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Conductance fluctuations in diffusive rings: Berry phase effects and criteria for adiabaticity
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We study Berry phase effects on conductance properties of diffusive mesoscopic conductors, which are
caused by an electron spin moving through an orientationally inhomogeneous magnetic field. Extending pre-
vious work, we start with an exact, i.e., not assuming adiabaticity, calculation of the universal conductance
fluctuations in a diffusive ring within the weak localization regime, based on a differential equation that we
derive for the diffuson in the presence of Zeeman coupling to a magnetic field texture. We calculate the field
strength required for adiabaticity and show that this strength is reduced by the diffusive motion. We demon-
strate that not only the phases but also the amplitudes ofiffe2 Aharonov-Bohm oscillations are strongly
affected by the Berry phase. In particular, we show that these amplitudes are completely suppressed at certain
magic tilt angles of the external fields and thereby provide a useful criterion for experimental searches. We also
discuss Berry phase—like effects resulting from spin-orbit interaction in diffusive conductors and derive exact
formulas for both magnetoconductance and conductance fluctuations. We discuss the power spectra of the
magnetoconductance and the conductance fluctuations for inhomogeneous magnetic fields and for spin-orbit
interaction.

I. INTRODUCTION AND OVERVIEW while Aharonov-Bohm effects appear for arbitrarily small
magnitudesB of the magnetic field, Berry phase effects ap-
Since its discovery, the Berry phadeas been a subject of pear to their full extent only in the adiabatic limit, i.e., for
continued interest. As this geometrical phase emerges frofarge enough fieldgspecified below The physical situation
the very basic laws of guantum mechanics, it has imp“cafeqml'ed for this limit to be satisfied can be piCtLﬁ‘éHaS a
tions for a broad range of physical systehisven though the  Spin that must complete many precessieng/2m around
Berry phase has been observed in single-particle experthe local magnetic field, while it moves during a tinig
ments, its manifestation in condensed matter systems is stilhrough a region of sizég over which the direction of the
under investigation. Some settings were propdsedn field changes significantly. Here we have intrgduced the
which the Berry phase, resulting from the motion of a spin-Bohr frequencywg=gugB/24, whereg is the Landeg fac-
carrying particle through an inhomogeneous magnetic fieldor and g is the Bohr magneton. For ballistic motion as it
B(x), can be observed in mesoscopic structures. The execcurs in clean semiconductors, one bag~Ig and there
pected effects are measurable as persistent cutréhes  is general consensus about the criterion for adiabaticity, i.e.,
well as in the magnetoconductafiéé-'and the universal wglg/ve>27, with v being the Fermi velocity. However,
conductance fluctuationdJCF’s).*® The first experiments for diffusive systems there were recently some
reporting such effects were realized with semiconductodiscussion$®!®whethert, can be correctly set as the dif-
structures: the conductance was investigated in an InA&usion timetd=I§/D or if one should replace it by the elastic
sample!? where the Berry phase can emerge through thescattering timer. The first criterion is more optimistic in the
Rashba effect® in a very similar way as produced by an sense that, much lower field magnitudes are required to reach
inhomogeneous field. Magnetoconductance measuremenrdsliabaticity, as due to diffusive motion the electrons effec-
were performed where a ferromagnetic dot, placed slightlytively move more slowly(compared to the ballistic motion
above a GaAs sample, produced an inhomogeneous'field through the changing magnetic field and thus have more time
Measurements on metallic systems also showed effect$o adjust their spins to the local field orientation. For mag-
which have been explained in terms of the Berry pHas¥.  netoconductance quantitative values for the required field
Further experiments on metallic systems are in progfess. magnitudes have been obtainé®olving the special case of
An additional scenario was proposed, where domain walls o cylindrically symmetrical texture exactly, it was
mesoscopic ferromagnets lead to a Berry pHase. confirmed? that the more favorable criterion is indeed suffi-
During orbital motion in a magnetic field, a spin acquirescient. We remark that if the ballistic criterion was appropri-
a Berry phase in a similar way as a charge collects amte for diffusive systems, the large fields required for adia-
Aharonov-Bohm phase. Thus, these two phases lead to simaticity would imply a strong curvature of the semiclassical
lar implications for interference phenomena in mesoscopitrajectoriegapart from the case of very larggfactors. This
samples. However, in the first case the phase originates frourvature in turn is in conflict with the approximation of the
the change in local field direction, whereas in the secondrbital motion by its zero-field value and therefore an ap-
case it results from an enclosed magnetic flux. As these fielgroach beyond weak localization theory would be required
properties can be varied individually, the interplay of the twofor a self-consistent theory. At this point it should also be
phases yields a rich variety of behavior. These quantunmoted that Berry phase effects occur even if the adiabatic
phases are distinguished by another important differencdimit is not fully reached; there is no sharp cutoff where the
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Berry phase disappears completely. Thus, calculations withfor adiabaticity is less stringent for diffusive than for ballistic
out assuming adiabaticity are very desirable, as they can bmotion. An exact evaluation of magnetoconductaidcog o
used to study how the Berry phase effects gradually emergand conductance ﬂuctuationﬁg(s% in the presence of spin-
while the magnetic field is increased from low to adiabaticorbit coupling and homogeneous magnetic fields is given in
strengths. The adiabatic limit can still be taken at the end ofec. IV. These results show how the amplitudes of the
the calculation, so the formal appearance of the Berry phaséharonov-Bohm oscillations idg) depend nonmonotone-
and the associated dephasthgan be identified. ously on the direction of an effective field, similarly as it is
Besides having a spin following the direction of an inho- the case for inhomogeneous magnetic fields. In Sec. V A we
mogeneous external field, there is another scenario that prehow how the frequency shifts of the Aharonov-Bohm oscil-
duces a Berry phase: spin-orbit coupliiglf an electron lations appear infg and 59'?, caused by the Berry phase.
moves through an electrical field perpendicular to the ringWe then point out in Sec. V B that the Zeeman term can also
plane, an effective magnetic field, which is produced in theproduce frequency shifts even in the case of homogeneous
rest frame of the electron, couples to the electron spin. Agields. In Sec. V C we plot and discuss the exact expressions
this effective field is in the radial direction of the ring and for g and 59 for inhomogeneous fields and for spin-orbit
perpendicular to the direction of motion, the field rotatescoupling as well as the corresponding power spectra. In three
while the electron moves around the ring and can thereforappendices we provide details of our calculations.
produce a Berry phase. By switching on, in addition, an ex-
ternal magnetic field, an arbitrary tilt angle of the total effec- Il. CONDUCTANCE FLUCTUATIONS
tive field can be realized and so this Berry phase can be
tuned. For ballistic motion, the Berry phase manifests itself As a foundation for further discussions of Berry phase
in precise|y the same Wéi/as in the case with an inhomo- effects and adiabatiCity, we will first calculate the conduc-
geneous external magnetic figidh. However, for diffusive  tance fluctuationssg!® in the weak-localization regime. To
motion the situation becomes more complicated, as th&wotivate the analysis of the conductance fluctuations, we
change of the direction of motion of the electron due to arivould like to emphasize the advantage of studying the
elastic scattering event abruptly changes the effective fiel CF's instead of the magnetoconductance. The latter quan-
direction. Now the picture of a spin, moving adiabatically tity has only contributions from the cooperon, which are sup-
through a slowly varying field, is no longer valid and needsPressed by moderately large magnetic fields penetrating the
to be modified. This leads to a physical situation that has téing arms.” This suppression is in direct competition with
be considered separately from the situation with inhomogethe requirement of having large fields to satisfy adiabaticity.
neous fields. In contrast, the conductance fluctuations also have contribu-
The outline of this paper is as follows. In Sec. Il we Studytions from the diffuson, which is only sensitive to td#fer-
the Conductance ﬂuctuatiom(z) of quasi-one_dimensiona' enceof the two magnetiC fieldS, for which the conductance
diffusive rings in inhomogeneous magnetic fields. Whilecorrelator is considered. Therefore, if both fields are taken of
59@ has already been calculated within the adiabaticsimilar magnitude, Aharonov-Bohm oscillations and Berry
approximatiorf i.e., for strong magnetic fields, the behavior Phase effects in the UCF's will still be visible at high mag-
outside the adiabatic limit and the influence of inhomogeﬁetic fields where the adiabatic criterion is certainly satisfied.
neous fields on dephasing were not dicussed so far. We ad-
dress these issues in the present work, starting in Sec. Il A A. Exact solution
with a calculation of an exact expression g (i.e., al-

lowing arbitrarily small field magnitudegor a special tex- (2)(B.B
ture [see Eq.(1)] of the magnetic field. In this process we Study the conductance-conductance correlaigr™(B,B)

derive a form of the diffuson differential equation, which — (9898) —(Je)(gg), where we have two different magnetic
includes inhomogeneous magnetic fields. We evaluate thieldsB andB. We consider a special textdr€"**for which
adiabatic limit of the UCF’s3gZ , in Sec. Il B and compare We obtain exact resultd.e., without making the adiabatic
our results with those derived in previous wérkurther, we ~ assumption of strong magnetic fieJdsVe assume the mag-
investigate in Sec. Il C the finite temperature behavior of thenetic fields to be applied in such a way that they witidnes
conductance fluctuations. around thez axis in one turn around the ring, with tilt angles

In Sec. Il the effects of the Berry phase on the UCF’s andn and7; see Fig. 1. The position along the direction of the
their dependence on magnetic field strengths are discussedrimg is described by the coordinatevarying from O toL, so
detail. We identify in Sec. Ill A a striking effect of the Berry the special texture of the magnetic field is expressed as
phase by showing that the amplitudes of ti2e Aharonov-

We shall concentrate on rings with circumferericand

Bohm oscillations depend directly on the value of the Berry _ 2mfx

phase. In particular, we find some magic tilt angles of the B=Bn:B(smnco{ C o)

magnetic field where these Aharonov-Bohm oscillations are

completely suppressed. This effect provides a tool for experi- . ([ 2mtx

mental searches of the Berry phase. We use this observation sin# sin L +0).cosn, @

to illustrate the gradually appearing effects of the Berry _

phase for increasing field strengths and thus give a direand similarly forB. We have introduced, so we can de-
demonstration of the onset of adiabaticity. Then, in Secscribe the textures with a field component radial to the ring,
Il B, we give quantitative values of the fields strengthsi.e., #=0, as well as textures with a field component tangen-
needed for reaching adiabaticity. We show that the criteriortial to the ring, i.e.,0= /2.
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and equivalently fox and wg. We have inserted a phenom-
enological damping constant/® = (L/27L¢,p)? expressed
in terms of the magnetic dephasing lengitfy : 1%°

c/iD_

(6)

L2 1 (A|th~Bz|)2
Y .

(2m)’L? i 3(4m)?\ 2wy

The first term of this damping constant incorporates the loss

FIG. 1. A mesoscopic ring of width and heighto in an inho-  Of phase due to inelastic scattering events. The second term
mogeneous magnetic field with tilt anglg winding once around takes into account magnetic flux penetration into the arms of
the z Axis. The texture of the magnetic field drawn here corre-the ring with a finite widtha and a surface area=al,
sponds to Eq(1) with f=1 and#=0. while the heightb is assumed to be small comparedao

This field penetration leads to averaging over closed paths of

The starting point of our calculation is the conductancedifferent lengths, each of which collects a different
correlator derived in Ref. 6 and given by Aharonov-Bohm phase, resulting finally in dephasing.

Next we define the basis in which we evaluate the Hamil-
tonianh®P. As done in Ref. 10 for the cooperon propagator,

) 26D\ ? we now introduce the operators
59 = dede'n’(e)n’(€)
hL?
L o 1
1 ..n Moo e JP=— — + (0o, 7
X HTngXguz Re Ty SxS+Ix°—x"11, @ 2t ax |2 (01222, @)
which commute witth®/P 21

where n’(e) is thg deriyativg of the Fermi funption and We will now go to the basis of eigenvectdisa)c/p of
hw=e—€'. The dimensionality of the system with respect jc/d  This pasis is orthonormal with the following wave
to the diffusive motion is denoted l which describes the ¢ ,tions:

relation of the mean free patho the diffusion coefficienD,
i.e., D=v/d. The propagatorg®® can be evaluated ex-

plicitly by using the operator equatidi\b):

A 5a/a5/313 2iX ) f _f
(x,a@'B'lj,aB)cip= N exp—— |- 5a%58](

8
. L2 1
x¢'P= e~ o5 on- (3)  Because of the periodic boundary conditionsjrthe eigen-
(2m)°D io+y~"—h valuesj of J°° have to be integers. The matrix elements of
o 2 - _ h%Pin the basis
We have definedv=(L/27L1)“(e—€')/KT, with the ther
mal diffusion length Lr=D#3.%” The (non-Hermitian Ui T el T Dew il e lis L D eo}
Hamiltonian is given by
become
L2 9 e cio{j,aBIncP|] ’,a',B'>C/D:5jj'(_hjC/DJrhg/D), 9)
hC/D=—2—2+IKn~01—IKn~0'(2*), (4)

(2m)" ox whereh; andh are diagonal % 4 matrices with the entries
where the asterisk means complex conjugatiorhthand  {(i—)%j%j%(+f)%, and {i%(-H%31+H2%j%, re-
where we have introduced an adiabaticity paraniétef’ spectively, and the;- and 7-dependent matrices are

ikcosy—ikcosy — —ike ’siny ike 'fsiny 0
—ike*siny  ikcosp+ikcosy 0 ike fsiny
hC/D = | _ : (10
ike'fsiny 0 —ik cosy—ikcosy —ike™siny

0 i kel fsiny —ixe*ifsiny — ik cosy+ikcosy
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To take the Aharonov-Bohm flux into account, we replace ~ciD -
~ ~ _ ,CID H H

j with m=j — (/o= ¢l pg), Whereg and ¢ are the fluxes You =¥ ot Zsmzm— Zsmzn. (16)
of the fieldsB and B through the ring andpo=h/e is the
magnetic flux quanturf? Now it is straightforward to evalu- ) -
ate the exact conductance fluctuatiofg® by calculating The sum overa has been introduced here artificially to
the propagators by matrix inversion and inserting the resultacilitate the following interpretation. As it is also seen in
into Eq.(2). This can be done with the help of the computerRef. 11 for the case of the magnetoconductaage the
program MATHEMATICA, which, however, leads to lengthy terms f2(sir’y+sirfz)/4 in Eq. (16) act as additional
expressions that we will not reproduce here. We merelydephasing sources and are here absorbed in the phenomeno-

point out that the phase factors th cancel each other in |ogical dephasing parametérC’P. However, in Eq.(13)
59 and &g. "7

f2 f2

there are further;- and 7-dependent termB, which cannot
be formally absorbed ir’i/(;/—?/ . P reduces the effect of the

additional dephasing terms in E@.6), as we can see by the
To evaluate the adiabatic limit, we shall consider the re<following numerical evaluation. We consider equal fieRls

B. Adiabatic approximation

gime of large magnetic fields witB andB of similar mag- =B and low temperatures, thdsc, w=0, and assume and
nitude. If we defineA k=« — «, this adiabatic regime is de- 7 to be close tor/2. Then we estimate the amplitude of the
scribed by Aharonov-Bohm oscillations by taking the difference be-

tween the values oGi‘fC [Eqg. (13)] for the two phasesn

=0 andm==*=1/2 (i.e., we are considering only the main
contributions in the sum over[Eq. (12)]). We then see by
numerical evaluation that the oscillations are suppressed if
The exact propagatoreC’® turn out to be rational functions We setP=0 instead of using Eq14), thusP indeed reduces
that are of order two inc in both numerator and denomina- dephasing. _ _ _

tor. Now we will keep only the terms of highest ordern We can compare now with previous calcqlaﬂ%mﬁmre
terms with largeg can be neglected as the sum oyeron- the UC_F’s 5g(LS)G hav_e been derlve_d for arbitrary textures
verges rapidly. This leads us to the UCF's in the adiabati@nd adiabatic evolution of the spin. These results can be
regime: recovered from Eq12) by the replacement;“;? — <2 and
P—0. The dephasing terms due to inhomogeneous fields
coupling to the spiisee Eqs(14) and(16)] were not explic-

ity given in Ref. 6; to account for such dephasing these

2
e 1
F) 4774J dede’n’(e)n’(e’) terms must be included in the phenomenological parameter
yCR  and thusy LR+ /P and yfé%i}i’% in generalt!
We also recognize a strong simplification in the special
ad ad
Xj 2 E 1 (GactGap): (12) case where one field is homogeneoys;0, i.e.,P vanishes.

T Thus the comparison afg'% with the solution for arbitrary
textures 59(%; yields the simple relatiomfé'ézaglf. Fi-
nally we note that in this case the dephasing due to the ori-

entational inhomogenity oB measured by the winding
+ 590112 — P (w+ aA )2+ 55°(})2— P] varies asf?sir’z [cf. Eq. (16)].

k>1 and «>|A«x|. (11

2

1
Gilom=5{(w—adr)?+6%2()*+PH[(w—alx)?

+4P[ w?+ f?m?(cosn*cosy)?]} 1+ 2 Re{[iw C. Finite temperatures
. CID /i \12 Lo cID;
lahst 62 (NI PHITo—TaA k82, ())] Now we consider the effects of finite temperatuiies 0
X[iw+iadk+5%P())]- P} 2), (13)  on the UCF's5g%?) in the adiabatic regime. In the case of
7=0, i.e.,P=0, the factors containing®’®(j) in Eq. (13
cancel, so we obtain

where
1 o
4 5 Giomly-o=gl(w+adr)?+ 5P ()%
P=sin’y sinfs, (14
+2Rdiw+iaAx+65P()} 2. (17
~ f f ~\? This strong simplificati Il t luate the integral
Dy _~CID _f _f g simplification allows us to evaluate the integrals
00 ()=y,5+|m=acospsacosy|, 15 overe ande’ in Eq. (12) explicitly by using standard Mat-

subara techniques, as described in Appendix B, and we ob-
with tain for the UCF's6g3 =69 c+ 69 p ,
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(2) <62>2 1 2\ 2 2/ 1
P o=|l—] —|=]| Re
Gadcroln-0=| 8r®\L2)  aTEiimm | doSP(H(L24mLE) (m+n)+6C() —iaAk]?
+ 6 (18
[(LY47L2)(m+n)+65P(j)—iaAk]*

Heren and m are odd, positive integers. For plotting, it is mental reach. Finally we assume low temperatures, Li.,
advantageous to calculate the sum in Etf) analytically, >L,L,, so we can ignore the dephasing due to thermal fluc-
which gives an expression containiggfunctions. tuations.

We can now obtain a qualitative criterion when the ther- Now we shall consider two equal fields, so no phase terms
mal dephasing effects can be ignored. If we ignore thermahppear in the diffuson contributiofg?) . The cooperon con-
effects, i.e., assume low temperatures, we can simplify oufripution sg?’ is h/2e periodic in the magnetic flux, as a
calculation leading to Eq18) by replacingn’(¢€) by a delta shift of M= ¢/ g+ Bl o+ | = 2 o+ by 1 is absorbed in

function 5(e) in Eq. (12). This yields for»=0 the same the sum ovej in Eq. (12). For the next argument we take the

result when replacing in Eg18) the sum oven andm by an dephasing due to inhomogeneous fields only phenomeno-

integral. We are only allowed to perform this step if the ~—" X . )
summand varies slowly im and m, which is the case for logically into account, i.e., we use the resaff; s from Ref.

L2>27L2,,. From a physical point of view, this is an evi- 6 O equwalentlg/ seP=0 [Egs.(12) and(17)], so the fac-
dent requirement: the smearing of the conductance fluctudors containings®'?(j) cancel in Eq(13). If the tilt angle
tions due to nonzero temperatures, described by the thermisl such that cog=1/4, the phase-dependent termafi°(j)
diffusion lengthL;, can only be neglected if the dephasing[Eq. (15)] becomesm— a/4. One sees that in this special
lengths related to inelastic scattering or penetrating magneticase shiftingm by 1/2 does not affect the value 6§, as
fields are much shorter than, . it leads solely to an exchange— — . The very same argu-

In Appendix C we evaluate the dephasing behavior of thQnent app]ies to Coﬁ:3/4 ThUS, for thesmagic ang]es,,],
UCF’s &g, for homogeneous fields and finite tempera-where cosy=1/4,3/4, the UCF's5g( areh/4e periodic and
tures. Then we confirm the result of Ref.[Eq. (2)] and  therefore theipower spectrum shows a vanishin{Pé am-
show that our calculation zlgzahe homogeneous limit indeedjitude. If we take the exact solution in the adiabatic regime
reproduces known resufs>> 592) instead ofsg{Zs;, the magic angles are still present, but

at shifted values. The angle at cgs3/4 is nearly unaf-
fected, asP~0.05 is very small at this angle. The suppres-
Ill. BERRY PHASE AND ADIABATICITY sion of the Aharonov-Bohm oscillations is illustrated in Fig.
2 (see also Sec. V C and Fig) By plotting theh/2e ampli-
_ o tude of the exact solutioAg® with varying tilt angle» and

We now consider the qualitative effects of the Berry for gifferent radial field components. As one can readily see
phase on the conductance fluctuatiofgs®. They emerge from Fig. 2, the effect described here is fully developed for
from the Berry phase in5/°(j) in the adiabatic solution B=200 G. For smaller fields, the/2e amplitude does not
[Eq.(12)] and lead to vanishing Aharonov-Bohm oscillations completely vanish at the magic angles, as adiabaticity is not
at special “magic” tilt angles of the magnetic fields. This yet reached. It should be noted that even if the adiabatic

effect has some similarities with the phenomenon of beatingregime is not fully reached, an effect of the Berry phase is
where the superposition of two oscillations with different butstijll visible as a distinct nonmonotonic behavior of the

fixed frequencies leads to a periodic vanishing of the enveycp's 5g(? as a function of the tilt angle;, unlike the
lope. However, in our case we have two frequencies that wilyCF's for a configuration with a homogeneous field texture
change when the perpendicular fiedg is increased, since (also shown in Fig. 2

then the Berry phase is_ altgred, too. Thus a suppression of Another interesting situation arises Bk B. Now, phase
the Aharonov-Bohm oscillations can only be observed at WQutfects from the diffuson contribution t6g® emerge and

special tilt angles of the magnetic field, i.e., the Berry phasgemqin present even for large fields, since the dephasing due
hgs a highly nonper|od|c effect on the envelope of these %o flux penetrating the arms of the ring depends only on the
cillations as a function oB,. . difference of the fields and not on the sum as for the coop-
_From now on we shall only study the experimentally re- g0 contribution, see Eds). For illustration, we consider
alizable field texture with one windindg=1. The other con- the configuration wher® is homogeneous wity=0. The

figurations withf>1 are solely of academic interest. To il- ther fieldB i dioh dial t 50 that
lustrate expected experimental results, we will use som@her e IS assumed o have a radial component so tha

material parameters recently determife@he sample Au-1 for a tilt angle »==/3 the magnitudes of both fields are
given in Table | of Ref. 25 has the valueB=9 equal, i.e.,BH=(\/§/2)BZ. In the adiabatic approximation
x10* m?s ' and L,=D7,=5.54 um. We assume a 592 [Eq. (12)] P vanishes, yielding the simple relation
ring with diameter of 4 um, soL=12.6 um, and an arm Eq(16) between the dephasing due to the inhomogeneous
width a=60 nm, which lies well within present-day experi- field textures andy®/P: the effective dephasing will be in-

A. Magic angles: Qualitative criterion for adiabaticity
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FIG. 2. The normalized amplitudes of thé2e oscillations in the UCF's5g(®, as a function of the tilt angle). The magnetic fields are
chosen equal, i.eB=B, and wind once around the ringe., f=1). The power spectrum of the exact UCEBg® has been calculated at
every tilt angley by varying the Aharonov-Bohm flux € ¢=¢=<1. The component of thb/2e oscillation in this spectrum was then
normalized by the zeroth order Fourier component and is plotted here as a functipor-ofir configurations of radial fieIoBH=~B|| are
shown; the perpendicular field componeBts=B, are determined by the tilt angleg="7. These field components and so algg as it
depends on the arm-penetrating field, increase for smalhe strong dephasing® at »~0 can be observed as vanishing oscillations. The
most remarkable effects show up for the stronger fil8gs-200 G, 300 G at the magic angles=0.72,1.15. Here the Berry phase
eliminates theh/2e oscillations, as described in Sec. Il A. For comparison, we also show the conductance fluctuations for a homogeneous
field, i.e., settingf=0. We here sef=0 and used the material parametérs 12.6 um, a=60 nm, D=9x10"% m?s !, and L,
=5.54 um.

creased by 3/16 at the most interesting angle,/3, in the  i.e., B=B. We search for a minimat,,, so that the relative
?ltuatlon %(/)é]su_jered here. -The contribution of the penetrat'”gifference| 59(2)_ 59%)“59(2) is below a certain value. This
ields toy™'" will be three times larger for the cooperon than is done with a bisection algorithmin «) and by

for the diffuson, as can be seen from E@). Varying B, sampling over the parameter subspddm/2]2x[0,1]2

changes the Aharonov-Bohm phashﬁ)o, while ¢/ ¢q X[ 15, 1012C{(7, 7, ¢l o, I Po,¥C,¥P)} with a grid reso-
=const, leading tch/e oscillations. AtB,=B,/2 two fea- |ution of 10 intersections in the first four dimensions. A finer
tures are worth mentioning. First, the magnitudes of bottresolution has been chosen fof'®. As can be seen from
fields become equal; thereforex vanishes and so the sec- Fig. 4, for 0.0k y°P<1,y°<+°, and a field strength such
ond part of the criterion in Eq11) is fulfilled and we canuse that k=3, the numerical values fafg® and 5g{?) are al-

the adiabatic approximationg{? [Eq. (12)]. Second, we ready within 5% of each other.

have cogy=1/2, so the phase-dependent terms «/4 arise However, as we are interested in the Aharonov-Bohm os-
in 5S/°(j), as can be seen from E@l5). With the same Cillations rather than in the absolute value of the UCF's

argument as above, the UCFSg(®) becomeh/2e periodic at 99, we now use a different method of comparison: We
this magic angler/3, so theh/e amplitude vanishes in the consider the oscillations in the conductance fluctuations re-

power spectrum. We note that, in the adiabatic regime, thi§ulting from different Aharonov-Bohm fluxes thrpugh the
magic angle is exact, since for the configuratipr0 we  fing. AS a measure for accuracy we take the relative error of

havesgd= s9(%s. This is shown in Fig. 3, again as a func- these amplitudes, i.e.,
tion of the tilt angle7=cot(B,/B,); see also Sec. V C and

Fig. 10. ~

Ak, Y%y 7. m)

2 2 ~ 2 2 ~
B. Quantitative criterion for adiabaticity m%){(b‘g( )= 59| y=5-0)— (695 — 59| y=3-0)I
. L o . - b.¢
In order to obtain a quantitative criterion for adiabaticity, = 2 2

we numerically compare the exact solution of the conduc- m§>459 — 69 |¢=?¢3=o|n,77=o
tance fluctuationssg?) with the adiabatic approximation ¢

593 [Eq. (12)]. We take equal magnitudes for both fields, (19
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0.5
0.4
B\I
50 a FIG. 3. The normalized amplitudes of thée
0.3 - oscillations in the UCF's5g®, with =0, as a
200 G function of the tilt angley. The field was taken as
""" B=(2/\3)Bje,, Bj=const, andB, was deter-
100 G mined through the tilt anglg. We use the same
0.2 - methods and parameters as described in Fig. 2 for
Bj=50 G, 200 G, and 400 G. We notice that
the h/e oscillations become suppressed by the
01 Berry phase at the magic angle ops /3.
0

Again we search for a minimat,,, so thatA is bounded consider rings of increasing circumferente we can see
from above by a certain percentage over the whole parametéiom Eg.(5) that the minimal magnetic field strength needed
subspace. We notice from the results shown in Fig. 5 that islecreases @,4<L 2. However, to observe the Berry phase,
the regime with only moderate damping=+y°=0.1, adia- dephasing must not be too strong, so the condition
baticity is already reached ai~2. If we put this in the =Z2L¢,p should still be met. We note that for two equal
context of the experimental parameters given in the beginfields, the first term ofy®=Lc? in Eq. (6) depends ori.?,
ning of Sec. lll A, we expect adiabaticity to be fully reached Which restrains us from taking>2L ,, whereas the second
at magnetic fields of magnitude larger than 500 G. By com©ne depends foB=B,40n L. So not only the high mag-
paring this value with Fig. 2, we note that the qualitative N€tiC fields nt_aeded for_ a_ldl_abatlcny, but also_the small arm
effect of the Berry phase can already be seen for fields tha#idths a required to minimize strong dephasing due to the
are an order of a magnitude smaller, i.e., hB=50 G. penetrating flux, disfavors experimental setups with very

We now discuss the effects of different parameters<on smallL.
and on the minimal magnetic fields required to reach adiaba-
ticity, thus indicating favorable experimental setups. If we

10

Kmin 0.01

FIG. 4. This plot shows the minimat,,, required so that the
normalized difference 69'®— 69'%/|5g® is smaller than 0.01, FIG. 5. Here the quality of the adiabatic approximatiégty
0.05, and 0.5; i.e., the plot shows for which magnitudes of theEd. (12)] in describing the Aharonov-Bohm oscillations is shown.
magnetic field the exact solution of the UCR3g(®) agrees with the ~We used Eq(19) and sety“=y°=0.1. The surfaces shown are,
adiabatic approximationg!Z) [Eq. (12)] to a certain accuracy,,,  fom top to bottom, the minimal value &fy;, required for an agree-
is plotted againsy,,=min{y<,7°}; as the two field® andB may mgntA<0.01, 0.05, 0.1, and 0.pEq. (19)]. A~s expected, fory
have different orientations,® can become larger thayf'. As 59 = 7="0 we havesg®= 593 . For tilt anglesy, 7~ /2, the agree-
vanishes for large/“’®, our normalization is no longer well defined ment is obtained at low,,,,, whereas aty=7~0.25 larger fields
for y*P=1 and the value fok,,, diverges. are necessary.



PRB 62 CONDUCTANCE FLUCTUATIONS IN DIFFUSIVE ... 10 245

Introducing more impurities and thus decreasing the diffective Schrdinger equation for the cooperon propagator
fusion coefficientD leads to slower motion of the electrons with the HamiltonianhS,. The equation withh2, for the
around the ring, giving their spins more time to adjust to thediffuson, which will be required in Sec. IV B, can be ob-
local magnetic texture. Thus, the field strengths required fotained by applying the techniques explained in Appendix A.
adiabaticity to occur decrease Bg<D, which can be seen Note that in Eq(20) the momentum operator is still in the
from Eq. (5). However, such slow diffusion also leads to Cartesian coordinate system. Now we adopt a polar coordi-
shorter dephasing lengtlhs ,L¢MD1’2, assuming that, re-  nate system, withx',y’)=(r cos(2wx/L),r sin(2mx/L)) and
mains constant. To avoid such an additional dephasing, i.e(d,, ,d,.)= (- 3{sin(2mx/L),d¢, 3{cos(2mx/L),}), where x
leaving y*'° unaffected, the sample size must also be dedenotes the position along the ring and runs from Q.tGhe
creased a& xDY2 Thus, because ofxD 'L?, no net de- curly braces denote the anticommutator, which ensures the
crease of the required fields for adiabaticity can be gained biermiticity of the momentum operator. We now have
decreasing the diffusion coefficient.

IV. EXACT CALCULATIONS WITH THE SPIN-ORBIT hC/D — 2 3_2+iKU o
INTERACTION IN THE DIFFUSIVE LIMIT SO (2m)2 ax? 1z 2z
We turn now to the discussion of Berry phases induced by o L2 1 2% 2%
spin-orbit interaction. Instead of considering an inhomoge- I _(Glxcos_Jr oy, Sin——
neous field, we use here an effectiven-Hermitian Hamil- h D(2m)? 2 L L
tonian
27X 27X
oo 72 . B _O'ZXCOST+ O'ZySIHT,a . (21
= —+tlKkoq,— kKO
SO (277)2 axz 1z 2z
L2 To diagonalize the Hamiltonian, we follow the ideas used
a . ) i
: 2 (e,x o)) p, (20) abgve and use the operators defined in &y.but now with
he D(2m) f=f=1:

L ¢ 1 1

with spin-orbit interaction, using a coupling constantas JCID._ 5+501zi§02z, (22)

defined in Ref. 26, and with a Zeeman term from an external 2mi
magnetic field, which is perpendicular to the ring plane. One

arrives at this Hamiltonian by starting from the Feynman . ) I D
path-integral representation of the transition amplitude withVhich commute with the Hamiltoniartess’, as can be seen

spin-orbit coupling, as it is given in Ref. 27. One can thenUSINGL{N(X),dx},d,]= _{V‘D'(X)’ax}- We can now calculate
formally decouple orbital and spin motion, and following the the matrix elements dfisy in the basis defined in Eqg),
steps given in Appendix A of Ref. 6, one arrives at the ef-with f=f=1, as

—(j—1)2+ik—ix  iS(j—3) iS(—j+3) 0
A > iS(j—3) —j2+ik+ix 0 iS(—j—3
l,aplhsdj’ a'B')= 6 ~ . (23
>° Tlis-i+d 0 —jP-ik-ix o iS(j+3)
0 iS(—j—%) iS(j+3) —(j+1)%—ik+ir
and
—j2+ik—ik iS(j—3) iS(—j—3 0
< 2 > iS(j—%) —(j—1)>2+ik+ix 0 iS(—j+%)
jraBlhsdj’ a' B Y= 15 _ . (29
> T oist-i-) 0 —(j+1)%=ik—ix  iS(j+3)

0 iS(—j+1) iS(j+1) —j?—ik+ix
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In Egs.(23) and(24), we have introduced a dimensionless phase can now be enhanced by increasing the size of the
spin-orbit coupling parameter ring. However, the phase cannot be increased arbitrarily; for
largelL, the assumptioi®> x becomes invalid.

o= 2t (25)
hD 2m A. Magnetoconductance
By comparing Eqgs(5) and (25), we note that whilec is We shall now calculate the magnetoconductance with the

quadratic inL, the paramete®is only linearly dependent on formula from Ref. 6:
L. If we define an effective field angle for diffusive motion

with spin-orbit coupling e L 1
99s0 <X,a, x,,B,a>.
% 2, = _hC
tan7so=S/«, (26) mh(2m)" ap=*1 y—hso o7
and anticipate the Berry phase to be of the fab¥= cosy,
we obtain forS> « the dependencyb®~ «/SxL. Thus the With Eq. (23), we obtain the magnetoconductance
e? 2[4+ (M2 + )2 (M2 + y+ 1) + S 8m*+2m?(4y— 1)+ 2y+1]
09so= — (28)

Th | £ [4k2+ (M4 ) 2] [mA+ 2m2(y— 1)+ (y+ 1) 2]+ SA(mP+ y)[4m + m2(4y—3)+ y+1]’

wherem=j—2¢/ ¢, contains the Aharonov-Bohm flux. In [Egs. (23) and (24)] we obtain the propagators required in
Sec. V we will see that in the “adiabatic” limik,S>1 the the formula for the conductance correlaf&qg. (2)]. We use
magnetoconductancégso will show some similar proper- MATHEMATICA to obtain an explicit algebraic expression for
ties as for inhomogeneous fields, in particular a peak split&g(s% (which is lengthy and thus not reproduced heaad
ting in the power spectrum, see Fig. 11. plot it in Fig. 6 (see also Figs. 12 and L3rom this plot we
deduce that in a configuration with spin-orbit coupling, the
Aharonov-Bohm oscillations vanish for certain valuesSof
B. Conductance fluctuations and . It is remarkable that this happens, f8&2, at the

Morpurgoet al*? by specifying the parameters of the effec- SOme effective magic ang!%s. Thus we see that Berry phase—
tive Hamiltonianh$Y | as given in Eqs(20), (23), and(24).  like effects occur in 5gso as the amplitudes of the

In Ref. 12, conductance measurements were performed on Aaronov-Bohm oscillations become dependent otS.

given’2 @=55x101° eVem, L=6.6 um, vp=9.8 amplitudes of th(_a Aharonov-Bohm osciI_Iati_ons became de-
X107 cm/s, 1=1.0 um, and D=0 /2=4.9x 10° cné/s, pendent on the t_||t angley of th_e magnetic field due to the
we calculate with Eq(25) a numerical value oB~1/50.  Berry phase, as it was shown in Sec. Il A.
Compared to this, the strength of the Zeeman terml/2
(with |g|=15) is much larger. Within the diffusive approxi-
mation, this spin-orbit couplin§< « gives only a negligible
contribution to the effective Hamiltonian®™'® [Eq. (20)] and
thus does not produce any Berry phase effects. This very"
same finding has also been obtained in Ref. 28, based on
slightly different reasoning. Still, we show in Sec. V that a
spin splitting produced by the spin-orbit interaction can be 3y,
obtained in the “adiabatic regimek,S>1, which, however,
is in the opposite limit to the one reported in Ref. 12. So
although we cannot give a quantitative explanation of the
experiment? here, we can offer a qualitative interpretation,
see Fig. 13. Furthermore, there is an uncertainty in the spin- FIG. 6. The normalized amplitudes of thé2e oscillations of
orbit coupling parameter in InAs, as it was recently the UCF’s with spin-orbit couplingég&3. The power spectrum of
pointed out? and more experiments might be needed tothe Aharonov-Bohm oscillations was calculated at different values
clarify this issue. . . k=« of the perpendicular fields by varying the Aharonov-Bohm
To this end we Calpglate the exact, 1.e., without assuming,y o< é=d=1. From the power spectrum, the frequency contri-
any form of adiabaticity, expression for the conductance,ytion of theh/2e oscillation was normalized by the zero-frequency
fluctuations8g&3 in the presence of the spin-orbit interac- contribution and is shown here as a function ffS. We have
tion. With the block diagonalization of the Hamiltoniiang’oD assumed'=0 andy°=y°=0.1.

0.008

0.004
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FIG. 7. The magnetoconductandg in units of —2e?/h as a function of the Aharonov-Bohm flux/2 ¢, for different tilt anglesy of
the external field. We have chosen the dephasind.1 and the field; parallel to the ring plane to be constant, defined throBghx
=k sin p=2.0. The magnetoconductance is shown in black, while its contribution from the differentsspinsl are scaled by a factor of
2 and drawn in gray.

V. PEAK SPLITTINGS IN POWER SPECTRA make them visible. If the perpendicular field is varied from
— Bmaxt0 Bmax, the discrete Fourier transfor®FT) of such

an interval has a resolution of 1B2,,, i.e., the sampling
We discuss now the emergence of the Berry phase ifrequencies are separated by this value. Thus, the peak-

terms of a splitting of the frequencies of the Aharonov-Bohmsplitting term can only be made visible if this resolution is
oscillations in the magnetoconductafitesg and in the high enough, i.e., 1/Bna=1/2Bax

UCF's® 8g'®, which can be made visible in the power
spectrum? Both quantities depend on the spin-dependent 1
total phaseb ,, given here for the special case of the texture Bnac 5B - (31)

- 2
defined in Eq(1) and for two equal field8=B,

A. Frequency shifts in 6g and 6g®

We note that this restriction is still consistent with the ap-
O .1 =2/ po*cosny proximation made in Eq(29), since forB,=By/2 the ap-
proximated value of the Berry phase is larger than the exact
— 2] o value by only a factor of/5/2~1.1. _
‘/1+(B\\/Bz)2 Now we consider the case beyond the above approxima-
P tion. Here, an estimate for the frequency shifts can be ob-
~2¢lpo*+B,/B=B,(2B, *B| 7). (29  tained by counting the additional oscillations upon increasing
o _ ) ) B,. In this estimation we again neglect the change in fre-
The approximation used here is valid for small perpendlcula(1uency of the Aharonov-Bohm oscillations whi, is in-
fields B,<By. We have introduce®, = #o/A as the per- creased. However, now we take the mean value of the fre-
pendicular field that produces a flux of one flux quant#h;n  quency instead of the frequency Bt=0 as in Eq.(30).
through the ring, i.e., the period of an Aharonov-Bohm os-Varying B, from 0 to B, changes the Berry phase contri-
cillation in ¢. The Berry phase is not sensitive to the areabution to ®..; [Eq. (29)] from 0 to tcosn|BZ:BmaX, and so
enclosed by the ring; thus we prefer here to describe oscillaye optain the mean frequency shift
tions in B, rather than in¢. As both 6g and 8g‘® contain
periodic terms inb,; and® _,, they exhibit oscillations 1B,

2
with the Aharonov-Bohm frequency for homogeneous fields, ! =+ L ~ ii( - Bmax) ) (32
28;)01, shifted (at B,=0) by the frequency AB; Bl +Bf B 2Bf
1 1 When we have calculated the DFT &6 and g®, we have
EziB_’ (30 confirmed the predictions given above, i.e., we do not ob-
1 I

serve a peak splitting in theEQ,@,’,o1 frequency for lowB 4,
which results in a peak splitting in the power spectrum.  due to an insufficient resolution of the DFT. However, we do
These splittings are, however, generally on the order ofee a peak splitting in the DFT for higher fielgee Figs. 8

the resolution of the spectrum, which makes it difficult toand 9, which vanishes again fd@,& B . Since studies of
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1.95 2 2.05

8g [- 2¢* /]

0 0.5 1 1.5 2 2.5 3
Ky
FIG. 8. The Aharonov-Bohm oscillations in the magnetoconductaitzcas a function of the perpendicular fieRl,, shown here as
k,=k C0S7. The radial field component has a magnitude Byb< x =k sin»=2.0 and y=0.1. The vanishing oscillations nea,

~0.9,2.3(for the magic angle cog~0.4,0.75) are striking; this a direct consequence of the Berry phase, arising from a canceling of the
oscillating contributions of opposite spin directions. The inset shows the power spg&ain80 where a peak splitting is visible.

the DFT suffer from a restricted resolution, it might be moreterm itself already leads to a frequency splitting. So, for in-
promising to search for the Berry phase via the effects disstance, if we take the Fourier transform &§®(B,,—B,)
cussed in Sec. Il A. with respect toB,, we can observe a frequency splitting of
Finally, we point out that an anisotrop@gfactor affects the h/e oscillations of the diffuson contribution in the DOS
the size of _the frequency splitting. If tfgafa_ctor perpendicu- term 5g§%SD , given by
lar to the ring,g,, is larger than the one in the plane of the
ring, gy, the Berry phase dependence Bpincreases while 1 s Lol
the Aharonov-Bohm phase remains unaffected. As the total =+ &8 D )
phase isb . ~2¢/ po*+g,B,/g;By, the frequency splitting ABzeeman ~ 4HD 27
is increased by a factor @f,/g .

(34)

We checked numerically that the estimated frequency split-
ting [Eq. (34)] is correct within 20% even for parameters
_ o _ _beyond the assumptions made for the second line ofE&).

At this point it is important to realize that frequency shifts |t js important to keep this property of the conductance fluc-
can also appear in the conductance fluctuatiogS) for  tyationssg® in mind, when searching for Berry phase ef-
homogeneous fields, i.e., even when there is no Berry phaggcts. If vanishing Aharonov-Bohm oscillations or peak split-
present. For homogeneous fields the evaluation o Bds  tings in the power spectrum are used to identify the presence
straightforward, ah®’® [Eq. (10)] becomes diagonal; see of 4 Berry phase, one has to rule out effects coming from the
also Appendix C. We evaluate the density of sta@®S  zeeman term in the UCF's, e.g., by comparison with the
terms, i.e., the terms containing Rexlx,, in EQ.(2), inthe  results for homogeneous fields.

low temperature limit forp=7=0:

B. Frequency shifts in 6g<h§)m for homogeneous fields

1 C. Numerical evaluations
2 .
5g(D<)JsocRe E We shall now numerically evaluate the magnetoconduc-

cio T [yt +i(ak+ak)]? tancedg for a ring in an inhomogeneous field. We base our
a,a=*+1 . . .
analysis on the calculations from Ref. 11. In Fig. 7 we show

2 “ 242n o the Aharonov-Bohm oscillations for different tilt anglesof
~ T/2+Z 21 Y e T the external fieldB, which is set so strong that we are well
aa 1= within the adiabatic regime. We can readily see that #or
~~ ~m/3 a phase shift ofr occurs, which comes directly from
ak+ak P
Xcos{ZTrn <I>C’D+—H, (33 the Berry phase, compared to the oscillationsyatO0 and
2\/; n=/2. For the intermediate tilt angles the effect of the

. - _ Berry phase is only visible in the amplitude of the Aharonov-
where we have define®“'®= ¢/ po+ ¢/ . The approxi-  Bohm oscillations, as the phase shifts for the two spin direc-
mation on the second line of Eq33) is valid for v  tions occur with opposite signs and thus—if both spin direc-
>1/47?, ax+ak. From Eq.(33), we see that the Zeeman tions contribute equally—no phase-shift effect is visible.
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FIG. 9. The UCF'ssg®® for B=B plotted as function oB, (see first part of Sec. IIl A While the printing resolution is not high enough
to show the Aharonov-Bohm oscillations, the envelope clearly illustrates the non-monotonic behavior of their amplitudes, which vanish at
the magic angles;=0.72,1.15. We have taken a fixed radial component for both fields ef~BH=O.5 T. We have assumdd=3 um,
D=65 cnf/s, andT=0. The dephasing was taken into account according t¢@owith the parameters,=1.5 um, anda=60 nm. The
two insets show the contributions of tihé2e and h/4e oscillations to the power spectru(Ref. 30 in arbitrary units plotted against the
frequency in units oi;bgl. The right inset was scaled by a factor of 10. For the particular rangg ohosen here, there is a peak splitting
visible for theh/2e oscillations, while we observe four peaks around hiee frequency.

As such a phase shift at/3 might not be easy to observe, particular, one cannot rely on calculations where the dephas-
studying signs in the power spectrum provides an interestingng due to the inhomogeneous fields is not properly taken
alternative'? even though it requires a sufficiently high reso- into account. So if the dephasing due to homogeneous
lution, as discussed in Sec. V A. Indeed, we can observe affects is very small, e.g., on the order of 1/100, the ampli-
peak splitting in the spectrum of the magnetoconductance, asde of the oscillations gets reduced drastically as soon as the
shown in the inset of Fig. 8. We notice an even more distinctilt angle » changes fromm/2 to a smaller, nonzero value,
feature: the Aharonov-Bohm oscillations vanish at twosince the field inhomogenity causes additional dephasing.
magic tilt angles, co$=0.4,0.75, of the field. The mecha- Thus the Fourier transform of such oscillations has a domi-
nism for this effect is exhibited in Fig. 7, where it is shown nant contribution only from the first few oscillations close to
how the two contributions of the different spins suppress ther/2. This suppression of the remaining oscillations acts as a
oscillations. narrowing of the data windott and leads to a widening of

At this point, we would like to stress that the peak split- the peaks in the power spectrum, masking the peak splitting.
ting depends strongly on the different dephasing terms. ImThe oscillations are further suppressed by the additional

FIG. 10. The UCF's5g(® for
a homogeneous texture Bf plot-
ted as function oB, (see second
& 0.15 ¢ 7 part of Sec. Il A. We have taken
< the homogeneous field a®,
> =05 T andBj=0 G, and have
0.1} 0.5 i To5 ¢ 4 fixed the radial component for the
&, other field as=0.43 T. The re-
S maining parameters are chosen as
in Fig. 9. The inset shows the
0.05 ¢ i power spectruniRef. 30 in arbi-
trary units plotted against the fre-
quency in units ofp, *, which ex-
0!t i hibits a splitting in the h/e
contributions.

B,[T]
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=B. Taking the discrete Fourier transform &§‘? over the
rangeB,=0,...,1 T,yields a clear peak splitting of the
contribution of theh/2e oscillations to the power spectrum;
see left inset in Fig. 9. We notice a splitting into four peaks
=01 of the contribution of thén/4e oscillations(right inset of Fig.

x y=05 9). They only occur in the exact solutiodg(®, whereas
=08 592 exhibits only two peaks if we ignore they,
P e p-dependent dephasing, i.e., §)e;f’/~7D/—>yC’D and P—0 in
el ~— Eg. (12). We point out that the frequency shifts for théh
194 1.96 1.98 2 2.02 2.04 2.06 harmonics of the Aharonov-Bohm oscillations increase with
FIG. 11. The power spectrum of the magnetoconductancen and are thus are better resolved in the power spectrum with

59so(B) with spin-orbit coupling, Eq(28), in arbitrary units plot-  INcreasingn. We plot5g®)(B) in Fig. 10 for the special case
ted against the frequency in units ¢f . We have choses=4  B=(0,0B,) homogeneoussee also Sec. Ill A
and taken the Fourier transform of the magnetoconductance for 0 Finally, we consider the power spectrum of the magneto-
< k<4. We show the power spectrum for three different values ofconductanc&gsg in the presence of spin-orbit coupling. We
the dephasing parameter where we have downscaled the values use Eq.(28) and ignore for simplicity dephasing due to the
for y=0.1 by a factor of 10. Note that a peak splitting occurs only external magnetic fields penetrating the arms of the ring.
for the cases with larger dephasing. Indeed, taking the Fourier transform of the magnetoconduc-
tance, a spin splitting can be observed. However, the split-

dephasing arising from an increasing perpendicular fieldling is not as pronounced as in the case for inhomogeneous
which penetrates the ring arms. Of course, it is possible tdields. Especially important, the splitting is only visible for
remove this unwanted overemphasizing of certain oscillasufficiently large dephasing parametersiproduced by in-
tions from experimental data in a postprocessing step; usinglastlc scattering which can be seen in Fig. 11. In contrast
a standard windowing functiofwe used the Hann windotv 0 the effects discussed before, using a windowing function
for the inset of Fig. 8for DFT’s greatly reduces this prob- Was not sufficient to identify a peak splitting for moderately
lem, in addition to the usual reduction of components leaksmall dephasing parameteys=0.3. Qualitatively, however,
age of neighboring frequencies in the power specttim. the power spectra of the magnetoconductance for inhomoge-
For the conductance fluctuatiortg®, we will further ~ neous magnetic fields and for spin-orbit coupling agree, with
illustrate the effects of the two configurations discussed ifPoth showing a peak splitting.
Sec. Il A. In Fig. 9 we show the Aharonov-Bohm oscilla-  The UCF’s with spin-orbit interactiodg are plotted in
tions occurring in6g‘? when the fields are equal, i.eB, Fig. 12 as a function of the perpendicular fieBis=B,. We

2.03 3.94

0 100 200 300
B,=B, [G]

FIG. 12. The UCF’s&g(SZ(_)j with spin-orbit interaction foB=B plotted as function oB,. We have takenv=1.0x10"° eV cm, L
=12.5 um, D=2.0x10"2 m?s, g=15, and have assumdd=0. This gives uS=1.6[Eq. (25)], and«(B,=300 G)=4.2[Eq.(5)]. The
dephasing was taken into account according to(Eg.with the parameters ,=5.0 um, anda=120 nm. The envelope of the Aharonov-
Bohm oscillations shows a nonmonotonic behavior, which also appears in the UCF's for inhomogeneouds filgee Fig. 9. Theh/2e
oscillations are strongly suppressedBy=30 G, which corresponds te/S~0.25, as can also be seen from Fig. 6. However, this
suppression is not very obvious in this figure, sihéée oscillations are present f@,~30 G. The two insets show the contributions of the
h/2e andh/4e oscillations to the power spectrum in arbitrary ur{i®ef. 30 plotted against the frequency in units ¢gl. The right inset
was scaled by a factor of 10. For the particular rang8p€hosen here, there is only a single peak visible fortie oscillations, while
we observe a small peak splitting around ttide frequency.
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VI. CONCLUSIONS

0.04 We have calculated the exact conductance fluctuations
59? for a special textur¢Eq. (1)] and given its adiabatic
approximationsg{? . In addition to the already known dif-
ferential equations for the cooperon we have derived the
ones for the diffuson in inhomogeneous magnetic fiéks
pendix A). With the resultsg{?) the dephasing due to inho-
mogeneous fields became explicit and could be compared
with previous calculatioffswhere adiabatic eigenstates were
used and this dephasing was only implemented with a phe-
0 nomenological parameter. Then we have described some
094 09 098 1 - 102 104 106 magic tilt angles of the magnetic field at which the Berry
FIG. 13. The disorder-averaged squared power spectrum of thShase suppresses the Aharonov-Bohm oscillations. We have
CondUCtancé.'gSO(V”Z.) [Eq.' (39)] Wit? Spin'orb.it interaction plot- used this effect to illustrate how the adiabatic critérion be-
e vion e b raeton a5 JOTES cradualy saisfed. We have calculated rumerical
Fig. 12, but now Witha.:2 0X10-° eV cm, and thuS—3.2 [Eq e req_u|req magnetic field .strength for which the ad|abat!c
(25)'] V’Ve have calculated the second te’rm of E3p) exblicitly' approx[mafuon'becomes_ valid and have.shown that the' a@a—
’ ) ) - i batic criterion is less stringent for diffusive than for ballistic
(see text, while takingB, B, & [ ~Bmax,Bmad With Bna=0.1 T, ytion, thus confirming previous findin§s?
which gives us a maximal valugnac—= 14 [Eq. (5)]. The peak split- Furthermore, we have calculated the magnetoconductance
ting into the inner two peaks is produced by the spin-orbit interac-, , y ye conductance fluctuations for a diffusive conductor in
tion, while the larger satellite peaks result from the Zeeman tern}he presence of spin-orbit coupling. A numerical analysis
[Egs.(33) and (34)] revealed a nhonmonotonic behavior of the amplitudes of the

observe a Berry phase—like frequency splitting in the powerAharonov-Bohm oscillations and peak splittings in the power

. L L spectrum—observations that are similar to the Berry phase
spectrum. However, as this splitting is rather small, it is only . 2T
T o T . effects we have found for inhomogeneous magnetic fields.
visible in theh/4e oscillations, where the splitting is twice as _. ) i
; - ) . Finally, we have described the mechanisms that lead to peak
large as in théh/2e oscillations. Again, the suppression of

i N o ; L splittings in the power spectrum of magnetoconductance and
the Aharonov-Bohm OSC'”"."“O”S at/5~0.25 is a distinct UCF’s and have discussed numerical requirements to make
feature of a Berry phase-like effect.

A quantity, which was subject of recent studé<®is the such peaks splittings visible.
disorder-averaged squared power spectrum of the conduc- ACKNOWLEDGMENTS
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On the one hand, we recognize that the first term contains t ~tion
ion.

Fourier transform of théaveragegimagnetoconductancty,
which has frequency contributions from hg2e oscillations.
On the other hand, the second term of E@5 is
given through the conductance fluctuationsg® as

[fd BZdEZexq2wi »(B,—B 2)}59(2)(5,§). This term contrib- Here we will transform the exact conductance correlator
utes frequencies corresponding hige oscillations, coming for diffusive systems and arbitrary magnetic textures to make
from the diffuson termsg@ in the conductance fluctuations. @ Schialinger equation approatipossible. Furthermore we
Thus, if we now investigaté/e oscillations, we can restrict will derive the explicit differential equation for the dlffus_on
our studies to the second term of H85). We have evalu- Propagator(the one for the cooperon has been derived
ated(|g(»)|?) for inhomogeneous fields, with the parameterspreV'OUS|>9)- _ ,

given in the caption of Fig. 9. A splitting of the frequency The conductance correlator has been derived in Ref. 6,

corresponding to thé/e oscillations was observed and was USing diagrammatic techniques, and is given by

APPENDIX A: DIFFERENTIAL EQUATIONS
FOR COOPERONS AND DIFFUSONS

identified not to result from the Berry phase but from the o\ 2

. 2e“D
Zeeman term already present in the case of homogeneous 5g(2)= f dede’n'(e)n’(e')f dx dx’
fields [Eq. (34)]. Then we examined|gsq(v)|?) with spin- hL?

orbit coupling for various parameters. An additional peak
splitting to the one produced by the Zeeman t¢Eq. (34)] x >

appears for some specific parameters, i.e.Sfiarge enough ay,ay,a3,a
to reach “adiabaticity” and for large enough sampling inter-

vals of B, andB, to obtain a sufficiently high resolution in
the power spectrum. In Fig. 13 we see such a splitting of the
h/e contribution into four peaks. However, using the param- +[XC_>XD]], (A1)
eters given in Ref. 12, we ha®-=1/50 andk~ 1/2 (see Sec.

IV B) and in this regime we do not observe any peak splitwheren’(e€) is the derivative of the Fermi functios,w= e
ting, in accordance with Ref. 28. — €', andd describes the dimension of the system with re-

1

C 2
[a‘){alaz,asa‘l(x’xr’w)

c C
+2 RQX‘YIQZ’“S‘M(X’X/ ’w)Xazal,a4a3(Xl !Xvw)]
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spect to the mean free palthThe inverse Fourier transform and the complex conjugate of, for the diffuson. Passing to

of the cooperon/diffuson propagatons™(x’,x,w) were  Fourier space and operator notation, the above equation be-
obtained?” as comes

C/D 1oyt
Xayay,aga,(X Xt ,b)

ot 1) | 7 DRex 1Jt,d
= - Iy T
R(t)=x 4D J4

2m)? ~ep 2
| (iw—D—( L? hC’D)Xg’DzL (A5)
R 2]

where the effective Hamiltoniah®® is defined in Eq(4).

e v : S+ R + Finally we express the conductance correlation in terms of
xexpli—| dr[R-A®™R(7))+R* - AMR*(r y p
W’ ﬁJ; [ "R(7) R ))]] the operatorgS’® . We note that withy g (XX, w)*

ajap,azay

_Oue [t = (X', aga| Xg|X azar)* = (X, aza| XX, asaz) and
><< dadz Texp[ ! ﬁft d7iB(R(7)- o1 leaz,a3a4(xvx/1w)* = (X', aza|xolX, azaz)*
=(X,a3a;,|x2T|x",a4a;) we can simplify the terms in Eq.
—E(R*(ﬂ)-aﬂ] a3a1>, (A2)  (AL):

\&/I:ZTQR (1)=R(t'+t—17) is the time-reversed path of f dx dx’ z . |X2132’03a4(x,xl’w)|2:Tng/DXi/DT
For explicit evaluation it is convenient to transform this (AB)

path-integral representation into a differential equation. In

the case of the diffuson we first have to eliminate the time-and

reversed paths. As a result of reverting the time integration,

an additional sign appears in the second term of the electro-

- : : : ) cip
umsfég?heeu?e\fzgg;r potential. For the Zeeman interaction we canJ dx dx’%; w XS o g XX OIXG 0 (XX @)
~CID2C
Que [t o =Trxe Xa - (A7)
as|7Texpy —i——| d7B(R™(7)o}|ay
2h J¢
g % APPENDIX B: FINITE TEMPERATURE INTEGRALS
. Bt , ~
= < @1 Texp<| 27 ft dTB(R(T))"'J 0‘2> We shall explain here the integrations performed to obtain

Eqg. (18). We are interested in

Texp{ i %f:'dr’ém(r))a*}

The latter equation can be proven by writing the time- _ P / E 1
. . 4 = | de'n'(e') | den’(e)
ordered product as a Dyson series and by inserting a resolu- d (e— €' +a)’+c?
tion of unity in spin space between all produ¢B(x;) o]
X[B(X;+1) o], thereby arriving at an expression with terms 1 )

A3) I=fde'n’(e’)J

of the form(a|Bj(x;)oi|B)*. Such terms are the complex +2 Re(ie_ielﬂa_c)z (B1)
conjugate of Pauli matrix elements multiplied by the real
numberB;(x;). So we can rewrite them gs|B;(x;) 7| 8),
remove the previously inserted unities, and go back to th
time-ordered product.

Now we can give the differential equations for the propa-

gators

J
—+D
(at'

ith a,c real andc>0. We consider a rectangular integra-
ion contourl” with one side lying on the real axis, extending
M =271/ B towards the positive imaginary axis and the same
amount on each side of the real axis. For any positive integer
I, the absolute value of the Fermi function is bounded above
2 on such a contourfn(z)||r<2. The integrands considered
further below are a product of the Fermi function and a ra-
tional function decaying with at leag| 2. The integral of
these products over the sectionlofin the upper half plane
will thus vanish forM —«, as we havéz|=M on this con-
tour. We further note that the complex expansion of the
Fermi functionn(z) has its poles az=iw,, where w,

=8(x' —x) (' —t)ﬁ, (A4) =n/B are the Matsubara frequencies anis an odd inte-
A ger.

where x/P(x’,x;t’,t) is a matrix in four-dimensional spin We expand the first rational function in E¢B1) into
space. The upper sign is for the coopefdhge lower sign partial fractions and then integraleby parts:

9 e -
i AT A
ox

B %[B(x')-«n—é<x'>-a&“])&c’D(x',x;t',t)
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11 1 conjugate. As before, we first integrate by parts os’eand
j den(e) d2ic (—)2 apply the residue theorem afterwards. This results in
e—¢€'+a—ic
_ Re___ 2 AT f denen|: 1 1
/ 2 ) 13 =—Re n
(e— €' +a+ic) (e—€'+a+ic) 3 nod o) o€ (€' d (i, +e —atic)?
1 [ :
:Ref den(e)[ - N 6
dc(e—e'+ar+ic) (iwn+ e —atic)*
4 ] 2
_ ] (B2) _877 1 1
’ f\3 =——->Re -
(e—€'+a+ic) B? n,mEOEicbO d ¢(wp+ wyt+iatc)®
We now evaluate the integral along the contour described
above. As the poles of the rational functions in E8_2) are n 6 (B4)
in the lower half plane a¢’ —a—ic, they are not within the (wp+ wp+ia+c)?

integration contour. Applying Cauchy’s residue theorem and
accounting for the residues of the Fermi function

esn(2) =i, = (— 1/B) yields APPENDIX C: UCF'S 892, FOR HOMOGENEOUS

FIELDS
, 27 [1 1 _
- 7 G0 | d clim— e +atic)? For homogeneous fields we haye= =0 andf =0, thus
e Clion=e€'+atic) the Hamiltoniansh®® [Eq. - (9)] become diagonal with the
4i matrix elementg?+iax—iak. Now we evaluate the propa-
* (ion—€ +atic)® (B3) gatorsy“’® [Eq. (3)] and by evaluating the integrals over the

Fermi functions in Eq(2) explicitly by using standard Mat-
For the second integration in E¢B1), we replace the subara techniques, as explained in Appendix B. We obtain
expression in braces in the above equation by its compleXg{zh= 592, ¢+ d9'2), o, where

oo ) 1
Re E [
n,m

aa==11=7% d(y“P+jH)[bamt yP+ (2 +i(ax—ax)]?

2
5g§10)m =
C/ID

eZ 2 1 LZ
F) @<_

6
+ == , C1
[bpm™ 'yC/D+j2+i(aK—aK)]4] (€

2) _
5ggo)m_

1

dj[ P2 273
=L2/(2mL,)?, according to Eq(6). -2 Ly + i bamt y+j7]
If the spin-channel mixing is suppresséd., k=) in 6 }

and we have introduced,,= (n+m)(L/L{)%/47. Heren  replace thg sum in Eq.(C1) by an integral. The Aharonov-
andm are positive, odd integers. The Aharonov-Bohm flux isBohm phase can then be removed by shifting the integration
ther evaluation we now set=«. We describe the summa- 5
tion of cooperon and diffuson terms with a prefaci®r e_)zi ZQSQU |—_2

| It . h/ 8=® B L7
symmetry is broken, so the cooperon contribution vanishes.
Thus we haveﬁgﬁ%)m~(2/ﬁ) 8g{2), o and from now on we J'oo

n,m

implemented by replacing— j —(¢/¢o* Bl o). For fur- variablej and we obtain
which is 1 if both terms contribute and 2 if time-reversal
only consider the dephasing parametery= 1P XEI

Eqg. (C1), we can replace the sum over the sphg, by the L ———y

number of spin stategs. For weaker magnetic fieldsk( [bamt y+j<]

<) we have full spin degeneracy and obtain the fag@)r o 02 Lo 5

Accounting for valley degeneracy yields a facgr. In the limit (27)°L_<L",27LT, we have
Since we will check our results against the ones given in

Ref. 24, where one-dimensional systems were considered, 277L$ L%

we taked=1. Since we will evaluate some limiting cases 5 (y+jd= >>1 (Cy

below, whereL>2=L,, we havey>1 and can therefore L Ly

(C2




10 254 HANS-ANDREAS ENGEL AND DANIEL LOSS PRB 62

Thus, we can use Poisson’s summation formula to replace 4 9?92 (e?\2L2 L 1
the summation oven andm in Eq. (C2) by integration to 69\2) =— s2v (_) e -
arrive at m B \h] 2L am [L(n+m)]?
2m 9307 (€?\ 2L L
202 1 22\ 2 rop ; — | L =#
592 _igsgv(e_) f a4 3 B (h) 2L ©9
0 477_4 :8 h —°°('}’+j2)2 , . -
22 as . Indeed, our resultﬁggo)m given in Egs.(C4) and (C5
99, (€ L, agrees with these of Ref. 24. Thus, on the one hand, we have
=3 B (F) (T) : (€4 confirmed that the result from Ref. [ised in Eq.(2)] is

consistent with earlier calculatio$?32*On the other hand,
in Eg. (C1) we have given an explicit formulénot known
We now consider another limit, AL2<L? (2m)?L2.  pefore as far as we are aware describing how the spin-
Again, we start from Eq(C2), but now we first calculate the channel mixing becomes suppressed for increasing magnetic
integral over j, which has the dominant contribution fields, such thasg{2), contains a prefactay? for low andgs

my~ Y273 since < y<b,,. Thus we obtain for high magnetic fields.
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