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Elastic buckling of single-walled carbon nanotube ropes under high pressure
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A modified elastic honeycomb model is presented to study elastic buckling of single-walled carbon nanotube
ropes under high pressure. Simple formula is given for the critical pressure as a function of the Young’s
modulus and the thickness-to-radius ratio. For single-walled carbon nanotubes of diameters around 1.3 nm, the
predicted critical pressure is about 1.8 GPa, which is in excellent agreement with the known data reported in
the literature. This suggests that the elastic buckling would be responsible for the pressure-induced abnormali-
ties observed for vibration modes and electric resistivity of single-walled carbon nanotube ropes.

The discovery of carbon nanotubes has stimulated exterate or larger diameters, exhibit a honeycomblike geometrical
sive experimental and theoretical studies. Numerous studiestructure*®1%11|n particular, when carbon nanotube ropes
showed that carbon nanotubes exhibit superior mechanicalre exposed to a high pressure, this shape change from cy-
and electronic properties and hold substantial promise aléndrical to honeycomb could be enhanced considerably, and
new high-strength fibers and novel semiconductor materialstherefore carbon nanotube ropes of even smaller diameters
Among various methods of research, continuum mechaniceould exhibit honeycomblike geometrical shape. Hence, the
(such as elastic beam and shetiodels have been widely geometry of single-walled carbon nanotube ropes under high
and successfully used to study carbon nanotdbEese pressure can be well approximated by elastic honeycombs
prior studies have clearly showed that “the laws of con-(hexagonal network of elastic rods or plates connection
tinuum mechanics are amazingly robust and allow one tavith this, it is noted® *°that elastic honeycombs under com-
treat even intrinsically discrete objects only a few atoms inpression exhibit a remarkable structural instability when the
diameter” (Yakobson & Smalley! Particularly, because ex- compressive stress reaches a critical level, and this instability
periments at the scale of nanometers are extremely difficulfjas been attributed to buckling of the honeycomb structure.
and molecular dynamics simulation remains expensive fofhe present study attempts to explain the aforementioned
large-sized atomic systerfespecially for carbon nanotube pressure-induced abnormalities of carbon nanotube ropes in
ropes and multiwalled carbon nanotulesontinuum me- terms of elastic buckling of elastic honeycomb, and to derive
chanics models will continue to play an essential role in thesimple formula for the critical pressure.
study of carbon nanotubes. To apply continuum models to carbon nanotubes, an im-

Although earlier methods for making carbon nanotubegportant mechanical property of single-walled carbon nano-
suffered from a very much larger concentration of unwantedubes has to be clarified. Consistent with the concept estab-
byproducts and a scattered distribution of diameters and gdished for graphite sheets, almost all previous researthers
ometries of carbon nanotubes, much more efficient methoddave defined the equilibrium interlayer spacing between ad-
with very good yields(>75%) of carbon nanotubes have jacent nanotubes, denoted byabout 0.34 nr) as the rep-
recently been developédthat produce carbon nanotube resentative thickness of single-walled carbon nanotubes, with
ropes composed of aligned single-walled carbon nanotubgbe corresponding Young's modulls=1.1TPa. On the
with narrow distribution of diameters. Thus, as a major formother hand, the effective bending stiffness of single-walled
of carbon nanotubes, single-walled carbon nanotube ropegarbon nanotubes is 0.85 eV, while the in-plane stiffness
have widely been used in the study of carbon nanotube dé=t=360J/nf (see Ref. 16 and Yakobson, Brabec, and
vices and carbon nanotube-composite matefi@ad elec- Bernholé). Thus, as noted by Yakobson, Brabec, and Bern-
tronic and mechanical properties of carbon nanotube ropésole, the actual bending stiffness of single-walled carbon
have been the subject of numerous theoretical and experanotubes is muctabout 25 timeglower than that given by
mental researchésHere, an interesting phenomenon, whichthe classic formuld =Eh*/12 if the thicknessh is substi-
has recently been reported in the literature and motivated thigited by the representative thicknéss0.34 nm. Hence, this
present study, is the pressure-dependent abnormalities ofassic relation has to be abandoned if the representative
single-walled carbon nanotube ropges.In these work$;®  thicknesst=0.34nm is used. This inconsistency is due to
abrupt changes have been observed for vibration modes arsihgle atom-layer structure of single-walled carbon nano-
electric resistivity when the applied pressure reached a crititubes. To retain the above classic relation, as stated by Ya-
cal value ranging from 1.5 to 1.9 GPa. Hence, an understandobson, Brabec, and Bernhole, the thickness of single-walled
ing of the intrinsic mechanism behind these pressure-inducecarbon nanotubes should lbg=0.066 nm, which is about
abnormalities of carbon nanotube ropes is of great interestfive times smaller than=0.34 nm. In doing so, the corre-

Local flattering of tube walls of carbon nanotubes due tasponding Young’s modulus is abolg=>5.5 TPa. In this pa-
the van der Waals forces is a well-known phenometfon. per, to be definite, the definitions of Yakobson, Brabec, and
Due to this effect, it has been observed that carbon nanotuldigernhole will be followed, and then the thickness of single-
ropes, especially single-walled carbon nanotubes of modewalled carbon nanotubes ig=0.066 nm and the corre-
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then negligible, because the hard-core component of the in-
teratomic interaction is repulsive and strongly resists any sig-
nificant reduction of the intertube spacjné major feature
which distinguishes the honeycomblike geometry of single-
walled carbon nanotube ropes, shown in Fig. 2, from con-
ventional elastic honeycomtfs'®is that all columns of the
former are hollow and composed of two thin walls separated
by a distancé=0.34 nm. Furthermore, the intertube friction
between adjacent tubes is usually so low that any two adja-
cent walls could slide to each oth€rand then bending de-
formation of any wall is independent of the opposing wall.
Consequently, the bending stiffness of each column of the
honeycomb shown in Fig. 2 is simply twice the bending
stiffness of single-walled carbon nanotubes. Here, we should
be reminded that the van der Waals interaction between the
opposing walls does not affect the critical buckling load be-
cause the intertube spacing stays unchanged during an infini-
tesimal buckling of each column as a whole. This is similar

sponding Young's modulus i€,=5.5TPa. Because the (, 4yially compressed buckling of double-walled carbon
nearest intertube distance in carbon nanotube ropes is aroundotubes studied in Ref. 18. where it is shown that the van

— 11 SR
t=0.34nm;" a consequence of the definitions of Yakobson,qer \waals forces do not affect the axial buckling strain of a

Brabec, and Bernhole’s is that huge gaps exist between ag,pje-walled carbon nanotube because buckling of the lat-
jacent tubes, yvhlc_:h is a few times larger _th_an the thicknesg, occurs in such a way that the interlayer spacing stays
to, as shown in Fig. 1. As a result, the existing formulas for,nchanged. Note that the bending stiffness of single-walled
elastic honeycomBs™*cannot directly be applied to single- carhon nanotubes is low, as explained above. This feature of

walled carbon nanotube ropes. Fortunately, as will be seegingie-walled carbon nanotube ropes makes them susceptible
below, the methods of Refs. 12—14 can be modified an elastic buckling under high pressure.

applied to carbon nanotube ropes to get a simple formula for - according to theoretical analysis and experimental
the critical pressure. It_should.pe emphasized that, as will b%bservationé,z‘l5 elastic honeycombs under compression
stated below, the predicted critical pressure stays unchanggglickie in two modes. Thedirectional uniaxial compression
if the representatlve thickness-0.34 nm, together with the 5,4 piaxial compression with the major stress inytdirec-
corresponding Young’s modullis=1.1TPa, are adopted. In o (see Fig. 2 exhibits the first mode, while biaxial com-

other words, the critical pressure formula obtained here doegression with the major stress in tkelirection exhibits the
not depend whether the definition of Yakobson, Brabec, andgcond ond34 Since the essence of the methBd& is

Bernhole of the thickness of single-walled carbon nanotubegearly illustrated in the analysis of thyedirectional uniaxial

is followed or not. , _ compression, let us first consider elastic buckling of the hon-
In carbon nanotube ropes, the nearest intertube spacing icomb formed by single-walled carbon nanotubes under

almost uniform and arounti=0.34 nm:* Thus, under high niaxial compression applied in thyedirection. In this case,

pressure, flattening of circular walls of carbon nanotubegasic buckling is dominated by Euler buckling of the verti-
leads to an approximate regular honeycomb, as shown in Figa| columns for which the total Euler loSds
2, where all edges of the regular honeycomb are approxi-

mately equal to the radiuR of the single-walled carbon

FIG. 1. lllustration of the cross section of single-walled carbon
nanotube ropes.

—0.4472 Eobtd
nanotubes, and the intertube spacing is albetd.34 nm(the pP= 0 44’72 (2D) D= 0 0, (1)
change in intertube distance due to high pressure is small and R 12

whereb is the depth of the honeycomb, 2D is the total bend-
ing stiffness of each column, and the coefficient 0.44 is a
correction factor established in the literatlisee e.g(3.14

of Ref. 12, or(4.19 of Ref. 13(1997] which reflects the fact
that the end constraint to rotation of the vertical column is
between a clamped bounddwyith the factor 4 and a hinged
boundary(with the factor 0.2h On the other hand, the re-
mote uniform uniaxial compressive stresg and the axial
force P for each column satisfy the relation

T
PZZUbeCOE{E =v3o,RDb, 2

where the interlayer spacing has been neglected as compared
to the diameter. Thus, combining Ed.) with Eq. (2) gives

FIG. 2. Idealized cross section of a single-walled carbon nanothe critical uniaxial compressive stress applied inytirec-
tube in the nanotube ropes under high pressure. tion as follows
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about 1.8 GPa, which is in excellent agreement with the
known data ranging from 1.5 to 1.9 GPa, reported in the
literature®~® Hence, it is believed that the elastic buckling, as
It is noted that formulg3) is different than the known for- - described by the present honeycomb model, is responsible
mula for elastic h_oneycomb?sl3by a factor of 2, because all for the pressure-induced abnormalities of vibration modes
vertical columns in the present model consist of two identicang electrical resistivity of single-walled carbon nanotubes
walls. In addition, the thicknests=0.066 nm in Eq.(3) is reported in the literaturé:®

the thickness of a single wall carbon nanotube, while the As stated by some authofd would seem that the critical
thickness appearing in the formulas for conventional eIaSti(f)ressure could be estimated by studying elastic buckling of
honeycomb¥"3is the total thickness of each column. Here, isolated nanotube, as the center tube shown in Fig. 1
it should be stated that the above buckling analysis is baseﬁ;wever, such a model would face several serious diffiCLﬂ-.

on elastic beam model. It is knowhthat the critical stress .. . L . o
given by plate-buckling analysis is different from the beamU€s: F|rst., the determination of prebuckling pressure distri-
model only by a factor of 1/(+ v2), where v is Poisson _butlon raises a troublesom.e task. Next, .the van der Wagls
ratio. In addition, it is readily seen that the same re€giit interaction depends on the mter?ube spacing between the iso-
will be obtained if the representative thickness0.34nm, |ated tube and the six surrounding tubes, rather than the de-
along with the corresponding Young’s moduluE flectlon of the .|solated 'gube alone. Hence, bucl;lmg pf the
=1.1TPa, are adopted. In that case, keeping in mind that thigolated tube is essentially coupled with all six adjacent
bending stiffnes® in Eq. (1) is not equal t&Et3/12, it can be tubes, and this could largely complicate the analysis. The
easily verified that all analysis from Eg€l) to (3) remain merit of the elastic honeycomb model presented here is that
valid. the coupling effect can be examined by studying column
In a similar way, it is straightforward to verify that the buckling of each pair of adjacent walls.

analysis of equal-biaxial compression of conventional elastic In conclusion, a simple formula is given for the critical
honeycombs, given in Refs. 13 and [iske Sec. 4(#) of  pressure beyond which single-walled carbon nanotube ropes
Ref. 13(1997, or Appendix A of Gibsoret al'¥], can be become elastically unstable and an abrupt change in geo-
extended parallel to the honeycomblike structure of singlemetrical shape will occur. Excellent agreement between the
walled carbon nanotube ropes, shown in Fig. 2. The finapredicted critical pressure and the known data supports the
result is that the equal-biaxial critical stress is about 0.73alidity of the model. In particular, it implies that the
times they-directional uniaxial critical stress. Thus, it fol- pressure-dependent abnormalities are not limited to vibration
lows from Eq.(3) that the critical pressure for elastic buck- behavior and electric resistivity, abrupt change of other me-

ling of the honeycomb under pressure, as shown in Fig. 2, ishanical and electronic properties of single-walled carbon
given by nanotube ropes is expected when the applied pressure

reaches the same critical value. This prediction poses an in-
teresting issue for further study.

to)?
oy~ —0.4%,| | . )

3
pcr=0.3250%, tg=0.066 nm, Ey=5.5TPa. (4)
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