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Conductance fluctuations in diffusive rings: Berry phase effects and criteria for adiabaticity

Hans-Andreas Engel* and Daniel Loss†
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~Received 24 February 2000; revised manuscript received 19 May 2000!

We study Berry phase effects on conductance properties of diffusive mesoscopic conductors, which are
caused by an electron spin moving through an orientationally inhomogeneous magnetic field. Extending pre-
vious work, we start with an exact, i.e., not assuming adiabaticity, calculation of the universal conductance
fluctuations in a diffusive ring within the weak localization regime, based on a differential equation that we
derive for the diffuson in the presence of Zeeman coupling to a magnetic field texture. We calculate the field
strength required for adiabaticity and show that this strength is reduced by the diffusive motion. We demon-
strate that not only the phases but also the amplitudes of theh/2e Aharonov-Bohm oscillations are strongly
affected by the Berry phase. In particular, we show that these amplitudes are completely suppressed at certain
magic tilt angles of the external fields and thereby provide a useful criterion for experimental searches. We also
discuss Berry phase–like effects resulting from spin-orbit interaction in diffusive conductors and derive exact
formulas for both magnetoconductance and conductance fluctuations. We discuss the power spectra of the
magnetoconductance and the conductance fluctuations for inhomogeneous magnetic fields and for spin-orbit
interaction.
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I. INTRODUCTION AND OVERVIEW

Since its discovery, the Berry phase1 has been a subject o
continued interest. As this geometrical phase emerges f
the very basic laws of quantum mechanics, it has impli
tions for a broad range of physical systems.2 Even though the
Berry phase has been observed in single-particle exp
ments, its manifestation in condensed matter systems is
under investigation. Some settings were proposed3–7 in
which the Berry phase, resulting from the motion of a sp
carrying particle through an inhomogeneous magnetic fi
B(x), can be observed in mesoscopic structures. The
pected effects are measurable as persistent currents3,5,8 as
well as in the magnetoconductance4,6,9–11and the universa
conductance fluctuations~UCF’s!.4,6 The first experiments
reporting such effects were realized with semiconduc
structures: the conductance was investigated in an I
sample,12 where the Berry phase can emerge through
Rashba effect,13 in a very similar way as produced by a
inhomogeneous field. Magnetoconductance measurem
were performed where a ferromagnetic dot, placed sligh
above a GaAs sample, produced an inhomogeneous fie14

Measurements on metallic systems also showed effe
which have been explained in terms of the Berry phase.15–17

Further experiments on metallic systems are in progres18

An additional scenario was proposed, where domain wall
mesoscopic ferromagnets lead to a Berry phase.7

During orbital motion in a magnetic field, a spin acquir
a Berry phase in a similar way as a charge collects
Aharonov-Bohm phase. Thus, these two phases lead to s
lar implications for interference phenomena in mesosco
samples. However, in the first case the phase originates
the change in local field direction, whereas in the seco
case it results from an enclosed magnetic flux. As these fi
properties can be varied individually, the interplay of the tw
phases yields a rich variety of behavior. These quan
phases are distinguished by another important differen
PRB 620163-1829/2000/62~15!/10238~17!/$15.00
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while Aharonov-Bohm effects appear for arbitrarily sma
magnitudesB of the magnetic field, Berry phase effects a
pear to their full extent only in the adiabatic limit, i.e., fo
large enough fields~specified below!. The physical situation
required for this limit to be satisfied can be pictured6,11 as a
spin that must complete many precessionsvBt0/2p around
the local magnetic field, while it moves during a timet0
through a region of sizel B over which the direction of the
field changes significantly. Here we have introduced
Bohr frequencyvB5gmBB/2\, whereg is the Lande´ g fac-
tor andmB is the Bohr magneton. For ballistic motion as
occurs in clean semiconductors, one hasvFt0; l B and there
is general consensus about the criterion for adiabaticity,
vBl B /vF@2p, with vF being the Fermi velocity. However
for diffusive systems there were recently som
discussions9,6,10,11whethert0 can be correctly set as the di
fusion timetd5 l B

2/D or if one should replace it by the elast
scattering timet. The first criterion is more optimistic in the
sense that, much lower field magnitudes are required to re
adiabaticity, as due to diffusive motion the electrons effe
tively move more slowly~compared to the ballistic motion!
through the changing magnetic field and thus have more t
to adjust their spins to the local field orientation. For ma
netoconductance quantitative values for the required fi
magnitudes have been obtained.11 Solving the special case o
a cylindrically symmetrical texture exactly, it wa
confirmed11 that the more favorable criterion is indeed suf
cient. We remark that if the ballistic criterion was approp
ate for diffusive systems, the large fields required for ad
baticity would imply a strong curvature of the semiclassic
trajectories~apart from the case of very largeg factors!. This
curvature in turn is in conflict with the approximation of th
orbital motion by its zero-field value and therefore an a
proach beyond weak localization theory would be requi
for a self-consistent theory. At this point it should also
noted that Berry phase effects occur even if the adiab
limit is not fully reached; there is no sharp cutoff where t
10 238 ©2000 The American Physical Society
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Berry phase disappears completely. Thus, calculations w
out assuming adiabaticity are very desirable, as they ca
used to study how the Berry phase effects gradually eme
while the magnetic field is increased from low to adiaba
strengths. The adiabatic limit can still be taken at the end
the calculation, so the formal appearance of the Berry ph
and the associated dephasing11 can be identified.

Besides having a spin following the direction of an inh
mogeneous external field, there is another scenario that
duces a Berry phase: spin-orbit coupling.13 If an electron
moves through an electrical field perpendicular to the r
plane, an effective magnetic field, which is produced in
rest frame of the electron, couples to the electron spin.
this effective field is in the radial direction of the ring an
perpendicular to the direction of motion, the field rotat
while the electron moves around the ring and can there
produce a Berry phase. By switching on, in addition, an
ternal magnetic field, an arbitrary tilt angle of the total effe
tive field can be realized and so this Berry phase can
tuned. For ballistic motion, the Berry phase manifests its
in precisely the same way13 as in the case with an inhomo
geneous external magnetic field.3–5 However, for diffusive
motion the situation becomes more complicated, as
change of the direction of motion of the electron due to
elastic scattering event abruptly changes the effective fi
direction. Now the picture of a spin, moving adiabatica
through a slowly varying field, is no longer valid and nee
to be modified. This leads to a physical situation that has
be considered separately from the situation with inhomo
neous fields.

The outline of this paper is as follows. In Sec. II we stu
the conductance fluctuationsdg(2) of quasi-one-dimensiona
diffusive rings in inhomogeneous magnetic fields. Wh
dg(2) has already been calculated within the adiaba
approximation,6 i.e., for strong magnetic fields, the behavi
outside the adiabatic limit and the influence of inhomog
neous fields on dephasing were not dicussed so far. We
dress these issues in the present work, starting in Sec.
with a calculation of an exact expression fordg(2) ~i.e., al-
lowing arbitrarily small field magnitudes! for a special tex-
ture @see Eq.~1!# of the magnetic field. In this process w
derive a form of the diffuson differential equation, whic
includes inhomogeneous magnetic fields. We evaluate
adiabatic limit of the UCF’s,dgad

(2) , in Sec. II B and compare
our results with those derived in previous work.6 Further, we
investigate in Sec. II C the finite temperature behavior of
conductance fluctuations.

In Sec. III the effects of the Berry phase on the UCF’s a
their dependence on magnetic field strengths are discuss
detail. We identify in Sec. III A a striking effect of the Berr
phase by showing that the amplitudes of theh/2e Aharonov-
Bohm oscillations depend directly on the value of the Be
phase. In particular, we find some magic tilt angles of
magnetic field where these Aharonov-Bohm oscillations
completely suppressed. This effect provides a tool for exp
mental searches of the Berry phase. We use this observ
to illustrate the gradually appearing effects of the Be
phase for increasing field strengths and thus give a di
demonstration of the onset of adiabaticity. Then, in S
III B, we give quantitative values of the fields strengt
needed for reaching adiabaticity. We show that the criter
h-
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for adiabaticity is less stringent for diffusive than for ballist
motion. An exact evaluation of magnetoconductancedgSO

and conductance fluctuationsdgSO
(2) in the presence of spin

orbit coupling and homogeneous magnetic fields is given
Sec. IV. These results show how the amplitudes of
Aharonov-Bohm oscillations indgSO

(2) depend nonmonotone
ously on the direction of an effective field, similarly as it
the case for inhomogeneous magnetic fields. In Sec. V A
show how the frequency shifts of the Aharonov-Bohm osc
lations appear indg and dg(2), caused by the Berry phase
We then point out in Sec. V B that the Zeeman term can a
produce frequency shifts even in the case of homogene
fields. In Sec. V C we plot and discuss the exact express
for dg anddg(2) for inhomogeneous fields and for spin-orb
coupling as well as the corresponding power spectra. In th
appendices we provide details of our calculations.

II. CONDUCTANCE FLUCTUATIONS

As a foundation for further discussions of Berry pha
effects and adiabaticity, we will first calculate the condu
tance fluctuationsdg(2) in the weak-localization regime. To
motivate the analysis of the conductance fluctuations,
would like to emphasize the advantage of studying
UCF’s instead of the magnetoconductance. The latter qu
tity has only contributions from the cooperon, which are su
pressed by moderately large magnetic fields penetrating
ring arms.19 This suppression is in direct competition wit
the requirement of having large fields to satisfy adiabatic
In contrast, the conductance fluctuations also have contr
tions from the diffuson, which is only sensitive to thediffer-
enceof the two magnetic fields, for which the conductan
correlator is considered. Therefore, if both fields are taken
similar magnitude, Aharonov-Bohm oscillations and Ber
phase effects in the UCF’s will still be visible at high ma
netic fields where the adiabatic criterion is certainly satisfi

A. Exact solution

We shall concentrate on rings with circumferenceL and
study the conductance-conductance correlatordg(2)(B,B̃)
5^gBgB̃&2^gB&^gB̃&, where we have two different magnet
fieldsB andB̃. We consider a special texture5,10,11for which
we obtain exact results~i.e., without making the adiabatic
assumption of strong magnetic fields!. We assume the mag
netic fields to be applied in such a way that they windf times
around thez axis in one turn around the ring, with tilt angle
h and h̃; see Fig. 1. The position along the direction of t
ring is described by the coordinatex, varying from 0 toL, so
the special texture of the magnetic field is expressed as

B5Bn5BS sinh cosS 2p f x

L
1u D ,

sinh sinS 2p f x

L
1u D ,cosh D , ~1!

and similarly for B̃. We have introducedu, so we can de-
scribe the textures with a field component radial to the ri
i.e., u50, as well as textures with a field component tange
tial to the ring, i.e.,u5p/2.
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10 240 PRB 62HANS-ANDREAS ENGEL AND DANIEL LOSS
The starting point of our calculation is the conductan
correlator derived in Ref. 6 and given by

dg(2)5S 2e2D

hL2 D 2E de de8n8~e!n8~e8!

3H 1

d
Tr x̂v

Cx̂v
C†12 Re Trx̂v

Cx̂v
C1@ x̂C→x̂D#J , ~2!

where n8(e) is the derivative of the Fermi function an
\v5e2e8. The dimensionality of the system with respe
to the diffusive motion is denoted byd, which describes the
relation of the mean free pathl to the diffusion coefficientD,
i.e., D5vFl /d. The propagatorsx̂C/D can be evaluated ex
plicitly by using the operator equation~A5!:

x̂C/D5
L2

~2p!2D

1

iv1gC/D2hC/D
. ~3!

We have definedv5(L/2pLT)2(e2e8)/kT, with the ther-
mal diffusion length LT5AD\b.20 The ~non-Hermitian!
Hamiltonian is given by

hC/D5
L2

~2p!2

]2

]x2
1 ikn•s12 i k̃ ñ•s2

(* ), ~4!

where the asterisk means complex conjugation inhD and
where we have introduced an adiabaticity parameter6,11,10

FIG. 1. A mesoscopic ring of widtha and heightb in an inho-
mogeneous magnetic field with tilt angleh, winding once around
the z Axis. The texture of the magnetic field drawn here cor
sponds to Eq.~1! with f 51 andu50.
e

t

k5
vB

D

L2

~2p!2
, ~5!

and equivalently fork̃ andv B̃ . We have inserted a phenom
enological damping constantgC/D5(L/2pLC/D)2 expressed
in terms of the magnetic dephasing lengthLC/D :19,6

gC/D5
L2

~2p!2Lw
2

1
1

3~4p!2 S AuBz6B̃zu
2pf0

D 2

. ~6!

The first term of this damping constant incorporates the l
of phase due to inelastic scattering events. The second
takes into account magnetic flux penetration into the arm
the ring with a finite widtha and a surface areaA5aL,
while the heightb is assumed to be small compared toa.
This field penetration leads to averaging over closed path
different lengths, each of which collects a differe
Aharonov-Bohm phase, resulting finally in dephasing.

Next we define the basis in which we evaluate the Ham
tonianhC/D. As done in Ref. 10 for the cooperon propagat
we now introduce the operators

JC/D5
L

2p i

]

]x
1

1

2
f ~s1z6s2z!, ~7!

which commute withhC/D.21

We will now go to the basis of eigenvectorsu j ,ab&C/D of
JC/D. This basis is orthonormal with the following wav
functions:

^x,a8b8u j ,ab&C/D5
da8adb8b

AL
expH 2p ix

L S j 2
f

2
a7

f

2
b D J .

~8!

Because of the periodic boundary conditions inx, the eigen-
valuesj of JC/D have to be integers. The matrix elements
hC/D in the basis

$u j ,↑↑&C/D ,u j ,↑↓&C/D ,u j ,↓↑&C/D ,u j ,↓↓&C/D%

become

C/D^ j ,abuhC/Du j 8,a8b8&C/D5d j j 8~2hj
C/D1hs

C/D!, ~9!

wherehj
C andhj

D are diagonal 434 matrices with the entries
$( j 2 f )2, j 2, j 2,( j 1 f )2%, and $ j 2,( j 2 f )2,( j 1 f )2, j 2%, re-
spectively, and theh- and h̃-dependent matrices are

-

hs
C/D5S ik cosh2 i k̃ cosh̃ 2 i k̃e7 iusinh̃ ike2 iusinh 0

2 i k̃e6 iusinh̃ ik cosh1 i k̃ cosh̃ 0 ike2 iusinh

ikeiusinh 0 2 ik cosh2 i k̃ cosh̃ 2 i k̃e7 iusinh̃

0 ikeiusinh 2 i k̃e6 iusinh̃ 2 ik cosh1 i k̃ cosh̃

D . ~10!
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To take the Aharonov-Bohm flux into account, we repla
j with m5 j 2(f/f06f̃/f0), wheref andf̃ are the fluxes
of the fieldsB and B̃ through the ring andf05h/e is the
magnetic flux quantum.22 Now it is straightforward to evalu-
ate the exact conductance fluctuationsdg(2) by calculating
the propagators by matrix inversion and inserting the re
into Eq. ~2!. This can be done with the help of the compu
programMATHEMATICA , which, however, leads to length
expressions that we will not reproduce here. We mer
point out that the phase factors inu cancel each other in
dg(2) anddg.

B. Adiabatic approximation

To evaluate the adiabatic limit, we shall consider the
gime of large magnetic fields withB and B̃ of similar mag-
nitude. If we defineDk5k̃2k, this adiabatic regime is de
scribed by

k@1 and k@uDku. ~11!

The exact propagatorsxC/D turn out to be rational functions
that are of order two ink in both numerator and denomina
tor. Now we will keep only the terms of highest order ink;
terms with largej can be neglected as the sum overj con-
verges rapidly. This leads us to the UCF’s in the adiaba
regime:

dgad
(2)5S e2

h D 2 1

4p4E de de8n8~e!n8~e8!

3 (
j 52`

`

(
a561

~Ga,C
ad 1Ga,D

ad !, ~12!

Ga,C/D
ad 5

1

d
$~v2aDk!21d2a

C/D~ j !21P%$@~v2aDk!2

1d2a
C/D~ j !22P#@~v1aDk!21da

C/D~ j !22P#

14P@v21 f 2m2~cosh6cosh̃ !2#%2112 Re„$@ iv

2 iaDk1d2a
C/D~ j !#21P%$@ iv2 iaDk1d2a

C/D~ j !#

3@ iv1 iaDk1da
C/D~ j !#2P%22

…, ~13!

where

P5
f 4

4
sin2h sin2h̃, ~14!

da
C/D~ j !5g̃h,h̃

C/D
1S m2

f

2
a cosh7

f

2
a cosh̃ D 2

, ~15!

with
e

lt
r

ly

-

ic

g̃h,h̃
C/D

5gC/D1
f 2

4
sin2h1

f 2

4
sin2h̃. ~16!

The sum overa has been introduced here artificially t
facilitate the following interpretation. As it is also seen
Ref. 11 for the case of the magnetoconductancedg, the
terms f 2(sin2h1sin2h̃)/4 in Eq. ~16! act as additional
dephasing sources and are here absorbed in the phenom
logical dephasing parameterg̃h,h̃

C/D . However, in Eq.~13!

there are furtherh- and h̃-dependent termsP, which cannot
be formally absorbed ing̃h,h̃

C/D . P reduces the effect of the
additional dephasing terms in Eq.~16!, as we can see by th
following numerical evaluation. We consider equal fieldsB
5B̃ and low temperatures, thusDk,v50, and assumeh and
h̃ to be close top/2. Then we estimate the amplitude of th
Aharonov-Bohm oscillations by taking the difference b
tween the values ofGa,C

ad @Eq. ~13!# for the two phasesm
50 and m561/2 „i.e., we are considering only the mai
contributions in the sum overj @Eq. ~12!#…. We then see by
numerical evaluation that the oscillations are suppresse
we setP50 instead of using Eq.~14!, thusP indeed reduces
dephasing.

We can compare now with previous calculations6 where
the UCF’s dgLSG

(2) have been derived for arbitrary texture
and adiabatic evolution of the spin. These results can
recovered from Eq.~12! by the replacementg̃h,h̃

C/D→gLSG
C/D and

P→0. The dephasing terms due to inhomogeneous fie
coupling to the spin@see Eqs.~14! and~16!# were not explic-
itly given in Ref. 6; to account for such dephasing the
terms must be included in the phenomenological param
gLSG

C/D , and thusgLSG
C/DÞgC/D andgLSG

C/DÞg̃h,h̃
C/D in general.11

We also recognize a strong simplification in the spec
case where one field is homogeneous,h50, i.e.,P vanishes.
Thus the comparison ofdgad

(2) with the solution for arbitrary

texturesdgLSG
(2) yields the simple relationgLSG

C/D5g̃0,h̃
C/D . Fi-

nally we note that in this case the dephasing due to the
entational inhomogenity ofB̃ measured by the windingf
varies asf 2sin2h̃ @cf. Eq. ~16!#.

C. Finite temperatures

Now we consider the effects of finite temperaturesT.0
on the UCF’sdgad

(2) in the adiabatic regime. In the case
h50, i.e., P50, the factors containingd2a

C/D( j ) in Eq. ~13!
cancel, so we obtain

Ga,C/D
ad uh505

1

d
$~w1aDk!21da

C/D~ j !2%21

12 Re$ iw1 iaDk1da
C/D~ j !%22. ~17!

This strong simplification allows us to evaluate the integr
over e ande8 in Eq. ~12! explicitly by using standard Mat-
subara techniques, as described in Appendix B, and we
tain for the UCF’sdgad

(2)5dgad, C
(2) 1dgad, D

(2) ,
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dgad,C/D
(2) uh505S e2

h D 2 1

8p6 S L2

LT
2D 2

Re (
a561

(
j ,n,m

8 H 1

dda
C/D~ j !@~L2/4pLT

2!~m1n!1da
C/D~ j !2 iaDk#3

1
6

@~L2/4pLT
2!~m1n!1da

C/D~ j !2 iaDk#4J . ~18!
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Here n and m are odd, positive integers. For plotting, it
advantageous to calculate the sum in Eq.~18! analytically,
which gives an expression containingc-functions.

We can now obtain a qualitative criterion when the th
mal dephasing effects can be ignored. If we ignore ther
effects, i.e., assume low temperatures, we can simplify
calculation leading to Eq.~18! by replacingn8(e) by a delta
function d(e) in Eq. ~12!. This yields for h50 the same
result when replacing in Eq.~18! the sum overn andm by an
integral. We are only allowed to perform this step if th
summand varies slowly inn and m, which is the case for
LT

2@2pLC/D
2 . From a physical point of view, this is an ev

dent requirement: the smearing of the conductance fluc
tions due to nonzero temperatures, described by the the
diffusion lengthLT , can only be neglected if the dephasin
lengths related to inelastic scattering or penetrating magn
fields are much shorter thanLT .

In Appendix C we evaluate the dephasing behavior of
UCF’s dghom

(2) for homogeneous fields and finite temper
tures. Then we confirm the result of Ref. 6@Eq. ~2!# and
show that our calculation in the homogeneous limit inde
reproduces known results.20,23,24

III. BERRY PHASE AND ADIABATICITY

A. Magic angles: Qualitative criterion for adiabaticity

We now consider the qualitative effects of the Ber
phase on the conductance fluctuationsdg(2). They emerge
from the Berry phase inda

C/D( j ) in the adiabatic solution
@Eq. ~12!# and lead to vanishing Aharonov-Bohm oscillatio
at special ‘‘magic’’ tilt angles of the magnetic fields. Th
effect has some similarities with the phenomenon of beat
where the superposition of two oscillations with different b
fixed frequencies leads to a periodic vanishing of the en
lope. However, in our case we have two frequencies that
change when the perpendicular fieldBz is increased, since
then the Berry phase is altered, too. Thus a suppressio
the Aharonov-Bohm oscillations can only be observed at
special tilt angles of the magnetic field, i.e., the Berry ph
has a highly nonperiodic effect on the envelope of these
cillations as a function ofBz .

From now on we shall only study the experimentally r
alizable field texture with one winding,f 51. The other con-
figurations withf .1 are solely of academic interest. To i
lustrate expected experimental results, we will use so
material parameters recently determined.25 The sample Au-1
given in Table I of Ref. 25 has the valuesD59
31023 m2 s21 and Lw5ADtw55.54 mm. We assume a
ring with diameter of 4 mm, soL512.6 mm, and an arm
width a560 nm, which lies well within present-day exper
-
al
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mental reach. Finally we assume low temperatures, i.e.,LT

@L,Lw , so we can ignore the dephasing due to thermal fl
tuations.

Now we shall consider two equal fields, so no phase te
appear in the diffuson contributiondgD

(2) . The cooperon con-
tribution dgC

(2) is h/2e periodic in the magnetic flux, as

shift of m5f/f01f̃/f01 j 52f/f01 j by 1 is absorbed in
the sum overj in Eq. ~12!. For the next argument we take th
dephasing due to inhomogeneous fields only phenome
logically into account, i.e., we use the resultdgLSG

(2) from Ref.
6 or equivalently setP50 @Eqs. ~12! and ~17!#, so the fac-
tors containingd2a

C/D( j ) cancel in Eq.~13!. If the tilt angleh
is such that cosh51/4, the phase-dependent term inda

C/D( j )
@Eq. ~15!# becomesm2a/4. One sees that in this speci
case shiftingm by 1/2 does not affect the value ofdgC

(2) , as
it leads solely to an exchangea→2a. The very same argu
ment applies to cosh53/4. Thus, for thesemagic anglesh,
where cosh51/4,3/4, the UCF’sdg(2) areh/4e periodic and
therefore theirpower spectrum shows a vanishing h/2e am-
plitude. If we take the exact solution in the adiabatic regim
dgad

(2) instead ofdgLSG
(2) , the magic angles are still present, b

at shifted values. The angle at cosh53/4 is nearly unaf-
fected, asP'0.05 is very small at this angle. The suppre
sion of the Aharonov-Bohm oscillations is illustrated in Fi
2 ~see also Sec. V C and Fig. 9! by plotting theh/2e ampli-
tude of the exact solutiondg(2) with varying tilt angleh and
for different radial field components. As one can readily s
from Fig. 2, the effect described here is fully developed
B>200 G. For smaller fields, theh/2e amplitude does not
completely vanish at the magic angles, as adiabaticity is
yet reached. It should be noted that even if the adiab
regime is not fully reached, an effect of the Berry phase
still visible as a distinct nonmonotonic behavior of th
UCF’s dg(2) as a function of the tilt angleh, unlike the
UCF’s for a configuration with a homogeneous field textu
~also shown in Fig. 2!.

Another interesting situation arises forBÞB̃. Now, phase
effects from the diffuson contribution todg(2) emerge and
remain present even for large fields, since the dephasing
to flux penetrating the arms of the ring depends only on
difference of the fields and not on the sum as for the co
eron contribution, see Eq.~6!. For illustration, we consider
the configuration whereB is homogeneous withh50. The
other fieldB̃ is assumed to have a radial component so t
for a tilt angle h̃5p/3 the magnitudes of both fields ar
equal, i.e.,B̃uu5(A3/2)Bz . In the adiabatic approximation
dgad

(2) @Eq. ~12!# P vanishes, yielding the simple relatio
Eq.~16! between the dephasing due to the inhomogene
field textures andgC/D: the effective dephasing will be in
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FIG. 2. The normalized amplitudes of theh/2e oscillations in the UCF’sdg(2), as a function of the tilt angleh. The magnetic fields are

chosen equal, i.e.,B5B̃, and wind once around the ring~i.e., f 51). The power spectrum of the exact UCF’sdg(2) has been calculated a

every tilt angleh by varying the Aharonov-Bohm flux 0<f5f̃<1. The component of theh/2e oscillation in this spectrum was the

normalized by the zeroth order Fourier component and is plotted here as a function ofh. Four configurations of radial fieldsBuu5B̃uu are

shown; the perpendicular field componentsBz5B̃z are determined by the tilt anglesh5h̃. These field components and so alsogC, as it
depends on the arm-penetrating field, increase for smallh. The strong dephasinggC at h'0 can be observed as vanishing oscillations. T
most remarkable effects show up for the stronger fieldsBuu5200 G, 300 G at the magic anglesh50.72,1.15. Here the Berry phas
eliminates theh/2e oscillations, as described in Sec. III A. For comparison, we also show the conductance fluctuations for a homo
field, i.e., settingf 50. We here setT50 and used the material parametersL512.6 mm, a560 nm, D5931023 m2 s21, and Lw

55.54 mm.
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creased by 3/16 at the most interesting angle,h̃5p/3, in the
situation considered here. The contribution of the penetra
fields togC/D will be three times larger for the cooperon tha
for the diffuson, as can be seen from Eq.~6!. Varying B̃z

changes the Aharonov-Bohm phasef̃/f0, while f/f0

5const, leading toh/e oscillations. At B̃z5Bz/2 two fea-
tures are worth mentioning. First, the magnitudes of b
fields become equal; thereforeDk vanishes and so the se
ond part of the criterion in Eq.~11! is fulfilled and we canuse
the adiabatic approximationdgad

(2) @Eq. ~12!#. Second, we

have cosh̃51/2, so the phase-dependent termsm7a/4 arise
in da

C/D( j ), as can be seen from Eq.~15!. With the same
argument as above, the UCF’sdg(2) becomeh/2e periodic at
this magic anglep/3, so theh/e amplitude vanishes in the
power spectrum. We note that, in the adiabatic regime,
magic angle is exact, since for the configurationh50 we
havedgad

(2)5dgLSG
(2) . This is shown in Fig. 3, again as a fun

tion of the tilt angleh̃5cot(B̃z/Bz); see also Sec. V C an
Fig. 10.

B. Quantitative criterion for adiabaticity

In order to obtain a quantitative criterion for adiabaticit
we numerically compare the exact solution of the cond
tance fluctuationsdg(2) with the adiabatic approximation
dgad

(2) @Eq. ~12!#. We take equal magnitudes for both field
g

h

is

-

i.e., B5B̃. We search for a minimalkmin so that the relative

differenceudg(2)2dgad
(2)u/dg(2) is below a certain value. This

is done with a bisection algorithm~in k) and by
sampling over the parameter subspace@0,p/2#23@0,1#2

3@ 1
100,10#2,$(h,h̃,f/f0 ,f̃/f0 ,gC,gD)% with a grid reso-

lution of 10 intersections in the first four dimensions. A fin
resolution has been chosen forgC/D. As can be seen from
Fig. 4, for 0.01<gD<1,gD<gC, and a field strength such
that k>3, the numerical values fordg(2) and dgad

(2) are al-
ready within 5% of each other.

However, as we are interested in the Aharonov-Bohm
cillations rather than in the absolute value of the UCF
dg(2), we now use a different method of comparison: W
consider the oscillations in the conductance fluctuations
sulting from different Aharonov-Bohm fluxes through th
ring. As a measure for accuracy we take the relative erro
these amplitudes, i.e.,

D~k,gC,gD,h,h̃ !

5

max
f,f̃

z~dg(2)2dg(2)uf5f̃50!2~dgad
(2)2dgad

(2)uf5f̃50!z

max
f,f̃

zdg(2)2dg(2)uf5f̃50zh,h̃50

.

~19!
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FIG. 3. The normalized amplitudes of theh/e
oscillations in the UCF’sdg(2), with h50, as a

function of the tilt angleh̃. The field was taken as

B5(2/A3)B̃iez , B̃i5const, andB̃z was deter-

mined through the tilt angleh̃. We use the same
methods and parameters as described in Fig. 2

B̃i550 G, 200 G, and 400 G. We notice tha
the h/e oscillations become suppressed by t

Berry phase at the magic angle cosh̃5p/3.
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Again we search for a minimalkmin so thatD is bounded
from above by a certain percentage over the whole param
subspace. We notice from the results shown in Fig. 5 tha
the regime with only moderate dampinggC5gD50.1, adia-
baticity is already reached atk;2. If we put this in the
context of the experimental parameters given in the be
ning of Sec. III A, we expect adiabaticity to be fully reach
at magnetic fields of magnitude larger than 500 G. By co
paring this value with Fig. 2, we note that the qualitati
effect of the Berry phase can already be seen for fields
are an order of a magnitude smaller, i.e., forB,B̃*50 G.

We now discuss the effects of different parameters ok
and on the minimal magnetic fields required to reach adia
ticity, thus indicating favorable experimental setups. If w

FIG. 4. This plot shows the minimalkmin required so that the
normalized differenceudg(2)2dgad

(2)/udg(2) is smaller than 0.01,
0.05, and 0.5; i.e., the plot shows for which magnitudes of
magnetic field the exact solution of the UCF’sdg(2) agrees with the
adiabatic approximationdgad

(2) @Eq. ~12!# to a certain accuracy.kmin

is plotted againstgmin5min$gC,gD%; as the two fieldsB andB̃ may
have different orientations,gD can become larger thangC. As dg(2)

vanishes for largegC/D, our normalization is no longer well define
for gC/D*1 and the value forkmin diverges.
ter
in

-

-

at

a-

consider rings of increasing circumferenceL, we can see
from Eq.~5! that the minimal magnetic field strength need
decreases asBad}L22. However, to observe the Berry phas
dephasing must not be too strong, so the conditionL
&2LC/D should still be met. We note that for two equ
fields, the first term ofgC}LC

22 in Eq. ~6! depends onL2,
which restrains us from takingL.2Lw , whereas the secon
one depends forB5Bad on L22. So not only the high mag-
netic fields needed for adiabaticity, but also the small a
widths a required to minimize strong dephasing due to t
penetrating flux, disfavors experimental setups with ve
small L.

e

FIG. 5. Here the quality of the adiabatic approximationdgad
(2)

@Eq. ~12!# in describing the Aharonov-Bohm oscillations is show
We used Eq.~19! and setgC5gD50.1. The surfaces shown are
from top to bottom, the minimal value ofkmin required for an agree-
ment D,0.01, 0.05, 0.1, and 0.2@Eq. ~19!#. As expected, forh

5h̃50 we havedg(2)5dgad
(2) . For tilt anglesh,h̃'p/2, the agree-

ment is obtained at lowkmin , whereas ath5h̃'0.25 larger fields
are necessary.
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Introducing more impurities and thus decreasing the
fusion coefficientD leads to slower motion of the electron
around the ring, giving their spins more time to adjust to
local magnetic texture. Thus, the field strengths required
adiabaticity to occur decrease asBad}D, which can be seen
from Eq. ~5!. However, such slow diffusion also leads
shorter dephasing lengthsLT ,Lw}D1/2, assuming thattw re-
mains constant. To avoid such an additional dephasing,
leaving gC/D unaffected, the sample size must also be
creased asL}D1/2. Thus, because ofk}D21L2, no net de-
crease of the required fields for adiabaticity can be gained
decreasing the diffusion coefficient.

IV. EXACT CALCULATIONS WITH THE SPIN-ORBIT
INTERACTION IN THE DIFFUSIVE LIMIT

We turn now to the discussion of Berry phases induced
spin-orbit interaction. Instead of considering an inhomo
neous field, we use here an effective~non-Hermitian! Hamil-
tonian

hSO
C/D5

L

~2p!2

]2

]x2
1 iks1z2 i k̃s2z

1 i
a

\2

L2

D~2p!2
~ez3s(* )!•p, ~20!

with spin-orbit interaction, using a coupling constanta as
defined in Ref. 26, and with a Zeeman term from an exter
magnetic field, which is perpendicular to the ring plane. O
arrives at this Hamiltonian by starting from the Feynm
path-integral representation of the transition amplitude w
spin-orbit coupling, as it is given in Ref. 27. One can th
formally decouple orbital and spin motion, and following th
steps given in Appendix A of Ref. 6, one arrives at the
-

e
r

e.,
-

y

y
-

al
e

h

-

fective Schro¨dinger equation for the cooperon propaga
with the HamiltonianhSO

C . The equation withhSO
D for the

diffuson, which will be required in Sec. IV B, can be ob
tained by applying the techniques explained in Appendix

Note that in Eq.~20! the momentum operator is still in th
Cartesian coordinate system. Now we adopt a polar coo
nate system, with (x8,y8)5(r cos(2px/L),r sin(2px/L)… and
(]x8 ,]y8)5„2 1

2 $sin(2px/L),]x%,
1
2 $cos(2px/L),]x%…, where x

denotes the position along the ring and runs from 0 toL. The
curly braces denote the anticommutator, which ensures
hermiticity of the momentum operator. We now have

hSO
C/D5

L2

~2p!2

]2

]x2
1 iks1z2 i k̃s2z

1
a

\

L2

D~2p!2

1

2 H s1xcos
2px

L
1s1ysin

2px

L

2s2xcos
2px

L
7s2ysin

2px

L
,

]

]xJ . ~21!

To diagonalize the Hamiltonian, we follow the ideas us
above and use the operators defined in Eq.~7!, but now with
f 5 f̃ 51:

JC/D
ª

L

2p i

]

]x
1

1

2
s1z6

1

2
s2z , ~22!

which commute with the HamiltonianshSO
C/D , as can be seen

using @$n(x),]x%,]x#52$n8(x),]x%. We can now calculate
the matrix elements ofhSO

C/D in the basis defined in Eq.~8!,

with f 5 f̃ 51, as
^ j ,abuhSO
C u j 8,a8b8&5d j j 8S 2~ j 21!21 ik2 i k̃ iS~ j 2 1

2 ! iS~2 j 1 1
2 ! 0

iS~ j 2 1
2 ! 2 j 21 ik1 i k̃ 0 iS~2 j 2 1

2 !

iS~2 j 1 1
2 ! 0 2 j 22 ik2 i k̃ iS~ j 1 1

2 !

0 iS~2 j 2 1
2 ! iS~ j 1 1

2 ! 2~ j 11!22 ik1 i k̃

D , ~23!

and

^ j ,abuhSO
D u j 8,a8b8&5d j j 8S 2 j 21 ik2 i k̃ iS~ j 2 1

2 ! iS~2 j 2 1
2 ! 0

iS~ j 2 1
2 ! 2~ j 21!21 ik1 i k̃ 0 iS~2 j 1 1

2 !

iS~2 j 2 1
2 ! 0 2~ j 11!22 ik2 i k̃ iS~ j 1 1

2 !

0 iS~2 j 1 1
2 ! iS~ j 1 1

2 ! 2 j 22 ik1 i k̃

D . ~24!
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In Eqs.~23! and~24!, we have introduced a dimensionle
spin-orbit coupling parameter

S5
a

\D

L

2p
. ~25!

By comparing Eqs.~5! and ~25!, we note that whilek is
quadratic inL, the parameterS is only linearly dependent on
L. If we define an effective field angle for diffusive motio
with spin-orbit coupling

tanhSO5S/k, ~26!

and anticipate the Berry phase to be of the formFg5cosh,
we obtain forS@k the dependencyFg'k/S}L. Thus the
li

b
c-

n
r

i-

e
on
a
b

So
th
n,
pi

to

in
c

c-
phase can now be enhanced by increasing the size of
ring. However, the phase cannot be increased arbitrarily;
largeL, the assumptionS@k becomes invalid.

A. Magnetoconductance

We shall now calculate the magnetoconductance with
formula from Ref. 6:

dgSO52
e2

p\

L

~2p!2 (
a,b561

K x,a,bU 1

g2hSO
C Ux,b,aL .

~27!

With Eq. ~23!, we obtain the magnetoconductance
dgSO52
e2

p\ (
j 52`

`
2@4k21~m21g!2#~m21g11!1S2@8m412m2~4g21!12g11#

@4k21~m21g!2#@m412m2~g21!1~g11!2#1S2~m21g!@4m41m2~4g23!1g11#
, ~28!
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wherem5 j 22f/f0 contains the Aharonov-Bohm flux. In
Sec. V we will see that in the ‘‘adiabatic’’ limitk,S@1 the
magnetoconductancedgSO will show some similar proper-
ties as for inhomogeneous fields, in particular a peak sp
ting in the power spectrum, see Fig. 11.

B. Conductance fluctuations

We turn now to a discussion of the recent experiment
Morpurgoet al.12 by specifying the parameters of the effe
tive HamiltonianhSO

C/D , as given in Eqs.~20!, ~23!, and~24!.
In Ref. 12, conductance measurements were performed o
InAs ring, with nearly ballistic transport. For the paramete
given,12 a55.5310210 eV cm, L56.6 mm, vF59.8
3107 cm/s, l 51.0 mm, and D5vFl /254.93103 cm2/s,
we calculate with Eq.~25! a numerical value ofS'1/50.
Compared to this, the strength of the Zeeman termk'1/2
~with ugu515) is much larger. Within the diffusive approx
mation, this spin-orbit couplingS!k gives only a negligible
contribution to the effective HamiltonianhC/D @Eq. ~20!# and
thus does not produce any Berry phase effects. This v
same finding has also been obtained in Ref. 28, based
slightly different reasoning. Still, we show in Sec. V that
spin splitting produced by the spin-orbit interaction can
obtained in the ‘‘adiabatic regime’’k,S@1, which, however,
is in the opposite limit to the one reported in Ref. 12.
although we cannot give a quantitative explanation of
experiment12 here, we can offer a qualitative interpretatio
see Fig. 13. Furthermore, there is an uncertainty in the s
orbit coupling parametera in InAs, as it was recently
pointed out,29 and more experiments might be needed
clarify this issue.

To this end we calculate the exact, i.e., without assum
any form of adiabaticity, expression for the conductan
fluctuationsdgSO

(2) in the presence of the spin-orbit intera
tion. With the block diagonalization of the HamiltonianhSO

C/D
t-

y

an
s

ry
a

e

e

n-

g
e

@Eqs. ~23! and ~24!# we obtain the propagators required
the formula for the conductance correlator@Eq. ~2!#. We use
MATHEMATICA to obtain an explicit algebraic expression f
dgSO

(2) ~which is lengthy and thus not reproduced here! and
plot it in Fig. 6 ~see also Figs. 12 and 13!. From this plot we
deduce that in a configuration with spin-orbit coupling, t
Aharonov-Bohm oscillations vanish for certain values ofS
and k. It is remarkable that this happens, forS>2, at the
fixed ratiosk/S50.2 and 0.5, which can be ascribed again
some effective magic angles. Thus we see that Berry pha
like effects occur in dgSO

(2) as the amplitudes of the
Aharonov-Bohm oscillations become dependent onk/S.
This resembles the case for inhomogeneous fields, where
amplitudes of the Aharonov-Bohm oscillations became
pendent on the tilt angleh of the magnetic field due to the
Berry phase, as it was shown in Sec. III A.

FIG. 6. The normalized amplitudes of theh/2e oscillations of
the UCF’s with spin-orbit coupling,dgSO

(2) . The power spectrum of
the Aharonov-Bohm oscillations was calculated at different val

k5k̃ of the perpendicular fields by varying the Aharonov-Boh

flux 0<f5f̃<1. From the power spectrum, the frequency con
bution of theh/2e oscillation was normalized by the zero-frequen
contribution and is shown here as a function ofk/S. We have
assumedT50 andgC5gD50.1.
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FIG. 7. The magnetoconductancedg in units of 22e2/h as a function of the Aharonov-Bohm flux 2f/f0, for different tilt anglesh of
the external field. We have chosen the dephasingg50.1 and the fieldBi parallel to the ring plane to be constant, defined throughBi}k i
5k sinh52.0. The magnetoconductance is shown in black, while its contribution from the different spinsa561 are scaled by a factor o
2 and drawn in gray.
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V. PEAK SPLITTINGS IN POWER SPECTRA

A. Frequency shifts in dg and dg„2…

We discuss now the emergence of the Berry phase
terms of a splitting of the frequencies of the Aharonov-Boh
oscillations in the magnetoconductance6,9 dg and in the
UCF’s6 dg(2), which can be made visible in the powe
spectrum.12 Both quantities depend on the spin-depend
total phaseFa , given here for the special case of the textu
defined in Eq.~1! and for two equal fieldsB5B̃,

F6152f/f06cosh

52f/f06
1

A11~Bi /Bz!
2

'2f/f06Bz /Bi5Bz~2Bf0

216Bi
21!. ~29!

The approximation used here is valid for small perpendicu
fields Bz!Bi . We have introducedBf0

5f0 /A as the per-

pendicular field that produces a flux of one flux quantumf0
through the ring, i.e., the period of an Aharonov-Bohm o
cillation in f. The Berry phase is not sensitive to the ar
enclosed by the ring; thus we prefer here to describe osc
tions in Bz rather than inf. As bothdg and dg(2) contain
periodic terms inF1 andF21, they exhibit oscillations inBz
with the Aharonov-Bohm frequency for homogeneous fiel
2Bf0

21, shifted~at Bz50) by the frequency

1

DB1
56

1

Bi
, ~30!

which results in a peak splitting in the power spectrum.
These splittings are, however, generally on the order

the resolution of the spectrum, which makes it difficult
in

t

r

-
a
a-

,

f

make them visible. If the perpendicular field is varied fro
2Bmax to Bmax, the discrete Fourier transform~DFT! of such
an interval has a resolution of 1/2Bmax, i.e., the sampling
frequencies are separated by this value. Thus, the p
splitting term can only be made visible if this resolution
high enough, i.e., 1/2Bmax<1/2Bmax

Bmax>
1

2
Bi . ~31!

We note that this restriction is still consistent with the a
proximation made in Eq.~29!, since for Bz5Bi/2 the ap-
proximated value of the Berry phase is larger than the ex
value by only a factor ofA5/2'1.1.

Now we consider the case beyond the above approxi
tion. Here, an estimate for the frequency shifts can be
tained by counting the additional oscillations upon increas
Bz . In this estimation we again neglect the change in f
quency of the Aharonov-Bohm oscillations whileBz is in-
creased. However, now we take the mean value of the
quency instead of the frequency atBz50 as in Eq.~30!.
Varying Bz from 0 to Bmax changes the Berry phase contr
bution to F61 @Eq. ~29!# from 0 to 6coshuBz5Bmax

, and so
we obtain the mean frequency shift

1

DB2
56

1

ABmax
2 1Bi

2
'6

1

Bi
S 12

Bmax
2

2Bi
2 D . ~32!

When we have calculated the DFT ofdg anddg(2), we have
confirmed the predictions given above, i.e., we do not
serve a peak splitting in the 2Bf0

21 frequency for lowBmax,

due to an insufficient resolution of the DFT. However, we
see a peak splitting in the DFT for higher fields~see Figs. 8
and 9!, which vanishes again forBmax@Bi . Since studies of
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FIG. 8. The Aharonov-Bohm oscillations in the magnetoconductancedg as a function of the perpendicular fieldBz , shown here as
kz5k cosh. The radial field component has a magnitude ofBi}k i5k sinh52.0 and g50.1. The vanishing oscillations nearkz

'0.9,2.3~for the magic angle cosh'0.4,0.75) are striking; this a direct consequence of the Berry phase, arising from a canceling
oscillating contributions of opposite spin directions. The inset shows the power spectrum~Ref. 30! where a peak splitting is visible.
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the DFT suffer from a restricted resolution, it might be mo
promising to search for the Berry phase via the effects
cussed in Sec. III A.

Finally, we point out that an anisotropicg factor affects
the size of the frequency splitting. If theg factor perpendicu-
lar to the ring,gz , is larger than the one in the plane of th
ring, gi , the Berry phase dependence onBz increases while
the Aharonov-Bohm phase remains unaffected. As the t
phase isF61'2f/f06gzBz /giBi , the frequency splitting
is increased by a factor ofgz /gi .

B. Frequency shifts in dghom
„2… for homogeneous fields

At this point it is important to realize that frequency shif
can also appear in the conductance fluctuationsdg(2) for
homogeneous fields, i.e., even when there is no Berry ph
present. For homogeneous fields the evaluation of Eq.~2! is
straightforward, ashC/D @Eq. ~10!# becomes diagonal; se
also Appendix C. We evaluate the density of states~DOS!

terms, i.e., the terms containing Re Trx̂vx̂v in Eq. ~2!, in the
low temperature limit forh5h̃50:

dgDOS,
C/D

(2)
}Re (

j
a,ã561

1

@g1~ j 2FC/D!21 i ~ak1ãk̃ !#2

'
2p

g3/2
1(

a,ã
(
n51

`
2p2n

g
e22pnAg

3cosF2pnS FC/D1
ak1ãk̃

2Ag
D G , ~33!

where we have definedFC/D5f/f06f̃/f0. The approxi-
mation on the second line of Eq.~33! is valid for g

@1/4p2, ak1ãk̃. From Eq.~33!, we see that the Zeema
-

al

se

term itself already leads to a frequency splitting. So, for
stance, if we take the Fourier transform ofdg(2)(Bz ,2Bz)
with respect toBz , we can observe a frequency splitting
the h/e oscillations of the diffuson contribution in the DO
term dgDOS,D

(2) , given by

1

DBZeeman
56

gmB

4\D

LDL

2p
. ~34!

We checked numerically that the estimated frequency sp
ting @Eq. ~34!# is correct within 20% even for paramete
beyond the assumptions made for the second line of Eq.~33!.
It is important to keep this property of the conductance flu
tuationsdg(2) in mind, when searching for Berry phase e
fects. If vanishing Aharonov-Bohm oscillations or peak sp
tings in the power spectrum are used to identify the prese
of a Berry phase, one has to rule out effects coming from
Zeeman term in the UCF’s, e.g., by comparison with t
results for homogeneous fields.

C. Numerical evaluations

We shall now numerically evaluate the magnetocond
tancedg for a ring in an inhomogeneous field. We base o
analysis on the calculations from Ref. 11. In Fig. 7 we sh
the Aharonov-Bohm oscillations for different tilt anglesh of
the external fieldB, which is set so strong that we are we
within the adiabatic regime. We can readily see that forh
'p/3 a phase shift ofp occurs, which comes directly from
the Berry phase, compared to the oscillations ath50 and
h5p/2. For the intermediate tilt angles the effect of th
Berry phase is only visible in the amplitude of the Aharono
Bohm oscillations, as the phase shifts for the two spin dir
tions occur with opposite signs and thus—if both spin dire
tions contribute equally—no phase-shift effect is visible.
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FIG. 9. The UCF’sdg(2) for B5B̃ plotted as function ofBz ~see first part of Sec. III A!. While the printing resolution is not high enoug
to show the Aharonov-Bohm oscillations, the envelope clearly illustrates the non-monotonic behavior of their amplitudes, which v

the magic anglesh50.72,1.15. We have taken a fixed radial component for both fields ofBi5B̃i50.5 T. We have assumedL53 mm,
D565 cm2/s, andT50. The dephasing was taken into account according to Eq.~6!, with the parametersLw51.5 mm, anda560 nm. The
two insets show the contributions of theh/2e andh/4e oscillations to the power spectrum~Ref. 30! in arbitrary units plotted against th
frequency in units off0

21. The right inset was scaled by a factor of 10. For the particular range ofBz chosen here, there is a peak splittin
visible for theh/2e oscillations, while we observe four peaks around theh/4e frequency.
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As such a phase shift atp/3 might not be easy to observe
studying signs in the power spectrum provides an interes
alternative,12 even though it requires a sufficiently high res
lution, as discussed in Sec. V A. Indeed, we can observ
peak splitting in the spectrum of the magnetoconductance
shown in the inset of Fig. 8. We notice an even more disti
feature: the Aharonov-Bohm oscillations vanish at tw
magic tilt angles, cosh50.4,0.75, of the field. The mecha
nism for this effect is exhibited in Fig. 7, where it is show
how the two contributions of the different spins suppress
oscillations.

At this point, we would like to stress that the peak sp
ting depends strongly on the different dephasing terms
g

a
as
t

e

In

particular, one cannot rely on calculations where the deph
ing due to the inhomogeneous fields is not properly tak
into account. So if the dephasingg due to homogeneou
effects is very small, e.g., on the order of 1/100, the am
tude of the oscillations gets reduced drastically as soon as
tilt angle h changes fromp/2 to a smaller, nonzero value
since the field inhomogenity causes additional dephas
Thus the Fourier transform of such oscillations has a do
nant contribution only from the first few oscillations close
p/2. This suppression of the remaining oscillations acts a
narrowing of the data window31 and leads to a widening o
the peaks in the power spectrum, masking the peak splitt
The oscillations are further suppressed by the additio
as

-

FIG. 10. The UCF’sdg(2) for
a homogeneous texture ofB plot-

ted as function ofB̃z ~see second
part of Sec. III A!. We have taken
the homogeneous field asBz

50.5 T andBi50 G, and have
fixed the radial component for the

other field asB̃i50.43 T. The re-
maining parameters are chosen
in Fig. 9. The inset shows the
power spectrum~Ref. 30! in arbi-
trary units plotted against the fre
quency in units off0

21, which ex-
hibits a splitting in the h/e
contributions.
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10 250 PRB 62HANS-ANDREAS ENGEL AND DANIEL LOSS
dephasing arising from an increasing perpendicular fie
which penetrates the ring arms. Of course, it is possible
remove this unwanted overemphasizing of certain osc
tions from experimental data in a postprocessing step; u
a standard windowing function~we used the Hann window31

for the inset of Fig. 8! for DFT’s greatly reduces this prob
lem, in addition to the usual reduction of components le
age of neighboring frequencies in the power spectrum.31

For the conductance fluctuationsdg(2), we will further
illustrate the effects of the two configurations discussed
Sec. III A. In Fig. 9 we show the Aharonov-Bohm oscilla
tions occurring indg(2) when the fields are equal, i.e.,B

FIG. 11. The power spectrum of the magnetoconducta
dgSO(B) with spin-orbit coupling, Eq.~28!, in arbitrary units plot-
ted against the frequency in units off0

21. We have chosenS54
and taken the Fourier transform of the magnetoconductance f
<k<4. We show the power spectrum for three different values
the dephasing parameterg, where we have downscaled the valu
for g50.1 by a factor of 10. Note that a peak splitting occurs o
for the cases with larger dephasing.
,
to
-
g

-

n

5B̃. Taking the discrete Fourier transform ofdg(2) over the
rangeBz50, . . . ,1 T, yields a clear peak splitting of the
contribution of theh/2e oscillations to the power spectrum
see left inset in Fig. 9. We notice a splitting into four pea
of the contribution of theh/4e oscillations~right inset of Fig.
9!. They only occur in the exact solutiondg(2), whereas
dgad

(2) exhibits only two peaks if we ignore theh,
h̃-dependent dephasing, i.e., setg̃h,h̃

C/D→gC/D and P→0 in
Eq. ~12!. We point out that the frequency shifts for thenth
harmonics of the Aharonov-Bohm oscillations increase w
n and are thus are better resolved in the power spectrum
increasingn. We plotdg(2)(B̃) in Fig. 10 for the special case
B̃5(0,0,B̃z) homogeneous~see also Sec. III A!.

Finally, we consider the power spectrum of the magne
conductancedgSO in the presence of spin-orbit coupling. W
use Eq.~28! and ignore for simplicity dephasing due to th
external magnetic fields penetrating the arms of the ri
Indeed, taking the Fourier transform of the magnetocond
tance, a spin splitting can be observed. However, the s
ting is not as pronounced as in the case for inhomogene
fields. Especially important, the splitting is only visible fo
sufficiently large dephasing parametersg ~produced by in-
elastic scattering!, which can be seen in Fig. 11. In contra
to the effects discussed before, using a windowing funct
was not sufficient to identify a peak splitting for moderate
small dephasing parametersg&0.3. Qualitatively, however,
the power spectra of the magnetoconductance for inhomo
neous magnetic fields and for spin-orbit coupling agree, w
both showing a peak splitting.

The UCF’s with spin-orbit interactiondgSO
(2) are plotted in

Fig. 12 as a function of the perpendicular fieldsBz5B̃z . We

e

0
f

-

his
e

FIG. 12. The UCF’sdgSO
(2) with spin-orbit interaction forB5B̃ plotted as function ofBz . We have takena51.031029 eV cm, L

512.5 mm, D52.031022 m2/s, g515, and have assumedT50. This gives usS51.6 @Eq. ~25!#, andk(Bz5300 G)54.2 @Eq. ~5!#. The
dephasing was taken into account according to Eq.~6!, with the parametersLw55.0 mm, anda5120 nm. The envelope of the Aharonov
Bohm oscillations shows a nonmonotonic behavior, which also appears in the UCF’s for inhomogeneous fieldsdg(2) ~see Fig. 9!. Theh/2e
oscillations are strongly suppressed atBz'30 G, which corresponds tok/S'0.25, as can also be seen from Fig. 6. However, t
suppression is not very obvious in this figure, sinceh/4e oscillations are present forBz'30 G. The two insets show the contributions of th
h/2e andh/4e oscillations to the power spectrum in arbitrary units~Ref. 30! plotted against the frequency in units off0

21. The right inset
was scaled by a factor of 10. For the particular range ofBz chosen here, there is only a single peak visible for theh/2e oscillations, while
we observe a small peak splitting around theh/4e frequency.
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observe a Berry phase–like frequency splitting in the pow
spectrum. However, as this splitting is rather small, it is o
visible in theh/4e oscillations, where the splitting is twice a
large as in theh/2e oscillations. Again, the suppression
the Aharonov-Bohm oscillations atk/S'0.25 is a distinct
feature of a Berry phase–like effect.

A quantity, which was subject of recent studies,12,28 is the
disorder-averaged squared power spectrum of the con
tance

^ug~n!u2&5u^g~n!&u21^ug~n!2^g~n!&u2&. ~35!

On the one hand, we recognize that the first term contains
Fourier transform of the~averaged! magnetoconductancedg,
which has frequency contributions from itsh/2e oscillations.
On the other hand, the second term of Eq.~35! is
given through the conductance fluctuationsdg(2) as
**dBzdB̃zexp$2pin(Bz2B̃z)%dg(2)(B,B̃). This term contrib-
utes frequencies corresponding toh/e oscillations, coming
from the diffuson termdgD

(2) in the conductance fluctuations
Thus, if we now investigateh/e oscillations, we can restric
our studies to the second term of Eq.~35!. We have evalu-
ated^ug(n)u2& for inhomogeneous fields, with the paramete
given in the caption of Fig. 9. A splitting of the frequenc
corresponding to theh/e oscillations was observed and wa
identified not to result from the Berry phase but from t
Zeeman term already present in the case of homogen
fields @Eq. ~34!#. Then we examined̂ugSO(n)u2& with spin-
orbit coupling for various parameters. An additional pe
splitting to the one produced by the Zeeman term@Eq. ~34!#
appears for some specific parameters, i.e., forS large enough
to reach ‘‘adiabaticity’’ and for large enough sampling inte
vals of Bz and B̃z to obtain a sufficiently high resolution in
the power spectrum. In Fig. 13 we see such a splitting of
h/e contribution into four peaks. However, using the para
eters given in Ref. 12, we haveS'1/50 andk'1/2 ~see Sec.
IV B ! and in this regime we do not observe any peak sp
ting, in accordance with Ref. 28.

FIG. 13. The disorder-averaged squared power spectrum o
conductancêugSO(n)u2& @Eq. ~35!# with spin-orbit interaction plot-
ted as function ofn in units of f0

21, normalized by the zero-
frequency contribution. We have taken the same parameters
Fig. 12, but now witha52.031029 eV cm, and thusS53.2 @Eq.
~25!#. We have calculated the second term of Eq.~35! explicitly

~see text!, while takingBz ,B̃zP@2Bmax,Bmax# with Bmax50.1 T,
which gives us a maximal valuekmax514 @Eq. ~5!#. The peak split-
ting into the inner two peaks is produced by the spin-orbit inter
tion, while the larger satellite peaks result from the Zeeman te
@Eqs.~33! and ~34!#.
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VI. CONCLUSIONS

We have calculated the exact conductance fluctuati
dg(2) for a special texture@Eq. ~1!# and given its adiabatic
approximationdgad

(2) . In addition to the already known dif
ferential equations for the cooperon we have derived
ones for the diffuson in inhomogeneous magnetic fields~Ap-
pendix A!. With the resultdgad

(2) the dephasing due to inho
mogeneous fields became explicit and could be compa
with previous calculations6 where adiabatic eigenstates we
used and this dephasing was only implemented with a p
nomenological parameter. Then we have described s
magic tilt angles of the magnetic field at which the Ber
phase suppresses the Aharonov-Bohm oscillations. We h
used this effect to illustrate how the adiabatic criterion b
comes gradually satisfied. We have calculated numeric
the required magnetic field strength for which the adiaba
approximation becomes valid and have shown that the a
batic criterion is less stringent for diffusive than for ballist
motion, thus confirming previous findings.6,11

Furthermore, we have calculated the magnetoconducta
and the conductance fluctuations for a diffusive conducto
the presence of spin-orbit coupling. A numerical analy
revealed a nonmonotonic behavior of the amplitudes of
Aharonov-Bohm oscillations and peak splittings in the pow
spectrum—observations that are similar to the Berry ph
effects we have found for inhomogeneous magnetic fie
Finally, we have described the mechanisms that lead to p
splittings in the power spectrum of magnetoconductance
UCF’s and have discussed numerical requirements to m
such peaks splittings visible.
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APPENDIX A: DIFFERENTIAL EQUATIONS
FOR COOPERONS AND DIFFUSONS

Here we will transform the exact conductance correla
for diffusive systems and arbitrary magnetic textures to m
a Schro¨dinger equation approach5 possible. Furthermore we
will derive the explicit differential equation for the diffuso
propagator ~the one for the cooperon has been deriv
previously6!.

The conductance correlator has been derived in Ref
using diagrammatic techniques, and is given by

dg(2)5S 2e2D

hL2 D 2E de de8n8~e!n8~e8!E dx dx8

3 (
a1 ,a2 ,a3 ,a4

H 1

d Uxa1a2 ,a3a4

C ~x,x8,v!U2

12 Re@xa1a2 ,a3a4

C ~x,x8,v!xa2a1 ,a4a3

C ~x8,x,v!#

1@xC→xD#J , ~A1!

wheren8(e) is the derivative of the Fermi function,\v5e
2e8, andd describes the dimension of the system with

he

in
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spect to the mean free pathl. The inverse Fourier transform
of the cooperon/diffuson propagatorsxC/D(x8,x,v) were
obtained6,27 as

xa1a2 ,a3a4

C/D ~x8,x;t8,t !

5u~ t82t !E
R(t)5x

R(t8)5x8DRexpH 2
1

4DE
t

t8
dtUṘU2J

3expH i
e

\Et

t8
dt@Ṙ•Aem

„R~t!…1Ṙ6
•Ãem

„R6~t!…#J
3K a4a2UT expH i

gmB

2\ E
t

t8
dt@B„R~t!…•s1

2B̃„R6~t!…•s2#J Ua3a1L , ~A2!

where R2(t)5R(t81t2t) is the time-reversed path o
R1[R.

For explicit evaluation it is convenient to transform th
path-integral representation into a differential equation.
the case of the diffuson we first have to eliminate the tim
reversed paths. As a result of reverting the time integrat
an additional sign appears in the second term of the elec
magnetic vector potential. For the Zeeman interaction we
use the relation

K a2UT expH 2 i
gmB

2\ E
t

t8
dt B̃„R2~t!…sJ Ua1L

5K a1UT expH i
gmB

2\ E
t

t8
dt B̃„R~t!…sJ Ua2L *

5K a1UT expH 2 i
gmB

2\ E
t

t8
dtB̃~R~t!!s* J Ua2L .

~A3!

The latter equation can be proven by writing the tim
ordered product as a Dyson series and by inserting a res
tion of unity in spin space between all products@B(xj )s#
3@B(xj 11)s#, thereby arriving at an expression with term
of the form ^auBi(xj )s i ub&* . Such terms are the comple
conjugate of Pauli matrix elements multiplied by the re
numberBi(xj ). So we can rewrite them as^auBi(xj )s i* ub&,
remove the previously inserted unities, and go back to
time-ordered product.

Now we can give the differential equations for the prop
gators

S ]

]t8
1DF2 i

]

]x8
2

e

\
@Aem~x8!6Ãem~x8!#G 2

2 i
gmB

2\
@B~x8!•s12B̃~x8!•s2

(* )# D x̂C/D~x8,x;t8,t !

5d~x82x!d~ t82t ! 1̂, ~A4!

where x̂C/D(x8,x;t8,t) is a matrix in four-dimensional spin
space. The upper sign is for the cooperon,6 the lower sign
n
-

n,
o-
n

-
lu-

l

e

-

and the complex conjugate ofs2 for the diffuson. Passing to
Fourier space and operator notation, the above equation
comes

S iv2D
~2p!2

L2
hC/DD x̂v

C/D5 1̂, ~A5!

where the effective HamiltonianhC/D is defined in Eq.~4!.
Finally we express the conductance correlation in terms

the operatorsxv
C/D . We note that withxa1a2 ,a3a4

C (x,x8,v)*

5^x8,a4a2ux̂v
Cux,a3a1&* 5^x,a3a1ux̂v

C†ux8,a4a2& and

xa1a2 ,a3a4

D (x,x8,v)* 5^x8,a4a1ux̂v
Dux,a3a2&*

5^x,a3a2ux̂v
D†ux8,a4a1& we can simplify the terms in Eq

~A1!:

E dx dx8 (
a1 , . . . ,a4

uxa1a2 ,a3a4

C/D ~x,x8,v!u25Tr x̂v
C/Dx̂v

C/D†

~A6!

and

E dx dx8 (
a1 , . . . ,a4

xa1a2 ,a3a4

C/D ~x,x8,v!xa2a1 ,a4a3

C/D ~x8,x,v!

5Tr x̂v
C/Dx̂v

C/D . ~A7!

APPENDIX B: FINITE TEMPERATURE INTEGRALS

We shall explain here the integrations performed to obt
Eq. ~18!. We are interested in

I 5E de8n8~e8!J

5E de8n8~e8!E de n8~e!S 1

d

1

~e2e81a!21c2

12 Re
1

~ i e2 i e81 ia2c!2D ~B1!

with a,c real andc.0. We consider a rectangular integr
tion contourG with one side lying on the real axis, extendin
M52p l /b towards the positive imaginary axis and the sa
amount on each side of the real axis. For any positive inte
l, the absolute value of the Fermi function is bounded ab
on such a contour:un(z)uzG,2. The integrands considere
further below are a product of the Fermi function and a
tional function decaying with at leastuzu22. The integral of
these products over the section ofG in the upper half plane
will thus vanish forM→`, as we haveuzu>M on this con-
tour. We further note that the complex expansion of t
Fermi function n(z) has its poles atz5 ivn , where vn
5pn/b are the Matsubara frequencies andn is an odd inte-
ger.

We expand the first rational function in Eq.~B1! into
partial fractions and then integrateJ by parts:
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J5E den~e!H 1

d

1

2ic S 1

~e2e81a2 ic !2

2
1

~e2e81a1 ic !2D 12 Re
22

~e2e81a1 ic !3J
5ReE den~e!H 1

d

i

c~e2e81a1 ic !2

2
4

~e2e81a1 ic !3J . ~B2!

We now evaluate the integral along the contour descri
above. As the poles of the rational functions in Eq.~B2! are
in the lower half plane ate82a2 ic, they are not within the
integration contour. Applying Cauchy’s residue theorem a
accounting for the residues of the Fermi functi
resn(z)uz5 ivn

5(21/b) yields

J5
2p

b
Re (

n odd.0
H 1

d

1

c~ ivn2e81a1 ic !2

1
4i

~ ivn2e81a1 ic !3J . ~B3!

For the second integration in Eq.~B1!, we replace the
expression in braces in the above equation by its comp
is

-

a
e

i
re
s

d

d

x

conjugate. As before, we first integrate by parts overe8 and
apply the residue theorem afterwards. This results in

I 5
4p

b
Re (

n odd.0
E de8n~e8!H 1

d

1

c~ ivn1e82a1 ic !3

1
6i

~ ivn1e82a1 ic !4J
5

8p2

b2
Re (

n,m odd.0
H 1

d

1

c~vn1vm1 ia1c!3

1
6

~vn1vm1 ia1c!4J . ~B4!

APPENDIX C: UCF’S dghom
„2… FOR HOMOGENEOUS

FIELDS

For homogeneous fields we haveh5h̃50 andf 50, thus
the HamiltonianshC/D @Eq. ~9!# become diagonal with the
matrix elementsj 21 iak2 i ãk̃. Now we evaluate the propa
gatorsx̂C/D @Eq. ~3!# and by evaluating the integrals over th
Fermi functions in Eq.~2! explicitly by using standard Mat-
subara techniques, as explained in Appendix B. We ob
dghom

(2) 5dghom, C
(2) 1dghom, D

(2) , where
dghom,
C/D

(2)
5S e2

h D 2 1

8p6 S L2

LT
2D 2

Re (
a,ã561

(
j 52`

`

(
n,m

8 H 1

d~gC/D1 j 2!@bnm1gC/D1 j 21 i ~ak2ãk̃ !#3

1
6

@bnm1gC/D1 j 21 i ~ak2ãk̃ !#4J , ~C1!
-
tion
and we have introducedbnm5(n1m)(L/LT)2/4p. Here n
andm are positive, odd integers. The Aharonov-Bohm flux

implemented by replacingj→ j 2(f/f06f̃/f0). For fur-

ther evaluation we now setk5k̃. We describe the summa
tion of cooperon and diffuson terms with a prefactorb,
which is 1 if both terms contribute and 2 if time-revers
symmetry is broken, so the cooperon contribution vanish
Thus we havedghom

(2) '(2/b)dghom, D
(2) and from now on we

only consider the dephasing parameterg5gD

5L2/(2pLw)2, according to Eq.~6!.
If the spin-channel mixing is suppressed~i.e., k@g) in

Eq. ~C1!, we can replace the sum over the spins(aã by the
number of spin statesgs . For weaker magnetic fields (k
!g) we have full spin degeneracy and obtain the factorgs

2 .
Accounting for valley degeneracy yields a factorgv

2 .
Since we will check our results against the ones given

Ref. 24, where one-dimensional systems were conside
we taked51. Since we will evaluate some limiting case
below, whereL@2pLw , we haveg@1 and can therefore
l
s.

n
d,

replace thej sum in Eq.~C1! by an integral. The Aharonov
Bohm phase can then be removed by shifting the integra
variablej and we obtain

dghom
(2) 5S e2

h D 2 1

8p6

2gs
2gv

2

b S L2

LT
2D 2

3(
n,m

8 E
2`

`

d jH 1

d~g1 j 2!@bnm1g1 j 2#3

1
6

@bnm1g1 j 2#4J . ~C2!

In the limit (2p)2Lw
2!L2,2pLT

2 , we have

2pLT
2

L2
~g1 j 2!>

LT
2

2pLw
2

@1. ~C3!
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Thus, we can use Poisson’s summation formula to rep
the summation overn and m in Eq. ~C2! by integration to
arrive at

dghom
(2) 5

3

4p4

gs
2gv

2

b S e2

h D 2E
2`

` d j

~g1 j 2!2

53
gs

2gv
2

b S e2

h D 2S Lw

L D 3

. ~C4!

We now consider another limit, 2pLT
2!L2,(2p)2Lw

2 .
Again, we start from Eq.~C2!, but now we first calculate the
integral over j, which has the dominant contributio
pg21/2b23 since 1!g!bnm . Thus we obtain
r
s

o

v

W

d

P

ce
dghom

(2) 5
4

p

gs
2gv

2

b S e2

h D 2LT
2

L2

Lw

L (
n,m

8
1

@ 1
2 ~n1m!#3

5
2p

3

gs
2gv

2

b S e2

h D 2LT
2

L2

Lw

L
. ~C5!

Indeed, our resultsdghom
(2) given in Eqs.~C4! and ~C5!

agrees with these of Ref. 24. Thus, on the one hand, we h
confirmed that the result from Ref. 6@used in Eq.~2!# is
consistent with earlier calculations.20,23,24On the other hand,
in Eq. ~C1! we have given an explicit formula~not known
before as far as we are aware of! describing how the spin-
channel mixing becomes suppressed for increasing magn
fields, such thatdghom

(2) contains a prefactorgs
2 for low andgs

for high magnetic fields.
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