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Three-dimensional global optimization of Nan
¿ sodium clusters in the rangenÏ40
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Likely candidates for the ionic structure and lowest-energy minima of cationic sodium clusters Nan
1 are

presented in the size rangen54 –40. We perform a systematic and unconstrained global optimization by the
basin-hopping method with three different energy functions: a many-body empirical classical potential modi-
fied to account for the extra ionic charge, a simple quantal Hu¨ckel-type model, and a density-functional-theory-
based orbital-free model. The similarities and differences between the models are discussed, and the global
shapes are analyzed with the Hill-Wheeler parameters.
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I. INTRODUCTION

Because of the fundamental interest in understanding
metallic properties built up in finite systems and beca
they exhibit the simplest valence electronic structure am
all metals, alkali-metal clusters have been, since the pion
ing experiments of Knightet al.,1 the object of intense ex
perimental and theoretical attention.2–4 Although the simple
spherical jellium model5,6 proved to be successful in explain
ing many properties related to the so-called electronic s
stability in the range from a few tens to a few hundreds
atoms, it has appeared that, despite the important scree
and the leading role of the electrons in the stability, prop
ties of alkali-metal clusters are significantly influenced
the actual shape and geometrical arrangements of nuclei
instance, the relationship between geometrical structures
optical spectra has been widely discussed.4,7–9Moreover, re-
cent experiments10 concerned with thermodynamical beha
ior have used the optical signatures of alkali-metal cluster
pinpoint the influence of temperature, stressing the transi
from a rigidlike molecular-type behavior regime to a liqui
like or melted regime. Thus, even in the case of simple m
clusters, the geometric factors are significant and the kno
edge of the equilibrium geometries of the low-lying isome
is important.

Various directions have been pursued in order to inclu
the shape and/or ionic structure more or less explicitly
theoretical investigations. In principle,ab initio calculations
performed by Hartree-Fock plus configuratio
interaction9,11,12 or density-functional theory13–15 methods
are certainly the most reliable and accurate in determin
the forces acting on the nuclei and in obtaining the lowe
energy isomers. Alkali-metal clusters present a rather fav
able case since the electronic problem can be rather sa
restricted to the valence metallic electrons via the use
adequate effective atomic core potentials or pseudopo
tials.

For sodium clusters including less than, say, 20 ato
suchab initio calculations were performed9,11–14,16and have
proposed low-lying equilibrium structures. However, t
PRB 620163-1829/2000/62~15!/10394~11!/$15.00
w
e
g
r-

ll
f
ing
r-

or
nd

to
n

al
l-

e
n

g
t-
r-
ely
f
n-

s,

combination of such accurate calculations with optimizat
algorithms in order to find the minimal energy configurati
on some complex potential-energy surface turns out to b
difficult task, especially in the case of clusters where num
ous secondary minima exist. Usually, the search of mini
has been performed using gradient techniques at the Har
Fock or coupled-cluster level, or by simulated anneal
techniques combining the density functional theory with
Car-Parinello approach.13,14 However, such search algo
rithms are known not to be always successful in finding
global minimum and the situation worsens quickly as t
number of atoms exceeds a few tens.

Indeed, clusters are now commonly considered a
benchmark for testing global optimization algorithms.17–20In
particular, many efforts have been devoted to the optimi
tion of Lennard-Jones~LJ! clusters, for which several highly
non trivial geometries can be found in the range of less t
100 atoms.21,22 The example of Lennard-Jones clusters h
shown that the determination of the global minima can
very tricky even in the case of pairwise interactions and o
a few tens of atoms. Although there is no actual entirely s
and fullproof technique that ensures to find the actual glo
minimum, some recent global algorithms such as the ‘‘bas
hopping’’ technique developed by Wales and Doye23 or the
genetic algorithms24 have demonstrated their efficiency an
in many cases their use is necessary. Obviously the us
global techniques also imply an extensive sampling of
potential energy surface and cannot yet be at present c
bined with fully ab initio techniques, even though consta
progresses are made to speed up the electronic calculat
like for instance the developments of algorithms scaling l
early with size.

Various schemes have been developed to reduce the
tem complexity and to deal with ionic structure and sha
isomerism in a larger size range, up to a few tens. Sev
approaches restrict the number of degrees of freedom a
ciated with the positions of the nuclei and consider on
global shapes of clusters, parametrized via deformation
ordinates. The spheroidal jellium approximation was dev
oped by Eckardt and Penzar within the self-consistent lo
10 394 ©2000 The American Physical Society
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density approximation~LDA ! scheme.25 Further extensions
of the jellium model including the lowest-order multipola
deformations such as the structure averaged jell
model26–29 ~SAJM! or the ellipsoidal jellium model30–33

were also investigated treating the electrons either via
LDA or some corrected Thomas-Fermi type approximatio
Whereas the above models still rely on the continuous ba
ground approximation, the number of degrees of freedom
drastically reduced and remains constant with size. Ano
interesting approach was provided by the use of pseudo
tentials in constrained local density schemes imply
spherically averaged pseudopotentials34 ~SAPS! or more
realistically cylindrically averaged pseudopotentia
~CAPS!.8,35,36 However, whereas the latter methods fix
constraint on the nuclei, the spherical or cylindrical avera
of the ionic potential seen by the electrons may yield so
bias and prevent from finding a true three-dimensional~3D!
minimum, especially in open-shell situations.

Other approaches keep the full complexity related to
nuclear degrees of freedom but simplify the level of tre
ment of the electronic problem without imposinga priori
global symmetry constraints. Various approximations a
models have been proposed and used. The present work
ates in this context and intends to compare and discuss in
size range of 4–40 atoms the 3D globally optimized str
tures of singly positively charged sodium clusters obtain
with different models to represent the atomic cohesion. T
lowest level of treatment is clearly associated with the use
classical potentials, mainly with embedded-atom type pot
tials, which in the case of metal clusters are the most co
monly used expressions. Even more approximative Mo
pairwise potentials have also been proposed in the past.37 We
have also considered the tight-binding scheme which can
considered as the simplest approximation of a linear com
nation of atomic orbtals~LCAO! quantum approach and wa
found to produce realistic structures for neutral clusters
least in the range of 2–20 atoms where comparison coul
made with more sophisticated calculations previously
ported. Finally we investigate the semiclassical approach
lying up on extensions of the Thomas-Fermi scheme, wh
was already mentioned above in the jellium model cont
but which can also be used with explicit discrete ions a
atom-based pseudopotentials.38 It is similar to the orbital-free
model previously used in several clusters studies.39 An inter-
est of this model is that it allows the study of charged~even
multicharged! clusters with no modifications.38 Obviously
any of these methods might fail because of the approxi
tions assumed. However, they provide sufficiently fast cal
lations of the potential-energy function so that they can
tually be combined with efficient global three-dimension
unconstrained optimization algorithms in the size range 1
50.

We thus report a systematic comparison of 3D globa
optimized structures of Nan

1 clusters described by the thre
models. We have combined these models with the ba
hopping global optimization algorithm, which was proved
be extremely efficient in the case of clusters and easy
implement and requiring noa priori guiding lines about the
cluster construction as it was used sometimes in other
cessful optimization schemes such as genetic algorith
The scope is fourfold:~i! to obtain reliable geometrical da
e
.
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tabases in the different models for this class of clusters;~ii !
to discuss the validity of the various models, their simila
ties and their peculiarities with respect to the physics
volved in the light of more sophisticated calculations wh
available;~iii ! to investigate the morphologic properties a
building sequences in an extended size range; and~iv! to
discuss the possible influence of the charge in the differ
models. Although we have performed similar investigatio
for the neutral clusters, the emphasis is put here on positiv
charged clusters. Partially, the results for neutral clus
have already been discussed elsewhere.40,41

II. ENERGY FUNCTIONS AND OPTIMIZATION
METHODS

At the scale of the sizes investigated here,n<40 atoms,
the three models will be presented in order of their increas
computational complexity, namely from an empirical mod
to a semiclassical model via a quantum one. The first s
plest model was chosen in order to perform nearly exha
tive global optimization up to 40 atoms. It consists of
many-body classical potential of the Gupta type.42 A larger
class of such potentials for metallic systems is the fam
embedded-atom model~EAM! family.43 The Gupta potential
is based on the second-moment approximation~SMA! of the
density of states in a tight-binding model.44 In the SMA
models, the total energy of a neutral system withn atoms
located at$r i% is calculated as

E~$r i%!5(
i

«0(
j Þ i

expFpS 12
r i j

r 0
D G

2(
i

H z0
2(

j Þ i
expF2qS 12

r i j

r 0
D G J 1/2

. ~1!

Such a potential was previously used by many authors
metal clusters.40,41,45–49Recently, another type of embedde
atom parametrization for LJ solids has been proposed
Baskes.50 The effect of charging the cluster in this empiric
potential is, in principle, difficult to account for, because t
missing electron should be treated as a continuous one
simple model of the same level of approximation can be b
by assuming a single positive partial chargeqi on each
nucleus. The charges then interact through electrostatic
polarization forces. Such a model, with an uniform char
distribution over the volume and with scalar polarizati
forces (1/r 4) was employed by Li and co-workers51 to study
a Coulomb fragmentation of multiply charged sodium clu
ters. However, there are few problems in this crude mo
that can be easily solved. First, if the same values of
parameters«0 andz0 are taken for both the neutral and th
charged clusters, then ionic clusters are found to be
bound than their neutral counterparts, which is in contrad
tion with experimental data.52–54 We have slightly modified
these parameters in order to account for this discrepanc
setting40

«0
15c«0 , z0

1~n!5cz0~11a/nb! ~2!

as new size-dependent parameters, with the valuesa56.6,
b51.27 andc51.0055. A second problem comes from th
metallic nature of sodium clusters. In such systems,
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charge is located mostly on the surface and not homo
neously over the entire volume. To mimic this effect in t
charge distribution, we have used the simple model rece
reported in Ref. 55. This model is built upon a simple obs
vation that surface atoms are less bound but more charge
this scheme, an individual partial chargeqi is related to an
estimatev i of the binding energy of a nucleusi via an em-
pirical functionF:

qi5QF~v i !Y (
j

F~v j !, ~3!

whereQ is the total charge of a cluster. In order to facilita
computations of the forces,v i is taken as a Morse potentia
v i5( j Þ iwi j (wi j 22) with wi j 5 exp@r(12rij /r0)#, and F is
chosen as a Fermi function

F~v !5F11 expS v02v
Dv D G21

. ~4!

Once the charges are known for a given ionic configurati
we add the Coulombic contribution to the energy in a sim
way as in Refs. 51, but with more realistic vector polariz
tion forces:

E1~$r i%!5(
i

«0
1(

j Þ i
expFpS 12

r i j

r 0
D G

2(
i

H ~z0
1!2(

j Þ i
expF2qS 12

r i j

r 0
D G J 1/2

1
1

2 (
i

(
j Þ i

qiqj

r i j
2

1

2 (
i

a iEi
2 . ~5!

In this equation,Ei is an electrostatic field created by a
point charges outsider i , anda i51.01 a.u. is the polarizabil
ity on site i. The parameters«0 , z0 , p, q, and r 0 of the
cohesive energy were taken as those proposed by Let
al.:51,56 «051.595531022 eV, z050.291 13 eV,p510.13,
q51.30, andr 056.99a0. These parameters were fitted on
for bulk properties, and we are aware that this model sho
therefore, be taken cautiously when used for clusters.57

The parametersr, v0, andDv of the electrostatic mode
described by Eqs.~3! and ~4! were fitted to more sophisti
cated density-functional theory~DFT! calculations at a finite
temperature on the large charged cluster Na274

81 at 345 K.38

Good agreement was found for the valuesr54.194, v05
26.6, andDv51.6. This empirical model is computational
simple enough so that local optimizations beginning with
arbitrary structure are relatively cheap. This allowed us
use powerful global optimization algorithms to find th
lowest-energy geometries of Nan

1 clusters. Our choice wa
the so-called basin-hopping method of Wales and Doy23

already used for very different systems.22,58 Briefly, this
method belongs to hypersurface deformation methods,
an initial surfaceE(R) undergoes a staircase transformati
toward a new energy surfaceẼ(R)5min$E(R)%, where min
indicates that a local minimization is performed starting w
configurationR. A simple Metropolis Monte Carlo~MC!

algorithm is used to explore the surfaceẼ where the global
minimum is to be found. The success of this method is
e-

ly
-
In

,
r
-

d,

n
o

nd

-

lated to the fact that all barriers on the initial surface van
after deformation. Therefore, very large MC steps can
used to sampleẼ with respect to their value in a commo
simulated annealing process. Other types of deformation
the energy landscape have been proposed, as in the re
stochastic tunneling approach of Wenzel and Hamache59

For each size in the range 4<n<40, 53104 quenches were
carried out during the basin-hopping search.

Our second model was developed initially for neutral s
dium clusters,60 and parametrized for reproducing molecul
properties of Na2 and Na4 only. It consists of a distance
dependent tight-binding~DDTB, or hereafter simply TB!
quantal Hamiltonianĥ given by

ĥ5(
i j

hi j ai
†aj , ~6!

whereai
† andaj are creation and annihilation operators co

responding to ans orbital on nucleusi or j, respectively. The
effect of p orbitals is included in a perturbative way in th
matrix elements:

hii 5hii
(0)1hii

(2)5(
kÞ i

Frss~r ik!2
tss
2 ~r ik!

«3p2«3s
G , ~7!

hi j 5hi j
(0)1hi j

(2)5tss~r i j !2 (
kÞ i , j

F tss~r ik!tss~r jk!

«3p2«3s

r ik•r jk

ir ikiir jki G ,
~8!

rss(r ), tss(r ), andtss(r ) being the respective ion-ion repu
sion and thes-s ands-ps transfer integrals. These function
were taken as dependent of interatomic distances. The
energy of the electronic ground state is calculated for a gi
ionic configuration as the sum of one-electron energies of
occupied orbitals:

E5 (
i Pocc

ni« i . ~9!

Here, « i ’s are the eigenvalues of the Hamiltonian andni ’s
are the occupation numbers. This model was previously u
in many investigations ranging from geometrical61 to
dynamical62 and thermodynamical41,63–65studies. For neutra
clusters, it has been shown to provide low-energy structu
in very good agreement withab initio configuration interac-
tion and density-functional studies.13,14,66It may nevertheless
underestimate stabilities at shell closings, despite a gene
correct behavior and the reproduction of odd/even s
alternations.67

The tight-binding model can easily deal with sing
charged clusters, by simply modifying the occupation nu
bers in summing the orbital energies. The charge distribu
on the atoms in the cluster is thus only governed by delo
ization of the emptied orbital. It should be mentioned th
there is no explicit electrostatic balance, and the electr
electron repulsion is not accounted for at all. Because
diagonalization of an3n matrix is required for each com
putation of the energy, this quantal model, albeit simple
numerically more expensive than the empirical SMA mod
In particular, the cost grows with size nearly as its cu
which is a serious limitation for large clusters. For this re
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son we had to reduce the number of local optimizations
the basin-hopping search down to 5000.

In an extended-Thomas-Fermi~ETF! approximation, the
ions are still represented by discrete masses, but the val
electrons are treated explicitly. To each ionic configurat
R5$r i% corresponds an electronic densityr(r ) which can be
used, in turn, to calculate the forces acting on the ions. In
model, the potential energyE is written as the functional o
the densityr and the ionic coordinates$r i%:

38

E@r,$r i%#5ETF@r#1EW@r#1EH@r#1EXC@r#1EI-I@$r i%#

1EI-e@r,$r i%#. ~10!

The different terms in the latest expression are briefly
viewed as follows.ETF@r# is the electron kinetic energy in
the Thomas-Fermi approximation, which takes the form

ETF@r#5
3

10
~3p2!2/3E r5/3d3r . ~11!

The Weizsa¨cker termEW gives the first-order gradient cor
rection toETF@r# to take into account, for inhomogeneitie
in the electron density:

EW@r#5
lW

72E ~¹r!2

r
d3r , ~12!

where the constantlW is taken as 1.44 au. The electro
electron interactions are given by the usual Hartree term

EH@r#5
1

2E r~r !r~r 8!

ir2r 8i
d3r d3r 8, ~13!

plus an exchange-correlation functional in the local-den
approximation:

EXC@r#52
3

4 S 3

p D 1/3E r4/3d3r1EC@r#. ~14!

The Gunnarsson and Lundqvist parametrization68 was cho-
sen for the correlation functionEC@r#. The ion-ion interac-
tion EI-I@$r i%# is taken to be just the Coulomb interactio
between ions Na1 i and j. Finally, the ion-electron interac
tion is modeled by a local and spherically symmetric pseu
potentialVps(r ) to mimic the interaction between a valen
electron and an ion core,

EI-e@r,$r i%#5E r~r !Vion~$r i%,r !d3r , ~15!

Vion~$r i%,r !5(
i

Vps~ ir2r i i !. ~16!

We have used a ‘‘flat’’ pseudopotential given, forr 85ir
2r i i , by

Vps~r 8!5H 21/r 8, r 8.r n

2
1

6r n
F72S r 8

r n
D 6G , r 8<r n

~17!

with the value 3.55a0 for the cutting radiusr n . This model
was used with a real-space grid, for which the flat pseu
potential is computationally cheaper. The grid steph was
n

ce
n

is

-

y

-

-

taken asa0, larger values leading to numerical uncertainti
make difficult the separation in energy between close i
mers. Since there are no explicit shell effects nor orbitals
this model, its cost roughly increases linearly with siz
However, in the size range considered here, it is still mu
more expensive than the TB model due to the continu
representation of the electronic density. Systematic and
constrained global optimization in the same way as with
previous models thus appeared to be impossible at the s
scale. We have instead chosen a ‘‘semiglobal’’ approa
where only databases of structures generated by other mo
were locally reoptimized in the ETF model. Assuming th
the energy landscapes bear some similarities, we can per
each local optimization only once instead of possibly hu
dreds of times by standard basin-hopping. Of course,
price we pay for this bias is that some important structu
may be missed because of the differences in the energy l
scapes. In the present case, however, we believe that
approach remains fruitful, as we shall see below. Among
isomers collected after a basin-hopping search for any gi
size and model, we kept the 100 lowest in energy for lo
optimization in the ETF model.

III. RESULTS AND DISCUSSION

The lowest-energy geometrical configurations of t
Nan

1 clusters found by the basin-hopping algorithm or by
local reoptimization are presented in Fig. 1 for the three
ergy functionals. The corresponding binding energies a
point groups are given in Table I. The particular stability
some sizes is emphasized in Fig. 2, where we plotted
total energy relative to a fit on liquid drop like model of th
form E(N)5a1bN1/31cN2/31dN. In the bottom panel of
this figure, we also presented the relative stability of ea
cluster with respect to its neighbors, quantified byD2E(N)
5E(N11)1E(N21)22E(N).

Morphologies predicted by the empirical SMA potenti
have many similarities with the global minima of pairwis
Lennard-Jones clusters. At low sizes, the growth seque
leads to an icosahedron atn513, by capping atoms over
seven-atom pentagonal bipyramid. The bipyramid (n56)
and antiprism (n58) are the only exceptions to this rule
Surprisingly, the growth over the primitive icosahedron do
not follow immediately the same rules found for LJ or Mor
clusters. While Na14

1 and Na15
1 are still singly and doubly

capped icosahedra respectively, the structure of Na16
1 in-

cludes some elements of hexagonal symmetry, which w
not observed by using other many-body potentials. Na17

1

prefers a non-compact geometry, with four capping ato
that minimize electrostatic repulsion. Fromn518 to n540
atoms, the anti-Mackay, or ‘‘polyicosahedral’’ growth s
quence is generally found. As the inner pressure becomes
high, larger sizes exhibit preferentially the Mackay grow
sequence involving multilayer icosahedra. Only tw
Mackay-type clusters are seen forn539 and 40 in Fig. 1~a!.
The special stability of anti-Mackay clusters is also exhibit
on Fig. 2~b! by the series of peaks~secondary magic num
bers! for n519, 23, 26, 29, and 32.

Only one size above 8 displays a geometry not based
pentagonal or icosahedral symmetry, namely Na38

1. This
cluster is a truncated octahedron in the SMA model. T
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very peculiar geometry turns out to be met very often
clusters of this size modeled by simple potentials, the o
exception being the Au38 cluster in the work by Garzo´n and
co-workers.69 It has been also observed experimenta
among nickel clusters.70 At the size ofn528, the cluster
does not exhibit any special symmetry, and looks rat
compact. No evidence for close-packed~except the fcc
Na38

1) or decahedral structure was found for this size ran
in the SMA model.

We have also investigated the neutral clusters using
SMA potential. Preliminary results have been publish
elsewhere.41 For the most sizes in the range 4–40, we fou
no significant difference in morphology between Nan ~SMA!
and Nan

1 ~SMA!, but only some distortions in several case
Of course, the absence of any quantal character and the
creasing influence of the extra charge should be respon
for this. However, the model of charge distributions that
have used in the present work, in contrast to the homo
neous distribution used in Ref. 41, yields some structu
differences for the sizesn515, 17, and 34. In all the case
the energy gap between two lowest energy isomers fo
ly

r

e

e
d
d

.
de-
le

e-
l

d

during the global optimization is very small.
The distance-dependent tight-binding model exhibits v

different equilibrium geometries in the complete range 4–
Indeed, only forn55 and 7, and for the larger sizesn
525–29, 31–34, the same structures are found in the S
and TB models. While the growth sequences could be ea
identified in the SMA model, we now see a very strong s
dependence, especially at low sizes. The global geometr
clusters containing up to about 25 atoms is based on cap
isolated atoms over a fivefold symmetric seed. The resul
structures are not compact. Good examples are Na13

1 or
Na21

1. For the small clusters, the present geometries
semble those of CI calculations.9,12 Fromn516, an icosahe-
dral core sets up and becomes a double icosahedron
with a missing apex atom beyondn518. Although the
growth sequence differs from that obtained in the SM
model, anti-Mackay geometries are present systematic
for all larger clusters up to 40 atoms. In particular, we do n
see any truncated octahedron forn538, neither any decahe
dral, close-packed or Mackay-type structure in this s
range.
FIG. 1. Structures of the Nan
1 clusters, 4<n<40, found by a basin-hopping Monte Carlo minimization~SMA and TBA models! or by

a local reoptimization~ETF model!. ~a! Results in the empirical SMA model;~b! results in the simple quantal TB model;~c! results in the
semiclassical ETF model.
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The tight-binding model includes quantal effects expl
itely such as the electron delocalization, and the structu
found reflect some of these aspects. A striking example is
odd/even alternation in the stabilities that one can observ
the lower part of Fig. 2. Some structures having an e
number of valence electrons are thus much more stable
their neighbors. When this occurs along with strongly sy
metric ionic geometries, the cluster can be even more sta
This happens forn55, 7, 9, 11, or 29. Not surprisingly, th
important variations with size are also reflected on the la
deviations with the continuous liquid drop model in Fi
2~a!.

Neutral sodium clusters in the tight-binding model ha
been considered previously. The geometries obtained by
teau and Spiegelmann61 up to the size 40 are very differen
from those reported here for cationic systems, especially
small clusters where the effect of an extra charge is expe
to be more prominent. The growth algorithm used by th
authors is not as efficient as the basin-hopping method u
in the present work, in particular it may miss some ve
important geometries resulting from global structu
changes such as the anti-Mackay/Mackay transition. In o

FIG. 1. ~Continued!.
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to estimate the possible failures of the growth algorithm
Ref. 61, we also optimized the neutral clusters by bas
hopping, with the same number of quenches as for the
ions. We did not find any difference with the work of Pote
and Spiegelmann except for large clustersn.34. Hence the
geometries of clusters containing up to 34 atoms is sign
cantly influenced by the electron count. The comparison
tween the neutral and charged clusters containing more
about 20 atoms shows that the occurrence of a capped do
icosahedron and of anti-Mackay geometries becomes gen
for both charge states. In the range up ton539 atoms, only
some qualitative differences remain between the structure
Nan and Nan

1, but they still involve anti-Mackay geom
etries.

The structures found in the semiclassical extend
Thomas-Fermi model are represented on Fig. 1~c!. This
density-based model treats explicitly the continuous ba
ground of valence electrons; however, it misses quantal fl
tuations associated with the electronic shell structure wh
can be restored only with a more realistic kinetic ener
description, actually with explicit orbitals as in the Kohn
Sham scheme. As a consequence, it has a smooth
dependent behavior which explains the lack of signific
deviations in the upper part of Fig. 2. It is striking that ma
geometrical configurations presented in Fig. 1~c! are the
same as those obtained using the empirical SMA poten
In particular, the only sizes above 8 where the ETF and
geometries are identical are 26, 29, and 30. Moreover,
energies of isomers which correspond to the global mini
in the SMA potential are very close to the ground state
ergies, as seen from Table I. Thus, we found the icosahe
and anti-Mackay growth sequences to be dominant in
size range 4<n<40. We also found the hexagonal elemen
at n516, but also atn515, 17, and 22. The truncated oct
hedron is close to the lowest-energy structure atn538 only,
but we found two Mackay-type geometries forn539 and 40
already obtained with the SMA potential. Similar morphol
gies induce similar stabilities, as can be inferred from F
2~b!. The same secondary magic numbers are found with
ETF model as with the SMA model, that characterize t
anti-Mackay sequence:n513, 19, 23, and 26. The peaks a
however less marked in the ETF model, and no special
bility can be guessed for Na29

1 from Fig. 2~b!, although a
distinct peak is observed forn532.

In addition to the energetic quantities presented in Fig
we have investigated some geometric features of the clus
in the three models. For this, we have calculated the H
Wheeler parametersr c , b, and g well known in nuclear
physics. These parameters provide a global information
the average shape of a given cluster. The root-mean-sq
radiusr c is defined by

r c5S 1

n (
i 51

n

r i
2D 1/2

. ~18!

The evaluation ofr c according to Eq.~18! requires that the
cluster center of mass is located at the origin of a refere
frame. The shape parametersb andg are related to the prin-
cipal momenta of inertiaI 1>I 2>I 3>0 via the expression
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TABLE I. Binding energies~in eV! and point group~PG! of all
clusters found in the three models. For each size, the lowest en
is in bold face.

Size SMA TB ETF PG

4 22.797 — 23.730 Td

4 — 21.926 — D2h

5 23.524 22.765 24.715 D3h

6 24.335 — 25.698 Oh

6 — 23.412 — C2v

7 25.099 24.471 26.669 D5h

8 25.861 25.037 27.616 D2d

8 — 25.088 27.499 Cs

9 26.661 26.035 28.585 C2v

9 26.631 26.174 28.563 D3h

10 27.494 26.715 29.553 C3v

10 27.382 26.775 29.551 C3v

11 28.318 27.461 210.519 C2v

11 28.122 27.714 210.517 D3h

12 29.227 28.177 211.529 C5v

12 28.990 28.313 211.526 Cs

13 210.212 28.982 212.601 I h

13 29.749 29.243 212.598 C3v

14 210.960 29.847 213.512 C3v

14 210.808 29.945 213.507 Cs

15 211.790 210.813 214.370 C2v

15 211.578 210.911 214.476 Cs

15 211.768 210.830 214.484 D6d

16 212.623 211.556 215.436 Cs

16 212.481 211.714 215.434 Cs

17 213.464 212.615 216.380 C3v

17 213.455 212.677 216.386 Cs

17 213.401 212.334 216.397 Td

18 214.359 213.532 217.376 C5v

18 214.296 213.545 217.374 C1

18 214.318 213.464 217.379 Cs

19 215.303 214.522 218.451 D5h

19 215.200 214.544 218.448 Cs

20 216.149 215.327 219.403 C2v

20 216.038 215.371 219.401 Cs

21 216.995 216.293 220.356 C2v

21 216.873 216.353 220.350 Cs

22 217.880 217.074 221.333 Cs

22 217.836 217.145 221.335 C2v

22 217.801 216.900 221.352 D6h

23 218.843 218.035 222.383 D3h

23 218.661 218.092 222.304 C3v

24 219.684 218.927 223.324 Cs

24 219.616 218.930 223.335 Cs

24 219.678 218.865 223.338 Cs

25 220.579 219.918 224.309 Cs

25 220.508 219.918 224.323 C3

26 221.550 220.788 225.346 Td

27 222.388 221.648 26.298 C2v

27 222.350 221.501 226.320 C2v

28 223.273 222.519 227.248 C1

28 223.259 222.266 227.338 T
29 224.236 223.583 228.328 D3h
I k5
2

3
r c

2F11b sinS g1
~4k23!p

6 D G , k51,2,3. ~19!

b lies in the range 0<b<1, and is a measure of the clust
oblateness.g is in the range 0<g<p/3, and measures th
cluster triaxiality. A zero value forb means a spherica
shape, while (0<b<1, g50) defines an axially symmetric
prolate ellipsoid and (0<b<1/2, g5p/3) defines an axially
symmetric oblate ellipsoid.

The variations of the parametersr c , b, andg are repre-
sented on Fig. 3 as function of the cluster size. From the
most panel of Fig. 3 we observe that the three models u
predict different average ionic densities: for all sizes exc
for Na4

1 ~TB!, ETF clusters are bigger than SMA cluster
which are, in turn, bigger than TB clusters. This finding
consistent with the ordering of the equilibrium bond leng
Re of the dimer Na2 in the three models:Re56.73a0 in the
ETF model, 6.32a0 in the SMA model, and 5.82a0 in the TB
model. However the two former models were not expected
be accurate for very small clusters, whereas, on the contr
the TB model might not be flexible enough to correctly a
count for the nearest-neighbor distance increase between
dimer and the bulk. In Fig. 3~a!, we also observe some de
viations with respect to the continuous lawN1/3 for some
highly non-spherical configurations such as of Na14

1 ~SMA!.
Nonsphericity is better reflected by the parameterb, whose
variations with the size are shown in Fig. 3~b!. Because of
the strong similarity between the SMA and ETF morpho
gies, we see mainly two different variations ofb with the
size, either with the SMA/ETF or TB models. In classical
semiclassical models, many clusters appear as rather sp

gy
TABLE I. ~Continued!.

Size SMA TB ETF PG

30 225.074 224.299 229.253 C2v

30 225.069 224.356 229.275 C1

31 225.947 225.278 230.260 Cs

31 225.928 225.167 230.274 Cs

32 226.913 226.176 231.297 C2v

32 226.845 225.893 231.338 C3

33 227.803 227.147 232.252 Cs

33 227.719 226.783 232.279 C1

34 228.761 228.002 233.286 D5h

34 228.739 227.882 233.316 C1

35 229.626 228.677 234.309 C3

35 229.545 228.911 234.214 Cs

36 230.492 229.373 235.291 C2

36 230.489 229.697 235.212 Cs

37 231.449 230.535 236.252 C3

37 231.419 230.687 236.244 Cs

37 231.373 230.434 236.301 C1

38 232.372 230.875 237.294 Th

38 232.285 231.496 237.248 Cs

38 232.339 231.302 237.305 C5

39 233.313 232.296 238.363 C5v

39 233.218 232.459 238.173 C1

40 234.187 233.036 239.318 C2v

40 234.173 233.302 239.294 Cs
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cal. The highly symmetric Na4
1, Na6

1, Na13
1, Na17

1,
Na26

1, Na28
1, and Na34

1 clusters, in both the ETF and SMA
models, as well as Na381 ~SMA!, have very low values of
b. On the contrary, some sizes exhibit a significant n
spherical character in these models, such as Na5

1, Na7
1,

Na14
1, or Na19

1. In the tight-binding model, only Na26
1

seems to be spherical, but it has the same geometry as i
other models.

Not much information provides a triaxiality shape para
eterg displayed in Fig. 3~c!. This is mainly due to the high
sensitivity of this quantity with respect to small distortion
This is a particular problem in the ETF model, where t
optimization had to be made within some uncertainty on
energy, resulting in some uncertainty on the ionic geome
In the SMA model, most clusters exhibit either very sm
(g;0) or very large (g;p/3) values ofg, suggesting axi-
ally symmetric configurations. The only notable triaxial clu
ters~having also reasonably large values ofb) in this model
are found forn511, 22, 30–32. The tight-binding mode
predicts usually a larger number of triaxial shapes, includ
n56, 8, 12, 14, 17–22, 24, 25, 30–33, and 35–40. Inde
as can be seen from Fig. 3~c!, only a few structures are
axially symmetric in average in this model.

The geometric parameters investigated demonstrate
basic propensity of the tight-binding model to yield strong

FIG. 2. Energetic stabilities of the clusters in the three mod
~a! Relative energies are given with respect to the liquid-drop mo
energyELDM(N). ~b! D2E(N). All energies are expressed in eV
The best fits for the liquid drop energies were obtained with
following values of the parameters:ELDM

SMA(N)520.603 79
10.200 10N1/310.703 92N2/321.0631N; ELDM

TB (N)520.56079
10.097 74N1/310.403 52N2/321.0250N; ELDM

ETF (N)50.507 19
20.078 66N1/310.497 94N2/321.0544N.
-

the
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he

size-dependent ionic morphologies. The quantal effe
present in this model are therefore extremely important in
complete size rangen<40. Consequences in terms of th
dynamics could be also of a major importance, because
only the lowest-energy isomer but also the complete ene
landscape should be affected by the differences observed
a matter of fact, some of these differences have been
served from the thermodynamic behavior in a few selec
cases.41 Conversely, the general similarity between the cla
sical SMA and semiclassical ETF models suggests sim
energy landscapes, and hence a qualitatively similar ther
dynamic behavior. Recent theoretical investigations seem
confirm the present hypothesis.71

IV. CONCLUSION

We have investigated geometrical properties of medi
size cationic sodium clusters Nan

1 for n<40. Three model

.
el

e

FIG. 3. Hill-Wheeler shape parametersr c , b, andg for all the
clusters in the three models.~a! Average radiusr c in atomic units;
~b! sphericity parameterb; ~c! triaxiality parameterg in degrees.
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potentials were used to describe the metallic bonding. Firs
many-body empirical potential of the embedded-atom fam
was modified to account for the extra ionic charge.
distance-dependent tight-binding model was also used as
of the most simple quantal model. At last, a semiclass
DFT-based orbital-free model was used. In the range of s
investigated here, all these models keep a reasonable co
tational cost which allows for extensive and unconstrain
global optimizations. We have chosen the ‘‘basin-hoppin
method of Wales and Doye for the two first potentials, but
the case of the semiclassical potential, we had to ado
‘‘semiglobal’’ optimization approach starting from databas
of putative lowest-energy configurations.

The geometries obtained with the TB model are gener
different from those obtained with the classical and semic
sical potentials. For small cluster ions,n52 –9, 11, and 21,
configuration-interaction~CI! calculations based on Hartree
Fock gradient optimization are available.9 All TB structures
are in agreement with the CI results except for two cases.
n55, the TB model yields a bipyramid. The lowest CI stru
ture hasD2d symmetry, and consists of two twisted triangl
sharing one apex atom. Forn59, the CI structure consists o
two twisted rhombus superimposed with an extra atom c
ping the upper rhombus. The present TB structure is clos
connected to this CI geometry, and only differs via the m
dium section which is a square instead of a rhombus.
D2d TB structure is also very close to the CICs structure.
One should notice that, forn54, 6–9, and 11, agreement
also reached with the results of unrestricted quantum
lecular dynamics.72 The latter work involves approximation
of the time-dependent LDA equations which were derived
order to study a cluster-atom charge transfer. This agreem
reflects the more realistic quantal effects exhibited by the
model, accounting, in particular, for Jahn-Teller deform
tions, examplified forn513. One should also notice th
stronger effect of charging the cluster~the other models do
not show such a structural dependence! which was also
found in ab initio calculations involving ionic structures.8,9

Below the 15-ion size, the TB model does not provide a
particular growth sequence, while above this size, pentag
and icosahedral elements become usual. These elemen
clearly displayed by the classical and semiclassical mo
even for smaller sizes. In particular, the growth sequenc
an icosahedron~for n513) appears to be similar to th
growth of Lennard-Jones clusters. An interesting property
these two models is that they exhibit some hexagonal
ments for several sizes. In the semiclassical model, Na22

1

has evenD6h symmetry.
A wide range (n57 –55) of odd clusters have also be

investigated with the CAPS formalism.8 In the range 7–21,
similarities are found with the present results. In particu
the occurence of low energy structures showing an irreg
growth sequence around a single icosahedron beyonn
515 towards the double icosahedron. This latter struct
was found as the lowest isomer of Na19

1 in CAPS calcula-
a
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tions. The CAPS results however differ significantly fro
those obtained by all models applied here forn>25. Indeed,
Kümmel et al.8 found Na25

1 to be an essentially prolat
triple icosahedron~axial cluster having four pentagonal ring
and five atoms on the axis!, also seen as the building bloc
for the growth sequence in the range 25–55. This seque
correlates with the finding of a fivefold symmetric two-bod
structure for Na43

1 with an extremely strong octupole defo
mation. The influence of the CAPS constraint in this ran
should however be checked. On the other hand, the th
models applied here, including the tight-binding mod
show structures built around one or several intricated dou
icosahedra, not exhibiting such large deformations.

The global analysis of geometrical configurations o
tained was made with the Hill-Wheeler parametersr c , b,
andg. Values of the oblateness parameterb have shown that
many sizes can be considered as spherical in the classica
semiclassical models, but not in the TB model where o
Na26

1 is spherical. Unfortunately, the amplitude of vari
tions of the triaxiality parameterg are very large, which
makes the interpretation difficult. However, we have o
served that the general trend of the TB model is to pred
triaxial structures, whereas the classical and semiclass
models favor axisymmetric shapes.

An application of a semiglobal approach was very instru
tive in the present case, because it turns out that the clas
and semiclassical models predict very similar ionic structu
in the whole rangen54 –40. Indeed, this similarity is no
surprising because the semiclassical ETF model can be
sidered as an embedded-atom version of the quantal Ko
Sham density-functional theory, in the same way as the
pirical SMA potential is an approximation of the quant
tight-binding model. This feature could be used to analy
the microscopic aspects of melting of ETF clusters in ter
of regular quenches performed using the SMA potential.
this purpose, a better fit between these two models could
obtained following the suggestion of Hartke73 to simulta-
neously globally optimize the geometries in the semiclass
potential while fitting the parameters of a classical poten
over configurations of an accumulated database.

The present results show that only the TB model is phy
cally relevant with respect to more sophisticated studies
the rangen,20. This model includes orbital effects whic
yield important features such as the odd/even alternation
the stabilities or Jahn-Teller deformations. It also provid
the main magic stabilities atn59, 19, and 21, although the
shell effects are not explicitely accounted for. The two oth
models are unable to reproduce these properties. In the l
size range, the impact of the detailed electronic structur
expected to be less important, and the description of meta
bonding by the SMA and ETF models should become m
realistic. We then expect these models to be useful as gu
lines for optimization of clusters containing more than a hu
dred atoms.
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52C. Bréchignac, Ph. Cahuzac, J. Leygnier, and J. Weiner, J. Ch

Phys.90, 1492~1989!.
53M. M. Kappes, M. Scha¨r, U. Röthlisberger, C. Yeretzian, and E

Schumacher, Chem. Phys. Lett.143, 251 ~1988!.
54M. L. Homer, J. L. Persson, E. C. Honea, and R. L. Whetten,

Phys. D: At., Mol. Clusters22, 441 ~1991!.
55F. Calvo, Phys. Rev. B60, 15 601~1999!.
56The value of«0 has been given uncorrectly in Refs. 40, 41, a

55.
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66V. Bonačić-Koutecký, P. Fantucci, and J. Koutecky´, Phys. Rev. B
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