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Giant attosecond fluctuations of local optical fields in disordered nanostructured media

Mark |. Stockmat
Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303
(Received 27 June 20p0

We predict that local optical fields in disordered nanostructured systelsters, composites, and rough
surface$ experience giant fluctuatiorishaotic changes similar to turbulenc anattosecondemporal and
nanometer spatial scale. These fluctuations are most pronounced for a femtosecond-pulse excitation. This
predicted effect is especially important for ultrafast nonlinear phenomena.

We have recently withessed phenomenal progress in thieling developed turbuleng®n anattosecondemporal scale
physics of ultrafas({femtosecongd phenomena®! (see also  (within the optical periofland on a nanometer spatial scale.
references therejnUltraintense laser pulses, with intensity The underlying physical cause of these attosecond-
up to 16° W/cn?, have been generated whose interactionnanometer giant fluctuations is chaos of the polar eigen-
with matter induces a wide range of deeply nonlinear effectsmodes of the system that leads to random magnitudes and
These effects comprise the generation of high harmonicphases of the local fields in the vicinity of different particles
from the visible to x-ray regioh strong x-ray emission from (monomers of the systent’ At the same time, the correla-
hot plasmas produced by irradiation of colloidal metals andion function of the local fields extends over the whole sys-
grooved surface$nanostructured “velvet” target¥, clus-  tem due to the infinite range of the dipole interacti8iBe-
ters in gase8,and preformed high-density plasnfasiul-  cause a wave moves in the direction of its increasing phase,
tiple photoionization of metal clusters enhanced bythe evolution of the light-induced polar waycal fieldg
plasmon$ has been produced. Photonuclear reactions andoes not resemble an ordered wavelike oscillation, but rather
the emission ofy radiation and high-energy electrons have excitation moves chaotically in space over the entire extent
been discoveréd? induced by a solid-target excitation by of the system following its random phase. This predicted
femtosecond pulses with intensities*3010?° W/cn?. effect is linear, similar to quantum chaos in this respect.

The interaction of ultraintense light pulses with disor- However, it will strongly influence a variety of nonlinear
dered nanostructured systentslusters, composites, and effects, such as the generation of high harmonics, ionization,
rough surfacesis highly efficient due to two fundamental and laser-induced nuclear reactions mentioned above.
reasons. First, many such systems provide a strong radiation- To quantitatively introduce the present effect, we consider
matter coupling, thus facilitating the accumulation of thea System consisting oN>1 polarizable particlegmono-
electromagnetic energy in the matter. Second, the I@t  mers positioned at coordinates, i=1,... N. We employ
ing) fields can be greatly enhanced with respect to the excitthe retarded Green’s functio6{, ;. (t—t') that expresses
ing laser fields. Such enhancement has been earlier theoretie local fieldE;(t) at anith monomer at time in terms of
cally predicted”**for the steady-state excitation for a wide the exciting(externa) field E{°)(t") at thejth monomer at a
class of random nanostructured systems with both convermomentt’,
tional and fractal geometries and directly observed experi-
mentally (see, e.g., Refs. 15 and 16 and citations therein N

Recently we have pred|ct§7dan effect(called “the ninth Eig(t) = E f G{B,jy(t—t’)EJ(?/)(t’)dt’. 1)
wave” effec) for ultrafast optical excitation. It consists of a j=1 J -
transient(femtosecong generation of regions of very high
local fields, which occurs when the duration of an excitingHere and below, Greek subscripts denote Cartesian compo-
pulseT is longer than the optical perioE, but much shorter nents with summation over recurring indices implied.
than the dissipationT(;) time (this condition is realistic for a We define a local field; in terms of the corresponding
variety of systems causing accumulation of the excitation induced dipole momerd;(w) = ao(w)Ej(w), where ay(w)
energy in the system. At the same time, the giant fluctuationis the dipole polarizability of an isolated monomer at a fre-
of local optical field$® set in, because that requires only a quencyw. Throughout the paper, we imply the Fouriére-
comparatively short period, on the order of the establishmerguency domain by indicating frequency argument as op-
time of the eigenmodes of the system, i.e., tirael,. These  posed to time variablest’, . .. for thereal-time domain. In
fluctuations lead to a concentration of the conserving excitaspecific computations, we consider the monomers as spheres
tion energy of the entire extended system in small spatiabf radiusRy,, for which ag(w)=R3[ e(w)—1]/[ e(w)+2],
regions on the time scate=T (typically, from several to tens where e(w) is the relative dielectric function of the mono-
of femtoseconds'’ mer material.

In this paper we predict an effect that is one of the fastest To concentrate on the essence of this effect and avoid
phenomena possible in optics. We show that in disorderednnecessary complications, we assume that the total size of
nanostructured systems the spatial distribution of the locathe systenR is small compared to the radiation wavelength,
optical fields changes dramatically and chaoticdlgsem- R<cT,, which makes the electromagnetic retardation unim-
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portant. This is justified because the dynamics of interest
occurs on a nanometer scale where the dipole modes of the
system(“surface plasmonsy are localized?* At the same
time, the spatial scale of energy transfer is the correlation
radius of the eigenmodes that is of the order of the size of the
systemt?* R>R,,. This allows us to use the dipole ap-
proximation and techniques of dipole spectral expan¥ien.
generalization for the case of multipole interactions and ex-
act spectral expansibhwill be described elsewhere.

The retarded Green’s function in the frequency domain
has a spectral expansign

Glg (@) =2 (BN AM[1+ag(@)Wo] . (2

Here|n) andW,, are eigenvectorgeigenmodesand eigen-
values of the dipole-interaction operatwv, (W—W,)|n)
=0, wheren=1,...,N is the eigenmode’s descriptor, and

(iBIWIjy)=—(alarig)(alar] )(Uri—r]]). Each eigen- * ! * Y

value W, and amplitude i(3[n) of an nth eigenmode at an FIG. 1. Local fieldsE,(t) for a 3D CCA cluster as functions of
ith monomer with polarizatiof are computed by a numeri- the spatial coordinatesc(y) for the moments of time indicated in
cal diagonalization of\V. the figure for an exciting pulse df= 25 fs length, carrier frequency

We have carried out our numerical computations usings,=1 eV, and linearz polarization. The time interval between
Egs. (1) and (2) without simplifications other than stated frames is~300 as. The distance in space between neighboring
above. However, to provide qualitative insight into proper-monomers is on a nanometers scale. The fields are summed over
ties of the proposed effect, we consider an approximation ofor all monomers with the samexy) to display the required 3D
small optical absorptionA (w)<|X(w)|, where the spectral distribution on a planar figure.
parameters have standard definitidhsX(w)=—ReZ(w)
and A(w)=—-1ImZ(w), whereZ(w)=1/ay(w). In this ap-
proximation, the Green'’s function in the time domain can b
found in the form

ninth wavé are reached at time=T.}" Together with the

randomness of eigenfrequencieg, this implies that at the

€moment of the ninth wave the phases of interfering waves

are random in the whole range from 0 ter2This and the

()= 6:8,.8(1) chaotic behavidf of the correlation functior(4) leads to

1By " EBy random phasesf local fieldsin space This creates a chaotic
spatial distribution of local fields changingthin the optical

+29(t)f Sipjy(@)B(w)sinwt)e” " do, period, i.e., at attosecond timesd on a nanometer spatial

scale.

) We have performed numerical calculations using Efs.
where the autocorrelation function of the eigenmodeand(2) for three types of disordered nanostructured systems
amplituded’ in the site-frequency representation is built of nanospheres as monomers. These are cluster-cluster

aggregatgCCA) clusteré®?! in three dimension$3D) and
) ) two dimensions(2D) (fractals with Hausdorff dimensions
SiB,jv(‘”):; (i8N (¥l 8w = wn). (4 p~1.75 andD~1.4), and random suspensions of mono-
mers in a hos{Maxwell Garnett compositg¢swvith the fill
In Egs. (3) and (4), B(w)=X(w)/[dX(w)/dw], y(w) factor f=0.12 and the periodic boundary conditions at the
=A(w)/[dX(w)/dw], andw, is an eigenfrequency given by unit cell. The number of monomers in a cluster or in the unit
the root of the equatioX(w,)=W,. The summation in Eq. cell of the composite i?N= 1500, and the dielectric proper-
(4) should be extended over all roots for whisk<|X|. Such  ties of the monomer material are set to be those of bulk
roots correspond to normal dispersion, ay(do,)>0 auto-  silver?? The host medium is vacuum for clusters and a di-
matically for them. The Green’s functiof8) is asymptoti- electric with constank,,=2.0 for composites. The exciting
cally exact fort>1/w, . pulse is chosen in the Gaussian form with a unit amplitude,
Dynamics determined by E¢3) is multiexponential with  carrier frequencyw,, and durationT, E()(t) = cos@gt)exp
dissipation timesry(w,)=1/y(w,). For instance, for silver (—t%T?). For each systemy, has been chosen near the ab-
in the visible regionry=40—120 fs. Consider a short excit- sorption maximum. The dielectric functiafw) is known in
ing pulse whose duratioh=< 74 renders dissipation ineffec- the interval ofAw=7 eV that is much wider than the re-
tive. The local fields according to Eq€l), (3), and(4) are  quired spectral width greater or on the order of that of the
formed by a superposition of interfering “waves” exciting pulseAw,=0.1 eV. This allows one to correctly
(jyIn)sin(w;t) that are chaotié? Given the wide spectral describe the temporal dynamics.
contour of the system, the range of eigenfrequencies that The predicted effect of giant attosecond fluctuations is
contributes to that superpositiondsy,,= 1/T, which leads to illustrated in Fig. 1 that shows the dynamics of local fields
phase differences at a tintef Ap=tAw,=t/T. The maxi- for a 3D CCA cluster excited by a 25-fs pulse. This figure
mum excitation concentration and the highest local fitl@  consists of four frames showing instantaneous spatial distri-



10 496 MARK |. STOCKMAN PRB 62

Eiz
100

50
t=}414. fs

i

/\\

FIG. 3. Similar to Fig. 1, but for 2D CCA clusters. The pulse
length is 15 fs and the carrier frequencyuig=1.2 eV.

FIG. 2. Similar to Fig. 1 but for pulse lengfh=1 ps.

butions of local fields. The frames are separatee+800 as  tems with the long-rangédipole) interaction. Therefore, it
time intervals ending by the moment of the global maximumshould be universally observable for fractal clusters irrespec-
of the fields(the ninth wave at t=39.1 fs after the pulse tiely of their topology, Hausdorff dimensioB, or the di-
beginning. The total time span shown is a quarter of the lighinension of the embedding spadeTo demonstrate this, in
period (=1 fs). The most important property of this figure is Fig. 3 we present data for an ultrashoft=( 15 fs) exciting
dramatic changes of the spatial distribution between th‘bulse for a 2D CCA cluster~1.4 andd=2) that simulate
framesat attosecond temporal and nanometer spatial Sca|e$oughness of surfaces. This figure does exhibit an
that bear qualitative signatures of spatio-temporal chaos. Afttosecond-nanometer dynamics that is indeed chaotic with
each moment in time, these spatial distributions are highlyhe same qualitative features as for 3D CC&. Fig. 1.
random and singular as expected for the giant fluctuationsyhese include a significant enhancement in the leading peaks
with a significant enhancement in peakbot spots”) with  f g |ocal field that reaches the maximum at the moment of
respect to the exciting field. For the ninf[h wave, this en-the ninth wave {=17.5 fs into the pulse A completely
hancement exceeds two orders of magniticfe Ref. 17.  gjfferent attosecond-nanometer dynamics shown in Fig. 4
The evolution shown is due to the chaotic evolution of ajgkes place for a quasistationary pulde<(1 ps. These data
packet of “waves” of eigenmodes with random magnitudesconfirm that the effect of attosecond giant fluctuations is
and phases, as suggested above, and not a harmonic oscillgmmon for self-similar systems for both conditions of ul-
tion of the type of a standing wave or running wave, whichyashort and steady-state excitation. However, the specific
may be expected for an ordered system. dynamics is completely different in those two cases.

The argument of a chaotic local-field wave that follows " 14 investigate whether fractality is crucial or if disorder

the random phase at different monomers generating agione would suffice for the giant attosecond fluctuations, we
attosecond-nanometer chaotic dynamics due to the underly-

ing chaos of eigenmodes is applicable not only to ultrafast Eiz
(nondissipativie femtosecond excitation but al$m a modi-

fied form) to a steady-statel(— =) excitation. This circum-
stance has been completely overlooked before. In the steady-
state case, the local fields

Ewm:Re; [G4,,(wo)e “E)] (5)

are formed with the participation of the dissipatipde-
scribed by parametek (w)]. Their magnitudes and phases
are also chaoti¢! but completely different from those for
femtosecond excitation. In Fig. 2 we present the predicted
spatio-temporal dynamics for a quasistationary excitation
(T=1 ps>74). Giant nanometer-attosecond scale fluctua-
tions are evident, as well as a dramatic difference from Fig. 1
above.

The predicted effect is based on an idea of giant
fluctuations:® a general property of self-simildfractal) sys- FIG. 4. Similar to Fig. 3 but for pulse lengfhi=1 ps.
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magnitude. This is due to the existence of the thermody-
namic limit (characterized with finite densitiefor nonfrac-

tal systems. A qualitatively similar, but quantitatively com-
pletely different attosecond-nanometer dynamics occurs
during a quasistationary excitatiof{-0) (data not showp
analogously to the situation with fractals.

To briefly summarize the results obtained, we have pre-
dicted an effect of attosecond-nanometer giant fluctuations of
local optical fields in disordered nanostructured systems.
This effect is a general property based on chaoticity of the
eigenmodes in such systems and is most pronounced for an
ultrafast(femtosecongexcitation, although it also exists for
a steady-state excitation. The effect manifests itself as cha-
otic (similar to turbulencechanges of local optical fields in
time on the attosecond scdliee., within the optical period
and in space on the nanometer so@le., within the wave-
length. Though at the present time it is impossible to di-
rectly measure attosecond local-field dynamics, this possibil-

FIG. 5. Similar to Flg 1 but for a Maxwell Garnett Composite of |ty may appear in the future due to dramatic progress in the
silver nanospheres. The pulse lengthTis 15 fs and the carrier  fie|d. The attosecond giant fluctuations will also manifest
frequency iswy=2.5 eV. The frames shown are separated by timeihemgselves in a broad range of ultrafast optical phenomena,
intervals of~140 as. especially such highly nonlinear phenomena as laser-induced

consider a Maxwell-Gamett nanocompasite, i.e(aanfrac- gene_ration of energetic electrons, ions, x-rays, and nuclear
, e reaction products from the attosecond “hot spots.” These

tal) random suspension of silver nanospheres in a dielectrlgmiSSions are much more enhanced than they would have

E?St' ;— helnlofﬁil fields exs\llted kljy a 1bs'fSerU|f§ arettshownnl been without the contribution of the effect of giant attosec-
9. o S Ccase, we aiso observe [Ihe atloseconts,q qctuations. Based on its expected universality, this ef-

nanome_ter_ghaotic dynamicg.. However, if‘ contrast to f.racfect should be observable for a wide class of random nano-
tals, a significant concentration of the excitation energy in &tructured systems
av- '

narrow spatial region never happens. Instead, there is an
erage density of peaks of local fields on the same order of | am grateful to S. Manson for useful comments.
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