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Phase determination of x-ray reflection coefficients
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It is shown to what extent the phase of a reflection coefficient may be determined feingla x-ray
reflectivity experiment. Complex calculus guarantees that the so-called “phase problem” is relaxed for certain
situations and the reflection coefficient is only determined by its moduls. A procedure to reconstruct the phase
from a single measurement under incorporation of preknowledge of the system is derived and tested by
numerical examples.

I. INTRODUCTION of the substraté.It is worth noting that the structure factor
F(q,) is associated with the derivative of the density profile

In the last decades x-ray reflectivity has been successfullde(z)/dz by a simple one-dimension&lD) Fourier trans-
applied to investigate the electron density profiles of manyform.
thin film materialst However, one should always bear in Equation(1) has been discussed in great detail in the past.
mind that the density profiles obtained may not be uniqueFor a rough interface located a0 with an error-function
since they were generated in almost any case by fitting rathesrofile of width o one getsdp(z)/dz~ exp{—Z/(20?)}, and
than by a direct data inversion. In general, the reconstructiothus F(q,) = exp(—20%/2) andR(q,) = Re(q,)exp(—gzd?).’
of a density profile from a&inglereflectivity measurement is  Various authors have shown that a direct consequence of the
impossible. Phase information is irretrievably lost by observphase problem is that one can hardly expect to obtain more
ing intensities rather than field amplitudes. This inevitablethan thats value, the rms roughness, from a reflectivity mea-
fact is well known as the “phase problem” of x-ray scatter- surement of a single surfafe'! Thus, deviations from an
ing. error-function profile are hard to observe by x-ray reflectivity

X-ray reflectivity may be discussed in terms of a purelyin the special case of a single interface, such as for instance
optical language. The reflectivity of a single surface is giventhe surface of a bulk liquid. Even worse, it can be proven
by the well-known Fresnel formuldsThe only difference to  rigorously that asymmetries of such a profile cancel totally
conventional optics is that the real part of the refractive in-by taking the modulus squared in E(q_)_10
dex n for x rays is slightly smaller than unity, i.en=1 However, the situation is not as bad as it is described in
— &+iB, where the dispersiod is positive and proportional many works. For instance, by introducing a simple phase
to the electron densitp of the material ang3 accounts for  factor into the expression fof(q,) in Eq. (1) it is often
absorption. The reflectivity for arbitrary electron density pro-claimed that the trivial cancellation of this factor by taking
files o(z) may be calculated by slicing such a profile into the modulus serves arbitrarily as a source for many ambigu-
very thin slabs of constant density and calculating the reities in the interpretation of x-ray reflectivty déta’he aim
flected intensity from these slabs via the famousof this paper is to show that in general this opinion is not
Parratt-iteratiof or the matrix method introduced earlier by true: It will be shown that the above-mentioned situation for
Abeles? a single surface improves considerably if thin film systems

A different description which is more common in the are considered. Then the reflection of x rays from interfaces
x-ray scattering community is the kinematical or first-orderat different depths provides the necessary phase information
Born approximation. The kinematical approximation allowswhich may be used for the data analysis.
a clearer treatment of the scattering, from which general con- |t has been shown that reflectivity data can be directly
clusions may be more easily drawn. In the kinematical ofinverted if more than one measurement can be done on the
“weak scattering” limit the cross section is proportional to same sample. For x rays this is possible whenever an absorp-
the Fourier transform of the total three-dimensional electronion edge of the substrate is available. From the reflectivities
density o(x,y,z) of the scatterer. For surfaces this can beat and away from this edge the density profile of the sample

reformulated, and the following expression restifts: may be unambiguously retrievéti**Other schemes propose
the introduction of reference layers or they deal with the case

1 (de(2) ) 2 of neutron reflectivity where spin polarization allows more

R(d,) =Re(dy,) Q—f 4, & —ia2)dz than one measuremelft!® However, these methods are
- subject to many practical limitations since often there is no
=RK(q,)|F(q,)|? (1)  appropriate adsorption edge. It is also not possible to intro-

duce a reference layer without disturbing the original system
for the reflectivityR(q,). Hereq, denotes the vertical wave- and this reference layer introduces new ambiguities.
vector transferg(z) is the laterally averaged electron den-  Furthermore real space approaches have been proposed
sity profile, andg.. is the average density of the entire where the Fourier transform of the reflection coefficient is
sample. The prefactd®e(q,) is the usual Fresnel reflectivity discussed. Then a density-density correlation functib
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Patterson functionis obtained which may be directly related 24, (=IN[|F(a)|/|F(a,)|]
to a vertical length scale of the system under ®(q,)=— 7+ —ZJ - — “dg,. (4
consideratiorf’?! Recently, the sensitivity of this approach ™ Jo a;°—0;

has been improved considerably by special truncation tech-

niques of the Fourier transforf.It turns out that particu- Note the fact that the Hilbert phase depends on the moduls of
larly for low contrast systems the transformation to realF(q,) alone. A simple way to perform the numerical calcu-
space may enhance features in a reflectivity which wouldation of the Hilbert phas&(q,) avoiding the singularity
otherwise remain invisible. In the present work the way wein the denominator of the integral in EG) is given in Ref.
propose to find small features of a density profile from a29. From Eqs.(3) and (4) the phase ofF(qg,) may be ex-
single measurement is totally different from these ap-pressed by its modulus and the zeros in the upper half com-
proaches: A direct way of data inversion by a phase approxiplex plane by

mation is proposed. Recently the experimental feasibility of

such phase approximations in the context of the full d3'/2r31€mi— n

cal scattering theory has been discussed by van der-lee. _

However, we follow the original proposal of Sanyal and q)(qZ)_(I)H(QZ)+j21 2arccoé
co-workeré*?*who applied phase approximations to special

systems. In the present work we will show a general tréatyg jmportant result transforms the phase problem to the
ment which is based on the simple kinematical approximay, nknown zeros of the analytic functioRi(q,) in the upper

tion. The kinematical approximation is easy to implementhahc plane. In particular, if no such zeros exist thefq,)
and has the advantage that results may be discussed anal;ghd hence the x-ray reflectivity given by E€L) is fully

cally in a wider context. We found that our inversion SChemedetermined byF(q,)[, from which the phasé(q,) may be
z] 1 Z

is valid for a large variety of systems. calculated via Eq(4) since it coincides with the Hilbert

The paper Is structured as fOHO.WS: FiTSt.the outlline of t.hephase. This is the content of the well-known Titchmarch
theory is given. A formula is derived within the kinematic

2 hich | Il suited f . theorem of complex calculus. Equati@®) directly visual-
approximation which is well suited for phase approxima- j;qq that only the second part of the expression on the right-
tion. In the next paragraph it will be shown how these con-

) . . X . hand side is unknown and hence the is indeed
siderations may be converted into an algorithm to inver phérer,)

fot completely random. Even F(q,) would have zeros in

x-ray reflectivity data. Here the inclusion of preknowledg.ethe upper half complex plane then the sum which is running

about the system is of decisive importance. The next Sectiogyer all such zeros may nevertheless be small compared with

deals with numerical examples in order to test the presentﬁ1 : :
. e Hilbert phaseb(qg,) and Eq.(5) would still be a good
theory. It will be shown to what extent the developed metho pproximation of the unknown phade(q,).

is able to yield reliable results. Conclusions and an outlook For profiles fulfilling the conditiorF (q,) #0 in the upper

are given at the end of this paper. half complex plane the phase problem does not exist. An
extensive discussion of such profiles has been presented in
the pioneering work of Clintof{ (see also Ref. 31 He has

2qzlm(aj)>
—. (5)
qg— |aj|2

Il. THEORY proven that a special class of functions obeys this require-
We consider the structure factbi(q,) as defined by Eq. ment, namely, a Iay_er stack with sharp interfaces and con-
1), ie., stant electron d_ensmes vv_here the contrast between the sub-
strate and the first layer is larger than the sum of all other
1 (de(2) . contrasts. Thus, there exist—at least in theory—profiléx
F(a,)= o —q, ex—igz)dz (2)  for which a single reflectivity measurement already consists

of all the necessary information to recover the phase of the
This function may be analytically continued to the entirereflection coefficient. The situation is somewhat more com-
complex plane and may be expressed byktsown) modu-  plicated if roughness is taken into account. But still there
lus [F(g,)| and (unknown phase ®(q,) via F(q,) exists a large variety of density profiles where the phase of
=|F(q,)|exp{i®(qy}. In the kinematic limitg, strictly is a  the reflection coefficient is totally determined by its
real variable® For mathematical convenienag, is now  modulus®®3!Thus, the general statement that phase informa-
treated as a complex variable. Théfq,) is an analytic tion is always completely lost and arbitrary phase factors
function whose properties may be discussed by complex camay be introduced in Ed1) is not true.

culus. It turns out that if the complex numbers |t shall be further noted that all arguments given above are

{a;,a,, ... ,an} are a set of zeros d¥(q,) all lying in the  also valid if the exact dynamical treatment of x-ray reflectiv-
upper half plane, i.e., Ing)>0 forallj=1, ... n, thenthe ity would be performed. However, since this complicates the
function F(q,) may be expressed by the following calculations considerably we will not go into more details
product?’~2° here?3.27.32-34
n *
. qz:— g q:+ aj
F =|F expli® _ ],
(dz) | (qz)| Xp{l H(qz)}jljl g, ta; qz_aj* I1l. INVERSION SCHEMES

®) The considerations of the previous paragraph shall now be
where the asterisk marks a complex conjugate quantity andsed to develop an algorithm for the inversion of x-ray re-
the so-called Hilbert phaséy(q,) is given by flectivity data. For this purpose we need a start praiyéz)
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which contains the preinformation that is known about thethe Hilbert phases of (q,) andFy(qg,) as discussed in the
system(estimated layer thicknesses, mean layer densitieqrevious paragraphsee Eq.(4)]. (i) Equation(9) may be
number of layers, etg. Then the difference between this solved in an iterative way, i.e., the result fbp (z) which is

profile from the unknown profil@(z) is given by given by a Fourier backtransformation of the right-hand side
of Eq. (9) may be used as the new known starting profile
Ao(2)=e(2)—00(2). (6)  p4(2). We introduced numbsii) into an algorithm which is

otherwise based on Ed9).*” It turned out by numerical
simulations that numbe(i), the introduction of the Hilbert
iq, ~ 2 phase difference instead afb=0, only accelerates the con-
IF(g)]%=|Fo(a,)+ —Ap(q,)]| . (7)  vergence of the algorithm but this does not affect the final
Q= result®® The possibility to impose additional restrictions on
whereF,(q,) is the(known) 1D structure factor correspond- the expected profiles was also included. In particular, it
ing to 0o(2) as defined by Eq(2) andA9(q,) is the (un- turned out that often only a part of the profile, for instance a

known) Fourier transform of\ o (z). Equation(7) is solved single interface structure, is unknown while the rest is com-
formally by the ansatz pletely determined by the preknowledge about the system.

Then these known parts of the functipiiz) were fixed and
_ 0. the algorithm was only applied for the rest of the profile. It
Ae(d,)= —I[Fo(d,) —F(agz)]. (8)  has been proved mathematically that if certain areas of a
4z profile are fixed then an unambiguous reconstruction of the
It is worth noting that Eq(8) cannot be used to calculate remaining part is possible from a single reflectivity
A%(q,) because only the modulus B{g,) is known from a meas_ureme_r‘?f._’28 However, since measurements always
reflectivity measurement. Thug,(q,) and Fo(q,) may be qo_ntam stat|st|qal errors a.nd because they are limited to a
expressed in terms of the respective moduli and phasd¥lité d; range, in reality this may not be the case.
®(q, anddy(q,). Then Eq.(8) transforms to

Introducing this into Eq(1) yields

R(q,) IV. NUMERICAL EXAMPLES

[SICHIERVE exp{iA(b(qZ)}} , , , ,
F(dz) We will now discuss numerical examples which show that
X exp(i®g(d,)}, (9) the presented me_thod works for a large var_igt_y of systems.
All systems have in common that the reflectivities and elec-
with the phase differencA®(q,)=®(q,) — Po(q,) which  tron density profiles for layer systems with silicon as sub-
is still unknown. However, Eq9) is well suited for gphase  strate material are calculated. As a first guess a structureless
approximationbased on the considerations of the previouspolymer or otherwise organic film is always taken. The as-
paragraph. The simplest approximation of the phase differsumed optical parametesand 8 of silicon and of the or-
ence is given by settind®(qg,)=0. This means that the ganic film correspond to those for radiation with a wave-
phases of the start profile and of the unknown profile alreadyength of A\=1.54 A (Cu Ka radiation. Furthermore, the
coincide very well, i.e., the second term on the right-handreflectivities calculated with the exact Parratt formafiSri
side of Eq.(5) is small. Sanyakt al?**>*have tested other will be displayed together with the respective density pro-
inversion schemes based on the distorted wave Born apies. Geometric factors as well as a standard resolution fold-
proximation. For certain systems such as polymer films oring also have been included into the reflectivity
silicon substrates or GaAs/AlAs multilayers they found goodcalculations:3%38:3
results with the approximatioad(q,)=0. Figure 1 shows a simple example. The right panel con-
A better way to use Eq(9) for the inversion of x-ray tains the density profiles. The open circles represent the “un-
reflectivity data is based on two improvement$The phase known” profile which is going to be reconstructed. The low-
differenceA®(q,) may be approximated more accurately by est solid curve is the first guess, i.e., the starting profile

~ 0o
A =—
0(qy) %
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0o(2) of the iteration. It can be seen that obviously the layerfor Fig. 1. It can be seen that even quite complex unknown
next to the substrate is initially missing. The complete layedayer structures may be reconstructed from a single reflectiv-
including the interface roughnesses will now be recondty curve and a minimum preinformation, namely, in this
structed. The left panel contains the corresponding reflectivicase only one layer with a mean density on a silicon sub-
ties. The open circles show the reflectivity for the unknownstrate was assumé?i.Hoyvever, in order to accelerate the
profile. This reflectivity would be the result of a measure-covergence of the algorithm a lower limit for the electron
ment from which|F(q,)| may be obtained according to Eq. density of the film was set. Such a limit is not a major re-
(1). The lowest solid line is the reflectivity corresponding to striction since the mean densities often are given by literature

T : ; lues.
the profile given by the first guess as discussed before. Thed
two curves disagree considerably for large values. The These examples have demonstrated that the phase of an

second solid line from the bottom depicts the reflectivity as-ray reflection coefficient and hence the electron density

calculated for the second profile marked by the solid line inproﬁle of a layer system can indeed be reconstructed from a

. ; - B . S - "single reflectivity curve, i.e., from the measurement of the
the right panel. This profile is obtained after the first |terat|onx_ray reflectivity alone. Even in cases where the calculated

afeflectivity for the first guesgy(z) and the unknown profile
graph. It can be seen that the unknown layer already bes 7 are quite different on the entirg, range the proposed
comes visible. However, the reconstruction is not yet perfect,yersion scheme is able to generate the required solution
After three iterations the solid lines in the left and right pan-(see Fig. 2 However, it is worth noting that this does not
els (third curves from the bottomindicate that the profile mean that the phase problem of x-ray scattering is solved.
and the reflectivity converge towards the final solution. InThe reason why the inversion algorithm works is the input of
the topmost curves the solid lines and the open circles cointhe preinformation and for more complex systems the use of
cide rather perfectly. These curves are obtained after morghe Hilbert phase as discussed earffefhese two ingredi-
than 100 iterations. Thus, in this specific example it is dements already pin down the phase for many systems.
onstrated that a perfect reconstruction of an unknown layer If the structure factoiF(qg,) has zeros in the upper half
from asingle “measurement” is possible. plane and if the preknowledge is not sufficient for an unam-
Figure 2 shows the next example with much more com-biguous phase reconstruction then the result of the inversion
plexity. The description of the curves is similar to that givenalgorithm may depend on the starting profig(z). This is

' ' 1.0:—"'|""""'|"' 1 FIG. 3. Example where the inversion algo-

s K — [ osH 1:5 ] rithm does not yield a unique solution. Right
‘ 2.0 LR 06 ppecussunsunsanssessssnssasens }1 panel: The solid lines represent the unknown pro-
04p 3 . file. The symbols are the results after more than
0218 E ] 100 iterations of the algorithm described in the
N text using the start profiles depicted in the inset
[the same symbols mark the start and final pro-
files, 0(2) starr@nd @ (2)final - Only the start profile
in the middle(open trianglesyields the desired
solution. The other start profiles converge to
similar but wrong results. Left panel: Calculated
reflectivities for the unknown profilésolid lineg
and the results of the inversioisymbolg with
the three start profiles shown in the inset of the
right panel. All reflectivities agree. The density
profiles and the reflectivities are vertically shifted
for clarity.
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FIG. 4. Phase®(q,) of the reflection coefficients corresponding to the density profiles shown in the right panel of Fig. 3. The topmost

curve(solid ling) is the Hilbert phase calculated for the unknown density profile. The second curve from ttfileédrircles is the exact

phase for the unknown profile. Each of the other three curves corresponds to the reflection coefficient of the profile with the same symbol
in the right panel of Fig. 3.

discussed in the next example which is presented in Fig. 3analysis of x-ray reflectivity data. In the previous examples
This figure is differently organized compared to those beforethe algorithm was only tested with smooth calculated curves.
The solid lines in the right panel display the unknown den-In order to test the inversion scheme in a more realistic situ-
sity profile 0(z). An arrangement of equally spaced stepsation we included noise into our calculated reflectivities.
with similar interfaces is depicted. The inset shows threeThese noisy—but still artificia—"data” allow a systematic
different starting profile(z) all consisting of one struc- investigation of the effect of the counting statistics on the
tureless layer on a substrate but with three different values dfiverted density profile&* It turns out that noisy data
the mean density. A perfect reconstruction of the unknowrcause the largest uncertainties at the locations of the inter-
profile is achieved only if the start profile in the middigpen  faces wheredp(z)/dz changes rapidly over small vertical
triangleg is used. This is demonstrated by the open triangleslistances. This might be due to the numerical Fourier trans-
in the right panel which represent the result of the inversiorforms. These transforms may become unstable for the pro-
algorithm as discussed before. However, if the algorithm idiles because the inversion algorithm searches for a perfect
started with the other two profiles then the upper and lowesolution for each point of noisy high, data. However, we
curves(open diamonds and open circlés the right panel of  found that the relative errafe(z)/¢(z) caused by the sta-
Fig. 3 are obtained. Although they do contain characteristigistics is always less than 3% provided that the coveggd
features of the unknown profile it is obvious that they do notrange is large enough and remarkable noise starts to disturb
represent the desired solution. This is explained in the lefthe data only forg,>0.4 AL,

panel of Fig. 3 where the calculated reflectivities are dis-

played. The solid lines show the reflectivity of the unknown

profile, the symbols correspond to the respective profiles in

the_ right p_anel. It can be seen that all calculated re_flectivit_ies V. CONCLUSIONS AND OUTLOOK
coincide, i.e., for this special case the three density profiles
cannot be distinguished. We have presented calculations which reveal that the

The corresponding phasds(q,) of the reflection coeffi- phase of a reflection coefficient may be reconstructed from a
cients are shown in Fig. 4. The solid litepper curveis the  single x-ray reflectivity measurement. Our inversion algo-
Hilbert phase of the reflection coefficient for the profile rithm has been tested with systems of different degrees of
given by the solid line in the right panel of Fig. 3, the exactcomplexity. It turns out that the inclusion of trivial pre-
phase is given by the filled circlgsecond curve from the knowledge already approximates the phase of the reflection
top). The two curves are quite different. The other threecoefficient very well. The examples suggest that this is valid
phases correspond to the reflection coefficients calculated fdor a large variety of systems with rather complex structures.
the three profiles in the right panel of Fig. 3 which were Thus, the general statement that phase informaticcois-
obtained after the inversion with the different start profilespletelylost by an x-ray reflectivity measurement which may
0,(2) as discussed above. It can be seen that the phase foften be found in publications dealing with x-ray reflectivity
the result given by the open triangles in Fig. 3 almost coin{see, e.g., Ref.)@s not at all true. Such a statement is also in
cides with the exact phase of the system. Only the pointglisagreement with Eq5), which shows that only a part of
where the exact phase is discontinuous were not well reprghe phase is unknown.
duced. This is an artifact caused by the truncation in order to Phase information is always present whenever interfer-
perform the numerical Fourier transforms within the inver-ences are observed stemming from x rays scattered from dif-
sion algorithm. The other two phaséspen diamonds and ferent depths of a sample. Thus, if the mean film thickness of
open circles are similar to the Hilbert phase. This is the a single layer could be varied without disturbing the interface
reason why these start profilésee inset in Fig. Bconverge  structures one would be able to change the phase of the re-
to similar but false results. Hence this example demonstratdiection coefficient in a controlled manner. This scenario ex-
that the phase problem—of course—has not been solved. perimentally is almost present for liquid thin films where the

The considerations have shown that phase informatiofilm thickness is controlled via the vapor pressure above the
from preknowledge of a system can be used to improve théquid. Then a simultaneous inversion of a large set of curves
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