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Two-impurity Kondo effect in double-quantum-dot systems:
Effect of interdot kinetic exchange coupling
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Tunneling conductance through two quantum dots, which are connected in series to left and right leads, is
calculated by using the numerical renormalization group method. As the hopping between the dots increases
from a very small value, the following states continuously appear:~i! Kondo singlet state of each dot with its
adjacent-site lead,~ii ! singlet state between the local spins on the dots, and~iii ! double occupancy in the
bonding orbital of the two dots. The conductance shows peaks at the crossover regions between these states.
The peak at the boundary between~i! and ~ii ! especially has the unitarity limit value of 2e2/h because of
coherent connection through the lead-dot-dot-lead. For the strongly correlated cases, the characteristic energy
scale of the coherent peak shows anomalous decrease relating to the quantum critical transition known for the
two-impurity Kondo effect. The two dot systems give a new realization of the two-impurity Kondo problem.
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I. INTRODUCTION

Dilute magnetic impurities in metal give rise to the sing
impurity Kondo effect.1,2 The antiferromagnetic coupling be
tween spins on impuritiesJ, such as the Ruderman-Kitte
Kasuya-Yosida interaction, would compete with the Kon
effect. To study such competition effect, the two impuriti
in metal have been studied extensively.3–14 If the Kondo
binding energy is much larger thanJ (TK@J), each local
spin on the magnetic impurity forms the Kondo singlet st
with the conduction electrons. On the other hand forTK!J,
the two local spins form the local spin singlet state. From
numerical renormalization group~NRG! calculation, Jones
et al. pointed out that the transition between the two sta
occurs as a quantum critical phenomenon.4 However, it was
pointed out8 that the critical transition was associated w
the extra symmetry between the even and odd channels
plicitly assumed in the work of Joneset al. In general there is
an asymmetry between the two channels, caused by the
ity splitting terms such as thed-d hopping term between th
impurity atoms. Under the asymmetry, only a crossover
curs rather than the critical transition. Theoretical refinem
has been done on this problem.13,14

It might be difficult to observe the two-impurity effect i
metal systems as pointed out by previous studies, bec
the alloy contains many types of impurity pairs, and the c
pling between impurities is fixed in each material. Recen
the Kondo effect was observed in single quantum
systems.15–19 The experimental data show good agreem
with the results of numerical calculations based on
single-impurity Anderson model.20 These works demon
strated that the quantum dot systems are suitable for sens
experiment of the Kondo problem. On the double-quantu
dot ~DQD! systems, each dot corresponds to an impu
PRB 620163-1829/2000/62~15!/10260~8!/$15.00
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atom, and the coupling between the dots, thed-d hopping
term, can be changed freely by applying the split gate v
age between the dots.21 It would be expected that we ca
investigate the two-impurity effect systematically in th
DQD systems.

For the DQD systems, in which the two dots are co
nected to the left lead and the right lead in a series as ‘‘le
dot-dot-lead,’’ there are several theoretical works includi
the Kondo effect.22–28 We have reported the large enhanc
ment of the tunneling conductance through the two d
when the conditionJLR

eff;TK
0 holds, by using the NRG

calculation.25 Here JLR
eff 54t2/U is the antiferromagnetic ki-

netic exchange coupling between the two dots,t is the hop-
ping between the two dots,U is the Coulomb repulsion on
the dot, andTK

0 is the Kondo temperature att50. We note
that the antiferromagnetic coupling is the inevitable effe
due to the kinetic processt and the Coulomb repulsion on th
dot U. There are investigations with the slave boson me
field theory ~SBMFT!. Aono et al. had already studied the
same model as us, however they could not find the rela
JLR

eff;TK
0 on the peak of the conductance pointed out by

because the SBMFT cannot treat the kinetic exchange
cess properly.24 Georges and Meir introduced the antiferr
magnetic couplingJ between the two dots by artifice in th
model, and discussed the effect related to the critical tra
tion on the conductance by using the SBMFT.26 However the
introduction of the artificialJ in the model and the calcula
tion of the conductance within the SBMFT framework rai
the following questions:~a! Does the effect of antiferromag
netic coupling pointed by Georges and Meir actually app
in the DQD systems, since the hopping itself breaks
quantum critical transition?8,9 ~b! If it appears, however, how
do the conflicting effects oft, the kinetic exchange coupling
10 260 ©2000 The American Physical Society
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that would cause the critical transition and the parity splitt
that suppress the critical transition, compete?~c! How do
they appear in the conductance? Since the SBMFT could
treat the kinetic exchange process properly, this approxi
tion for the two-impurity Kondo problem like the DQD sys
tems seems to be unfavorable. A reliable calculation is n
essary for such a sensitive problem.

In this paper, we present a detailed investigation of
Kondo effect in the DQD systems, paying special attent
to the roles of thed-d hopping term. The numerical calcula
tion is performed by using the NRG method. This numeri
method is known to be a reliable one for the two-impur
Kondo problem.3–6,8,9,14We calculate the tunneling conduc
tance through the two dots. We note that some prelimin
results were presented at SCES98,25 and one of the centra
results was presented at LT22.28

We find that the following states continuously appe
when the hopping between the two dots increases fro
very small value:~i! Kondo singlet state (t!U, JLR

eff !TK
0 ),

~ii ! singlet state between local spins on the dots (t!U, JLR
eff

@TK
0 ), and ~iii ! double occupancy in the bonding orbital

the two dots (t*U). The conductance shows peaks at t
crossover regions between these states. The ‘main pea
the boundary between~i! and ~ii ! with the conditionJLR

eff

;TK
0 has the unitarity limit value of 2e2/h because of coher

ent connections through the lead-dot-dot-lead. Especially
the strongly correlated cases, the width of the main p
becomes very narrow and the characteristic temperatur
the peak is largely suppressed compared with the Ko
temperature of the single dot systemsTK

0 . These anomalies
of the main peak closely relate to the quantum critical p
nomenon in the two-impurity Kondo problem. The quanti
tive calculation in this paper gives new realization to t
two-impurity Kondo problem, and suggests the possibility
a systematic study of the anomalous two-impurity Kon
effect in the DQD systems.

The formulation is presented in Sec. II. The numeri
results are presented in Sec. III. The summary and discus
are given in Sec. IV.

II. FORMULATION

We investigate the following Hamiltonian for the DQ
systems where the two dots are connected to the left lead
the right lead in a series:

H5H l1Hd1H l-d , ~1!

H l5(
ks

«kcLks
† cLks1(

qs
«qcRqs

† cRqs , ~2!

Hd5«d,L(
s

nd,Ls1«d,R(
s

nd,Rs1S 2t(
s

dLs
† dRs1H.c.D

1ULnd,L↑nd,L↓1URnd,R↑nd,R↓ , ~3!

H l-d5(
ks

VLkdLs
† cLks1(

qs
VRqdRs

† cRqs1H.c. ~4!

H l is the Hamiltonian for the electrons in the left and rig
leads.Hd is that in the left and right dots.H l-d is that for the
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tunneling between the left lead and the left dot, and betw
the right lead and the right dot. The suffices L, R mean
left and the right, respectively.cLks is the annihilation op-
erator of the electron in the left lead,dLs is that in the left
dot.nd,L s 5dLs

† dLs is the number operator of the left dot.«k

is the energy of the statek in the left lead.«d,L is the energy
of the orbital in the left dot. The quantityt is the matrix
element between the left and right dots, and we refer to i
the ‘‘hopping’’ between the dots hereafter.UL is the Cou-
lomb interaction between the electrons in the left dot.VL is
the matrix element between the left dot and the left lead

Here we consider only the single orbital in each of t
dots. This situation is justified when the typical energy sp
ting between the orbitals in the dot is larger than the typi
broadening of the energy levelsd«d@D, and when the tem-
perature is smaller than the typical Coulomb repulsion
tween the electrons in the dotsT!U.20,29 ~The Kondo effect
is not important in the case ofT*U.! We consider only the
on-site Coulomb interaction between the electrons. Furth
more, we consider only the nearest neighboring tunnel
between the dot and its adjacent-site lead, between the
dots. The energies«d,L and«d,R can be changed by applyin
the gate voltage on the dots.VLk (VRq) can also be change
by applying the split gate voltage between the left~right! dot
and the left~right! lead. t can be changed by applying th
split gate voltage between the left dot and the right dot.

In this paper we consider only the symmetric case w
respect to the exchange of the left and the right. This sit
tion is written with the following relations;«d[«d,L5«d,R,
U[UL5UR, andD[DL5DR5puVu2rc . (D is the hybrid-
ization strength between the dots and the leads,V[VLk
5VRk , rc is the density of states in the leads. Here we co
sider that there is nok dependence in the matrix element a
the density of states.30! The model can be mapped into th
two-channel Anderson Hamiltonian by the unitary transfo
for the operators of the dots and the operators of the lead25

Furthermore we consider the situation where there is
electron in each dot by adjusting the gate voltage on the
^nd,L&51, ^nd,R&51.

We solve the Hamiltonian by using the NRG method, a
calculate the conductance from the current correlation fu
tion within the linear response theory.25,29,31 ~For detailed
calculation of the conductance, see appendix of Ref. 31.!

At zero temperature, the conductance can be rewritten
using the effective parameters of the fixed point nonintera
ing Anderson Hamiltonian as follows:

G5
2e2

h
uDGe~01!2DGo~01!u25

2e2

h

4~ teff/Deff!2

@11~ teff/Deff!2#2
.

~5!

We have used the relation,Gp5zp /(v2«p
eff1 iDp

eff), zp

5Dp
eff/D, (p5e,o), atT50. Here the suffixp denotes the

even and odd parity orbitals in the two dots. We note that
even orbital is the bonding orbital, and the odd orbital is t
antibonding orbital. We now consider the case of^ne&
1^no&52, thenteff[2«e

eff5«o
eff>0, Deff[De

eff5Do
eff . Here

teff is the effective hopping between the dots, andDeff is the
effective hybridization strength between the leads and
dots. AtT50, we calculate the effective parameters from t
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10 262 PRB 62WATARU IZUMIDA AND OSAMU SAKAI
analysis of the flow chart of the renormalized energy le
structure in the NRG calculation, and then calculate the c
ductance from Eq.~5!.

III. NUMERICAL RESULTS

In numerical calculation we choose half of the bandwid
as an energy unit. The Coulomb repulsion is fixed atU
50.1 throughout this paper. We calculate the conductanc
a function of the hoppingt for various hybridization
strengthsD. ~As noted previously,t and D can be changed
by applying the split gate voltage between the dots and
tween the dots and the leads, respectively.! When the gate
voltage on the dots is fixed at«d52U/2, then the DQD is in
the half-filled case, i.e., each dot contains one electron.

In Secs. III A and III B we present the numerical results
zero temperatureT50, and in Sec. III C we present the re
sults at finite temperatures.

A. Conductance in the strongly correlated case

First we present the conductance in the strongly correla
case with the hybridization strength satisfyingD/p51.5
31023 (D/pU51.531022, i.e., u[U/pD.6.8).

We show the conductance atT50 as a function of the
hopping t in Fig. 1. ~The occupation number and the pha
shift are also shown in Fig. 1.! There are two peaks in th
conductance, the large peak neart;531024, and the small
peak neart;231022. ~Hereafter we call the large peak th
‘‘main peak.’’! Why do these peaks appear? In later pa
graphs we will analyze various quantities for the parame
cases showing the peaks.

The density of states on the even orbital of the two d
re(v) for severalt cases is shown in Fig. 2.@The relation
re(v)5ro(2v) holds for ^ne&1^no&52, wherero(v) is
the density of states on the odd orbital of the two dots.# At
t50, there is the Kondo peak on the Fermi energy.~Fermi
energy corresponds tov50.! Naturally, this Kondo peak is
caused by the Kondo singlet states between the left lead
the left dot, and between the right lead and the right dot.

FIG. 1. ConductanceG, occupation number in the odd orbital o
the two dots^no&, and phase shift of the odd channeldo , as a
function of the hoppingt at T50. We note the relations betwee
the even and odd orbitals,̂ne&522^no&, de5p2do . D/pU
51.531022.
l
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t increases tot5531024, the conductance has the ma
peak and the strength ofre(v;0) becomes half of that a
t50. In this region we can consider that the Kondo effe
with the spins on the orbitals extending the two dots,
even and the odd orbitals, occurs. Ast increases more, the
conductance decreases rapidly, and the strength ofre(v
;0) is largely suppressed as shown att51.031023. This
suppression means the disappearance of the Kondo cou
between the leads and the dots.t becomes even larger, th
conductance has the small peak att;231022. At t52.5
31022, the density of states on the even and odd orbit
have peaks at7v;1021, respectively, from Fig. 2. At the
same time the occupation numbers begin to change as sh
in Fig. 1. (̂ ne&.1.5, ^no&.0.5 att.1.531022.!

Here we note the following two points: First, the cond
tion JLR

eff;TK
0 holds att.531024, whereJLR

eff[4t2/U. (TK
0

53.7831026 is the Kondo temperature att50, with
the expressionTK

0 5AUD/2 exp@2pU/8D1D/2U#,1 then
JLR

eff /TK
0 .2.65 att55.031024.! Second, as seen from Fig. 1

the occupation numbers of the even and the odd orbitals
t&1.031023 are almost equal to each other,^ne&.^no&
.1. For t*1.031021, the two electrons occupy the eve
orbital. The border between them is att;U/4(52.5
31022).

The above analysis implies the following scenario. In t
case oft!U/4(52.531022), the hoppingt causes the anti-
ferromagnetic kinetic exchange couplingJLR

eff . For smaller
hopping cases withJLR

eff !TK
0 , there are Kondo singlet state

between the left lead and the left dot, and between the r
lead and the right dot. Ast increases andJLR

eff @TK
0 , the two

local spins on each dot form the local singlet state. At
crossover region between two states we have a main p
with the unitarity limit value of 2e2/h in the conductance
This will indicate that the leads and the dots are cohere
connected by the even and the odd orbital states. Wht
becomes even larger and the conditiont*U/4 holds, the
local spins do not appear; instead, the two electrons occ
the even orbital. The small peak of the conductance refle
the change of the electronic states in the DQD.

Here we show the effective parametersteff and Deff as a
function of t in Fig. 3. ~We note that the effective paramete

FIG. 2. Density of states on the even orbital of the two do
re(v). We note the relationro(v)5re(2v), wherero(v) is the
density of states on the odd orbital.D/pU51.531022.
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have been used already for the calculation of the cond
tance shown in Fig. 1.! In the t&1024 case, the effective
parameters behave asteff;tTK

0 /D, Deff;TK
0 . Then the con-

ductance coincides with the noninteracting one when
substitutes the effective parameters into Eq.~5!. As t in-
creases tot;531024, Deff decreases once, and it has loc
minimum, and then it increases. At the same time the sl
of teff decreases once and then increases. Whenteff andDeff

coincide with each other, the conductance has a peakt
;531024, i.e.,JLR

eff;TK
0 . As t increases slightly beyond thi

point, the conductance sharply decreases becauseDeff de-
creases to the minimum even thoughteff increases. Here we
stress that the relationteff;Deff holds whenJLR

eff;TK
0 , and at

the same timeDeff becomes very small.9 In this meaning, the
crossover seems to be characterized by the relationteff

;Deff. This relation gives the unitarity peak of the tunnelin
conductance as seen from Eq.~5!. Whent increases further
the ratio teff/Deff increases gradually in the regiont&U/4
(52.531022). At t;U/4, the ratioteff/Deff begins to de-
creases and then increases. Therefore the conductance s
a broad peak near the regiont;U/4. For thet*U/4 case,
the effective parameters behave asteff;t, Deff;D. We note
that the conductance has the expression of the nonintera
one itself in thet*U/4 region.

Finally we compare the phase shift and the occupa
number shown in Fig. 1. The phase shift of the odd orbitaldo
rapidly changes fromp/2 to 0 neart;531024, even though
^no& still remains at^no&;1. Friedel’s sum rule in each
channel does not hold, as pointed out previously.9 It seems
that this behavior is enhanced when the antiferromagn
coupling between the two sites competes with the Kon
effect.

B. From weakly to strongly correlated cases

In this subsection we present the numerical results of
conductance for variousD/pU cases within 1.531022

<D/pU<6.031022. (1.7&u&6.8. The hybridization
strength is changed in 1.531023<D/p<6.031023, and the
Coulomb repulsion is fixed atU50.1.! We confirm the sce-

FIG. 3. Effective parametersteff, Deff of the fixed point nonin-
teracting Anderson Hamiltonian, given by the analysis of the fl
chart of the renormalized energy level structure in the NRG ca
lation. D/pU51.531022.
c-
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nario shown in the previous subsection thatteff;Deff holds at
the main peak of the conductance withJLR

eff;TK
0 . We also

demonstrate how the kinetic exchange process appears i
conductance for arbitraryD/pU cases.

The calculated conductance is shown in Fig. 4. The h
zontal axis is the hopping normalized by the hybridizati
strength,t/D. From inset of Fig. 4, the conductance almo
overlaps on the noninteracting curve in the regionst!D and
t@D. These regions should be classifiedJLR

eff !TK
0 and t

@U/4, respectively, from the analysis in the previous su
section. The conductance is very small in these regions, h
ever these uniform properties should be useful in arrang
the experimental data under uncertainU/D cases.

All curves have a main peak with strength 2e2/h. For
weakly correlated cases ofD/pU*431022, the conduc-
tance almost coincides with the noninteracting one throu
out the t region. AsU/D increases, the main peak shifts
the smallt/D side, and the peak width becomes narrowe

We have already found the relationJLR
eff;TK

0 at the main
peak position for theD/pU51.531022 case in Sec. III A.
Here we show the ratioJLR

eff /TK
0 at the main peak position fo

various D/pU cases in Table I. We can see the relati
JLR

eff;TK
0 commonly.25 @The relation at the main peakJLR

eff

;TK
0 would be generalized toEB;TK

0 for the weakly corre-
lated cases, whereEB5A(2t)21(U/2)22U/2 is the singlet
binding energy between the two dots.#

From the analysis in the previous and present subsec
we can conclude the following effect of the hopping ter
For the smallt case withJLR

eff !TK
0 ~i!, the Kondo singlet state

is formed on the left~right! dot with its adjacent-site lead

-
FIG. 4. Conductance as a function oft at zero temperature, from

the weakly to strongly correlated cases in 1.531022<D/pU<6.0
31022. The broken line shows the conductance for the nonin
acting (U50) case.

TABLE I. RatiosJLR
eff /TK

0 andEB /TK
0 at the main peak position

of the conductance.

D/pU 1.531022 231022 331022 431022 631022

JLR
eff /TK

0 2.66 2.34 2.15 2.09 2.23
EB /TK

0 2.66 2.34 2.14 2.04 2.05
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On the other hand, for the larget case withJLR
eff @TK

0 ~ii !, the
local spins on each of the dots couple as the singlet stat
the intermediate region, the Kondo effect of the local sp
on the orbitals extending on the two dots~i.e., even and odd
orbitals! occurs. The main peak of the conductance appe
around the boundary between~i! and ~ii ! reflecting the co-
herent connection of the leads and the dots. AsU/D in-
creases, the Kondo temperatureTK

0 exponentially decreases
the conditionJLR

eff;TK
0 holds at the smallert/D, then the

main peak shifts to the smallert/D side. At the same time
the width of the peak becomes extremely narrow compa
with the decreasingTK

0 . This fact has been already shown
the steep minimum ofDeff in Fig. 3. We note that this nar
rowing is closely related to the quantum critical transiti
between the Kondo singlet state and the local singlet sta
the two-impurity Kondo model.4 The shifting and narrowing
behaviors shown here are also pointed out with the SBM
with artificial addition to the model of the antiferromagne

FIG. 5. Temperature dependence of the conductance. Main
ure is the temperature dependence near the main peak att;5
31024. Inset figure at the upper right is the temperature dep
dence near the small peak att;2.531022. Inset figure at the lower
right is the conductance in all overt. D/pU51.531022.

FIG. 6. Density of statesre(v) and current spectrumP9(v)/v
at t55.031024 for finite temperatures.~The spectrum, which has
only the positive regionv>0, is the current spectrum.!
In
s

rs

d

in

T

coupling between dots.26 However, the SBMFT calculation
should be checked by the method treating the kinetic
change term properly. As noted in the introduction, the h
ping term causes two conflicting effects on the critical tra
sition of the two-impurity systems. One is the kinet
exchange couplingJLR

eff , which causes the ‘‘critical’’ transi-
tion through the competition with the Kondo effect. Anoth
is the parity splitting, which suppresses the critical transiti
To the best of our knowledge, the calculation in this sect
is the first reliable quantitative result of the two-impuri
Kondo problem in the DQD systems.

There is also another small peak~or shoulder! structure
for the strongly correlated cases ofD/pU&231022 (u
*5) at the largert side of the main peak. In the previou
subsection, we found that the small peak appears around
boundary between~ii ! and~iii !. However for the weakly cor-
related cases, the small peak could not be recognized bec
the condition of the border~i!-~ii ! and ~ii !-~iii ! could not be
distinguished clearly.

C. Temperature dependence of the conductance

In this subsection we present the conductance in fin
temperature. We calculate the conductance at finite temp
tures by using the following formula:31

g-

-

FIG. 7. Two sorts of the magnetic excitation spectraxm9 (v) and
xa9(v) at T50. We note that the two spectra agree with each ot
at t50.

FIG. 8. Two characteristic energiesTM andTAF .
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TABLE II. Characteristic energies at the main peak position.

D/pU 1.531022 231022 331022 431022 631022

TAF 3.2831027 9.7731026 3.9731024 1.503102 3.013102

TM 7.6631026 5.6431025 7.7331024 3.4731023 1.2031022

TM,0 2.5531026 2.4731025 2.3131024 8.0231024 3.2231023
-
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de-
G5
2e2

h
lim
v→0

P9~v!

v
. ~6!

HereP9(v) is the ‘‘current spectrum’’ for the current opera
tor J[ṄL2ṄR written as follows:

P9~v!5
p2\2

4

1

Z (
n,m

~e2bEm2e2bEn!z^nuJum& z2

3d@v2~En2Em!#, ~7!

whereṄL is the time differentiation of the electron numb
in the left lead,Z5(ne2bEn is the partition function of the
system, andb is the inverse of the temperature (b51/T).

First we show the conductance at various temperatures
the D/pU51.531022 case in Fig. 5. As the temperatu
increases fromT;1028, the height of the main peak gradu
ally decreases. At the same time the peak position shift
the largert. We note thatT;1028 is much lower thanTK

0 .
(TK

0 53.7831026.!
To discuss the characteristic behaviors of the conducta

in finite temperature, we show the density of statesre(v)
and the current spectrum~divided by v) P9(v)/v at t
55.031024 in Fig. 6. As the temperature increases toT
56.4431028, P9(v)/v at v;0 becomes 60% ofT50
limit. At the same time,re(v) shows a small change aroun
v;1027. This means that the effect of the temperature
the conductance is rather drastic. Here we show two sort
the magnetic excitation spectraxm9 (v) and xa9(v),9 where
xm9 (v) is the imaginary part of the dynamical susceptibil
of the uniform magnetic moment of local spins, (SL,z

1SR,z)/A2, andxa9(v) is that of the antiferromagnetic mo
ment, (SL,z2SR,z)/A2, respectively. We show the two mag
netic excitation spectra att50 andt55.031024 in Fig. 7.
or

to

ce

n
of

At t50, the two spectra agree with each other. Howeve
t55.031024, xa9(v) has the structure in lower energy re
gion thanxm9 (v). It seems thatP9(v) at the main peak of
the conductance is dominated by the fluctuation given
xa9(v) from Figs. 6 and 7.

We determine the two characteristic energies fromxm9 (v)
and xa9(v) in the following ways. One is determined from
the peak position ofxm9 (v), we call it TM .20,29,31 Another
one, TAF , is determined asTAF /TAF,0[X0 /X, where X
[ limv→0 xa9(v)/v.9 ~And here we haveTAF,0[TM,0 .) The
suffix ‘‘0’’ indicates t50. The quantityTM,0 almost coin-
cides withTK

0 . The ratioTM,0 /TK
0 for some cases are show

in Ref. 20.
The calculated two characteristic temperaturesTM and

TAF are shown in Fig. 8. They have almost same values
t&1024. TM monotonically increases ast increases. On the
other handTAF becomes smaller nearJLR

eff;TK
0 . It has a

minimum ofTAF.331027 at t.531024. We note that the
reduction ofTAF nearTK

0;J had already been pointed out8

As t increases more,TAF rapidly increases. From the sam
analysis as for the otherD/pU cases, we confirm that th
minimum ofTAF appears for the strongly correlated cases
D/pU&231022. We showTAF at the main peak position in
Table. II.

From the comparison with effective parameters in Fig.
the larger of the effective parameters max(teff,Deff) and the
smaller of the characteristic temperature min(TAF ,TM) al-
most coincide with each other in allt, max(teff,Deff)
;min(TAF ,TM).

Here we again see the temperature dependence of the
ductance shown in Fig. 5 with the characteristic temperat
shown in Fig. 8. We can see thatTAF characterizes the main
peak of the conductance in finite temperature. The peak
creases as the temperature increases nearT;131028
FIG. 9. Conductance from weakly to strongly correlated cases atT51.631025 ~left figure! and atT51.431024 ~right figure!.
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@;0.1TAF(t5531024)# in Fig. 5. As the temperature in
creases and reaches toT;131026@;10TAF(t5531024)#,
the strength of the main peak becomes almost zero. Nex
see the temperature dependence of the small peak. The
peak neart;U/452.531022 increases as the temperatu
increases to aboutT;1023@;0.1TM(t52.531022)#. It
seems that the characteristic temperature of the conduc
near the small peak isTM . From above it seems that t
characteristic temperature of the conductance
min(TAF ,TM) throughout thet region.

Here we show the conductance from the weakly
strongly correlated cases at fixed temperatures. We sho
conductance atT51.631025 and T51.431024 in Fig. 9.
The main peak for the strongly correlated cases is sens
to the temperature. Then the main peak of the conduct
will shift to the smallert/D side with increasing peak heig
when the temperature decreases as seen from Fig. 9.
behavior will be observed as the split gate voltage is va
We note thatT51.431024 corresponds to 16 mK, andT
51.631025 corresponds to 1.9 mK, forU51.0 meV sys-
tems.

Finally, we note the accuracy of the conductance ca
lated from Eqs.~6! and ~7! by using the NRG method. It
not very accurate at very high temperatures for the s
peak. In the case oft50, two dots completely decouple; th
the conductance should be zero. However as shown in
10, the calculated conductance has a finite value i
31023&T&1 and it has a maximum atT;0.05(5U/2).
Thus the result at very high temperatures has ambigu
This improper finite conductance would be caused by
mation of Eq.~6! at v;T instead ofv→0. The finite value
in the current spectrum atT;0.05 would reflect the large
ness of the dynamical charge fluctuation in the dots.

FIG. 10. Numerical results of the conductance fort50 case.
we
all

nce

is

o
the

ive
ce

his
d.

u-

all

ig.
5

s.
ti-

IV. SUMMARY AND DISCUSSION

We calculated the tunneling conductance through the
quantum dots that connected to the left lead and the r
lead in series. We investigated the effect of the kinetic
change coupling between the dots, and also the compet
with the Kondo effect.

As the hopping between the two dots increased,~i! Kondo
singlet state of each dot with its adjacent-site lead,~ii ! local
singlet state, and~iii ! molecular orbital like state with double
occupancy in even state, continuously appeared. The cr
over occurred between~i! and ~ii !, ~ii ! and ~iii !, each other.
For t!U cases, the Kondo binding between the left~right!
lead and the left~right! dot TK

0 and the antiferromagnetic
kinetic exchange coupling between the two dotsJLR

eff com-
peted. The boundary between~i! and ~ii ! was characterized
as JLR

eff;TK
0 , where we have the relationteff;Deff, and the

tunneling conductance showed a peak. This peak had
unitarity limit value of 2e2/h reflecting the coherent connec
tion through the lead-dot-dot-lead. Att;U/4 of the bound-
ary between~ii ! and ~iii !, we had a small peak.

The system showed the strongly correlated behaviors
D/pU&231022 (u[U/pD*5) cases. The borders of~i!-
~ii ! (JLR

eff;TK
0 ) and ~ii !-~iii ! (t;U/4) were clearly distin-

guished, then there were the two peak structures in the c
ductance. Furthermore the width of the main peak beca
steeply narrow. The characteristic temperature of the m
peak was strongly reduced compared with the Kondo te
perature of the single dot systemsTK

0 . These anomalous be
haviors of the main peak related to the quantum critical tr
sition of the two-impurity Kondo problem studie
previously. Though the hopping term had conflicting effe
on the critical transition of the two-impurity Kondo system
generation of it through the kinetic exchange coupling a
suppression of it due to the parity splitting, we found that
see the sign of the anomaly in the tunneling conductanc

The quantitative calculation shown in this paper gave
new realization for the two-impurity Kondo problem. Th
investigation suggested the importance of the system
study of the DQD systems for the two-impurity Kondo pro
lem.
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