: conventional manwith the bosonization method. Witliosonizatiorit is meant
body techniqués and, mainly, bosonizatidn® and the bosonic representation of fermion field operatdfd:*3
renormalization-grougRG) methods: ™ In this paper we This method is in some sense the inverse of the one used to
will be concerned with the latter approach. A formulation of solve exacﬂy the Luttinger modé‘l,where bosonic degrees
the Gell-Mann Low multiplicative RG for this problem was of freedom are expressed in terms of fermionic operators.
introduced in Ref. 5. The model considered was theéprohaply the most important result of the bosonization is the
g.-ologic.al modelvyhich describe.s a weakly interacting one- oyact solution of the model with backscattefr{g, andg,
dimensional fermion system with Tomonaga-tym.0.)  terms; see belowin the particular case wherg, = — 1.
and backscatteringgg) interactions. Phonons are neglected.Actua”y the decoupling between charge and spin degrees of
j’hat method proyided a satisfactory undgrstanding of th(?reedom, crucial for an exact solution, is open to questions.
infrared behavior in the case of a weadpulsive(effective Moreover there are problems in the limiting procedure

interaction. A short list of the most relevant results in thisem loved? and the ladder operators restorina the correct
case may be the followingfor extensive reviews see, e.g., P yt' ' T ¢ g dA g f th
Refs. 6 and 1t (i) the RG flows toward the_uttinger occupation NUMDETS are not discussedA version of the

d bosonization free from this problems was proposedt

liquid*? fixed point***4(ii) there is a line of nontrivial fixe _ , '
points; andiii ) in the infrared limit the system is not asymp- should be noted that this version does not deal with the cru-

totically free, as in théeermi-liquid case, but is described by Cial backscattering interaction term: in Ref. 23 only the Lut-
anomalous exponents. These results also were recovered alif¢ger model is consideredTaking for granted the Luther-
rigorously proved in the case of a periodic potential using theEmery solutior?, the RG method should fill the missing
Wilson RG® information for value ofg, in the neighborhood of the exact
Things change considerably if we consider a watikac- ~ solution. From the bosonized representation of the interac-
tive interaction. Since in this case there is not a second-orddion it is not difficult to derive the third-order scaling
(one-loop finite fixed point, in Ref. 6 the computation of the equations;?* and the response functions calculated in Ref.
beta function was carried to third ordétwo loops. The 16 are in good agreement with the results of Ref. 3.
authors found @(1) third-order fixed point. This result, if From these considerations one may be tempted to give a
reliable, would be of extreme physical interest because iheuristic meaning to the large but finite fixed point. In this
would signal a behavior completely different from the paper we want to show that this is not the case. The main
Luttinger-liquid paradigm. One should expect the opening ofpoint is that even the sign of the third-order fixed point de-
a gap in the dispersion relations, while the Luttinger specpends on small variations of a paramejewhose value can
trum is gapless, and an exponential decay of the correlatiobe arbitrarily chosen, provideg>1. We will show this both
functions, while in the Luttinger case there is only a power-using the Gell-Mann LowGML) and Wilson RG.
law decay with increasing distance. The problem is, of The paper is organized as follows. In Sec. Il we briefly
course, how seriously one should take the very existence akview the multiplicative GML approach. We explain why it
an attractive perturbative fixed point on the basis of the thirdis useful to check the results of this approach using other
order result. The computation of the fourth-ordghree- methods. Recasting the multiplicative procedure into discrete
loop) approximation of the3 function was discussed in Refs. steps, instead of considering the usual Lie equation, we reach
16-18. A smaller but stillO(1) fixed point was found. our main conclusion. In Sec. Ill we formulate a Callan-
Moreover only the first two terms of the function are uni-  Symanzik(CS) approach to the problem, and compute ghe
versal. The computation of the third term is useful providedfunction in the two-loop approximation. The same computa-
there is some evidence of a perturbatively tractable phasgon is proposed in Sec. IV, employing the Wilson RG in the
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multiscale formulatiorf>° Finally in Sec. V we come to the . ky ko
conclusions. G, (k)y=d O E. G, (k).
uv 0
Il. GELL —MANN LOW APPROACH The multiplicative constantg andz (i=1|,1L,2) that re-

) o late d and the adimensional vertex functioﬁsfor different
We briefly recall the GML multiplicative RG for one- ,51ues of the cutoff are defined by

dimensional interacting fermions. We will follow closely
Refs. 5 and 6, with the only difference that we find it con- ( ky ko ) (E(’) ) k; Ko
d g'|=z d( )

venient to adopt a Euclidean formalism. We consider the — = 99 g9
g-ological model, defined as follows. The kinetic term is kiv Eo 0 uw =0
taken linear around the Fermi surface defined by the two )
points —kg andkg, T Kowp :z.—1<E g)~_(ﬁ wj g)
i By w7 B ke B’
HOZKE (wk_kF)(//I:r,w,(rdllz,w,rr' E/ E/
7 PR T B Y
gi gIZ (ang)ZI(ang)a (3)

where ¢, , are creation and annihilation operators for

right-moving (@w=1) and left moving =—1) fermions  where E/<E, is the lowered cutoff, angj andg’ denote
with momentumk and spino (o= *1/2). We choose units respective the old and new couplings, respectively. The in-
suchthabve=1 (v is the velocity at the Fermi surfacefhe  yariant couplinggR are defined by
ultraviolet stability is imposed by bandwidth cutoffs: the mo-

L, E E

=0iz E_o’g Zi E_O’g :

menta are restricted to the intervalekr —k,, , wkg +K,) | E
gl are invariant in the sense that

for ¢y, . We defineEy=2k,,. The interaction Hamil- 9l g,
tonian is

1
Hi=5— 2 (01800 + 911 00— o) ¥h 0o E
o2l k,p,w,0,0 ! g|R E!g, :g::e
0

+ _ _
X l//kz,fw,a" l//k2+2k|:+ p,w,o’ wkl,*ZKF*p,*w,a

E

The couplingsg; for the theory with UV cutoffE; are de-
1 . fined by
+ Z 2 (92\\50',0’+92J_ 50’,—0")¢k1,w,0' ,
K,p,w,0,0" EO
’ R
9i =g (E_o’g

+ - - - )
X l//kz,fw,a" l//k2+ p,—w,o’ l//klfp,w,o
1 A differential equation forg{q is readily derived, and is the
+ o0 > (941800 Ga1 O, o) standard Lie equation,
k,p,w,0,0"
d

R _1 d R R
Xy 0,0y 0,0 Vi 0,0 Py pronc)- (1) ax 9 %9 =5 Gz 91697 (X 0)]e=1,

L is the length of the line. The umklapp interaction tegg)(  Where x=Ey/Eo. We are interested in the scaling limit
is neglected, since it is important only in the half—filled band—0. The two-loop results are
case, which will be excluded. Singg=—gy it is always

possible to takeg,, =g, =9d,, reducing the independent di:FLszl EngJr_gR g2
couplings togy, g1, , andg,. For the sake of simplicity it dx x|z o 295
is possible to neglecy,, at least as a first approximation; we

know from the Mattis modéf that g, does not change the dgf, 1[1

essence of the problem.

1
gi\gﬁﬁﬁ(gifg?ﬁg?f 1 (6)

In the Euclidean formalism the free propagator in momen- dx x|
tum space is given by &
dgz 1)1 R2 1 R \R2
6. (k)= 1 . XX Egli—i_ﬁglﬂglL .
@ _|k0+ (l)kly

For spin independent interactiomy,(=g4, =g,) the non-
wherek, is the energyk; the momentum(measured from trivial fixed point is found forg; = — 2.
the Fermi surface k=(kq,k;), and w=1(—1) for right We now want to recover this result iterating by discrete
(left) moving fermions. The renormalization procedure is asteps the procedure that defines the new couplings when the
prescription that defines new couplings for a theory with acutoff is lowered: we aim to study the dependence on the
lowered UV cutoffEg. In the limit E,—0 we obtain the scaling parameter. Ley>1. In proper units we pugE,
renormalized couplings. I6? is the interacting propagator, =+° and gi0=0i(Eo) for i=1|,1L,2. g; _ is defined as
the d function is defined by the relation [see Eq.(5)]
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-1 -1

<

Rl Y R
9i,-1=0i 50 9j.0 E, g

|

wheregoy=9(Eq) =g. The procedure is iterated in the fol-
lowing way: forn<0, we define

n—1
gi,nl:giR(_n’gj,n)a i=1||,1J_,2.
From Egs.(4) and (5) we have thatg; , for n=-1,
—2 ... are the couplings corresponding to the cutoff se
quence{y"}:

(7

71gj,n

n—1 n—1

o

_O-gj,o):gi(')’n_l)-

ar

In the limit n— —oo, we obtain the renormalized couplings.
We have
2
911 n
a

1

2

1
2
91f,n-1= Gy n— —_—INy+ —Zgl,ngu,n( In? y—>In 7)
ar

1
911 .n-17911 n— ;glj_,nglll,n Iny

+i( 2 +03, )| In? “lin
22 91,0910 7911 n Y=y

1 2
Jon-1=92n— EglL,n Iny

1 ) 5 1
+2—7T291H,n9n,n In®y=3Iny|. (7)
It is easily checked that in the limiy—1" Egs. (6) are
recovered. In general the fixed point dependsjofiet us
remember that it is a third-order fixed poinEor y# Je, if
91)=91, =01, We have

T
*

91=(ny—172" ®)

When y—1 we obtain the previous resulfj = —2m. Lie
equations(6) should not be fundamental, and we find no

reason to use the continuous RG instead of its discrete ver-

sion. The dependence onwill be discussed in Sec. V.

As a final comment on this method, we note that Egs.
rely on neglecting small contributions that would not allow
one to set multiplicative relations where théactors do not
depend on the external momenta. For example, in the case
the one-loop approximation of the four-point vertex function,
proportional to

(ko is the external energy; see Fig), the second term is

1I . k3
+— + —
e E2

0

neglected. This is to say that the vertex functions can be

divided into scaling terms and “not scaling” terms. The first

THIRD-ORDER RENORMALIZATION GROUP APPLIP . ..

10 689

kr; $ko . —kr;3ko

—kp;—3ko <7 kr; Lko

FIG. 1. One-loop diagram contributing to the four-point vertex
function. The full (dashedl lines represent righfieft) moving fer-
mions. The value of the graph is proportional

— (1/2m) In(ky /Eg) + (1/4m) In[ 1+ (K/ED) .

to

‘were taken into account while the second were not discussed

in Refs. 5 and 6. For this reason we find useful to check Egs.
(6) using other methods.

IIl. CALLAN-SYMANZIK APPROACH

Within the framework of the multiplicative RG, it is not
difficult to formulate a Callan-Symanzik approach for our
problem. We follow a common procedure: first we renormal-
ize the theory in the UV with a fixetenormalizedl IR cut-
off m; then we compute the beta function and study the IR
behavior for m—0. This approach, devised for a field
theory, in our case may be considered unnecessary. Never-
theless we consider it a way to support the GML result.

The IR regularized free propagator is defined by inserting
a bare massg in propagaton(2),

o kot wky

Culkoms k2+ms

wherek?=k3+ k3 and againw=1(— 1) for right (left) mov-

ing fermions. We know that the Luttinger model with a local
interaction is not renormalizable in the G¥(this is also
seen from the exact solutih. In order to impose the UV
stability we choose a nonlocal interaction whose strength
decreases with increasing distance. The interaction Hamil-
tonian of the model is

Hom 3 [ a5y oty Vax-y)

w,0=0

+

Xty oo Vot 2 dX YW oty oo

!
w,0F 0

XV (X=Vy o - 0.0

£ 3 [ axdyig,,

w,0,0

+

by o V2(X—Y)

of - -
Xy o Vet > d?x d?y

w,0# 0’

+

X w;w,gwyywyg—’v4(x_y) w;w’g’d/):,w,a"
where z,lxxtw are the fermion field operators in coordinate

space. The potentialé; may be chosen, for instance, as

Vio=gpeilong), i=11.24, O
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wherep>0 is fixed;x, andx, are the time and space coor- The CS equations are derived considering insertions of op-
dinates. In momentum space the model is the same as Egrators related to the derivatives of the vertex functions with
(1), with the only difference that the bandwidth cutoffs arerespect to the IR cutoffm,. To this end we introduce the

replaced by the nonlocal couplings operatorO:
2 d2X ¢+€l) o’lp_w g
gi_’gizp—z' o= 2m X —zX’—’iw(z;( —7 )
k1+ p w,0 0 0 1 1

wherek; is the exchanged momentum in the given interac-Thze corresponding source term in the action has the form
tion vertex andp is introduced in Eq(9). In the limit p  JdXv(x)O(x) with [v]=2. In momentum space the opera-

— o we recover the local couplings of E(). torOis
Fermion loops are logarithmically divergent. The theory ) N _
is regularized introducing a cutofk by the means of the B(@=> dk Vit q.0.0¥k, 0.0
standard Schwinger parametrization: oo J (2m)2 [i(Kot o)+ w(ky+01)] '
1 wherey, , , are the field operators in momentum space, and

* 2, 2 * 2, 2
:fo dae @M A_Zdae ollrmo), q is the external momentum of the insert&d operators.
WhenO is inserted into a vertex functian, , the value oD
In order to renormalize the theory we find it convenient tofor I';, o is
follow the scheme for the locap= ) case, even if whep
is finite we make more subtractions than strictly necessary. It D(T, o)=2— n +([0]-2)=— n
is a simple exercise of standard power counting to find the n,o 2 2’
superficial degree of divergend2 for the n-point vertex
functions in the local case:

2 m2
k“+mg

The previous relation means that no new UV divergences
appear due td insertions(we do not considel’ 5. We
n remember that the vertex functions with insertions are de-
D(I'y=2- 7 fined as usual by the Legendre transformation on the field
source only and not on the source of the inserted opejators
We renormalize the couplingsg(—gF), the mass ifi,  Since O does not introduce new divergences, we hé&ve
—m) and the wave function™— ~%). The multiplica- =ZOR. The insertion of operatorO in a vertex functior”,
tive constantZ is formally introduced by the relatiog™  Will be denoted withl';, 5. In analogy with Eq(11) we de-
=ZY2y*R LetI'} be the renormalized properpoint vertex  fine I',5(q,k) and['54(q,k), wherek denotes thes external

functions. The relation between bare and renormalized vermomenta of thes insertedO operators. Equatiofl.0) gener-
tex functions is alizes into

[n(d,mo,g,A)=Z" " f(q,m,g"), (10 Tns(ak,mg,g,A)=Z""2Z°T 7 (q,k,m,g®). (13

whereq denotes then—1 independent external momenta of |; j5 easily deduced that

Iy, andg={9y),91, ,92,94}. Of coursel', are functions of

the spin andw indices attached to the external fields. For 9

simplicity we have not indicated this explicitly in E¢LO). —I'n(@)=T1,1(9,0), (14
For the four-point functions the different possible cases are Jmy

labeled by a single indek=1|,1L,2,4. It should be noted
that whileI',; do not depend on the value of, I', does, so
we need anw label for this vertex function. It proves useful

to introduce the reduced two-point vertex functibp(k):

where the insertion 0® on the right-hand side is made at
zero momentum, as indicated. From Eq§3), (14), and
(11), we have

.
[ 5(k) = (iko+ 0k T 5,4 (K). (11) I50)=1,

A _ 2
In the local casd’,(k) does not depend o@. In the nonlo- m?=Znmg, (19
cal case the nonvanishing terms in the infrared limit will be
o independent, so we will neglect the dependence of

['»(k). The normalization conditions, which defirg&, m,

where the second relation follows frofix(0)=ZI",(0).
From Eq.(14) we have

and the finite partzero-loop term of Z, are 9 m2
m——T'h(q,mp,g,A)|  =m——  T4(q,0mg,g,A).
5 0=df, (129 Im on  “Mlga
(16)
I'5(0)=m?, (12b  From Egs.(16) and(13), with the definitions
L I'%(k) 1 (129 L2
-1 - 2 = . C ')/1:_m_ y
2kq ko k=(0,0) Z Jm oA
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agf 1) 1 R R
’Bi:ma_m guz—;[lnm—(lnn2+ln p—1)]91, 95
g,A
(1, defined in the previous equations should not be con- _,_E Inm— In2+|np—£) gR GR— igR gR
fused with the RG rescaling factgr), we obtain 7T 2) |7 2 LT

J Jd n
( m(?_m+2i Bi(gR)E— 57’1) I'R(q,m,gf)

1
08)=— o—[Inm—(In2+Inp—1)]g?

1 1
ﬂmg = _ 4+ (1+C+ R2
:Z(ma_m TR .(q,0m,gR). 17) 9 =5 Inm—InA 2(1 C+In2) 917,
9o.A
1
It is easy to eliminate any reference to the bare theory. From g&l)= - 4—91Rf, (18
T

Eq. (17), written forn=2, we have

14 d A
Mo+ 2 Bi(gR)ER— 71> 3(a.m.g®)

, oma
= m—
Jam

) fg,l(QaO,m,gR)-
9o, A

From Egs.(12b) and the first of Eqs(15), we conclude

, oma
m Jam

) :(2_ yl)mza
9o A

so that Eq(17) can be written as

J 1% n
R (AR _ R R
m&m+2i Bi(g )é’g,R 271>Fn(qrm:g )

=(2—- Vl)mzrﬁ,l(q,O,m,gR)-

whereC is the Euler constant. In E¢18) we note the pres-
ence ofp. However simply on the basis of dimensional
analysis we can exclude thatwill appear in the final result.
Two-loop calculations are tedious, and we will omit the de-
tails. We calculate only the singular termsrnnsince we do
not plan to go beyond the two-loop approximation. We re-
port the results foZ andg., :

1
2(2)223_772'” m(g5; + o5 +205°-29595), (19

1
g(LzL):F[mZm—z|nm(|n2+ln|0—1)]@J§192R2
a
+ ! | ! In>m—2Inm| In2+1 >
2_772nm —~ n“m=2Inm{In2+inp- 7

1 1 -
X g, g5gR+ Soinm oF 9595 — Soinm AR

The generalization of Eq17) to the case of insertions is 1 3
immediate: +——|In?m—=2Inm(In2+Inp— —) g?f
272 4
Jd Jd n
- (R | — = R R 1 1 ~
mam+zi Ai(g ),9gR+( 7 ts)ri|Ths(akmgr) +—|In®m=2Inm|In2+Inp— —) g gR?
! 27? 2
:(2_‘yl)mzrﬁ,s+l(q!kvoimng)-
—iln m(gf2+ g+ 2982 —2gR gf) (20)
Having set the general definitions and relations of the CS 22,2 R 2 g2/

approach we can proceed. We will limit ourselves to the

computation of theg function, which is our problem. The From Egs(20) and(18) we derive{?(g"). The final result
normalization condition$12) fix the zero-loop terms in the 1S

loopwise expansion of;, my, andZ:

1 1
B (gF)= ;gi\gi +ﬁ(gifgi +g5%)+0(g%.

9'=9/",
(21)
o It can be noted thap does not appear in Eq21), as ex-
pected. A crucial use in deriving E@21) is made of Eq.
z2©=1, (19), which is responsible for the cancellations expected

) _ 1) from the exact solutions of the Luttinger and Mattis
One-loop calculations are easily done. Of coursg"’=0  modelst31425and for the anomalous behavior of the theory.
andZ(l)ZO. This Implles that Up to one |OO]2)1=O (that IS, Of course the anoma'ous expone’ﬁ: »yl(g*) derived from

y1=0(g?)). Itis convenient to write the results for the cou- Eq. (19) when 0<g;<1 is in agreement with the exact so-

plings in terms ofg,, g1, , 9 and"gjzgz—glu. We find lution of the Luttinger model, wherg,;=0 andg,=0.
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Equation(21) is the same as E6) for theg;, coupling.

h’' h’
For g, andgy the same conclusion holds: tifefunction of P(dy{)) g (7, yEo L=, yEu 2

the GML method is recovered. The present CS approach,

admittedly too involved, has perhaps the only value in that an,w,ag,o,ah,h,eg(x—y).

no use is made of approximate multiplicative relations. . . . .
P P We are interested in studying the IR effective poterid&)

arising from the integration of the UV componeng) from

IV. WILSON APPROACH the effective potential/«(¢) defined by

The multiscale formulation of the Wilson R®ef. 25 is 1
particularly well suited to study the running of the coupling e Verl(®) = _f P(dy)e Ve,
constants by discrete steps. The application of this method to N
interacting one-dimensional fermionic systems started withy are A
Refs. 8 and 10, and was thoroughly developed and applied Qqential. The ultraviolet integration was actually performed

; 8-31 ; Al
various problem$?™*! Here we give a short and simplified 5 the spinless modéf. In the following we start directly
account of the method, and refer to the cited papers for thﬁnth V().

details.
In the coordinate space the free propag#&qQyx) for w
particles(againo=*1 andvg=1) is

is a normalization constant andis the interaction

The core of this method consists of a procedure that, in-
tegrating out fields from higher to lowescales tth—
—), constructs a well-defined dynamical system of running
coupling constantg);,, whose iteration map is thg func-
tional. The operatorC and R=1—L are introducedR is

—iko+ wky the usual renormalization operator of the BPHZ scheme: its

action on a given verteK, in momentum space for instance,

Actually it is not necessary to start with a kinetic term lin- is given by R(I') = —t"(I"), wheret" denotes the Taylor
earized around the Fermi surface: the RG can deal with reseries with respect to the external momentd’afp to order
alistic quadratic dispersion relatiofidhis simplification is, D(I'), if D(I') is thel" superficial degree of divergence. Of
however, inessential for our purposes. lpebe an arbitrary Courseﬁ(I‘)=tF(I‘).

momentum scale which, for instance, may be chosen equal to The couplingsg, on a given scalé are defined by an
the inverse of the range of the potential. The propagator ighductive scheme. Let us assume we have constructed the
decomposed in the sum effective potential V™V (4(=" g,.1,....go) on scaleh,
where y=M=3__ 4" and g,,1,....go are the previ-
ously defined couplings on scalbs-1, ... ,0. Wedefine

—|(k0x0+ kqx1)

G, (x)=

1
G,(x)= > GM(x),
h=—o N /( < =
VIO gy=cvO (D 90,0, L 00)-

with The previous relation introduces tlgg and relates them to

22 the gn.1,-...do through the beta functionaB: gy

" 1 i lmeP otk =0n+1+Bn(Gns1, - - . o). The effective potentiav(~1)

G, ()= 2m? dke i Tk, on scaleh—1 is defined by
e_v(h—l)(w(sh—l))
—ikx
D)= 2J dk_-E T ok 1 (M) =My — RV (=)

(2m) 1Ko+ wKy EA_ﬂf P(dy(M)ye £V ) -RVIB(WTY) (23)

x[eP 2y PG kD) _gmp 2y PN Gk
' Of courseV(""D=yh-Dyl=h=1) o = " g0). The pro-
(22) cedure is then iterated. The starting point is given by the
whereh=<0, y>1 andkx=kgyXq+k;X;. This decomposition choupllngsgofof LV, Thegmal goarll _ls_t_o Iflnoll aregion in
divides the UV from the IR singularity of the propagator: t etspacte 0 par_ameteingBW ere each initial va Eet%le?etrﬁtes
GM is singular in the UV whiles®___GM =GR is singu- & TAECtOyY Gn=0n. 1+ Bn(Gn+1, . . ..o) such that the

. o Schwinger functions are analytical @y, .
lar in the IR. It is important to note th& " (x), the propa- ; . .
@ ' Unfortunately this scheme in our problem requires emen-
gator on scaleh, for h<0 has an UV and an IR cutoff: y P q

GM(x) is essentially different from 0 only fax~~" (k dation. From the second-order result it becomes cleardthat
o A y y Y and ¢, grow too quickly independently on the initial condi-
~ 7 in momentum spage tions. The point is that we know that the interacting propa-
One imagines that this decomposition stems from a S'm'gator has an anomalous behavior: asymptotically for large
lar decomposition of the fields, distances it decays faster than the free propagator. The wave-
function renormalization necessary to cure this problem is
E +(h) accomplished by an inductive procedure that redefines step
"/’X , 0_ Voo by step the free measure of the functional integral and the
couplings by the means of a sequence of paramé&tevsith
such that the pairings in the Grassmannian Wick rule are h=0,—1,.... Let us assume we have introduced
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Zy,Zni1, - .- Zo and applied our procedure integrating out . G (k) -
the scales from 0 tdv+1 (h<<0). We obtain an effective . .
potential V(=P [different from V(=P defined by Eq(23)]. Cij= S 4

We denote by, (¢), P, (¢4""Y), andP,, (4) the C;j?k)

free measures with propagators, respectively,
fo)/Zh, foh_l)/zh, and éff)/Zh, where the last one is FIG. 2. One-loop contribution definin@i'j_. k ig the internal
the modified propagator on scalér and G(=h-1) momentum. The two propagators are on scalasd].

=32h-1GY . V("1 is defined b -
'=h-1% y finesV("~1), and the right-hand side has the same structure

1 - geg=heD) as the right-hand side of EqR4), so the procedure may be
f Pz, (dyT"D)e v WAL ) reiterated. The starting points a=1 and G(¥=G(").
The relations between the couplings of
ZJ 2 (g B, (dy)e V02 Zil™ ey LVEMTISTY), gl (1=124), a5 1 and gy,
and the couplings of V(=""1(y4(=""Yy g, 1 and &, 4,
V(=1 (ZY2y(<h-1)) has the form are easily found:

S(=h—1), 512, ,(<h—1)
Ve Nz ) 5h—1—z d (Ah-1—2Zp-1),

— (£+ R)\A/(gh_l)(zﬁlzl//&fh_l))

Zp
d?k <h— <h-1)— Oih-1= ( ) Oin-1, =124
2 i3 [ e |z 9
Of course{,_; is no longer present (="~ (y{="=1)y,
e 2 PEN=DF () gt =h-1- _but Zy_4 is introduced. The replacgme_mg—> 5h_ drastically
h-1 (2 )2 Mo 0/ ko0 improves the convergence properties in the limit —oo.
Now we have the full recipe to proceed. Needless to say,
d%k -1 (<h 1)- a crucial use of the linked cluster theorem will be made. For
+an- 12 (27)?2 Wwo (0K, brevity only the calculation for thg, coupling is sketched
(we takeg;, =g;=01).
N Let C; ; denote the loop of Fig. 2,
Now we add and subtract fromV(" 1) the term d? . ‘
“Zplno1 S N wky) i 5PV and insert the  term Cii=Cij f 5 ZGS)(k)G(_’)w(k), (28
o Znln 1t o (1’r$—1|)k +wk1) G S0 in the free mea- m)
sure. LetPz (4, ) be the measure changed this way. herei,j<0, andG'! is the propagator in momentum space
We defmeZh 1=Zn(1+¢h-1), and write on scald. Itis |mmed|ate to verify that the right-hand side of
Eq. (28) does not depend om nor on the scale [see Eq.
J’ P, (d¢(<h D)e —V-D)( Zpyl=h-D)) (22)], and that it is a function only of the difference j. In
particularC; j=Cgp, i<0. The second-order calculation for
) 0, gives
<h_ r(h— =— (=h—1
=f Py, (dyhM)e V' " V) (25

1

O1p-1=01pT EK Ch,hgih+2h§<0 Ch,jg%,j . (29
= | Pz, (duT )Py (A

f -1 2,4 9Y K is a combinatorial factorK=4. The previous relations
give the second-order approximation for tefunctional
Since we are interested in th@ function in Eq. (29 we
write g, for j>h as functions ofy,,. This inversion gen-

=} duSh-2Vp duyh—D erates a correction to the higher orders, in particular to the

2, (AP, (dytY) _ i
third order. We havé¢up to O(g;) termg

_y'(h= 1)( V/Z_hl//(mgh_ 1))

xe (26)

o V=D Zrgul =)

(27)

In Eq. (25 V'(""1 is obtained fromV("~1) dropping the
{n_1 term and substitutingy,_1—¢p_1 for an_4. In Eq.
(26) P;,_ (dy{)™Y) is the free measure with propagator X

O1p-1=01pt ZK

J\

Chnt2 E< Ch,j)gih_wh;<O Ch,i

> Cjit2 zock,j)gih- (30)

=(h—1) . L. h<j=i h<ksi k<j=
G,, IZ,_1 defined such that the remaining part of the free

measure is exactlPz,  (dy{=""?). Finally Eq.(27) de-  Using Eq.(22) for G, we find
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FIG. 3. Two-loop graphs contributing to the function: D,
diagrams(a) and D, (b) give a simply related contributiorD ;=
—2D,.

1
Chnt2 2 Cpj=o—[+Iny—In(1+y?"2"
’ hsj<o ° 27

+In(1+y2M]

—— iy 0y (31)
27 '

From Egs.(30) and(31) we obtain the second-orddiscrete
B function, up toy?" terms(let us remember thag>1, and
that we are interested in the— — o limit):

Iny
O1p-1=091p— 79§,h+ 0(g?).

The second line of Eq30) gives the corrections to the third-
order result. We find

z Ch,i(
h<i=O0

1

>

h<j<i

=i k<j=0

=57 2 Cail=In(1+y") +(i=h)ny],

where the right-hand side is easily calculated:

2 Chiln(1+y?)| <Ay X 1, (32)
h<i<O0 h<i<O0
i—h)C In2 (33)
i— =—
h<i<0( UL

A is a constant. We neglect the right-hand side of €@).

Equation(33) is also derived neglecting terms exponentially

vanishing withh. Putting all together we find a correcti@n
to the third order given by

2In2Iny ,

Oih-
2 '

CcC=

The computation of the third order is tedious. We will limit
ourselves to note that exists a contributmm 2 Iny of two-
loop diagrams that cancels exacty This is important be-
cause there is no such term in E¢®), (7), or (21). It comes
from the diagram®, andD, of Fig. 3, which are related by
D,;=—-2D,. We will consider the simpleD,. The contri-
butions toD, given by
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>

- 4 Ch,izcj,k
h<i=0 h<j,k<1

+ > >, 2Cp;2Cy;

h<i<O0 h<j<i h<ksj

amount to

>

h<i<

In2Iny—

(2m)? 2 0 2C; pIn(1+ Y. (39

The second term of E§34) can be neglected as for E§2),
and the first term gives the desired cancellafi@king into
account the combinatorial factgrsThe final result is the
same as Eqg7) or (21), with 91, =91 =01 Again we find

the fixed pointgy of Eq. (8), and we recover Eqs$6) in the
limit y—1.

V. CONCLUSIONS

We have computed the third-ord@wo-loop approxima-
tion of the 8 function for a one-dimensional model of inter-
acting fermions, aiming in particular at studying the case of
attractive interaction. An existing res(lif, derived making
use of tacitly assumed approximations, pointed o@(4)
fixed point. We tried to support this conclusion setting a
Callan—Symanzik approach and using the Wilson RG formu-
lated as in Refs. 25, 8, and 10. In each case we recovered the
aforementioned result.

An attempt to pursue further the examination of the prob-
lem was made in Refs. 16—18, where the fourth-order ap-
proximation, which is by no means universal, was computed.
We propose a different approach focused on the study of the
dependence or, the rescaling factor of the RG group. A
similar idea was discussed in Ref. 32, where the dependence
of the fixed points on the parameters of the RG was ana-
lyzed. Our simple idea is that the stability of the result with
respect toy should indicate how reliable one should consider
the perturbative result. It was expected that a third-order re-
sult would be dependent of, but we found too strong a
dependence: the fixed point happens to change sign if
>\/5, which is still ~1 (of course takingy>1 and, at the
same time, truncating at the third order would be question-
ablg. Nothing similar happens to the nontrivial fixed points
for repulsive interaction{g;=0,g5}, which are in some
sense insensitive to the value of

Which conclusions can be drawn? It is useful to compare
the one-dimensional interacting Fermi gas with the well-
known Kondo problem. It can be noted that the scaling equa-
tion for g, (Fermi gas and the one for the impurity coupling
N\ (Kondo model have the same structu(see, e.g., Ref. 33
for a review in the modern language of conformal field
theory). The Kondo effect was thoroughly investigated. The
ferromagnetic case corresponds to a Fermi gas with repulsive
interaction ¢,>0): the RG flow is such that—0. If the
coupling is antiferromagnetic the system flows toward a
strong coupling phase\(—=).3* Moreover the infrared di-
vergences induce a scale, the Kondo temperalyrechar-
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acterizing the low-energy physics. ACKNOWLEDGMENTS
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