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Simple theory of elastically deformed metals: Surface energy, stress, and work function
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~Received 22 November 1999!

The effect of uniaxial strain on surface properties of simple metals is considered within the stabilized jellium
model. The modified equations for the stabilization energy of the deformed Wigner-Seitz cells are derived as
a function of the bulk electron density and the given deformation. The model requires as input the density
parameterr s , the Poisson ratio, and Young’s modulus of the metal. The results for surface energy, surface
stress, and work function of simple metals calculated within the self-consistent Kohn-Sham method are also
presented and discussed. A consistent explanation of the independent experiments on stress-induced contact
potential difference at metal surfaces is given.
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I. INTRODUCTION

The early experimental investigations of the force act
on electron inside a metallic tube in the earth’s gravitatio
field1 posed a question about the influence of metal defor
tion upon the electronic work function. The direct measu
ments, using the Kelvin method, showed a decreas
increasing of the contact potential difference~CPD! of the
tensed/compressed metal samples.2–5 Similarly, the experi-
ment with a high speed spinning metal rotor, which w
nonuniformly deformed over the length, demonstrated t
CPD changes between the areas of the surface subject
different deformation6 ~see also discussion of earlier expe
ments by Harrison7!. The influence of deformation upo
electronic emission from a thin metallic film has been a
investigated.8 Recently, a similar effect on the CPD was o
served at the surface of sample with a nonuniform distri
tion of residual mechanical stress.9 At first sight, these results
seem to be surprising because they mean the respe
increase/decrease of the work function with decreas
increasing electron density that is caused by a unia
tension/compression of metalic sample. Therefore, all th
experiments stimulate two important questions which sho
be answered by the microscopic theory:~i! Does the change
of the CPD correspond to a change in the work function?~ii !
Which sign will have the deformation gradients of surfa
energy and work function for a metal that is subject to
tensile~or compressive! strain along some direction?

From the general statement of the theory of elasticity f
lows that the change in the total energy of a solid is prop
tional to the square of relative deformation. Therefore,
energy must increase so for compression as for tension
the other hand, experimentally it was found that in the ran
of elastic deformation, a uniaxial strain of metallic samp
leads to a linear change in the CPD.3–5 This implies that
classical theory of elasticity may be not completely adequ
in determination of the elastic characteristics of metal s
faces.

The second question is of importance by the determ
tion of surface tension or surface stress.10 Gohstein11 have
PRB 620163-1829/2000/62~15!/10445~6!/$15.00
g
l

a-
-
g/

s
t
to

o

-

ive
g/
al
se
ld

e

-
r-
e
n

e

te
r-

-

demonstrated that the measurements of the derivative of
face tension of a solid with respect to the electrical variab
showed a small difference between the surface st
and surface energy. On the other hand, differ
calculations,12–14 including the ones based on the fir
principles,14–16 point to the appreciable difference betwe
these two quantities. A rough estimation of the differen
between surface energyg and surface stressg which can be
done using the cohesive energy and the vacancy forma
energy17 shows thatg is approximately equal to or les
thang.

In this work we address the questions raised above
investigating theoretically the surface energy, surface str
and work function of elastically deformed metal. A uniaxi
strain applied to the surface introduces anisotropy to
metal by changing the density~or separation! of atomic
planes, electron gas concentration, and contributes to an
tra surface dipole barrier. A rigorous study of this proble
from first principles is tedious and requires heavy numeri
computations.14–16On the other hand, the calculations bas
on the isotropic models of metal, i.e., on the jelliu
model,10,18 which ignores the discrete nature of ions, or t
stabilized jellium model,12,13,19in which interparticle interac-
tions are averaged over the volume of spherical Wigner-S
cells, do not allow proper accounting for the effects of inh
mogeneous strain. In the present work we develop a mo
cation of a stabilized jellium model,13,19,20 in order to de-
scribe the deformed metal.12,13,21 In this modification the
metal energy is expressed as a function of the density par
eter r s and of the given deformation. Section II presen
equations for a stabilized jellium model accounting for ela
tic deformation. In Sec. III, the modified stabilized jellium
model is applied to calculate, by the Kohn-Sham method,
effect of a uniaxial strain on the electronic surface charac
istics of single crystals of aluminum and lithium.

II. MODEL OF DEFORMED METAL

The dependence of the CPD on the uniaxial deformat
was measured for polycrystalline samples.4,5 Let us consider
10 445 ©2000 The American Physical Society
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a hypothetical crystal in the shape of a rectangular para
epiped~Fig. 1!. In the undeformed state all of its faces a
equivalent. We assume that deformation is a measured q
tity and a metallic crystal is to be considered as assem
from a number of simple crystallites. Thus, qualitatively, t
problem can be reduced to the consideration of tension
compression applied to a single crystal.

Let us first express the average electron density in a m
n̄ as a function of deformation. For this purpose, consider
undeformed cubic cell of the side lengtha0 and volume

V05a0
35

4

3
pr 0

3 , ~1!

wherer 05Z1/3r s is the radius of the spherical Wigner-Sei
cell, Z is the valence,r s5(3/4pn0)1/3, andn0 is the average
electron density in the bulk of undeformed crystal. For
uniaxially deformed cell, elongated or compressed along
x axis, one can write

V5axay
25

4

3
pab2, ~2!

whereax and ay5az are the sides of the elementary par
lelogram, anda and b are the half-axes of the equivale
prolate or oblate spheroid of revolution relative to thex axis.
Denoted byuxx the uniaxial strain we have

ax5a0~11uxx! and az5a0~11uzz!5a0~12nuxx!,
~3!

whereV/V0215uxx1uyy1uzz, and n is the polycrystal-
line Poisson coefficient~ratio! that is relating22 the transver-
sal compression to the elongation in the direction of app
deformation, i.e.,uyy5uzz52nuxx . From Eqs.~1!–~3! fol-
lows

a5r 0~11uxx! and b5r 0~12nuxx!. ~4!

Similarly, the spacing between the lattice planes perpend
lar to they or z directions is

du5d0~12nuxx!, ~5!

whered0 is the interplanar spacing in an undeformed crys
Consequently, following Eqs.~1!–~4!, the average electron
density in the deformed metal is given by

FIG. 1. Qualitative sketch of the crystal deformed~expanded! in
the x direction. d is the interplanar distance. The calculations a
performed for the upper, shaded side of the crystal.
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n̄5n0V0 /V5n0@12~122n!uxx#1O~uxx
2 !, ~6!

and the corresponding density parameter is

r su5r s@11~122n!uxx#
1/3. ~7!

Having defined the basic parameters for the strained
tem let us consider its energy in order to obtain the condit
for stability. Proceeding similarly as for the derivation
equations for the original stabilized jellium model,19 we con-
sider a metal assembled from the Wigner-Seitz cells. T
average energy per valence electron in the bulk is

«SJ5«J~ n̄!1«M1w̄R , ~8!

where the first term gives the jellium energy

«J~ n̄!5
3

10
kF

2~ n̄!2
3

4p
kF~ n̄!1«cor~ n̄!, ~9!

consisting of the average kinetic and exchange-correla
energy per electron withkF being Fermi momentum,kF

3

53p2n̄. ~We employ atomic units throughout.! The remain-
ing two terms in Eq.~8! represent the Madelung energy an
the average of the repulsive part of the Ashcroft model
tential. A small, band structure energy term19 is neglected in
Eq. ~8!.

As usual for isotropic medium, by transformation of th
ordinary jellium into a stabilized one, the Coulomb intera
tions were averaged over the Wigner-Seitz cell. The unia
strain applied to the crystal deforms the spherical Wign
Seitz cells into ellipsoidal ones. This has an influence on
Madelung energy«M which now should be averaged ove
the volume of the deformed cell. It can be expressed in
form similar to the gravitational energy of the uniform
spheroid23 to give

«M~ n̄!5
1

ZEspheroid
d3rn̄S 2

Z

r D1
1

2ZEspheroid
d3rn̄V~r !

52
9Z

10a (
k50

`

Ck

p2k

2k11
, ~10!

whereV(r ) is the electrostatic potential inside a uniform
charged spheroid,Ck5$1,uxx.0;(21)k,uxx,0%, and p
5Au12b2/a2u defines the spheroid’s eccentricity. The ser
appearing in Eq.~10! can be expressed by analytic
functions.24 This expression has a correct limit:«M(n̄)
→20.9Z/r 0 for uxx→0.

We assume that the shape of ionic cores is not influen
by the deformation and they remain spherical, thus the a
aging of the Ascroft empty-core pseudopotential gives

w̄R52pn̄r c
2 . ~11!

For the averaged differencedv(r ) between the ion pseudo
potential and the potential of the uniform positive bac
ground, holds the same relation19 as for the unstrained crys
tal, i.e.,

^dv&WS5 «̃1«M1w̄R , ~12!
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where the electrostatic self-energy of the uniform nega
background inside a spheroid is

«̃52
2

3
«M . ~13!

The pseudopotential core radiusr c can be fixed from the
condition of mechanical equilibrium depending on the m
chanical stress induced in the volume of the cell. In orde
determine the core radius let us note that for the strai
metal the intrinsic pressure in the bulk of metallic sample

P52
dE

dV
5n̄2

d«SJ

dn̄
~14!

is compensated by the pressure exerted by the external fo

P52~sxx1syy1szz!52Yuxx~122n!, ~15!

where s i i are the components (i 5x,y,z) of the tensor of
mechanical stress andY is the Young’s modulus22 defined as
s i i 5Yuii . It should be noted that for the ideal metaln
51/2 and P50. It means that the applied external for
does not change the volume but the shape of a cell or sam

Consequently, the average energy per electron in the
of a strained metal can be written as

«5«J~ n̄!1«M1w̄R1P/n̄, ~16!

where«, standing on the left side of Eq.~16!, is considered
to be the energy which minimizes at the equilibrium dens
for the strained metal, treatingP as a given constant fixed b
Eq. ~15!. In the linear approximation, Madelung energy~10!

is well approximated by«M(n̄)→20.9Z/r 0u . Inserting the
latter and for the particular terms in Eq.~16! the explicit
expressions from Eqs.~9! and~11!–~13!, from the minimum
energy conditiond«/dn̄50 we have

r c5H 2
2

15S 9p

4 D 2/3

r s1
1

6p S 9p

4 D 1/3

r s
21

1

5
Z2/3r s

2

1
2

9
r s

4 d«cor

drs
1

8

9
pr s

6PJ
r s5r su

1/2

, ~17!

wherer su is the equilibrium density parameter of the strain
metal. Here, we assume that the volume of the spheroi
equal to the volume of the equivalent sphere of radiusr 0u
5Z1/3r su . As can be seen, the pseudopotential core rad
now depends upon the strainuxx . One would not expect this
from pseudopotential theory, where the pseudopoten
should transfer unchanged from one environment to anot
but it is a consequence of forcing a first-order pseudopo
tial model to do the work of a higher-order model. Thus E
~17! assures transferability only for the equally strained s
tems~in the regime of linear strains!.

Making use of the equality19

^dv&WS5n̄
d

dn̄
~«M1w̄R!, ~18!

we get at the equilibrium density corresponding to a strai
metal:
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^dv&WS52n̄
d

dn̄
@«J~ n̄!1P/n̄#. ~19!

Consequently, Eqs.~16!, ~17!, and~19! allow us to construct
the total energy of a finite strained crystal with a surface,
a functional of the electron density, and of the form orig
nally derived by Perdewet al.19 but with r c and ^dv&WS
determined from Eqs.~17! and ~19!, respectively.

Subsequently, in order to calculate the face-depend
surface properties, similarly as Perdewet al.19,13 we can re-
place the stabilization potential~19! by the following form:

^dv& face5^dv&WS2S «M

3
1

pn̄

6
du

2D , ~20!

where the second term on the right side of Eq.~20! repre-
sents the dipole barrier due to atomic corrugations at
surface.19,20

The total energy of a finite rectangular crystal confined
the walls of areaAx andAy5Az , may be written as the sum
of the bulkEb and surfaceEs energy where

Es5gy4Ay1gx2Ax . ~21!

Here,gy5gz and gx are surface energies, per unit area,
the lateral and base sides, respectively. In the undefor
stategx5gy5gz[g, and surface energy~21! changes by

dEs54AyS gdab1
dg

duab
Dduab12AxS gdab1

dg

duab
Dduab ,

~22!

wherea andb denote directions in the plane of lateral an
base sides anddab is the Kronecker delta. The expressions
the braces represent the components of surface stress.
lowing the model presented in this work we calculate on

gxx5g1
dg

duxx
. ~23!

By definition,13 putting the electrostatic potential in th
vacuum equal zero, for a certain face of semi-infinite crys
the electron work function can be written as

Wface52f̄2
d

dn̄
@ n̄«J~ n̄!#2^dv& face, ~24!

where,f̄,0 denotes the electrostatic potential in the me
bulk. Alternatively, work function can be calculated from th
displaced-profile change-in-self-consistent field expressio25

For a discussion of our results presented in the subseq
section, it is useful to rewrite Eq.~24! in the following form:

Wface52 v̄eff2«F , ~25!

where the effective potential20,26 in the bulk, v̄eff5f̄1 v̄xc
1^dv& face, gives the total barrier height at the metal-vacuu
interface, v̄xc is the exchange-correlation potential in th
bulk @ v̄xc[vxc(2`)#, and«F5 1

2 kF
2 is the Fermi energy.
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TABLE I. Calculated surface energiesg, work function Wface, strain derivativedg/duxx , and surface stressg5gxx , for elastically
deformed Al (r s52.06) and Li (r s53.25) samples. Positive and negative deformationsuxx560.03 are labeled with (1) and (2). DWface

is the difference of the work function for a strained and unstrained surface. The values of Young’s modulus are: 70 GPa~Al ! and 11.47 GPa
~Li ! ~Ref. 27!.

Metal Face g (erg/cm2) Wface(eV) uxx
dg

duxx
(erg/cm2) g (erg/cm2) DWface(eV)

Al ~111! 946 4.096 1 460 1406 20.032
2 400 1346 0.033

~100! 1097 3.780 1 833 1930 20.025
2 810 1907 0.016

Li ~110! 311 3.286 1 20 330 20.011
2 13 324 0.011

~100! 345 3.037 1 37 382 20.005
2 37 382 0.005
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III. APPLICATION AND DISCUSSION

To verify the theory presented in Sec. II, the Kohn-Sh
equations were solved for the two most densely packed
faces of Al and Li represented by the stabilized jelliu
model.26 In the language of our model, we consider tw
regular single crystals of Al~and Li! which in undeformed
state have all of their sides equivalent. Owing to the crys
deformation the four of the side-faces remain equivalen
one another, but not to the two base faces~Fig. 1!. The
^dv& face term included into the effective potential allows th
generation of the face-dependent density profiles20,26 which
were used to calculate the surface characteristics: work fu
tion, surface energy, and surface stress. All calculations w
carried out for the upper side of the sample~see Fig. 1!
assuming the polycrystalline value of the Poisson coefficie
n50.36,27 for elastic properties of both Al and Li.

Within the applied range of deformation,20.03<uxx
<0.03, the changes in surface quantities remain linear.
positive/negative strainuxx means expansion/compression
the side of a sample, i.e., the decrease/increase of the at
packing density at this side, and the decrease/increase o
mean electron concentrationn̄ and interplanar spacing in th
direction perpendicular to the considered crystal side. Fo
better understanding of the physical effects we have a
performed calculations for the special case of the ‘‘idea
metal for whichn51/2. In this case the deformation doe
not changen̄, however, the second term~corrugation dipole
barrier! in the face-dependent potential~20! will be changed.

The results of calculations are summarized in Table I.
is seen the surface energy increases linearly with the app
positive deformationuxx and decreases with the negati
one. It means thatdg/duxx is positive both foruxx.0 and
for uxx,0. Accordingly, Eq.~23! gives values of the com
ponent of surface stressgxx larger than surface energy. Fo
uxx.0 surface stress is somewhat larger than foruxx,0.
The changes are more noticeable for Al than for Li. It see
that the classical definition of surface stress28,29 works better
for the ideal metal. This is connected with the fact, that s
jected to deformation, ideal metal changes only its surf
area—the electron concentration in its bulk remains
changed. The calculations performed for Al~111! surface
yield the values of the strain derivativedg/duxx5247 and
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213 erg/cm2, for uxx.0 and uxx,0, respectively. These
values are much smaller than the ones reported in Table
this case (n51/2) we can also evaluate the other comp
nents of surface stressgzz5gyy5g1dg/duyy . Substituting
duzz5duyy52nduxx we get gzz5gyy5g22dg/duxx,g.
Let us make two observations at this point. First, the la
result agrees with the results derived on the basis of
elasticity theory30 where theg/g ratio was expressed in
terms of the Poisson coefficient,n, to give (3n21)/(1
2n). For n51/2, this formula givesg/g51, andg,g, for
n,1/2. Second, in order to calculategzz and gyy for a
sample expanded along thex axis we should exploit the
value of dg/duxx for uxx,0, whereas for a compresse
sample, the corresponding value foruxx.0. This is because
the tension applied along thex direction causes a sample t
be compressed along the orthogonal (y andz) axes, cf. Eq.
~3!. For Al~111! the calculated surface stress~Table I! is in a
very good agreement with the values resulting from
available ab initio calculations: 1249 erg/cm216 and 1441
erg/cm214. It gives also improvement over the results o
tained for ordinary jellium12,16 and our previous direct appli
cation of the stabilized jellium model.12

For the considered strains the work function decrea
linearly with uxx , but the relative change is less than 1%~see
Table I!. The similar behavior is observed forn51/2. It is
seen that the dominating component, which leads to a
crease ofW with uxx , is a change in thêdv& face term. Thus,
the change of work function under the influence of deform
tion is determined by the competition of negative chan
both in the exchange-correlationvxc and electrostaticf com-
ponents of the effective potentialveff and the positive change
in the face-dependent component^dv& face. A dominant role
is played by the change of^dv& face term while the change in
the Fermi energy is quite unnoticeable. An overall decrea
increase in the work functionW is determined by a positive
negative shift of the electrostatic potential in the me
interior.

The calculated change of the work function with stra
seems to contradict the experimental results2–6 where it was
found that work function increases/decreases w
elongation/compression of the sample. This conclusion w
based on the analysis of the measured CPD.2–7,9,21 For the
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conventional method of measurement of the work funct
changes upon strain,3–5 this means thatW(uxx)5W(0)
2DV(uxx).W(0), i.e., the work function increases for
tensed sample. HereDV denotes the CPD. In the following
we argue that this contradiction is spurious. The point is t
the measurement by Kelvin method fixes the change of
face potential. So, the explanation of experimental obse
tions can be given based not upon the change in the w
function but by analyzing the change in the effective pot
tial veff upon deformation. The Kelvin method gives th
value of the potential difference at the surface of a sam
which one can define as the position of the image planz
5z0.26 Note that in distinction to the work function, t
which ^dv& face term contributes directly@Eq. ~24!#, at the
image-plane position~which is located outside the geometr
surface! ^dv& face equals zero and there the effective poten
feels the change in̂dv& face only by means of the self
consistent procedure. The calculations performed for Al~111!
and Li~110! demonstrate that the ratio of the effective pote
tial difference Dveff between strained (uxx
560.03) and strain-free samples, at the surface and in
bulk, is Dveff(z5z0)/D v̄eff'0.8. Here,D v̄eff denotes the re-
spective difference in the metal bulk.

The results forDveff(z0 ;uxx) are shown in Table II. The
potential difference outside the sample becomes more n
tive as deformation increases, with the exception of Li~100!.
The calculated changes in the effective potential have
same sign as the measured CPD for Al. For a polycrystal

TABLE II. Calculated change in the effective potentialDveff(z
5z0) at the surface of elastically deformed and neutral sample
Al ( r s52.06) and Li (r s53.25). Positive and negative deform
tions uxx560.03 are labeled with (1) and (2).

Metal Face uxx Dveff(z0) (eV)

Al ~111! 1 20.103
2 0.106

~100! 1 20.064
2 0.069

Li ~110! 1 20.014
2 0.015

~100! 1 10.015
2 20.012
la
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Al sample subject to deformationuxx50.03, the CPD
amounts to 20.02560.002 V.4,5 Since a polycrystalline
sample can be considered as assembled from arbitrarily
ented single crystals, the values obtained by us should
averaged in order to compare them with experiment. As
seen both experiment and calculations give a nega
change of the surface potential,DV5Dveff(z5z0),0.
Thus, taken as a whole our results agree with the indep
dent experiments both for expanded3–6 and compressed1,2

metallic samples. The results forDveff(uxx) correspond to
direct observation of stress-induced shift in the measu
contact potential: The effective potential outside the op
faces of a sample is more negative/positive when tens
compressive force is applied. However, unlike the effect
potential at the surface, due to the different effect of t
^dv& face term, the value of the potential in the metal bulk
more positive/negative for an expanded/compressed sam
So, for the Al sample the work function change vs stra
shows an opposite trend compared to that of contact po
tial. It differs also from that predicted by non-self-consiste
calculations.4,21 Accordingly, the results of Table I demon
strate that work function decreases withuxx . In other words,
our results show that the measurements by Kelvin method
not give a change in the work function but a change in
surface potential upon strain.

In summary, the stabilized jellium model has been e
tended to encompass the effects of elastic strain on sur
properties of simple metals. By imposing uniaxial strain
metal surface and limiting ourselves to linear terms in def
mation, we have obtained a realistic description of str
dependence of surface quantities: surface energy, sur
stress, and work function. We have presented a consis
explanation of experiments on stress-induced contact po
tial difference at metal surfaces. The elasticity effects c
sidered in this work may play an important role in the exp
nation of recently observed force and conductan
fluctuations in the tensed metallic nanowires.31,32
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