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Phase determination of x-ray reflection coefficients

K.-M. Zimmermann, M. Tolan, R. Weber, J. Stettner, A. K. Doerr, and W. Press
Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universita¨t Kiel, Leibnizstraße 17-19, 24098 Kiel, Germany

~Received 4 May 2000; revised manuscript received 29 June 2000!

It is shown to what extent the phase of a reflection coefficient may be determined from asingle x-ray
reflectivity experiment. Complex calculus guarantees that the so-called ‘‘phase problem’’ is relaxed for certain
situations and the reflection coefficient is only determined by its moduls. A procedure to reconstruct the phase
from a single measurement under incorporation of preknowledge of the system is derived and tested by
numerical examples.
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I. INTRODUCTION

In the last decades x-ray reflectivity has been success
applied to investigate the electron density profiles of ma
thin film materials.1 However, one should always bear
mind that the density profiles obtained may not be uniq
since they were generated in almost any case by fitting ra
than by a direct data inversion. In general, the reconstruc
of a density profile from asinglereflectivity measurement is
impossible. Phase information is irretrievably lost by obse
ing intensities rather than field amplitudes. This inevita
fact is well known as the ‘‘phase problem’’ of x-ray scatte
ing.

X-ray reflectivity may be discussed in terms of a pure
optical language. The reflectivity of a single surface is giv
by the well-known Fresnel formulas.2 The only difference to
conventional optics is that the real part of the refractive
dex n for x rays is slightly smaller than unity, i.e.,n51
2d1 ib, where the dispersiond is positive and proportiona
to the electron density% of the material andb accounts for
absorption. The reflectivity for arbitrary electron density pr
files %(z) may be calculated by slicing such a profile in
very thin slabs of constant density and calculating the
flected intensity from these slabs via the famo
Parratt-iteration3 or the matrix method introduced earlier b
Abelès.4

A different description which is more common in th
x-ray scattering community is the kinematical or first-ord
Born approximation. The kinematical approximation allow
a clearer treatment of the scattering, from which general c
clusions may be more easily drawn. In the kinematical
‘‘weak scattering’’ limit the cross section is proportional
the Fourier transform of the total three-dimensional elect
density %(x,y,z) of the scatterer. For surfaces this can
reformulated, and the following expression results:5,6

R~qz!5RF~qz!U 1

%`
E d%~z!

dz
exp~2 i qzz!dzU2

5RF~qz!uF~qz!u2 ~1!

for the reflectivityR(qz). Hereqz denotes the vertical wave
vector transfer,%(z) is the laterally averaged electron de
sity profile, and%` is the average density of the enti
sample. The prefactorRF(qz) is the usual Fresnel reflectivit
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of the substrate.6 It is worth noting that the structure facto
F(qz) is associated with the derivative of the density profi
d%(z)/dz by a simple one-dimensional~1D! Fourier trans-
form.

Equation~1! has been discussed in great detail in the pa
For a rough interface located atz50 with an error-function
profile of width s one getsd%(z)/dz;exp$2z2/(2s2)%, and
thusF(qz)5exp(2qz

2s2/2) andR(qz)5RF(qz)exp(2qz
2s2).7

Various authors have shown that a direct consequence o
phase problem is that one can hardly expect to obtain m
than thats value, the rms roughness, from a reflectivity me
surement of a single surface.8–11 Thus, deviations from an
error-function profile are hard to observe by x-ray reflectiv
in the special case of a single interface, such as for insta
the surface of a bulk liquid. Even worse, it can be prov
rigorously that asymmetries of such a profile cancel tota
by taking the modulus squared in Eq.~1!.10

However, the situation is not as bad as it is described
many works. For instance, by introducing a simple pha
factor into the expression forF(qz) in Eq. ~1! it is often
claimed that the trivial cancellation of this factor by takin
the modulus serves arbitrarily as a source for many amb
ities in the interpretation of x-ray reflectivty data.8 The aim
of this paper is to show that in general this opinion is n
true: It will be shown that the above-mentioned situation
a single surface improves considerably if thin film syste
are considered. Then the reflection of x rays from interfa
at different depths provides the necessary phase informa
which may be used for the data analysis.

It has been shown that reflectivity data can be direc
inverted if more than one measurement can be done on
same sample. For x rays this is possible whenever an abs
tion edge of the substrate is available. From the reflectivi
at and away from this edge the density profile of the sam
may be unambiguously retrieved.12,13Other schemes propos
the introduction of reference layers or they deal with the c
of neutron reflectivity where spin polarization allows mo
than one measurement.14–19 However, these methods ar
subject to many practical limitations since often there is
appropriate adsorption edge. It is also not possible to in
duce a reference layer without disturbing the original syst
and this reference layer introduces new ambiguities.

Furthermore real space approaches have been prop
where the Fourier transform of the reflection coefficient
discussed. Then a density-density correlation function~1D
10 377 ©2000 The American Physical Society
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10 378 PRB 62K.-M. ZIMMERMANN et al.
Patterson function! is obtained which may be directly relate
to a vertical length scale of the system und
consideration.20,21 Recently, the sensitivity of this approac
has been improved considerably by special truncation te
niques of the Fourier transform.22 It turns out that particu-
larly for low contrast systems the transformation to re
space may enhance features in a reflectivity which wo
otherwise remain invisible. In the present work the way
propose to find small features of a density profile from
single measurement is totally different from these a
proaches: A direct way of data inversion by a phase appr
mation is proposed. Recently the experimental feasibility
such phase approximations in the context of the full dyna
cal scattering theory has been discussed by van der L23

However, we follow the original proposal of Sanyal an
co-workers24,25 who applied phase approximations to spec
systems. In the present work we will show a general tre
ment which is based on the simple kinematical approxim
tion. The kinematical approximation is easy to impleme
and has the advantage that results may be discussed an
cally in a wider context. We found that our inversion sche
is valid for a large variety of systems.

The paper is structured as follows: First the outline of
theory is given. A formula is derived within the kinemat
approximation which is well suited for aphase approxima-
tion. In the next paragraph it will be shown how these co
siderations may be converted into an algorithm to inv
x-ray reflectivity data. Here the inclusion of preknowled
about the system is of decisive importance. The next sec
deals with numerical examples in order to test the prese
theory. It will be shown to what extent the developed meth
is able to yield reliable results. Conclusions and an outlo
are given at the end of this paper.

II. THEORY

We consider the structure factorF(qz) as defined by Eq.
~1!, i.e.,

F~qz!5
1

%`
E d%~z!

dz
exp~2 i qzz! dz. ~2!

This function may be analytically continued to the ent
complex plane and may be expressed by its~known! modu-
lus uF(qz)u and ~unknown! phase F(qz) via F(qz)
5uF(qz)uexp$iF(qz)%. In the kinematic limitqz strictly is a
real variable.26 For mathematical convenienceqz is now
treated as a complex variable. ThenF(qz) is an analytic
function whose properties may be discussed by complex
culus. It turns out that if the complex numbe
$a1 ,a2 , . . . ,an% are a set of zeros ofF(qz) all lying in the
upper half plane, i.e., Im(aj ).0 for all j 51, . . . ,n, then the
function F(qz) may be expressed by the followin
product:27–29

F~qz!5uF~qz!uexp$ iFH~qz!%)
j 51

n S qz2aj

qz1aj

qz1aj*

qz2aj*
D ,

~3!

where the asterisk marks a complex conjugate quantity
the so-called Hilbert phaseFH(qz) is given by
r
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FH~qz!52p1
2qz

p E
0

` ln@ uF~qz8!u/uF~qz!u#

qz8
22qz

2
dqz8 . ~4!

Note the fact that the Hilbert phase depends on the modu
F(qz) alone. A simple way to perform the numerical calc
lation of the Hilbert phaseFH(qz) avoiding the singularity
in the denominator of the integral in Eq.~4! is given in Ref.
29. From Eqs.~3! and ~4! the phase ofF(qz) may be ex-
pressed by its modulus and the zeros in the upper half c
plex plane by

F~qz!5FH~qz!1(
j 51

n

2 arccosS 2qz Im~aj !

qz
22uaj u2

D . ~5!

This important result transforms the phase problem to
~unknown! zeros of the analytic functionF(qz) in the upper
half plane. In particular, if no such zeros exist thenF(qz)
and hence the x-ray reflectivity given by Eq.~1! is fully
determined byuF(qz)u, from which the phaseF(qz) may be
calculated via Eq.~4! since it coincides with the Hilber
phase. This is the content of the well-known Titchmar
theorem of complex calculus. Equation~5! directly visual-
izes that only the second part of the expression on the ri
hand side is unknown and hence the phaseF(qz) is indeed
not completely random. Even ifF(qz) would have zeros in
the upper half complex plane then the sum which is runn
over all such zeros may nevertheless be small compared
the Hilbert phaseFH(qz) and Eq.~5! would still be a good
approximation of the unknown phaseF(qz).

For profiles fulfilling the conditionF(qz)Þ0 in the upper
half complex plane the phase problem does not exist.
extensive discussion of such profiles has been presente
the pioneering work of Clinton30 ~see also Ref. 31!. He has
proven that a special class of functions obeys this requ
ment, namely, a layer stack with sharp interfaces and c
stant electron densities where the contrast between the
strate and the first layer is larger than the sum of all ot
contrasts. Thus, there exist—at least in theory—profiles%(z)
for which a single reflectivity measurement already cons
of all the necessary information to recover the phase of
reflection coefficient. The situation is somewhat more co
plicated if roughness is taken into account. But still the
exists a large variety of density profiles where the phase
the reflection coefficient is totally determined by i
modulus.30,31Thus, the general statement that phase inform
tion is always completely lost and arbitrary phase fact
may be introduced in Eq.~1! is not true.

It shall be further noted that all arguments given above
also valid if the exact dynamical treatment of x-ray reflect
ity would be performed. However, since this complicates
calculations considerably we will not go into more deta
here.23,27,32–34

III. INVERSION SCHEMES

The considerations of the previous paragraph shall now
used to develop an algorithm for the inversion of x-ray
flectivity data. For this purpose we need a start profile%0(z)
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FIG. 1. Right panel: Unknown profile~open
circles!, first guess~lowest solid line! and the re-
sults after one iteration~second solid line from
the bottom!, three iterations~third solid line from
the bottom!, and more than 100 iterations~top-
most curve! of the inversion algorithm describe
in the text. Left panel: Calculated reflectivitie
R(qz) corresponding to the density profiles in th
right panel ~open circles correspond to the un
known profile, solids lines to the respective ite
ated profiles in the right panel!. All curves are
shifted vertically for clarity.
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which contains the preinformation that is known about
system ~estimated layer thicknesses, mean layer densi
number of layers, etc.!. Then the difference between th
profile from the unknown profile%(z) is given by

D%~z!5%~z!2%0~z!. ~6!

Introducing this into Eq.~1! yields

uF~qz!u25UF0~qz!1
iqz

%`
D%̃~qz!U2

, ~7!

whereF0(qz) is the~known! 1D structure factor correspond
ing to %0(z) as defined by Eq.~2! and D%̃(qz) is the ~un-
known! Fourier transform ofD%(z). Equation~7! is solved
formally by the ansatz

D%̃~qz!5
i%`

qz
@F0~qz!2F~qz!#. ~8!

It is worth noting that Eq.~8! cannot be used to calculat
D%̃(qz) because only the modulus ofF(qz) is known from a
reflectivity measurement. Thus,F(qz) and F0(qz) may be
expressed in terms of the respective moduli and pha
F(qz) andF0(qz). Then Eq.~8! transforms to

D%̃~qz!5
i%`

qz
F uF0~qz!u2A R~qz!

RF~qz!
exp$ iDF~qz!%G

3exp$ iF0~qz!%, ~9!

with the phase differenceDF(qz)5F(qz)2F0(qz) which
is still unknown. However, Eq.~9! is well suited for aphase
approximationbased on the considerations of the previo
paragraph. The simplest approximation of the phase dif
ence is given by settingDF(qz)[0. This means that the
phases of the start profile and of the unknown profile alre
coincide very well, i.e., the second term on the right-ha
side of Eq.~5! is small. Sanyalet al.24,25,36have tested othe
inversion schemes based on the distorted wave Born
proximation. For certain systems such as polymer films
silicon substrates or GaAs/AlAs multilayers they found go
results with the approximationDF(qz)[0.

A better way to use Eq.~9! for the inversion of x-ray
reflectivity data is based on two improvements:~i! The phase
differenceDF(qz) may be approximated more accurately
e
s,

es

s
r-

y
d

p-
n

the Hilbert phases ofF(qz) and F0(qz) as discussed in the
previous paragraph@see Eq.~4!#. ~ii ! Equation~9! may be
solved in an iterative way, i.e., the result forD%(z) which is
given by a Fourier backtransformation of the right-hand s
of Eq. ~9! may be used as the new known starting profi
%0(z). We introduced number~ii ! into an algorithm which is
otherwise based on Eq.~9!.37 It turned out by numerical
simulations that number~i!, the introduction of the Hilbert
phase difference instead ofDF[0, only accelerates the con
vergence of the algorithm but this does not affect the fi
result.35 The possibility to impose additional restrictions o
the expected profiles was also included. In particular
turned out that often only a part of the profile, for instance
single interface structure, is unknown while the rest is co
pletely determined by the preknowledge about the syst
Then these known parts of the function%(z) were fixed and
the algorithm was only applied for the rest of the profile.
has been proved mathematically that if certain areas o
profile are fixed then an unambiguous reconstruction of
remaining part is possible from a single reflectivi
measurement.27,28 However, since measurements alwa
contain statistical errors and because they are limited t
finite qz range, in reality this may not be the case.

IV. NUMERICAL EXAMPLES

We will now discuss numerical examples which show th
the presented method works for a large variety of syste
All systems have in common that the reflectivities and el
tron density profiles for layer systems with silicon as su
strate material are calculated. As a first guess a structure
polymer or otherwise organic film is always taken. The a
sumed optical parametersd andb of silicon and of the or-
ganic film correspond to those for radiation with a wav
length of l51.54 Å ~Cu Ka radiation!. Furthermore, the
reflectivities calculated with the exact Parratt formalism1,3,31

will be displayed together with the respective density p
files. Geometric factors as well as a standard resolution fo
ing also have been included into the reflectivi
calculations.1,31,38,39

Figure 1 shows a simple example. The right panel c
tains the density profiles. The open circles represent the ‘‘
known’’ profile which is going to be reconstructed. The low
est solid curve is the first guess, i.e., the starting pro
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FIG. 2. Inversion of a more complicated laye
structure~see open circles in the right panel!. It
shall be noted that the layers are not uniform. A
other explanations are the same as for Fig. 1.
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%0(z) of the iteration. It can be seen that obviously the lay
next to the substrate is initially missing. The complete la
including the interface roughnesses will now be reco
structed. The left panel contains the corresponding reflec
ties. The open circles show the reflectivity for the unkno
profile. This reflectivity would be the result of a measur
ment from whichuF(qz)u may be obtained according to Eq
~1!. The lowest solid line is the reflectivity corresponding
the profile given by the first guess as discussed before.
two curves disagree considerably for largeqz values. The
second solid line from the bottom depicts the reflectivity
calculated for the second profile marked by the solid line
the right panel. This profile is obtained after the first iterati
of the reconstruction algorithm presented in the last pa
graph. It can be seen that the unknown layer already
comes visible. However, the reconstruction is not yet perf
After three iterations the solid lines in the left and right pa
els ~third curves from the bottom! indicate that the profile
and the reflectivity converge towards the final solution.
the topmost curves the solid lines and the open circles c
cide rather perfectly. These curves are obtained after m
than 100 iterations. Thus, in this specific example it is de
onstrated that a perfect reconstruction of an unknown la
from a single ‘‘measurement’’ is possible.

Figure 2 shows the next example with much more co
plexity. The description of the curves is similar to that giv
r
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for Fig. 1. It can be seen that even quite complex unkno
layer structures may be reconstructed from a single reflec
ity curve and a minimum preinformation, namely, in th
case only one layer with a mean density on a silicon s
strate was assumed.40 However, in order to accelerate th
covergence of the algorithm a lower limit for the electro
density of the film was set. Such a limit is not a major r
striction since the mean densities often are given by litera
values.

These examples have demonstrated that the phase o
x-ray reflection coefficient and hence the electron den
profile of a layer system can indeed be reconstructed fro
single reflectivity curve, i.e., from the measurement of t
x-ray reflectivity alone. Even in cases where the calcula
reflectivity for the first guess%0(z) and the unknown profile
%(z) are quite different on the entireqz range the proposed
inversion scheme is able to generate the required solu
~see Fig. 2!. However, it is worth noting that this does no
mean that the phase problem of x-ray scattering is solv
The reason why the inversion algorithm works is the input
the preinformation and for more complex systems the use
the Hilbert phase as discussed earlier.30 These two ingredi-
ents already pin down the phase for many systems.

If the structure factorF(qz) has zeros in the upper ha
plane and if the preknowledge is not sufficient for an una
biguous phase reconstruction then the result of the inver
algorithm may depend on the starting profile%0(z). This is
-
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FIG. 3. Example where the inversion algo
rithm does not yield a unique solution. Righ
panel: The solid lines represent the unknown p
file. The symbols are the results after more th
100 iterations of the algorithm described in th
text using the start profiles depicted in the ins
@the same symbols mark the start and final p
files,%(z)start and%(z)final]. Only the start profile
in the middle~open triangles! yields the desired
solution. The other start profiles converge
similar but wrong results. Left panel: Calculate
reflectivities for the unknown profile~solid lines!
and the results of the inversions~symbols! with
the three start profiles shown in the inset of t
right panel. All reflectivities agree. The densit
profiles and the reflectivities are vertically shifte
for clarity.
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FIG. 4. PhasesF(qz) of the reflection coefficients corresponding to the density profiles shown in the right panel of Fig. 3. The to
curve~solid line! is the Hilbert phase calculated for the unknown density profile. The second curve from the top~filled circles! is the exact
phase for the unknown profile. Each of the other three curves corresponds to the reflection coefficient of the profile with the sam
in the right panel of Fig. 3.
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discussed in the next example which is presented in Fig
This figure is differently organized compared to those befo
The solid lines in the right panel display the unknown de
sity profile %(z). An arrangement of equally spaced ste
with similar interfaces is depicted. The inset shows th
different starting profiles%0(z) all consisting of one struc
tureless layer on a substrate but with three different value
the mean density. A perfect reconstruction of the unkno
profile is achieved only if the start profile in the middle~open
triangles! is used. This is demonstrated by the open triang
in the right panel which represent the result of the invers
algorithm as discussed before. However, if the algorithm
started with the other two profiles then the upper and low
curves~open diamonds and open circles! in the right panel of
Fig. 3 are obtained. Although they do contain characteri
features of the unknown profile it is obvious that they do n
represent the desired solution. This is explained in the
panel of Fig. 3 where the calculated reflectivities are d
played. The solid lines show the reflectivity of the unknow
profile, the symbols correspond to the respective profile
the right panel. It can be seen that all calculated reflectivi
coincide, i.e., for this special case the three density profi
cannot be distinguished.

The corresponding phasesF(qz) of the reflection coeffi-
cients are shown in Fig. 4. The solid line~upper curve! is the
Hilbert phase of the reflection coefficient for the profi
given by the solid line in the right panel of Fig. 3, the exa
phase is given by the filled circles~second curve from the
top!. The two curves are quite different. The other thr
phases correspond to the reflection coefficients calculated
the three profiles in the right panel of Fig. 3 which we
obtained after the inversion with the different start profi
%0(z) as discussed above. It can be seen that the phas
the result given by the open triangles in Fig. 3 almost co
cides with the exact phase of the system. Only the po
where the exact phase is discontinuous were not well re
duced. This is an artifact caused by the truncation in orde
perform the numerical Fourier transforms within the inve
sion algorithm. The other two phases~open diamonds and
open circles! are similar to the Hilbert phase. This is th
reason why these start profiles~see inset in Fig. 3! converge
to similar but false results. Hence this example demonstr
that the phase problem—of course—has not been solve

The considerations have shown that phase informa
from preknowledge of a system can be used to improve
3.
.

-
s
e

of
n

s
n
s
r

ic
t
ft
-

in
s
s

t

for

for
-
ts
o-
to
-

es

n
e

analysis of x-ray reflectivity data. In the previous examp
the algorithm was only tested with smooth calculated curv
In order to test the inversion scheme in a more realistic s
ation we included noise into our calculated reflectivitie
These noisy—but still artificial—‘‘data’’ allow a systemati
investigation of the effect of the counting statistics on t
inverted density profiles.23,34 It turns out that noisy data
cause the largest uncertainties at the locations of the in
faces whered%(z)/dz changes rapidly over small vertica
distances. This might be due to the numerical Fourier tra
forms. These transforms may become unstable for the
files because the inversion algorithm searches for a per
solution for each point of noisy highqz data. However, we
found that the relative errord%(z)/%(z) caused by the sta
tistics is always less than 3% provided that the coveredqz
range is large enough and remarkable noise starts to dis
the data only forqz.0.4 Å21.

V. CONCLUSIONS AND OUTLOOK

We have presented calculations which reveal that
phase of a reflection coefficient may be reconstructed fro
single x-ray reflectivity measurement. Our inversion alg
rithm has been tested with systems of different degrees
complexity. It turns out that the inclusion of trivial pre
knowledge already approximates the phase of the reflec
coefficient very well. The examples suggest that this is va
for a large variety of systems with rather complex structur
Thus, the general statement that phase information iscom-
pletely lost by an x-ray reflectivity measurement which m
often be found in publications dealing with x-ray reflectivi
~see, e.g., Ref. 8! is not at all true. Such a statement is also
disagreement with Eq.~5!, which shows that only a part o
the phase is unknown.

Phase information is always present whenever inter
ences are observed stemming from x rays scattered from
ferent depths of a sample. Thus, if the mean film thicknes
a single layer could be varied without disturbing the interfa
structures one would be able to change the phase of the
flection coefficient in a controlled manner. This scenario e
perimentally is almost present for liquid thin films where t
film thickness is controlled via the vapor pressure above
liquid. Then a simultaneous inversion of a large set of cur
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yields unambiguously the common unknown interfa
structures.35,41

Possible applications of our algorithm are x-ray da
which extend over a wideqz range and where tiny features
a profile are going to be found. Such profiles are expected
instance in the case of polymer or liquid films next to so
substrates21,24,35or for metal/polymer interfaces.
s

-

uk

pp

o
s

S

R.

er

n

J.

a,

h,
or

ACKNOWLEDGMENTS

This work was supported by the Deutsche Forschungs
meinschaft Projects Nos. Pr325/12-1 and Pr325/5-2 wit
the Schwerpunktprogramm ‘‘Benetzung und Strukturbildu
an Grenzflchen.’’ M.T. would like to thank Professor M.K
Sanyal for many fundamental discussions about phase
reflection coefficients.
ys.

mi-
-

t-
cs

H.

a B

o-

0
the
pro-

a
the

ct.

ne
9

the
also
1X-Ray and Neutron Reflectivity, edited by J. Daillant and A.
Gibaud, Lecture Notes in Physics Vol. 58~Springer-Verlag,
Berlin, 1999!.

2M. Born and E. Wolf,Principles of Optics~Pergamon, Oxford,
1993!.

3L.G. Parratt, Phys. Rev.95, 359 ~1954!.
4F. Abelès, Ann. Phys.~Paris! 5, 596 ~1950!.
5J. Als-Nielsen, D. Jacquemain, K. Kj,r, F. Leveiller, and M.

Lahav, Phys. Rep.246, 251 ~1994!.
6M. Deutsch and B.M. Ocko,Encyclopedia of Applied Physic

~Wiley-VCH, New York, 1998!, Vol. 23, p. 479.
7P. Beckmann and A. Spizzichino,The Scattering of Electromag

netic Waves From Rough Surfaces~Pergamon, New York,
1963!.

8P.S. Pershan, Phys. Rev. E50, 2369~1994!.
9F. Rieutord, A. Braslau, R. Simon, H.J. Lauter, and V. Pasy

Physica B221, 538 ~1996!.
10W. Press, J.-P. Schlomka, M. Tolan, and B. Asmussen, J. A

Crystallogr.30, 963 ~1997!.
11T. Salditt, Ph.D. thesis, Universita¨t München, 1995.
12M.K. Sanyal, S.K. Sinha, A. Gibaud, K.G. Huang, B.L. Carvalh

M. Rafailovich, J. Sokolov, X. Zhao, and W. Zhao, Europhy
Lett. 21, 691 ~1993!.

13T. Ohkawa, Y. Yamaguchi, O. Sakata, M.K. Sanyal, A. Datta,
Banerjee, and H. Hashizume, Physica B221, 416 ~1996!.

14D.S. Sivia, W.A. Hamilton, G.S. Smith, T.P. Riecker, and
Pynn, J. Appl. Phys.70, 732 ~1991!.

15V.O. de Haan, A.A. van Well, S. Andenwalla, and G.P. Felch
Phys. Rev. B52, 10 831~1995!.

16V.O. de Haan, A.A. van Well, P.E. Sacks, S. Andenwalla, a
G.P. Felcher, Physica B221, 524 ~1996!.

17C.F. Majkrzak and N.F. Berk, Physica B221, 520 ~1996!.
18C.F. Majkrzak, N.F. Berk, J.A. Dura, S.K. Satija, A. Karim,

Pedulla, and R.D. Deslattes, Physica B248, 338 ~1998!.
19A. Schreyer, C.F. Majkrzak, N.F. Berk, H. Gru¨ll, and C.C. Han, J.

Phys. Chem. Solids60, 1045~1999!.
20G. Vignaud, A. Gibaud, G. Gru¨bel, S. Joly, D. Ausserre´, J.F.

Legrand, and Y. Gallot, Physica B248, 250 ~1998!.
21C.-J. Yu, A.G. Richter, A. Datta, M.K. Durbin, and P. Dutt

Phys. Rev. Lett.82, 2326~1999!.
22O.H. Seeck, I.D. Kaendler, M. Tolan, K. Shin, M.H. Rafailovic

J. Sokolov, and R. Kolb, Appl. Phys. Lett.76, 2713~2000!.
23A. van der Lee, Eur. Phys. J. B13, 755 ~2000!.
,

l.

,
.

.

,

d

24M.K. Sanyal, J.K. Basu, A. Datta, and S. Banerjee, Europh
Lett. 36, 265 ~1996!.

25M.K. Sanyal, S. Hazra, J.K. Basu, and A. Datta, Phys. Rev. B58,
R4258~1998!.

26Absorption and refraction effects may be included in a se
empirical way into the kinematic theory by introducing a com
plex wave number~Ref. 8!.

27K. Chadan and P.C. Sabatier,Inverse Problems in Quantum Sca
tering Theory, 2nd ed., Text and Monographs in Physi
~Springer, Berlin, 1989!.

28M.V. Klibanov and P.E. Sacks, J. Comput. Phys.112, 273~1994!.
29G. Reiss, Physica B221, 533 ~1996!.
30W.L. Clinton, Phys. Rev. B48, 1 ~1993!.
31M. Tolan, X-Ray Scattering from Soft-Matter Thin Films—

Materials Science and Basic Research, Springer Tracts in Mod-
ern Physics Vol. 148~Springer, Berlin, 1999!.

32R. Lipperheide, G. Reiss, H. Fiedeldey, S.A. Sofianos, and
Leeb, Phys. Rev. B51, 11 032~1995!.

33R. Lipperheide, G. Reiss, H. Leeb, and S.A. Sofianos, Physic
221, 514 ~1996!.

34R. Lipperheide, J. Kasper, and H. Leeb, Physica B248, 366
~1998!.

35A.K. Doerr, Ph.D. thesis, Kiel University, 1999.
36S. Banerjee, M.K. Sanyal, A. Datta, S. Kanakaraju, and S. M

han, Phys. Rev. B54, 16 377~1996!.
37The algorithm was implemented using the language C21 on a

standard linux PC with AMD K6 450 MHz processor. 100
iterations took a time of approximately 5 min depending on
layer thicknesses and the required resolution. The obtained
file was smoothend after the iterations by a convolution with
Gaussian in order to eliminate truncation effects caused by
Fourier transforms.

38A. Gibaud, G. Vignaud, and S.K. Sinha, Acta Crystallogr., Se
A: Found. Crystallogr.49, 642 ~1993!.
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