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Thermokinetic approach of the generalized Landau-Lifshitz-Gilbert equation
with spin-polarized current

J.-E. Wegrowe*
Institut de Physique Expe´rimentale, Ecole Polytechnique Fe´dérale de Lausanne, CH-1015 Lausanne, Switzerland

~Received 22 July 1999; revised manuscript received 5 November 1999!

In order to describe the recently observed effect of current induced magnetization reversal in magnetic
nanostructures, the thermokinetic theory is applied to a metallic ferromagnet in contact with a reservoir of
spin-polarized conduction electrons. The spin-flip relaxation of the conduction electrons is described thermo-
dynamically as a chemical reaction. In the two-current approximation, the diffusion equation of the chemical
potential, the giant magnetoresistance at the interface, and the usual Landau-Lifshitz-Gilbert~LLG! equation is
obtained from the entropy variation in the absence of current. The description of the conservation laws,
including spin dependent scattering and spin injection, leads to the derivation of a generalized LLG equation.
The equation is applied to the measurements obtained on single magnetic Ni nanowires.
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An unexpected and spectacular effect due to spin po
ization of conduction electrons in metallic ferromagnets,
giant magnetoresistance~GMR!, appeared with transpor
studies on magnetic nanostructures.1 The spin-diffusion
length of conduction electrons being of some few tens of n
the relaxation of the conduction electron spins becomes
servable when the magnetization can be controlled over
typical length. Some predictions about the inverse effe
namely the influence of spin-polarized current on the dyna
ics of the magnetization, were also proposed. Berger
dicted the existence of some surprising phenomena du
the action of spin-polarized conduction electrons on dom
walls2 or spin waves3 in magnetic thin films. Slonczewsk
predicted the rotation of the magnetization due to polari
current in multilayered systems,4 and Bazaliy, Jones, an
Zhang derived from microscopic considerations a gene
ized Landau-Lifshitz-Gilbert equation.5 All the above-
mentioned approaches are microscopic and based on the
listic approximation.

From an experimental point of view, Freitas and Berg
Hung and Berger,6 and Salhi and Berger7 show the action of
a high current density on domain walls in thin films. Rece
experiments on nanostructured samples bring interesting
dence for the interpretation in terms of the action of the s
of the conduction electrons. Tsoiet al.8 show an effect of a
high current density on spin-wave generation in Co/Cu m
tilayers, Sun reported on current-driven magnetic switch
in manganite,9 and Myerset al. reported an effect of curren
induced switching in magnetic multilayer device.10 In a re-
cent work, we have evidenced an effect of current indu
magnetization reversal in magnetic nanowires,11,12where the
reversal of the magnetization is induced by a high curren
an applied field 20% smaller than the normal reversal fie
The ballistic approximation is, however, difficult to justify i
all these experiments.

A phenomenological approach based on the thermokin
theory13,14 of a metallic ferromagnet in contact with a rese
voir of spin-polarized conduction electrons is proposed.
contrast to the pioneering works of Johnson and Silsbee15 on
spin-polarized current, the spin-flip scattering is introduc
here as a chemical reaction. This formulation allows the c
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servation laws of the spin polarized conduction electrons
the ferromagnetic order parameter to be treated~Sec. I!. This
phenomenological approach models the different effects a
to take place in the system by a set of coupled transp
equations~Sec. II!. The differential equation of the chemica
potential is derived leading to the known formula of th
GMR ~Sec. III!. For a closed ferromagnetic system witho
electric current, the common Landau-Lifshitz-Gilbert equ
tion is derived~Sec. IV!. The open system with both ferro
magnetization and spin polarized conduction electrons le
to the description of the generalized Landau-Lifshitz-Gilb
equation with polarized current~Sec. V!. The consequence
in terms of current induced magnetization reversal are
duced. The model is applied on the data obtained on
nanowires.

I. CONSERVATION LAWS

Spin dependent transport processes in layered struct
are described on the basis of the following simple pictu
After entering in thekth layerSk, the incident current~which
was spin polarized along the axis described by the unit v
tor 6uW k21 in the layerSk21) first aligns16 along the axis
6uW k ~see Fig. 1!. Inside the ferromagnetic layer, the popul
tion of spin up (N1) and spin down (N2) is then not con-
served due to spin-flip scattering, and some of the do
spins relax to the up direction.

In this picture, the states of the subsystemSk are de-
scribed by the variables

~Sk,MW k,N1
k ,N2

k ,MẆ 0
k!, ~1!

whereSk is the entropy,MW k5MkuW k is the magnetization, and
N6

k are the number of conduction electrons with spin para

to the unit vector6uW k .
If MW k andN6

k are independent variables, the conservat
of the magnetic momentum reads
1067 ©2000 The American Physical Society
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dMW k

dt
5MẆ 0

k1gmB~Ṅ1
k 2Ṅ2

k !uW k21 , ~2!

wheremB is the Bohr magneton andg is the Lande´ factor.
In order to write the conservation laws, the spin-flip sc

tering mechanism is described as a chemical reaction tr
forming a spin down into a spin up along the axis6uW k . In

this context, the reaction rateĊk is introduced as the numbe
of chemical events per unit of time.17,18 Let I 1

k→k11 and
I 2

k→k11 be the current of particles flowing from the layerSk

to the layerSk11 due, respectively, to the electrons with sp
in the directionuW k and to the electrons with spin in the d
rection 2uW k . The conservation of the particles is then d
scribed by

dN1
k

dt
5a~k21;k!I 1

k21→k1@12a~k21;k!#I 2
k21→k

2I 1
k→k112Ċk

dN2
k

dt
5@12a~k21;k!#I 1

k21→k1a~k21;k!I 2
k21→k

2I 2
k→k111Ċk, ~3!

where a is the spin-flip probability of the alignmen
process.19 In the case of ballistic alignmenta(k21;k)

5cos2@ 1
2u(k21;k)# with u the angle betweenuW k21 and uW k .

Introducing the polarized currentI p , and the normal curren
I N defined by

I p
k21→k5I 1

k21→k2I 2
k21→k ,

I N
k21→k5I 1

k21→k1I 2
k21→k ~4!

Eq. ~3! can be put into the form

dN1
k

dt
5I 1

k21→k2I 1
k→k112@g~k21;k!I p

k21→k1Ċk#

FIG. 1. Modelization of the system with the two-channel a
proximation. After entering in thekth layerSk, the incident current

~which was spin polarized along the axis6MW k21 in the layer

Sk21) first aligns along the axis6MW k . The population of spin up
(N1) and spin down (N2) are then not conserved due to spin-fl
scattering, and some of the down spins relax to the up directio
the layer.
-
s-

-

dN2
k

dt
5I 2

k21→k2I 2
k→k111@g~k21;k!I p

k21→k1Ċk# ~5!

with g(k21;k)512a(k21;k)5sin2@ 1
2u(k21;k)#.

Inserting Eq.~5! into Eq.~2! the conservation of the mag
netization reads

dMW k

dt
5ṀW 0

k1gmBuW k21$I p
k21→k2I p

k→k11

22@g~k21;k!I p
k21→k1Ċk#%. ~6!

The problem of the spin transfer between the polariz
current and the magnetic layer is hence solved if the po

ized currentI p and the reaction ratesĊ can be described a
functions of the experimentally accessible parameters,
currentI N , the electric fieldE0, and the kinetic coefficients
This task is typically performed by the application of the fir
and second laws of the thermodynamics.

II. KINETIC EQUATIONS

The systemSk is open to heat transfer, to chemical tran
fer, and to mechanical work due to the magnetization a
magnetic fields. Let us define the heat and chemical po
by Pf and the mechanical power byPW . The first law of the
thermodynamics applied to the layerSk gives

dEk

dt
5Pf

k21→k2Pf
k→k111PW

ext→k , ~7!

wherePW
ext→k52HW ext

•MẆ k. Furthermore, with using the ca

nonical definitions Tk5]Ek/]Sk, m6
k 5]Ek/]N6

k , HW k

5]Ek/]MW k the energy variation is

dEk

dt
5Tk

dSk

dt
1m1

k
dN1

k

dt
1m2

k
dN2

k

dt
2HW k

dMW k

dt
1

]Ek

]MẆ 0
k

dMẆ 0
k

dt
.

~8!

In the present work we limit our analysis to the isotherm
case,Tk5T. The entropy variation of the sublayer is d
duced from the two last equations, after introducing the c
servation laws:

T
dSk

dt
5Pf

k21→k2Pf
k→k111~HW k2HW ext!MẆ 0

k

2
1

2
@Ak22gmB~Hk212Hext,k21!#

3@ I p
k21→k2I p

k→k1122g~k21;k!I p
k21→k22Ċk#

2
1

2
m0~ I N

k21→k2I N
k→k11!2

]Ek

]MẆ 0
k

dMẆ 0
k

dt
, ~9!

where the total chemical potential ism0
k[m1

k 1m2
k . We

have furthermore definedHk21[HW k
•uW k21 and Hext,k

-

in
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[HW ext
•uWk . The chemical affinity of the reaction, defined b

Ak[]Ek/]C5m1
k 2m2

k , has also been introduced.
The entropy being an extensive variable, the total entr

variation of the system is obtained by summation over
layers 1 toV where the layer 1 is in contact to the le
reservoirRl and the layerV is in contact to the right reser
voir Rr . Letting

Ãk[Ak22gmB~Hk212Hext,k!, ~10!
the total entropy variation is

T
dS

dt
5@•••#Rl→12@•••#V→Rr

1 (
k51

V

~HW k2HW ext!MW 0
k

1 (
k51

V S 2
]Ek

]MẆ 0
kD dMẆ 0

k

dt

1 (
k52

V
1

2
@Ãk212Ãk12g~k21;k!Ãk#I p

k21→k

1 (
k52

V
1

2
~m0

k212m0
k!I N

k21→k1 (
k51

V

ÃkĊk, ~11!

where the two first terms in the right-hand side of the equ
ity stand for the heat and chemical transfer from the res
voirs to the systemS.

The variation of entropy takes the form

T
dS

dt
5(

i
Fi Ẋ

i1Pext~ t !, ~12!

whereFi are generalized forces andẊi are the conjugated
generalized fluxes. The variation of entropy is composed
an external entropy variationPext(t)/T and by an internal
entropy variationdSint/dt.

By applying the second law of thermodynamicsdSint/dt
>0 we are leading to introduce the kinetic coefficientsl ab
such thatdSint/dt5( iFi(( j l i j F

j ). By identification with the
expression~11!, the kinetic equations are obtained:

3
I N

k21→k

I p
k21→k

Ċk

MẆ 0
k

dMẆ 0
k

dt

4 5F l NN l Np l Nc l NM l NṀ

l pN l pp l pc l pM l pṀ

l cN l cp l cc l cM l cṀ

l MN l Mp l Mc l MM l MṀ

l ṀN l Ṁp l Ṁc l ṀM l Ṁ Ṁ

G
33

1

2
~m0

k212m0
k!

1

2
@Ãk212Ãk12g~k21;k!Ãk#

Ãk

HW k2HW ext

2S ]Ek

]MẆ 0
kD 4 . ~13!
y
e

l-
r-

y

The indicesN andp stand, respectively, for the normal an
polarized transport processes~see Sec. III!, the indicesc
stands for the spin-flip scattering chemical reaction and
indicesM and Ṁ account for the dynamics of the magne
zation ~see Sec. IV!.

The kinetic coefficients are state functions:l i j

5 l i j (S
k, MW k, N1

k , N2
k , MẆ 0

k) and the symmetrized matrix i
positive: 1

2 $ l j i 1 l i j %$ i j %>0. Furthermore, according to On
sager relations, the kinetic coefficients are symmetric or
tisymmetric,l i j 56 l j i .

We assume in the following that cross effects betwe
electronic transport and ferromagnetic transport are ne
gible, so thatl i j 50 if i 5$N,p,c% and j 5$M ,Ṁ %. Note that
a polarized current is directly produced by a nonunifo
magnetization state, through the coefficientg(k21,k) in Eq.
~13!. The physical meaning of the kinetic coefficients is d
scribed in the two following sections.

III. GIANT MAGNETORESISTANCE

We focus in this section on the first three equations of E
~13! which describes the electric transport with spin pol
ization. After performing the continuum limit, we have

F JN

Jp

Ċ
G5F 2LNN 2LNp LNc

2LpN 2Lpp Lpc

2LNc 2Lpc Lcc

GF ]m0

]z

]A

]z
22g̃A

A

G , ~14!

whereg̃5 limdz→0(dg/dz) and the choice of symmetric co
efficientsLpN5LNp and LNc5LcN is motivated by the fact
that we neglect in this work the direct effects of the magne
field on the charge carriers.20

In the framework of the two-channel approximation,21 the
coupling between the two conduction bands is neglec
~i.e., there is no cross effect22 between the currentsJ1 ,J2 ,

andĊ):

LNc5Lpc50; LNN5Lpp5
2s0

2
, ~15!

wheres0.0 is the mean conductivity of the two spin cha
nels. The conductivity asymmetryb of the two channels is
given by

LNp[2
2s0

e
b. ~16!

Equation~14! leads then to the set of equations

F JN

Jp

Ċ
G5

s0

e F 1 2b 0

2b 1 0

0 0
e

s0
Lcc

GF 2
]m0

]z

2
]A

]z
1 2g̃A

A

G
~17!

with 1>b2 andLcc>0.
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In the stationary state,]JN /]z50, and assuming thatb,
s0, andg are approximately independent ofz the diffusion
equation of the chemical affinity is deduced~see the Appen-
dix!:

]2A

]z2
5S 1

l s f
2

1
1

l DW
2 D A1k

]A

]z
, ~18!

where the spin diffusion lengthl s f is given by

l s f[As0~12b2!

2eLcc
, ~19!

the ‘‘domain-wall’’ diffusion lengthl DW is given by

l DW[A~12b2!

4g̃2
, ~20!

and the parameterk is given by

k[g̃
2b2

~12b2!
. ~21!

Note that the chemical affinityA is equal to the difference
of the chemical potentials of the two conduction bandsA
5m12m2 . If we assume no rotation of the spin
polarization axis,g̃50 ~which implies antiparallel magneti
configuration at the interface!, then Eq. ~18! is the well-
known diffusion equation describing the so-called ‘‘spin a
cumulation’’ or ‘‘spin depletion’’ effect responsible for th
giant magnetoresistance.15,23–25 A straightforward calcula-
tion ~see the Appendix! leads to the giant magnetoresistan
of the interface:

RGMR52
b2

s0~12b2!
l s f . ~22!

IV. LANDAU-LIFSHITZ-GILBERT „LLG … EQUATION

In this section we focus on the magnetic transport eq
tion without electric current:JN5Jp50. From Eq.~9! the
entropy variation reduces to

T
dS

dt
5Pf

ext→ in2Pf
in→ext1~HW 2HW ext!

dMW 0

dt

1S 2
]E

]MẆ 0

D dMẆ 0

dt
~23!

so that the application of the second law of thermodynam
yields

~HW 2HW ext!5 l̃ MM

dMW 0

dt
1 l̃ MṀ

dMẆ 0

dt

S 2
]E

]MẆ 0

D 5 l̃ ṀM

dMW 0

dt
1 l̃ Ṁ Ṁ

dMẆ 0

dt
, ~24!
-

-

s

where the kinetic coefficientsl̃ ab are the coefficients of the
inverse matrix$ l ab%$ab%

21 .

Note that in adiabatically closed systems, (2]E/]MẆ 0),
H, anddMW 0/dt are state functions@i.e., depend only of the

state variables (S, MW 0 , MẆ 0), and not onHW ext#. Since the
kinetic coefficients are also state functions, the first equa

in Eq. ~24! shows hence thatdMẆ 0/dt depends onHW ext. We
are then leading to imposel̃ Ṁ Ṁ50 in order to satisfy the
second equation in Eq.~24!, which gives the magnetic ki-
netic energy.26 The coefficientl̃ ṀM can be identified to the
magnetic mass, and the first equation in Eq.~24! gives the
total magnetic forceFW mag acting on the system:

FW mag[ l̃ MṀ

d2MW 0

dt2
5~HW 2HW ext!2 l̃ MM

dMW 0

dt
. ~25!

Equation~25! rewrites

FW mag5
]

]MW 0

~2E2HW ext
•MW 0!2h

dMW 0

dt
, ~26!

where we have identified the Gilbert friction coefficient27,28

to h5 l̃ MM .
The theorem of the kinetic momentum gives the equat

of the dynamics:

dMW 0

dt
5G~MW 03FW mag!5GMW 03H 2

]V

]MW 0

2h
dMW 0

dt J ,

~27!

whereG is the gyromagnetic ratio and the magnetic Gib
potential29 is defined byV5E1MW 0•HW ext. Equation~27! is
the well-known Gilbert equation,27,29 and can be put into the
following Landau-Lifshitz form. In the case of uniform mag
netization we haveMW 05MsuW 0, whereMs is the saturation
magnetization. Equation~27! rewrites

u̇052g8~uW 03¹W V!2h8uW 03~uW 03¹W V!, ~28!

where ¹W is here the gradient operator on the surface o
unite sphere. The phenomenological parametersh8 and g8
are linked to the gyromagnetic ratioG and the Gilbert damp-
ing coefficienth by the relations30

h85
Ga

~11a2!Ms

g85
G

~11a2!Ms

a5hGMs.

V. LLG EQUATION WITH SPIN-POLARIZED CURRENT

Let us assume an interface composed by an incident
rent I p

i of conductivity asymmetry2b, polarized in the di-

rection eW p which enters in a ferromagnetic layer~F! polar-
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ized in the directionuW 0 with conductivity asymmetryb. The
transfer of magnetic moments is described by the te
dNp

F/dt5Ṅ1
F 2Ṅ2

F . Equation~5! rewrites

dNp
F

dt
5I p

i 2I p
F22gI p

F5be f fI N , ~29!

where be f f52b@122g(12g)# and the expressions ofI p
F

and I p
i are derived in the Appendix.

The change of the magnetic moment of the layer due
the polarized current is given by Eqs.~6! and ~28!:

u̇'2g8~uW 03¹W V!2h8uW 03~uW 03¹W V!1
gmB

M0
be f fI NeW p ,

~30!

where the first, second, and third term in the right-hand s
are, respectively, the precession term~or transverse relax
ation!, the longitudinal relaxation term, and the spin trans
due to spin-polarized conduction electrons.

In order to estimate the effect of the injection of spi
polarized current, Eq.~30! is applied to the case of mon
odomain ferromagnet with applied field oriented at the an
u from a single anisotropy axis~see Fig. 2!. If the vectoruW
makes an anglew from the anisotropy axis, the Gibbs energ
density can be written in the following form:30

V~wc!5KS$2cos2w22h@cos~u!cos~w!

1sin~u!sin~w!cos~c!#%, ~31!

whereh5Hext/Ha is the reduced applied field defined wi
the anisotropy fieldHa , K5HaMs is the anisotropy con-
stant,S is the section, andc is the out-of-plane coordinate o
the vectoruW . Before injecting the current, the anglew0 is
given by the equilibrium condition¹W V50. The precessiona
term can be neglected in Eq.~31! ~low-frequency response
and/or high damping limit30!, andM'M0.

Experiments and samples are described in Refs. 12,
and 33. Ni nanowires are obtained by the method of e
trodeposition in track etched membrane templates. A mic
contact is realized, and the magnetoresistance of a si
nanowire is measured. The wires are about 80 nm diam
and 6000 nm length and the magnetic energy is domina
by the Zeeman energy term and the shape anisotropy~or

FIG. 2. Uniform magnetization and the magnetic field in t
case of uniaxial anisotropy.
o

e

r

e

2,
c-
-
le

ter
d

magnetostatic term!, very close to that of an infinite cylinder
The anisotropy field is calculated to bem0Ha'0.3 T.

The effect of the spin-polarized current was evidenc
experimentally by injecting a strong current of about
3107 A/cm2 at a fixed value of the external fieldh5hsw
2Dh smaller than the fieldhsw where the switching occurs
without current. The magnetization switch occurs at t
anglewc(u). The maximum distanceDh where the jump of
the magnetization can still be observed corresponds the
the variation of the angleDw5wc2w0 needed to shift the
magnetization up to the unstable state.

For steady states, insertingh5hsw2Dh, w5wc , Eq.~30!
leads to

Dh5hsw~u!2
2cIe~eW p•vW !2sin~2wc!

sin~wc2u!
, ~32!

wherevW is the polar vector perpendicular touW and I e is the
electric current. The parameterc is defined by the relation

c5
be f f\

eKvaa
, ~33!

where the activation volumeva of magnetizationMs was
estimated to beva'10222 m3, K'105 J/m3,32 and be f f
'b'0.3,34 a'0.15.35 We obtainc'200 A21.

All parameters in Eq.~32! are known if the magnetization
reversal mode, which describes the irreversible jump,
known. In a few theoretical models of magnetizatio
reversal,31 the functionsHsw(u) andwc(u) are analytical. In
the framework of the present empirical approach, the exp
mental data are fitted by the relation deduced from a cur
reversal mode in an infinite cylinder:36,32

hsw~u!5
a~a11!

Aa21~2a11!cos2~u!
. ~34!

The single adjustable parametera52k(R0 /r )2 is defined
by the geometrical parameterk,31 by the exchange length
R0520 nm,11 and by the radius of the wirer. The experi-
mental pointsHsw(u) are fitted in Fig. 3.

FIG. 3. Circle: measured position of the switching fieldHsw for
different angle of the applied field. Line: one-parameter fit with t
curling formula Eq.~35!.
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FIG. 4. ParameterDh5DHmax(I e)/Ha as a
function of the pulsed current amplitude.m0Ha

5300 mT is the anisotropy field. The linear fi
~continuous line! gives c'190 @see Eq.~32!#.
The dashed line is the maximum magnetic fie
induced by the pulsed current.
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We obtaineda520.15 ~which corresponds tor of about
60 nm!. The relation between the angle of the applied fieldu
and the angle of the magnetizationwc is

tan~u!5
a11

a
tan~wc!. ~35!

The curveDh, evaluated from Eq.~32! by numerical
resolution with a polarization in the direction of the wire ax
eW p•vW 5sin(w0), is plotted in Figs. 4 and 5, together with th
experimental data. A strong discrepancy from the lin
curve of Dh(I N) at small current pulses can be observe
Above a critical current corresponding to about 107 A/cm2

the linear fit gives a parameterc5190, which is in accor-
dance with the rough evaluation of Eq.~33!. This critical
current below which the linear regime failed in Fig. 5 cou
be interpreted following Refs. 4 and 5 as the current nee
in order to excite spin waves or other magnetizat
inhomogeneities.37 The curve given by Eq.~32! can then be
plotted without adjustable parameter~Fig. 5!. The divergence
at 90° is due to the numerical resolution of Eq.~32! ~numera-
tor and denominator tend to zero atu590° angle!.

VI. CONCLUSION

A systematic thermokinetic description of a metallic fe
romagnetic layer open to electronic spin-polarized reserv

FIG. 5. Angular dependence of the parameterDh
5DHmax(u)/Ha . The curve is given by the Eq.~33! of the text,
with c5190 A21.
r
.

d

rs

has been performed. At constant temperature, assuming
two current approximation and neglecting direct action of
magnetic field on charge carriers, five coupled transp
equations account for the complexity of the system. The
proximation of the explicit uncoupling of the transport pr
cesses leads to the known results about GMR and Lan
Lifshitz-Gilbert equations for magnetization dynamic
Within this approximation and on the basis of the conser
tion equation of the magnetic moment, the description
both polarized current and magnetization dynamics leads
generalized Landau-Lifshitz-Gilbert equation. The applic
tion of this model to experimental data about current induc
magnetization reversal is performed. The existence of a c
cal current indicates that the kinetics of magnetization in
mogeneity also plays an important role. However, the co
parison with experimental data shows that the deriv
thermokinetic generalized Landau-Lifshitz-Gilbert equati
provides a description of the basic mechanism respons
for the effect of polarized current induced magnetization
versal.
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APPENDIX

The appendix is structured in three parts. In the first p
~Sec. 1!, the equation of the difference of chemical potentia
A5Dm is derived from Eq.~17! in the case of steady state
In Sec. 2 the equation is applied to the simplified case
GMR or spin accumulation, where the polarization axis
assumed constant through the interface. The GMR of
interface is deduced. In Sec. 3, the equation is applied in
framework of the experimental study of polarized curre
induced magnetization reversal, where an abrupt chang
the polarization axis occurs at the interface.
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Assuming that the kinetic coefficients which coupled t
dynamics of the magnetization and the electric currents v
ish, we obtained the following set of kinetic Eqs.~17!:

F JN

Jp

Ċ
G5

s0

e F 1 2b 0

2b 1 0

0 0
e

s0
Lcc

GF 2
]m0

]z

2
]A

]z
12g̃A

A

G .

~A1!

In the stationary state (]/]z)JN(z)50, and assuming tha
b, s0, andg are approximately independent ofz, the diffu-
sion equation of the chemical affinity is deduced:

]2m0

]z2
5bS ]2A

]z2
22

]~g̃A!

]z D . ~A2!

Inserting Eq.~A2! into Eq. ~A1! yields

]Jp

]z
5

s0

e S ~b221!
]2A

]z2
12

]~g̃A!

]z D ~A3!

and by integration,

Jp5
s0

e S ~b221!
]A

]z
12g̃AD , ~A4!

where we assumed thatJp(`)50.
On the other hand, from the conservation equations

have

d

dt
~N1

k 2N2
k !5I p

k21→k2I p
k→k1122Ċk22g~k21,k!I p .

~A5!

At the continuum limit, we obtain the following relation:

dnp

dt
52

]Jp

]z
22LccA22g̃Jp , ~A6!

where np is the density of spin-polarized conduction ele
trons.

Equation~A6! rewrites

]Jp

]z
522LccA22g̃Jp2

dnp

dt
, ~A7!

wherednp /dt is constant for steady states. Furthermore,
side the ferromagnet and far away from the interface,Jp is
constant, whence

dnp

dt
522Lcc

` A`50, ~A8!

where we assumed for simplicity thatLcc
` 50. Together with

Eqs.~A7!, ~A4!, and~A3! the differential equation forA(z)
is obtained:
n-

e

-

]2A

]z2
5S 1

l s f
2

1
1

l DW
2 D A1k

]A

]z
, ~A9!

where the spin-diffusion lengthl s f is given by

l s f[As0~12b2!

2eLcc
, ~A10!

the domain-wall diffusion lengthl DW is given by

l DW[A~12b2!

4g̃2
, ~A11!

and the parameterk is given by

k[g̃
2b2

~12b2!
. ~A12!

2. Application to GMR

Assuming that the polarization axis is the same for
sublayers, we havel DW50 and the last term in Eq.~A9!
vanishes. The chemical affinity obeys the diffusion equat

]2A

]z2
5

1

l s f
2

A. ~A13!

The chemical affinity and the total chemical potential a
then

A~z!5ae
z

l s f1be
2z
l s f , ~A14!

m0~z!5d1cz1bA~z!, ~A15!

wherea, b, c, andd are constants. The electric fieldE(z) is
defined by 2eE(z)[]m0 /]z so that c52eE(`)5
2eJN /s0. Under the condition of continuity of the curren
of the two spin channels at the interface~no surface scatter
ing!, J6(02)5J6(01), we have a5@els fb/s0(12b2)#
3JN . The spin-polarized current on the left side of a sing
interface (b50) is deduced:

Jp~z!5
s0

e S ]A

]z
2b

]m0

]z D5JNb~e2 uzu/ l s f21!.

~A16!

The electric field]m0 /e]z[2E(z) is

E~z!5
eJN

s0
S 11

b2

12b2
e2uzu/ l s fD ~A17!

and the supplementary potential due to the spin-polari
current is

DV5E
2`

1`S E~z!2
eJN

s0
Ddz52

b2

12b2
l s f

eJN

s0
~A18!

from which the GMR resistance~22! is deduced.
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3. Application to spin transfer

In the case of an interface composed by an incident c
rent of conductivity asymmetryb, polarized in the direction
eW p , entering in a ferromagnetic layer polarized in the dire
tion uW with conductivity asymmetry2b, Eqs. ~A14! and
~A15! still hold in the left- and right-hand sides of the inte
face. However, the change of the polarization axis at
interface leads to modify the continuity equation of the c
r-

-

-
he
r-

rent of the two spin channelsJ6(02)5J6(01)7gJp . The
integration constant now reads

a5
els fb~12g!

s0~12b2!
JN ~A19!

and the expression of the polarized current is

Jp~z!5JNb~12g!~e2uzu/ l s f21!. ~A20!
.
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