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Simple theory of elastically deformed metals: Surface energy, stress, and work function
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The effect of uniaxial strain on surface properties of simple metals is considered within the stabilized jellium
model. The modified equations for the stabilization energy of the deformed Wigner-Seitz cells are derived as
a function of the bulk electron density and the given deformation. The model requires as input the density
parameter, the Poisson ratio, and Young’s modulus of the metal. The results for surface energy, surface
stress, and work function of simple metals calculated within the self-consistent Kohn-Sham method are also
presented and discussed. A consistent explanation of the independent experiments on stress-induced contact
potential difference at metal surfaces is given.

[. INTRODUCTION demonstrated that the measurements of the derivative of sur-
face tension of a solid with respect to the electrical variables
The early experimental investigations of the force actingshowed a small difference between the surface stress
on electron inside a metallic tube in the earth’s gravitationand surface energy. On the other hand, different
field" posed a question about the influence of metal deformacalculations>** including the ones based on the first
tion upon the electronic work function. The direct measurePrinciples;*~*® point to the appreciable difference between
ments, using the Kelvin method, showed a decreasing%‘ese two quantities. A rough estimation of the difference
increasing of the contact potential differenc@PD) of the ~ Petween surface energyand surface streggwhich can be
tensed/compressed metal sampi&sSimilarly, the experi- done using the cohesive energy and the vacancy formation
ment with a high speed spinning metal rotor, which was€nergy’ shows thatg is approximately equal to or less
nonuniformly deformed over the length, demonstrated thathany. ) _
CPD changes between the areas of the surface subjected to!n this work we address the questions raised above by
different deformatiofi (see also discussion of earlier experi- investigating theoretically the surface energy, surface stress,
ments by Harrisoh_ The influence of deformation upon and work function of elaStlca”y deformed metal. A uniaxial
electronic emission from a thin metallic film has been alsoStrain applied to the surface introduces anisotropy to the
investigated. Recently, a similar effect on the CPD was ob- Metal by changing the densitfor separation of atomic
served at the surface of sample with a nonuniform distribuPlanes, electron gas concentration, and contributes to an ex-
tion of residual mechanical stre3at first sight, these results tra surface dipole barrier. A rigorous study of this problem
seem to be Surprising because they mean the respecti\i}@m fII’St.prInCIples is tedious and requires heavy numerical
increase/decrease of the work function with decreasingfomputations?~*°On the other hand, the calculations based
increasing electron density that is caused by a uniaxiapn the isotropic models of metal, i.e., on the jellium
tension/compression of metalic sample. Therefore, all thesB0del;™"which ignores the discrete nature of ions, or the
experiments stimulate two important questions which shoul@tabilized jellium modet?***°in which interparticle interac-
be answered by the microscopic theofiy:Does the change tions are averaged over the vqum_e of spherical W|gner_—Se|tz
of the CPD correspond to a change in the work function? ~ cells, do not allow proper accounting for the effects of inho-
Which sign will have the deformation gradients of surfaceMogeneous strain. In the present work we develop a modifi-
energy and work function for a metal that is subject to thecation of a stabilized jellium modef;'**°in order to de-
tensile(or compressivestrain along some direction? scribe the deformed metd™>*! In this modification the
From the general statement of the theory of elasticity fol-metal energy is expressed as a function of the density param-
lows that the change in the total energy of a solid is proporeter rs and of the given deformation. Section Il presents
tional to the square of relative deformation. Therefore, thetquations for a stabilized jellium model accounting for elas-
energy must increase so for compression as for tension. J# deformation. In Sec. Ill, the modified stabilized jellium
the other hand, experimentally it was found that in the rangénodel is applied to calculate, by the Kohn-Sham method, the
of elastic deformation, a uniaxial strain of metallic Samp|eeffect of a uniaxial strain on the electronic surface character-
leads to a linear change in the CPD.This implies that istics of single crystals of aluminum and lithium.
classical theory of elasticity may be not completely adequate
Lgccéztermination of the elastic characteristics of metal sur- Il. MODEL OF DEFORMED METAL
The second question is of importance by the determina- The dependence of the CPD on the uniaxial deformation
tion of surface tension or surface stré8sGohsteif have  was measured for polycrystalline samptéd.et us consider
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z N=ngQ/Q=ng[1—(1—2p)Uy]+O(U2),  (6)

and the corresponding density parameter is

G,y o,
‘g G' o= 1+ (1= 20) Uy ] @)

- ') x Having defined the basic parameters for the strained sys-
l ) tem let us consider its energy in order to obtain the condition
d for stability. Proceeding similarly as for the derivation of
f / equations for the original stabilized jellium mod&hve con-
y

sider a metal assembled from the Wigner-Seitz cells. The

FIG. 1. Qualitative sketch of the crystal deformeapandedin average energy per valence electron in the bulk is

the x direction. d is the interplanar distance. The calculations are — —

performed for the upper, shaded side of the crystal. esy=&3(N) +eytWg, ®
a hypothetical crystal in the shape of a rectangular paralle\—Nhere the first term gives the jellium energy
epiped(Fig. 1). In the undeformed state all of its faces are 3 __ 3 _ .
equivalent. We assume that deformation is a measured quan- g3(n)=—=k&(n)— —kg(N) + £¢or(N), (9)
tity and a metallic crystal is to be considered as assembled 10 4m

from a number of simple crystallites. Thus, qualitatively, the.onsisting of the average kinetic and exchange-correlation
problem can be reduced to the consideration of tension Oénergy per electron withk. being Fermi momentumkf_i

compression applied to a single crystal. L o . . .
Let us first express the average electron density in a metafr377 n. (We employ atomic units througholThe remain-

— . . . _ ing two terms in Eq(8) represent the Madelung energy and
n as a function o_f deformat|0n..For this purpose, consider ah o average of the repulsive part of the Ashcroft model po-
undeformed cubic cell of the side length and volume tential. A small, band structure energy téfris neglected in
4 Eq. (8). _ _ _ _
Qp=al=mrd, (1) As usual for isotropic medium, by transformation of the
3 ordinary jellium into a stabilized one, the Coulomb interac-
tions were averaged over the Wigner-Seitz cell. The uniaxial
strain applied to the crystal deforms the spherical Wigner-
Seitz cells into ellipsoidal ones. This has an influence on the
Madelung energy,, which now should be averaged over
the volume of the deformed cell. It can be expressed in the
form similar to the gravitational energy of the uniform
spheroid® to give

wherer,=Z% is the radius of the spherical Wigner-Seitz
cell, Z is the valencer .= (3/4mn,) 3, andn, is the average
electron density in the bulk of undeformed crystal. For a
uniaxially deformed cell, elongated or compressed along th
X axis, one can write

2 4 2
0= axay=§wab , 2

— Z 1 _
_ sM(n)z—f d%ﬁ—— +—f d3rnV(r)
wherea, anda,=a, are the sides of the elementary paral- Z  spheroid r) 2Z)spheroid
lelogram, anda and b are the half-axes of the equivalent

* 2k
prolate or oblate spheroid of revolution relative to ihaxis. _ % D P (10
Denoted byu,, the uniaxial strain we have 10a &o “*2k+1’

a,=ag(1+Uy) and a,=ag(1+u,,)=ay(1l— ruy), whereV(r) is the electrostatic potential inside a uniformly

(3) charged spheroidCy={1,u>0;(— 1)%uw<0}, and p
) =y|1- b2/a2| defines the spheroid’s eccentricity. The series
where{)/{2o=1= Uy + Uy, +Uz;, andv is the polycrystal-  appearing in Eq.(10) can be expressed by analytical
line Poisson goefflmerﬂratlo) tha}t |s.relat|n§. thg transver-. Junctions?“ This expression has a correct Iimit;'M(F)
sal compression to the elongation in the direction of applie L 0.92/r for uy,—0.

deformation, i.e.uyy=U;,= — vuy. From Eqs(1)—(3) fol- We assume that the shape of ionic cores is not influenced

lows by the deformation and they remain spherical, thus the aver-
a=ro(1+Uy,) and b=ro(1—vuy). 4) aging of the Ascroft empty-core pseudopotential gives
Similarly, the spacing between the lattice planes perpendicu- WR= ZWF@- (11)

lar to they or z directions is . .
y For the averaged differenc& (r) between the ion pseudo-

d,=dg(1—vu,,) (5) potential and the potential of the uniform positive back-
v o ground, holds the same relatiSras for the unstrained crys-
whered, is the interplanar spacing in an undeformed crystaltal, i.e.,
Consequently, following Eq91)—(4), the average electron o
density in the deformed metal is given by (bv)ws=¢e+ey+Wg, (12
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where the electrostatic self-energy of the uniform negative

—d — —
background inside a spheroid is (6v)ws=— nd—_[sJ(n)Jr P/n]. (19
n
~ 2
£=—3¢u- (13)  Consequently, Eqg16), (17), and(19) allow us to construct

the total energy of a finite strained crystal with a surface, as

The pseudopotential core raditgcan be fixed from the @ functional of the electron density, and of the form origi-
. lg .
condition of mechanical equilibrium depending on the me-nally derived by Perdevet al.™ but with r. and (6v)ws
chanical stress induced in the volume of the cell. In order tgiétermined from Eqs17) and(19), respectively.
determine the core radius let us note that for the strained SuPsequently, in order to calculate the face-dependent

: . 19,13
metal the intrinsic pressure in the bulk of metallic sample surface properties, similarly as Perdetval. ™" we can re-
place the stabilization potentigl9) by the following form:

EM N

de —_d
@ (14)
dn <5U>face:<5v>ws_

is compensated by the pressure exerted by the external forces
where the second term on the right side of E2D) repre-
P=— (ot oyt o)=—YUy(1-2v), (15  sents the dipole barrier due to atomic corrugations at the
surfacet®2°
The total energy of a finite rectangular crystal confined by
the walls of area, andA,=A,, may be written as the sum
of the bulkEP and surfaceES energy where

where g;; are the components €Xx,y,z) of the tensor of
mechanical stress andiis the Young’s modulufé defined as
gi=YU; . It should be noted that for the ideal metal
=1/2 andP=0. It means that the applied external force
does not change the volume but the shape of a cell or sample. s

Consequently, the average energy per electron in the bulk E™=vy4Ay+ 7 2A. (21

of a strained metal can be written as _ . .
Here, y,= v, and vy, are surface energies, per unit area, of
— — — the lateral and base sides, respectively. In the undeformed
= +eyt+Wrt
g=e,y(N) +ay +wWetP/n, (16) statey,= y,= v,= 7, and surface energ{21) changes by

wheree, standing on the left side of EL6), is considered

to be the energy which minimizes at the equilibrium density s dy dy
for the strained metal, treatirfjas a given constant fixed by  dE"=4A, 75aﬁ+dua5 gt 2A, YoupT gy, B dUag,
Eqg. (15). In the linear approximation, Madelung enerdy) ¢ (22)

is well approximated by, (n)— —0.92/rq,. Inserting the o )
latter and for the particular terms in EL6) the explicit ~Wherea and B8 denote directions in the plane of lateral and

expressions from Eq$9) and (11)_(13), from the minimum base sides andaﬁ is the Kronecker delta. The EXDTESSionS in
energy conditiords/dn=0 we have the braces represent the components of surface stress. Fol-

lowing the model presented in this work we calculate only

29w\ 1 (9m\¥ 1
re= ——(— Motz —) r2+-z%%2 d
151 4 6w\ 4 gxx:7+duy- (23
2 ,decy 8 . |M “
*g's dr. +gmrsP , (17 By definition’® putting the electrostatic potential in the
s=lsu vacuum equal zero, for a certain face of semi-infinite crystal,

wherer ¢, is the equilibrium density parameter of the strainedth® electron work function can be written as

metal. Here, we assume that the volume of the spheroid is

equal to the volume of the equivalent sphere of radigs —d —

=7"%_,. As can be seen, the pseudopotential core radius Wiace= — ¢~ d_ﬁ[”SJ(”)]_@U%ace- (24)
now depends upon the strai,. One would not expect this

from pseudopotential theory, where the pseudopotent|e\;\,here1$<0 denotes the electrostatic potential in the metal
shoglq transfer unchanged from one gnVIronment to anOIhef')ulk. Alternatively, work function can be calculated from the
bUt it is a consequence of forC|_ng a first-order psechIOpOter’(flisplaced-proﬁle change-in-self-consistent field expression.
tial model to do the work of a higher-order model. Thus Ed.gq 5 giscussion of our results presented in the subsequent

(17) assures transferability only for the equally strained sysecion, it is useful to rewrite E24) in the following form:
tems(in the regime of linear strains

Making use of the equality _
Wrace™ Vet~ €F (29

—d _ -
(60 )ws=n—(ey+Wg), (18)  where the effective potentfI*® in the bulk, ves= ¢+ vye
dn +(5u>face,_gives the total barrier height at the metal-vacuum

we get at the equilibrium density corresponding to a strainednterface, vy, is the exchange-correlation potential in the
metal: bulk [vy=vy(—>)], andepzékﬁ is the Fermi energy.
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TABLE I. Calculated surface energiegs work function W;,., strain derivativedy/du,,, and surface stresg=g,,, for elastically
deformed Al {s=2.06) and Li fs=3.25) samples. Positive and negative deformatigns- == 0.03 are labeled with{) and (—). AWigace
is the difference of the work function for a strained and unstrained surface. The values of Young’s modulus are(&1) &Rh11.47 GPa
(Li) (Ref. 27.

Metal Face v (erg/cnt) Wice (EV) Uyy ddTy (erg/cn?) g (erg/cnt) AWpyee(€V)
XX
Al (111 946 4.096 + 460 1406 —0.032
- 400 1346 0.033
(100 1097 3.780 + 833 1930 —0.025
- 810 1907 0.016
Li (110 311 3.286 + 20 330 —-0.011
- 13 324 0.011
(100 345 3.037 + 37 382 —0.005
- 37 382 0.005
Ill. APPLICATION AND DISCUSSION 213 erg/cm, for uy,>0 and u,,<O0, respectively. These

To verify the theory presented in Sec. II, the Kohn-Sham"Qlues are much smaller than the ones reported in Table I. In
equations were solved for the two most densely packed suffiS case ¢=1/2) we can also evaluate the other compo-
faces of Al and Li represented by the stabilized jellium nents of surface stresg,= gy, = y+dy/duy,. Substituting
model?® In the language of our model, we consider two du,,=duy,=—vdu,, we getg,,=gy,=y—2dy/du,<y.
regular single crystals of Aland Li) which in undeformed Let us make two observations at this point. First, the latter
state have all of their sides equivalent. Owing to the crystaftesult agrees with the results derived on the basis of the
deformation the four of the side-faces remain equivalent telasticity theorj® where theg/y ratio was expressed in
one another, but not to the two base facBgy. 1). The terms of the Poisson coefficient, to give (3v—1)/(1
(6v)ace term included into the effective potential allows the — ). For v=1/2, this formula giveg/y=1, andg<'y, for
generation of the face-dependent density profiigswhich  ,<1/2. Second, in order to calculag,, and g,y for a
were used to calculate the surface characteristics: work fungample expanded along theaxis we should exploit the
tion, surface energy, and surface stress. All calculations wergajue of dy/duy, for u,,<0, whereas for a compressed
carried out for the upper side of the sampee Fig. 1 sample, the corresponding value fgr>0. This is because
assumng7 the pon(_:rystaIIme_vaIue of the P0|ssor_1 coefficienty o tension applied along thedirection causes a sample to
v=0.36" for elastic properties of both Al and L. be compressed along the orthogonmalandz) axes, cf. Eq.

Within the applieq range of defo_rmatiom 0.'03.$ Uxx 3). For Al(111) the calculated surface stre@able )) is in a
=0.03, the changes in surface quantities remain linear. Th ery good agreement with the values resulting from the

positive/negative straiti,, means expansion/compression of _ - 0 S o ko< 1040 erg/8h and 1441

the side of a sample, i.e., the decrease/increase of the aton@?g/cn?—l“ It gives also improvement over the results ob-

packing density at this side, and the decrease/increase of ttﬂ&ned for ordinary jelliun?and our previous direct appli-

mean electron concentrationand interplanar spacing in the cation of the stabilized jellium modéf.
direction perpendicular to the considered crystal side. For a For the considered strains the work function decreases
better understanding of the physical effects we have alsqnea”y withu,, but the relative change is less than 1$ée
performed calculations for the special case of the “ideal” T4ple ). The similar behavior is observed for=1/2. It is
metal for whichv=1/2. In this case the deformation does geen that the dominating component, which leads to a de-
not changen, however, the second teroorrugation dipole crease ofV with u,,, is a change in thésv )s,ce term. Thus,
barriep in the face-dependent potent{@0) will be changed. the change of work function under the influence of deforma-
The results of calculations are summarized in Table |. Agion is determined by the competition of negative change
is seen the surface energy increases linearly with the appliggbth in the exchange-correlation, and electrostatiey com-
positive deformationu,, and decreases with the negative ponents of the effective potentialy; and the positive change
one. It means thady/du,, is positive both foru,,>0 and in the face-dependent compon&idv );,ce. A dominant role
for u,<0. Accordingly, Eq.(23) gives values of the com- is played by the change ¢Bv )t.c. term while the change in
ponent of surface stregyy larger than surface energy. For the Fermi energy is quite unnoticeable. An overall decrease/
u,,>0 surface stress is somewhat larger than dgr<O0. increase in the work functiow is determined by a positive/
The changes are more noticeable for Al than for Li. It seemsegative shift of the electrostatic potential in the metal
that the classical definition of surface str@$8works better interior.
for the ideal metal. This is connected with the fact, that sub- The calculated change of the work function with strain
jected to deformation, ideal metal changes only its surfacgeems to contradict the experimental re<tftsvhere it was
area—the electron concentration in its bulk remains unfound that work function increases/decreases with
changed. The calculations performed for(#1) surface elongation/compression of the sample. This conclusion was
yield the values of the strain derivativiy/du,, =247 and based on the analysis of the measured GPB:? For the
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TABLE II. Calculated change in the effective potentisd o+(z Al sample subject to deformatiom,,=0.03, the CPD
=2,) at the surface of elastically deformed and neutral sample ofmounts to — 0.025+ 0.002 V4® Since a polycrystalline
Al (rs=2.06) and Li ¢s=3.25). Positive and negative deforma- sample can be considered as assembled from arbitrarily ori-
tions u,,=+0.03 are labeled with) and (-). ented single crystals, the values obtained by us should be
averaged in order to compare them with experiment. As is

Metal Face Uxx Aven(2o) (eV) seen both experiment and calculations give a negative
Al (111) + ~0.103 change of the surface potentiaAV=Aveﬁ(.z:zo)<.0.
_ 0.106 Thus, taken as a whole our results agree with the indepen-
(100 N 0064 dent experiments both for expandetiand compresséd
_ 0.069 metallic samples. The results fdw ¢x(uy,) correspond to
Li (110 " _0'014 direct observation of stress-induced shift in the measured
_ 0'015 contact potential: The effective potential outside the open
’ faces of a sample is more negative/positive when tensile/
(100 + +0.015 ive f . i like the effecti
B 0.012 compressive force is applied. However, unlike the effective

potential at the surface, due to the different effect of the
(6v)1ace term, the value of the potential in the metal bulk is
conventional method of measurement of the work functionmore positive/negative for an expanded/compressed sample.
changes upon straifi® this means thatwW(u,,)=W(0) So, for the Al sample the work function change vs strain
—AV(u,,)>W(0), i.e., the work function increases for a shows an opposite trend compared to that of contact poten-
tensed sample. HerkV denotes the CPD. In the following tial. It differs also from that predicted by non-self-consistent
we argue that this contradiction is spurious. The point is thatalculations"?* Accordingly, the results of Table | demon-
the measurement by Kelvin method fixes the change of suistrate that work function decreases witfy. In other words,
face potential. So, the explanation of experimental observaour results show that the measurements by Kelvin method do
tions can be given based not upon the change in the workot give a change in the work function but a change in the
function but by analyzing the change in the effective potensurface potential upon strain.

tial ver upon deformation. The Kelvin method gives the In summary, the stabilized jellium model has been ex-
value of the potential difference at the surface of a sampléended to encompass the effects of elastic strain on surface
which one can define as the position of the image plane properties of simple metals. By imposing uniaxial strain to
=2,.”° Note that in distinction to the work function, to metal surface and limiting ourselves to linear terms in defor-
which (v )ce term contributes directlyEq. (24)], at the  mation, we have obtained a realistic description of strain
image-plane positiofwhich is located outside the geometric dependence of surface quantities: surface energy, surface
surface (v )iace €quals zero and there the effective potentialstress, and work function. We have presented a consistent
feels the change i{dv)ce ONly by means of the self- explanation of experiments on stress-induced contact poten-
consistent procedure. The calculations performed fot A1) tial difference at metal surfaces. The elasticity effects con-
and Li(110 demonstrate that the ratio of the effective poten-sidered in this work may play an important role in the expla-
tial  difference Avey  between  strained ug, nation of recently observed force and conductance
=+0.03) and strain-free samples, at the surface and in thuctuations in the tensed metallic nanowifes?

bulk, is Av (2= 2p)/ Ave~0.8. Here Av 4 denotes the re-
spective difference in the metal bulk.

The results forAv .4(zy;Uy,) are shown in Table Il. The
potential difference outside the sample becomes more nega- This work was supported by the University of Wroctaw
tive as deformation increases, with the exception ¢109). Grants Nos. 2016/W/IFD/99 and 1010/IFD/99. One of us
The calculated changes in the effective potential have théV.V.P.) acknowledges fruitful discussions with Professor V.
same sign as the measured CPD for Al. For a polycrystalling/. Levitin and Dr. S. V. Loskutov.
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