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Giant attosecond fluctuations of local optical fields in disordered nanostructured media
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~Received 27 June 2000!

We predict that local optical fields in disordered nanostructured systems~clusters, composites, and rough
surfaces! experience giant fluctuations~chaotic changes similar to turbulence! at anattosecondtemporal and
nanometer spatial scale. These fluctuations are most pronounced for a femtosecond-pulse excitation. This
predicted effect is especially important for ultrafast nonlinear phenomena.
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We have recently witnessed phenomenal progress in
physics of ultrafast~femtosecond! phenomena1–11 ~see also
references therein!. Ultraintense laser pulses, with intensi
up to 1020 W/cm2, have been generated whose interact
with matter induces a wide range of deeply nonlinear effe
These effects comprise the generation of high harmo
from the visible to x-ray region,1 strong x-ray emission from
hot plasmas produced by irradiation of colloidal metals a
grooved surfaces,5 nanostructured ‘‘velvet’’ targets,11 clus-
ters in gases,6 and preformed high-density plasmas.8 Mul-
tiple photoionization of metal clusters enhanced
plasmons7 has been produced. Photonuclear reactions
the emission ofg radiation and high-energy electrons ha
been discovered9,10 induced by a solid-target excitation b
femtosecond pulses with intensities 101921020 W/cm2.

The interaction of ultraintense light pulses with diso
dered nanostructured systems~clusters, composites, an
rough surfaces! is highly efficient5 due to two fundamenta
reasons. First, many such systems provide a strong radia
matter coupling, thus facilitating the accumulation of t
electromagnetic energy in the matter. Second, the local~act-
ing! fields can be greatly enhanced with respect to the ex
ing laser fields. Such enhancement has been earlier theo
cally predicted12–14 for the steady-state excitation for a wid
class of random nanostructured systems with both conv
tional and fractal geometries and directly observed exp
mentally ~see, e.g., Refs. 15 and 16 and citations therein!.

Recently we have predicted17 an effect~called ‘‘the ninth
wave’’ effect! for ultrafast optical excitation. It consists of
transient~femtosecond! generation of regions of very hig
local fields, which occurs when the duration of an exciti
pulseT is longer than the optical periodT0 but much shorter
than the dissipation (T1) time ~this condition is realistic for a
variety of systems!, causing accumulation of the excitatio
energy in the system. At the same time, the giant fluctuati
of local optical fields13 set in, because that requires only
comparatively short period, on the order of the establishm
time of the eigenmodes of the system, i.e., timet*T0. These
fluctuations lead to a concentration of the conserving exc
tion energy of the entire extended system in small spa
regions on the time scalet.T ~typically, from several to tens
of femtoseconds!.17

In this paper we predict an effect that is one of the fas
phenomena possible in optics. We show that in disorde
nanostructured systems the spatial distribution of the lo
optical fields changes dramatically and chaotically~resem-
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bling developed turbulence! on anattosecondtemporal scale
~within the optical period! and on a nanometer spatial sca
The underlying physical cause of these attoseco
nanometer giant fluctuations is chaos of the polar eig
modes of the system that leads to random magnitudes
phases of the local fields in the vicinity of different particl
~monomers! of the system.14 At the same time, the correla
tion function of the local fields extends over the whole sy
tem due to the infinite range of the dipole interaction.14 Be-
cause a wave moves in the direction of its increasing ph
the evolution of the light-induced polar wave~local fields!
does not resemble an ordered wavelike oscillation, but ra
excitation moves chaotically in space over the entire ext
of the system following its random phase. This predict
effect is linear, similar to quantum chaos in this respe
However, it will strongly influence a variety of nonlinea
effects, such as the generation of high harmonics, ionizat
and laser-induced nuclear reactions mentioned above.

To quantitatively introduce the present effect, we consi
a system consisting ofN@1 polarizable particles~mono-
mers! positioned at coordinatesr i , i 51, . . . ,N. We employ
the retarded Green’s functionGib, j g

r (t2t8) that expresses
the local fieldEi(t) at ani th monomer at timet in terms of
the exciting~external! field Ej

(0)(t8) at the j th monomer at a
momentt8,

Eib~ t !5(
j 51

N E
2`

t

Gib, j g
r ~ t2t8!Ej g

(0)~ t8!dt8. ~1!

Here and below, Greek subscripts denote Cartesian com
nents with summation over recurring indices implied.

We define a local fieldEi in terms of the corresponding
induced dipole momentdi(v)5a0(v)Ei(v), wherea0(v)
is the dipole polarizability of an isolated monomer at a fr
quencyv. Throughout the paper, we imply the Fourier~fre-
quency! domain by indicating frequency argumentv, as op-
posed to time variablest,t8, . . . for thereal-time domain. In
specific computations, we consider the monomers as sph
of radiusRm , for which a0(v)5Rm

3 @e(v)21#/@e(v)12#,
wheree(v) is the relative dielectric function of the mono
mer material.

To concentrate on the essence of this effect and av
unnecessary complications, we assume that the total siz
the systemR is small compared to the radiation waveleng
R!cT0, which makes the electromagnetic retardation uni
10 494 ©2000 The American Physical Society
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portant. This is justified because the dynamics of inter
occurs on a nanometer scale where the dipole modes o
system~‘‘surface plasmons’’! are localized.12,14 At the same
time, the spatial scale of energy transfer is the correla
radius of the eigenmodes that is of the order of the size of
system,12,14 R@Rm . This allows us to use the dipole ap
proximation and techniques of dipole spectral expansion.18 A
generalization for the case of multipole interactions and
act spectral expansion19 will be described elsewhere.

The retarded Green’s function in the frequency dom
has a spectral expansion17

Gib, j g
r ~v!5(

n
~ ibun!~ j gun!@11a0~v!Wn#21. ~2!

Here un) and Wn are eigenvectors~eigenmodes! and eigen-
values of the dipole-interaction operatorW, (W2Wn)un)
50, wheren51, . . . ,3N is the eigenmode’s descriptor, an
( ibuWu j g)52(]/]r ib)(]/]r j g8 )(1/ur i2r j8u). Each eigen-
value Wn and amplitude (ibun) of an nth eigenmode at an
i th monomer with polarizationb are computed by a numer
cal diagonalization ofW.

We have carried out our numerical computations us
Eqs. ~1! and ~2! without simplifications other than state
above. However, to provide qualitative insight into prop
ties of the proposed effect, we consider an approximation
small optical absorption,D(v)!uX(v)u, where the spectra
parameters have standard definitions:18 X(v)[2ReZ(v)
and D(v)[2ImZ(v), whereZ(v)[1/a0(v). In this ap-
proximation, the Green’s function in the time domain can
found in the form

Gib, j g
r ~ t !5d i j dbgd~ t !

12u~ t !E Sib, j g~v!b~v!sin~vt !e2g(v)tdv,

~3!

where the autocorrelation function of the eigenmo
amplitudes14 in the site-frequency representation is

Sib, j g~v!5(
n

~ ibun!~ j gun!d~v2vn!. ~4!

In Eqs. ~3! and ~4!, b(v)[X(v)/@dX(v)/dv#, g(v)
[D(v)/@dX(v)/dv#, andvn is an eigenfrequency given b
the root of the equationX(vn)5Wn . The summation in Eq
~4! should be extended over all roots for whichD!uXu. Such
roots correspond to normal dispersion, andg(vn).0 auto-
matically for them. The Green’s function~3! is asymptoti-
cally exact fort@1/vn .

Dynamics determined by Eq.~3! is multiexponential with
dissipation timestd(vn)51/g(vn). For instance, for silver
in the visible regiontd5402120 fs. Consider a short excit
ing pulse whose durationT&td renders dissipation ineffec
tive. The local fields according to Eqs.~1!, ~3!, and ~4! are
formed by a superposition of interfering ‘‘waves
( j gun)sin(vnt) that are chaotic.14 Given the wide spectra
contour of the system, the range of eigenfrequencies
contributes to that superposition isDvn.1/T, which leads to
phase differences at a timet of Dw.tDvn.t/T. The maxi-
mum excitation concentration and the highest local field~the
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ninth wave! are reached at timet.T.17 Together with the
randomness of eigenfrequenciesvn , this implies that at the
moment of the ninth wave the phases of interfering wa
are random in the whole range from 0 to 2p. This and the
chaotic behavior14 of the correlation function~4! leads to
random phasesof local fieldsin space. This creates a chaotic
spatial distribution of local fields changingwithin the optical
period, i.e., at attosecond timesand on a nanometer spatia
scale.

We have performed numerical calculations using Eqs.~1!
and~2! for three types of disordered nanostructured syste
built of nanospheres as monomers. These are cluster-clu
aggregate~CCA! clusters20,21 in three dimensions~3D! and
two dimensions~2D! ~fractals with Hausdorff dimension
D'1.75 andD'1.4), and random suspensions of mon
mers in a host~Maxwell Garnett composites! with the fill
factor f 50.12 and the periodic boundary conditions at t
unit cell. The number of monomers in a cluster or in the u
cell of the composite isN51500, and the dielectric proper
ties of the monomer material are set to be those of b
silver.22 The host medium is vacuum for clusters and a
electric with constanteh52.0 for composites. The exciting
pulse is chosen in the Gaussian form with a unit amplitu
carrier frequencyv0, and durationT, E(0)(t)5cos(v0t)exp
(2t2/T2). For each system,v0 has been chosen near the a
sorption maximum. The dielectric functione(v) is known in
the interval ofDv.7 eV that is much wider than the re
quired spectral width greater or on the order of that of
exciting pulseDvn.0.1 eV. This allows one to correctly
describe the temporal dynamics.

The predicted effect of giant attosecond fluctuations
illustrated in Fig. 1 that shows the dynamics of local fiel
for a 3D CCA cluster excited by a 25-fs pulse. This figu
consists of four frames showing instantaneous spatial di

FIG. 1. Local fieldsEiz(t) for a 3D CCA cluster as functions o
the spatial coordinates (x,y) for the moments of time indicated in
the figure for an exciting pulse ofT525 fs length, carrier frequency
v051 eV, and linearz polarization. The time interval betwee
frames is'300 as. The distance in space between neighbo
monomers is on a nanometers scale. The fields are summed oz
for all monomers with the same (x,y) to display the required 3D
distribution on a planar figure.
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10 496 PRB 62MARK I. STOCKMAN
butions of local fields. The frames are separated by'300 as
time intervals ending by the moment of the global maximu
of the fields~the ninth wave! at t539.1 fs after the pulse
beginning. The total time span shown is a quarter of the li
period ('1 fs!. The most important property of this figure
dramatic changes of the spatial distribution between
framesat attosecond temporal and nanometer spatial sca
that bear qualitative signatures of spatio-temporal chaos
each moment in time, these spatial distributions are hig
random and singular as expected for the giant fluctuatio
with a significant enhancement in peaks~‘‘hot spots’’! with
respect to the exciting field. For the ninth wave, this e
hancement exceeds two orders of magnitude~cf. Ref. 17!.
The evolution shown is due to the chaotic evolution o
packet of ‘‘waves’’ of eigenmodes with random magnitud
and phases, as suggested above, and not a harmonic os
tion of the type of a standing wave or running wave, whi
may be expected for an ordered system.

The argument of a chaotic local-field wave that follow
the random phase at different monomers generating
attosecond-nanometer chaotic dynamics due to the und
ing chaos of eigenmodes is applicable not only to ultraf
~nondissipative! femtosecond excitation but also~in a modi-
fied form! to a steady-state (T→`) excitation. This circum-
stance has been completely overlooked before. In the ste
state case, the local fields

Eib~ t !5Re(
j

@Gib, j g
r ~v0!e2 iv0tEj g

(0)# ~5!

are formed with the participation of the dissipation@de-
scribed by parameterD(v)]. Their magnitudes and phase
are also chaotic,14 but completely different from those fo
femtosecond excitation. In Fig. 2 we present the predic
spatio-temporal dynamics for a quasistationary excitat
(T51 ps@td). Giant nanometer-attosecond scale fluctu
tions are evident, as well as a dramatic difference from Fig
above.

The predicted effect is based on an idea of gi
fluctuations,13 a general property of self-similar~fractal! sys-

FIG. 2. Similar to Fig. 1 but for pulse lengthT51 ps.
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tems with the long-range~dipole! interaction. Therefore, it
should be universally observable for fractal clusters irresp
tively of their topology, Hausdorff dimensionD, or the di-
mension of the embedding spaced. To demonstrate this, in
Fig. 3 we present data for an ultrashort (T515 fs! exciting
pulse for a 2D CCA cluster (D'1.4 andd52) that simulate
roughness of surfaces. This figure does exhibit
attosecond-nanometer dynamics that is indeed chaotic
the same qualitative features as for 3D CCA~cf. Fig. 1!.
These include a significant enhancement in the leading pe
of a local field that reaches the maximum at the momen
the ninth wave (t517.5 fs into the pulse!. A completely
different attosecond-nanometer dynamics shown in Fig
takes place for a quasistationary pulse (T51 ps!. These data
confirm that the effect of attosecond giant fluctuations
common for self-similar systems for both conditions of u
trashort and steady-state excitation. However, the spe
dynamics is completely different in those two cases.

To investigate whether fractality is crucial or if disord
alone would suffice for the giant attosecond fluctuations,

FIG. 3. Similar to Fig. 1, but for 2D CCA clusters. The puls
length is 15 fs and the carrier frequency isv051.2 eV.

FIG. 4. Similar to Fig. 3 but for pulse lengthT51 ps.
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consider a Maxwell-Garnett nanocomposite, i.e., a~nonfrac-
tal! random suspension of silver nanospheres in a dielec
host. The local fields excited by a 15-fs pulse are shown
Fig. 5. In this case, we also observe the attoseco
nanometer chaotic dynamics. However, in contrast to fr
tals, a significant concentration of the excitation energy i
narrow spatial region never happens. Instead, there is an
erage density of peaks of local fields on the same orde

FIG. 5. Similar to Fig. 1 but for a Maxwell Garnett composite
silver nanospheres. The pulse length isT515 fs and the carrier
frequency isv052.5 eV. The frames shown are separated by ti
intervals of'140 as.
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magnitude. This is due to the existence of the thermo
namic limit ~characterized with finite densities! for nonfrac-
tal systems. A qualitatively similar, but quantitatively com
pletely different attosecond-nanometer dynamics occ
during a quasistationary excitation (T→`) ~data not shown!,
analogously to the situation with fractals.

To briefly summarize the results obtained, we have p
dicted an effect of attosecond-nanometer giant fluctuation
local optical fields in disordered nanostructured syste
This effect is a general property based on chaoticity of
eigenmodes in such systems and is most pronounced fo
ultrafast~femtosecond! excitation, although it also exists fo
a steady-state excitation. The effect manifests itself as c
otic ~similar to turbulence! changes of local optical fields in
time on the attosecond scale~i.e., within the optical period!
and in space on the nanometer scale~i.e., within the wave-
length!. Though at the present time it is impossible to d
rectly measure attosecond local-field dynamics, this poss
ity may appear in the future due to dramatic progress in
field. The attosecond giant fluctuations will also manife
themselves in a broad range of ultrafast optical phenome
especially such highly nonlinear phenomena as laser-indu
generation of energetic electrons, ions, x-rays, and nuc
reaction products from the attosecond ‘‘hot spots.’’ The
emissions are much more enhanced than they would h
been without the contribution of the effect of giant attose
ond fluctuations. Based on its expected universality, this
fect should be observable for a wide class of random na
structured systems.
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