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Elastic buckling of single-walled carbon nanotube ropes under high pressure

C. Q. Ru*
Department of Mechanical Engineering, University of Alberta, Edmonton, Canada T6G 2G8

~Received 16 May 2000!

A modified elastic honeycomb model is presented to study elastic buckling of single-walled carbon nanotube
ropes under high pressure. Simple formula is given for the critical pressure as a function of the Young’s
modulus and the thickness-to-radius ratio. For single-walled carbon nanotubes of diameters around 1.3 nm, the
predicted critical pressure is about 1.8 GPa, which is in excellent agreement with the known data reported in
the literature. This suggests that the elastic buckling would be responsible for the pressure-induced abnormali-
ties observed for vibration modes and electric resistivity of single-walled carbon nanotube ropes.
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The discovery of carbon nanotubes has stimulated ex
sive experimental and theoretical studies. Numerous stu
showed that carbon nanotubes exhibit superior mechan
and electronic properties and hold substantial promise
new high-strength fibers and novel semiconductor materia1

Among various methods of research, continuum mecha
~such as elastic beam and shell! models have been widel
and successfully used to study carbon nanotubes.2 These
prior studies have clearly showed that ‘‘the laws of co
tinuum mechanics are amazingly robust and allow one
treat even intrinsically discrete objects only a few atoms
diameter’’ ~Yakobson & Smalley!.1 Particularly, because ex
periments at the scale of nanometers are extremely diffic
and molecular dynamics simulation remains expensive
large-sized atomic system~especially for carbon nanotub
ropes and multiwalled carbon nanotubes!, continuum me-
chanics models will continue to play an essential role in
study of carbon nanotubes.

Although earlier methods for making carbon nanotub
suffered from a very much larger concentration of unwan
byproducts and a scattered distribution of diameters and
ometries of carbon nanotubes, much more efficient meth
with very good yields~.75%! of carbon nanotubes hav
recently been developed,3 that produce carbon nanotub
ropes composed of aligned single-walled carbon nanotu
with narrow distribution of diameters. Thus, as a major fo
of carbon nanotubes, single-walled carbon nanotube ro
have widely been used in the study of carbon nanotube
vices and carbon nanotube-composite materials,4 and elec-
tronic and mechanical properties of carbon nanotube ro
have been the subject of numerous theoretical and exp
mental researches.5 Here, an interesting phenomenon, whi
has recently been reported in the literature and motivated
present study, is the pressure-dependent abnormalitie
single-walled carbon nanotube ropes.6–9 In these works,6–8

abrupt changes have been observed for vibration modes
electric resistivity when the applied pressure reached a c
cal value ranging from 1.5 to 1.9 GPa. Hence, an understa
ing of the intrinsic mechanism behind these pressure-indu
abnormalities of carbon nanotube ropes is of great intere

Local flattering of tube walls of carbon nanotubes due
the van der Waals forces is a well-known phenomeno10

Due to this effect, it has been observed that carbon nano
ropes, especially single-walled carbon nanotubes of mo
PRB 620163-1829/2000/62~15!/10405~4!/$15.00
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ate or larger diameters, exhibit a honeycomblike geometr
structure.4,5,10,11 In particular, when carbon nanotube rop
are exposed to a high pressure, this shape change from
lindrical to honeycomb could be enhanced considerably,
therefore carbon nanotube ropes of even smaller diame
could exhibit honeycomblike geometrical shape. Hence,
geometry of single-walled carbon nanotube ropes under h
pressure can be well approximated by elastic honeyco
~hexagonal network of elastic rods or plates!. In connection
with this, it is noted12–15that elastic honeycombs under com
pression exhibit a remarkable structural instability when
compressive stress reaches a critical level, and this instab
has been attributed to buckling of the honeycomb structu
The present study attempts to explain the aforementio
pressure-induced abnormalities of carbon nanotube rope
terms of elastic buckling of elastic honeycomb, and to der
simple formula for the critical pressure.

To apply continuum models to carbon nanotubes, an
portant mechanical property of single-walled carbon na
tubes has to be clarified. Consistent with the concept es
lished for graphite sheets, almost all previous research2

have defined the equilibrium interlayer spacing between
jacent nanotubes, denoted byt ~about 0.34 nm!, as the rep-
resentative thickness of single-walled carbon nanotubes,
the corresponding Young’s modulusE51.1 TPa. On the
other hand, the effective bending stiffness of single-wal
carbon nanotubes is 0.85 eV, while the in-plane stiffn
Et5360 J/m2 ~see Ref. 16 and Yakobson, Brabec, a
Bernhole2!. Thus, as noted by Yakobson, Brabec, and Be
hole, the actual bending stiffness of single-walled carb
nanotubes is much~about 25 times! lower than that given by
the classic formulaD5Eh3/12 if the thicknessh is substi-
tuted by the representative thicknesst50.34 nm. Hence, this
classic relation has to be abandoned if the representa
thicknesst50.34 nm is used. This inconsistency is due
single atom-layer structure of single-walled carbon na
tubes. To retain the above classic relation, as stated by
kobson, Brabec, and Bernhole, the thickness of single-wa
carbon nanotubes should bet050.066 nm, which is abou
five times smaller thant50.34 nm. In doing so, the corre
sponding Young’s modulus is aboutE055.5 TPa. In this pa-
per, to be definite, the definitions of Yakobson, Brabec, a
Bernhole will be followed, and then the thickness of sing
walled carbon nanotubes ist050.066 nm and the corre
10 405 ©2000 The American Physical Society
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10 406 PRB 62C. Q. RU
sponding Young’s modulus isE055.5 TPa. Because th
nearest intertube distance in carbon nanotube ropes is ar
t50.34 nm,11 a consequence of the definitions of Yakobso
Brabec, and Bernhole’s is that huge gaps exist between
jacent tubes, which is a few times larger than the thickn
t0 , as shown in Fig. 1. As a result, the existing formulas
elastic honeycombs12–14cannot directly be applied to single
walled carbon nanotube ropes. Fortunately, as will be s
below, the methods of Refs. 12–14 can be modified
applied to carbon nanotube ropes to get a simple formula
the critical pressure. It should be emphasized that, as wil
stated below, the predicted critical pressure stays unchan
if the representative thicknesst50.34 nm, together with the
corresponding Young’s modulusE51.1 TPa, are adopted. I
other words, the critical pressure formula obtained here d
not depend whether the definition of Yakobson, Brabec,
Bernhole of the thickness of single-walled carbon nanotu
is followed or not.

In carbon nanotube ropes, the nearest intertube spaci
almost uniform and aroundt50.34 nm.11 Thus, under high
pressure, flattening of circular walls of carbon nanotub
leads to an approximate regular honeycomb, as shown in
2, where all edges of the regular honeycomb are appr
mately equal to the radiusR of the single-walled carbon
nanotubes, and the intertube spacing is aboutt50.34 nm~the
change in intertube distance due to high pressure is small

FIG. 1. Illustration of the cross section of single-walled carb
nanotube ropes.

FIG. 2. Idealized cross section of a single-walled carbon na
tube in the nanotube ropes under high pressure.
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then negligible, because the hard-core component of the
teratomic interaction is repulsive and strongly resists any
nificant reduction of the intertube spacing!. A major feature
which distinguishes the honeycomblike geometry of sing
walled carbon nanotube ropes, shown in Fig. 2, from c
ventional elastic honeycombs12–15 is that all columns of the
former are hollow and composed of two thin walls separa
by a distancet50.34 nm. Furthermore, the intertube frictio
between adjacent tubes is usually so low that any two a
cent walls could slide to each other,17 and then bending de
formation of any wall is independent of the opposing wa
Consequently, the bending stiffness of each column of
honeycomb shown in Fig. 2 is simply twice the bendi
stiffness of single-walled carbon nanotubes. Here, we sho
be reminded that the van der Waals interaction between
opposing walls does not affect the critical buckling load b
cause the intertube spacing stays unchanged during an in
tesimal buckling of each column as a whole. This is simi
to axially compressed buckling of double-walled carb
nanotubes studied in Ref. 18, where it is shown that the
der Waals forces do not affect the axial buckling strain o
double-walled carbon nanotube because buckling of the
ter occurs in such a way that the interlayer spacing st
unchanged. Note that the bending stiffness of single-wa
carbon nanotubes is low, as explained above. This featur
single-walled carbon nanotube ropes makes them suscep
to elastic buckling under high pressure.

According to theoretical analysis and experimen
observations,12–15 elastic honeycombs under compressi
buckle in two modes. They-directional uniaxial compression
and biaxial compression with the major stress in they direc-
tion ~see Fig. 2! exhibits the first mode, while biaxial com
pression with the major stress in thex direction exhibits the
second one.13,14 Since the essence of the methods12–14 is
clearly illustrated in the analysis of they-directional uniaxial
compression, let us first consider elastic buckling of the h
eycomb formed by single-walled carbon nanotubes un
uniaxial compression applied in they direction. In this case,
elastic buckling is dominated by Euler buckling of the ver
cal columns for which the total Euler load19 is

P5
20.44p2~2D !

R2 ,D5
E0bt0

3

12
, ~1!

whereb is the depth of the honeycomb, 2D is the total ben
ing stiffness of each column, and the coefficient 0.44 is
correction factor established in the literature@see e.g.~3.14!
of Ref. 12, or~4.19! of Ref. 13~1997!# which reflects the fact
that the end constraint to rotation of the vertical column
between a clamped boundary~with the factor 4! and a hinged
boundary~with the factor 0.25!. On the other hand, the re
mote uniform uniaxial compressive stresssy and the axial
force P for each column satisfy the relation

P52syRbcosFp6 G5)syRb, ~2!

where the interlayer spacing has been neglected as comp
to the diameter. Thus, combining Eq.~1! with Eq. ~2! gives
the critical uniaxial compressive stress applied in they direc-
tion as follows
-
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sy'20.44E0S t0

RD 3

. ~3!

It is noted that formula~3! is different than the known for-
mula for elastic honeycombs12,13by a factor of 2, because a
vertical columns in the present model consist of two identi
walls. In addition, the thicknesst050.066 nm in Eq.~3! is
the thickness of a single wall carbon nanotube, while
thickness appearing in the formulas for conventional ela
honeycombs12,13 is the total thickness of each column. Her
it should be stated that the above buckling analysis is ba
on elastic beam model. It is known19 that the critical stress
given by plate-buckling analysis is different from the bea
model only by a factor of 1/(12n2), where n is Poisson
ratio. In addition, it is readily seen that the same result~3!
will be obtained if the representative thicknesst50.34 nm,
along with the corresponding Young’s modulusE
51.1 TPa, are adopted. In that case, keeping in mind tha
bending stiffnessD in Eq. ~1! is not equal toEt3/12, it can be
easily verified that all analysis from Eqs.~1! to ~3! remain
valid.

In a similar way, it is straightforward to verify that th
analysis of equal-biaxial compression of conventional ela
honeycombs, given in Refs. 13 and 14@see Sec. 4.4~b! of
Ref. 13 ~1997!, or Appendix A of Gibsonet al.14#, can be
extended parallel to the honeycomblike structure of sing
walled carbon nanotube ropes, shown in Fig. 2. The fi
result is that the equal-biaxial critical stress is about 0
times they-directional uniaxial critical stress. Thus, it fo
lows from Eq.~3! that the critical pressure for elastic buc
ling of the honeycomb under pressure, as shown in Fig. 2
given by

pcr50.32E0

t0
3

R3 , t050.066 nm, E055.5 TPa. ~4!

For example, for single-walled carbon nanotube ropes of
ameters around 1.3 nm, the predicted critical pressur
-
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about 1.8 GPa, which is in excellent agreement with
known data ranging from 1.5 to 1.9 GPa, reported in
literature.6–8 Hence, it is believed that the elastic buckling,
described by the present honeycomb model, is respons
for the pressure-induced abnormalities of vibration mod
and electrical resistivity of single-walled carbon nanotub
reported in the literature.6–8

As stated by some authors,7 it would seem that the critica
pressure could be estimated by studying elastic buckling
an isolated nanotube, as the center tube shown in Fig
However, such a model would face several serious diffic
ties. First, the determination of prebuckling pressure dis
bution raises a troublesome task. Next, the van der W
interaction depends on the intertube spacing between the
lated tube and the six surrounding tubes, rather than the
flection of the isolated tube alone. Hence, buckling of t
isolated tube is essentially coupled with all six adjace
tubes, and this could largely complicate the analysis. T
merit of the elastic honeycomb model presented here is
the coupling effect can be examined by studying colu
buckling of each pair of adjacent walls.

In conclusion, a simple formula is given for the critic
pressure beyond which single-walled carbon nanotube ro
become elastically unstable and an abrupt change in g
metrical shape will occur. Excellent agreement between
predicted critical pressure and the known data supports
validity of the model. In particular, it implies that th
pressure-dependent abnormalities are not limited to vibra
behavior and electric resistivity, abrupt change of other m
chanical and electronic properties of single-walled carb
nanotube ropes is expected when the applied pres
reaches the same critical value. This prediction poses an
teresting issue for further study.
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