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Density-functional calculations of the elastic properties of some polymer chains
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The force constants and elastic properties of some polymers are calculated with a full-electron, crystal-
orbital density functional method. Calculations are carried out on single helical chains of polyethylene, poly-
tetrafluoroethylene~teflon!, polyglycine ~nylon-2!, and nylon-3. The longitudinal elastic moduli are obtained
both from the Hessian and by direct elongation relaxations. The different degrees of freedom of the polymers
are ranked according to their contributions to the elastic response. It is shown, that a proper choice of the
internal coordinates makes it possible to keep some of them frozen during the process without a considerable
loss of elasticity.
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I. INTRODUCTION

The calculation of the elastic properties of polymer cha
from theory has been carried out by several authors u
from semiempirical to first principles methods. However t
basic scheme is similar in all of these models. First the eq
librium structure is determined and after that, the elas
properties are determined from the properties of the ene
hypersurface at this point. The main difference among th
models is the method that provides the required poten
energy surface. The first family of these models is based
molecular force fields that substitutes the quantum mech
cal interaction of particles in the molecule with classical
teractions and uses classical mechanical laws to determ
the potential energy surface. In the second family of
models, the potential energy surface is calculated quan
mechanically either using solid state physical approache
quantum chemical methods. In the solid state approach
polymer chains are ordered in a three-dimensional cry
structure and the distance of the neighboring chains are
sen large enough to neglect the interchain interaction. In
quantum chemical approaches the chain properties ca
derived from oligomer calculations. These methods use o
a finite part of the polymer to calculate the elastic proper
and try to reach the convergence by increasing the lengt
the finite chain. This method suffers from the ‘‘end effect
the structure of the finite chain differs from the structure
the infinite polymer. One of the possible solutions of th
problem is the cluster difference method used by Crist
Hereña1 that minimizes the influence of the chain ends on
repeat unit energy by substracting the total energy of oli
mers containingM11 andM repeat units.

This problem does not arise if the helical symmetry of t
PRB 620163-1829/2000/62~15!/10142~9!/$15.00
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infinite polymer chain is used explicitly in the chain directio
as it was used by several authors.2–9 In our approach the
potential energy surface of a single infinite chain is trea
by first principles density functional method~DFT!, the he-
lical symmetry along the polymer chain axis is utilized.

The outline of our paper is as follows. In Sec. II we sum
marize the theory of the calculation of the elastic propert
of quasi one-dimensional polymer chains. The main featu
of the DFT polymer program used and the details of
numerical realization are also given in this paragraph. T
calculated elastic properties of two vinyl type polyme
~polyethylene PE and polytetra fluoroethylene! and two
polyamides~polyglycine and nylon-3! are described in Sec
III.

II. METHOD

A. Treatment of helical chains with DFT

The total energy calculations are carried out with t
POLYXA program10 of Mintmire. Details about the code ar
published elsewhere; here the main features which are
portant for the present results are summarized. Full-elec
single point total energy calculations are done with crys
orbitals. The crystal orbitals11–13 are expanded in Bloch or
bitals built from Gaussian atomic basis sets. The infinite
lical chain is subjected to a density functional~DFT! self-
consistent field calculation. The Slater-Ga´spár-Kohn-Sham
local density exchange is combined with the Perdew-Zun
parametrized14 correlation potential based on the Ceperle
Alder data.15 Periodic boundary conditions are used but
finite neighbor approximation has been done. A triple v
10 142 ©2000 The American Physical Society
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lence zeta basis set with polarization functions~TZVP! of
Godboutet al.16 is used throughout the calculations.

B. Force constants and longitudinal elastic properties

The total energy of a general infinite polymer chain w
helical symmetry is considered as a function of the nucl
frame geometry. In the Born-Oppenheimer approximat
the nuclear frame is held fixed while the corresponding e
tronic state is obtained. In the general case~with no special
symmetries! N number of nuclei in the repeat unit of th
helix ~unit cell! have 3N26 internal nuclear coordinates, th
position and the orientation of the screw axis with the t
parameters fixing the screw operation gives six degree
freedom, which in total results in 3N degrees of freedom fo
the whole helical chain. Choosing appropriate parame
(x1 ,x2 , . . . ,xn)5x with n<3N the conformation of the
polymer is given and a single valuedE(x) energy can be
calculated. A fixed nuclear conformation determines the
ear size of the system via ageometricalrelation c5c(x).
This typical linear extension for an infinite helix is chosen
be the translational distance in the screw operation. The
sponse of the system with respect to elongations along
chain axis is characterized by the total energy at a gi
length defined as

E~c!8 min
xPGc

E~x!5E@x~c!#, ~1!

whereGc is the set of those configurations which results in
given c. This minimization provides a way in which thec
5c(x) geometrical relation can be in a certain sense ‘‘
verted’’ to x5x(c).

Around the equilibrium configuration of the syste
(x0 ,c0 ,E0 , . . . ) theharmonic response to small elongatio
is given by the force constant

F8
d2

dc2
E~c!U

0

. ~2!

For single chain infinite polymers the more relevant quan
is the longitudinal elasticity counted per unit length with t
definition

f 8c0F. ~3!

Whenever a cross section areaA can be attributed to the
chain ~e.g., for crystallinelike parallel chains! the Young’s
modulus is related to these constants as

Y8F c0

A
5

f

A
. ~4!

In the direct ‘‘elongation-relaxation’’ methods one calc
lates the response of the system to elongations by deform
the equilibrium geometry so that the length changes. Ke
ing this nonequilibrium length unchanged a constrained
optimization of the structure is required. Calculations
several strains samplesE(c) with a small number of points
$E(ci)% i from which the second derivative around the min
mum can be calculated by fitting the data. This method
been extensively used2–6 for single chains and for the soli
state of polymers.
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The Young’s modulus is however an equilibrium prope
of the system. The connection of it with the other equili
rium quantities

gi8
]c~x!

]xi
U

0

, F̂i , j8
]2E~x!

]xi]xj
U

0

~5!

is given by the exact relation

F5~g,F̂21g!21 ~6!

as it is derived in the Appendix. This expression is direc
applicable whenever the~invertible! HessianF̂ of the system
is given. Hong and Kerte´sz7 used a scheme equivalent to th
above one in order to calculate the Young’s modulus fr
semiempirical and ‘‘spectroscopical’’ force constants.

The full Hessian contains a lot more information th
what is needed for the longitudinal elastic response. T
evaluation of all the second partial derivatives might be
expensive or even practically unrealizable for a complex s
tem, for which the Young’s modulus could have been cal
lated in an easier way by, e.g., the direct method. In t
paper we investigate which coordinates are important in
der to obtain a good approximate characterization of the e
tic properties from a reduced set of degrees of freedom.
use of the full Hessian is a powerful tool to carry out such
study. The Hessian calculated in one coordinate sex
5(x1 ,x2 , . . . ,xn) is easily transformed to anothery
5(y1 ,y2 , . . . ,ym), possibly reduced (m<n) one with the
aid of the Jacobian matrixĴ5]y/]x as

F̂y5 ĴTF̂xĴ. ~7!

In particular in areduced setof coordinates, where the re
duction is done with constraints which are automatically s
isfied at the equilibrium configuration~e.g., fixing a coordi-
nate to its equilibrium value! one has

Fy5~ ẏ,F̂ẏ!>Fx ~8!

because of the variational nature of Eq.~1! with respect to
the enlargement of the configuration space. The relative
ference

DF5
Fy2Fx

Fx
~9!

measures the contribution of the omitted degrees of freed
to the longitudinal elastic modulus.

C. Numerical realizations

1. Structural optimization

Although for the polymers treated here one can find
structure both from experiments and from papers on str
tural optimization, one has to carry out an optimization wh
the second derivatives of the energy are in question.
system must be in the harmonic regime with respect to sm
changes in the parameters around their relaxed values
Hessian of the system should be positive definite. In our c
it was achieved with adjusting the configuration until t
maximal component of the energy gradient became sma
than a given tolerance typically around 1023–1024 ~under-
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10 144 PRB 62F. BARTHA et al.
stood in hartree/Å or hartree/radian!. The numerical gradi-
ents are calculated from single point total energy calculati
with finite differences upon changing the parameters in
order of magnitude 1024–1025 (Å or radian!. We have tried
several optimization algorithms, the most reliable and e
nomic we found and used was the Broyden-Fletch
Goldfarb-Shanno one.17 Starting from a reasonable guess
the equilibrium coordinates the relaxation was found
about the same number of steps as the number of optim
tion parameters.

2. Elongation relaxation

Our method consisted of the following steps.
~1! First we make a full optimization of the unconstrain

energy. In addition to evaluating the energy gradients in e
relaxation step we also evaluate the gradientg of the length
as a function of the internal configuration parameters. Th
derivatives are calculated numerically. Although there mi
be a way to use the analytical geometrical relationc(x) to
get these gradients, this relation could be too complicated
nonsimple unit cells. Regarding the overall loss of precis
in the full calculation, there is no need to have the ex
gradients instead of the numerical ones.

~II ! Next, we elongate the chain. In a complex polym
the cell length itself is rarely chosen as an independent o
mization parameter. The screw parameters are often m
conveniently defined with the use of internal coordinates
tween nuclei in neighboring unit cells. Without a direct co
trol of the cell length there is an ambiguity as to how
change the internal parameters to achieve a desired c
elongation. It is reasonable to select deformations prop
tional to g. If a strain

«5
Dc

c
>

~g,Dx!

c
~10!

is required, the following choice of parameter changes
appropriate:

Dx5
c«

~g,g!
g. ~11!

~III ! Then we carry out a constrained optimization of th
deformed configuration. The constraint can be taken into
count as in Eq.~A1!, i.e., at each relaxation step the comp
nent of the energy gradient normal to the constraint surf
~parallel tog) is to be canceled before making a step.

~IV ! Typically we use five points with strains: (0
60.77%,61.23%). These small distortions make it possib
to relax the strained system with 3–4 relaxation steps to
desired accuracy. This is rather important in the case o
complex polymer, where one has a large number of par
eters for which the calculation of the full Hessian is prac
cally impossible.

3. Second derivatives and inverse Hessian

The Hessian is calculated with finite difference metho
three-point formulas are used for the diagonal eleme
seven-point for the mixed partial derivatives. All points
the configuration space are symmetric with respect to
central point ~assumed minimum!. We use displacement
s
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typically in the range of 1023–1022 ~in Å or radian!. Higher
precision is unreliable because of the numerical noise, lo
is inappropriate in order to stay in the harmonic region.
careful optimization followed by a numerical differentiatio
in this way gives numerical second derivatives with pre
sion not worse than60.03. This has been tested by varyin
the threshold for optimization, choosing different coordina
to describe the polymer, using different step size, etc. T
final Young’s modulus is compared with the elongatio
relaxation one and shows, that the corresponding force c
stants are good within the precision given.

The polymers treated here have symmetries that mak
possible to reduce the maximal 3N number of independen
degrees of freedom. The Young’s modulus can already
calculated from the minimum number of such paramete
assuming, that the symmetry is preserved or the breakin
it has a negligible contribution to the longitudinal force co
stant.

The Hessian matrix elements obtained here refer to
‘‘in phase’’ or k50 lattice vibrations, i.e., the deformation
in the unit cell are repeated periodically in all cells. Th
makes it difficult to compare the Hessian with that of a m
ecule if the intercell coupling is not negligible. For examp
we have oner CC per unit cell for polyethylene, but when
changing it we change this length over the whole chain. T
cumulative force constant is

F5F [0]12(
n51

`

F [n] , ~12!

whereF [0] is the ordinary diagonal force constant for elo
gating exactly oner CC bond in the polymer as supermo
ecule, whereasF [n] is an off-diagonal constant describing th
coupling of two bond elongations done in two different ce
that arenth neighbor to each other.

The inversion of the Hessian is needed in order to use
~6! to obtain the longitudinal force constant. Care should
taken with nondefinite or poorly definite Hessians. Negat
eigenvalues can appear because of imprecise optimiza
whereas zero or small eigenvalues can enter if such deg
of freedom are also considered, which do not have str
influence on the energy. The elimination of these coordina
is done by diagonalizing the Hessian

Û†F̂Û5V̂, V̂i , j5v id i , j ~13!

and using

~g,F̂21g!21'S (
v i.1e

hi
2

v i
D 21

, h5Û†g. ~14!

Omitting small eigenvalues is allowed only if the corr
spondinghi

2 are small, in which case the indefinite 0/0 lim
is being excluded.

III. RESULTS

A. Vinyl polymers

For both polyethylene~PE! and polytetrafluoroethylene
~PTFE! the ~nontranslational! unit cell consists of one
@-CX2-# group, whereX is understood to be H for PE and
for PTFE. The helix is built with a screw operation involvin
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a rotation of the cell with 180° combined with a translatio
the distance of which is referred to as the cell length (c). The
assumed symmetry makes it possible to use the mini
number of four free parameters fixing a configuration of
chain. However this minimal set of parameters gives rise
misleading effects, that is to be seen in the example of p
ethylene. For a better understanding of the elastic respo
the release of symmetry requirement and the use of m
configurational parameters turns out to be more appropr

1. Polyethylene

The planar zigzag conformation is known to be the eq
librium structure. The minimal set of parameters to build t
full-symmetric chain were chosen as: CC bond dista
(r CC), CCC bond angle (q), CH length (r CH), and CCH
bond angle (w), as shown in the left panel of Fig. 1. Th
optimized values of the parameters obtained with our tre
ment are listed in Table I. They compare well with oth
published data.18,20–22The columnDF measures the impor
tance of the different degrees of freedom in the elastic p
cess. These numbers show the increase of the longitud
force constant if the corresponding variable is kept fixed
its equilibrium value. For example,DF516.3% for variable
w gives the relative error in the Young’s modulus@according
to Eq. ~9!# if it were calculated using the reducedy
5(r CC,r CH,q) coordinate set instead of the fullx
5(r CC,r CH,q,w) one. From Table I one concludes, that t
two most important elastic degrees of freedom are the
bond stretching and the bending of the CCC bond angle.
change in CH bond length does not contribute to
Young’s modulus, it can be kept frozen at its equilibriu
value, as is intuitively expected. The noticeable role of
CCH bond anglew is surprising. Hong and Kerte´sz7 also
observed this phenomenon, namely, that the CCH b
angle is strongly coupled to the CCC bond angle and
relaxation of it significantly reduces the modulus of the po

FIG. 1. Internal coordinates of polyethylene utilizing the fu
symmetry ~left panel! and without symmetry restrictions~right
panel!.

TABLE I. Hessian matrix (F̂), optimized geometry, and elasti
importance (DF) for polyethylene.

Variable F̂i , j
Optimum DF(%)

r CC 1.12 1.513 83.0
r CH 0.09 2.17 1.112 0.0
q 0.19 20.10 0.46 113.6° 46.4
w 0.25 20.17 0.61 3.07 109.4° 16.3

r CC r CH q w
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mer. The coupling constant in the present calculations
found to beFqw50.61 which is large compared to the dia
onal elementFqq50.46 and consequently reduces the rig
ity of changing the CCC bond angle. This is but a mislead
artifactual effect of using this minimal set of coordinate
When one specifies the CH bonds with their two bond ang
to the neighboring CC bonds, the deformation of the CC
angles changes the orientation of the CH bonds heavily.
Fqq force constant includes this effect of changing the C
bond alignment to a great extent. This must be compens
with a subsequent relaxation of the CCH bonds not to dis
the tetrahedral group so much. We have carried out indep
dent calculations treating all the nine degrees of freedom
PE without symmetry constraints. The standard coordina
used arer CC, CC bond distance;r CHi , CHi bond distances;
q, CCC bond angle;w i , CCHi bond angles;t i , CCCHi
improper torsion angles; and CCCC dihedral angles~right
panel of Fig. 1!. This last angle is not listed in Table II, as i
small distortions from the 180° value of the planar config
ration has too small of an effect on the energetics of
system. Although symmetry has not been forced, the o
mized geometry is found to be symmetric. The spontane
conservation of the symmetry makes it possible to cons
the transformation (r CC,r CH1,r CH2,q,w1 ,w2 ,t1 ,t2)
→(r CC,r CH,q,w) between the two parametrizations of Fi
1. Using the Jacobian matrix ofr CH5r CH15r CH2, w5w1
5w2 , t5t152t2 and cos(t)5tan(w)@12cos(q)#/sin(q)
according to Eq.~7! the 838 Hessian matrix of Table II
contracts to the minimal 434 Hessian of Table I. This tes
justifies the assumption on the numerical precision w
which the optimized coordinates and the second derivat
are obtained in these calculations.

With the use of the eight configurational parameters,
artifactual effect of neglecting the CH bond’s relaxation
avoided, as the CH bonds are now fixed with their bo
angle~s! and a dihedral angle. The deformation of only t
CC bonds does not induce big deformations in the C
groups,Fqq50.39 becomes smaller and the coupling b
tween CCC bond angle and CCH or CCCH angles decrea

In Table II the ẋ column @calculated according to Eq
~A5!# shows what changes are expected in the equilibri
coordinates after elongations. The derivativesṙ CC andq̇ can-
not be compared directly, as the former is dimensionl
whereas the latter is a quantity in radian/angstrom. A co
parable property is~besidesDF) how the total strain is dis-
tributed among the different degrees of freedom. This can
characterized by

Dci8
]c~x!

]xi
•

dxi

dc
5gi ẋi ~15!

listed in columnDc.
With these coordinates the relaxation of the carbo

hydrogen bonds does not change the Young’s modulus m
than 3%; they could have been kept frozen during the c
culation within the accuracy used. Neither these CH bo
changes contribute to the cell lengthDc showing that strain
is not transferred to these degrees of freedom. These fac
not mean, that the bonds themselves do not change,ṫ andẇ
are one-fourth and one-fifth of the change of the CCC bo
angle (q̇), respectively.
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TABLE II. Hessian matrix, optimized coordinates, and their elastic response for polyethylene.

Variable F̂ Optimum DF(%) ẋ Dc(%)

r CC 1.11 1.513 84.0 0.69 57.6
r CH1 0.05 1.07 1.112 0.0 0.00 0.0
r CH2 0.05 0.02 1.07 1.112 0.0 0.00 0.0
q 0.12 20.03 20.03 0.39 113.7° 45.7 1.03 42.4
w1 0.02 20.00 20.01 0.02 0.17 109.4° 0.9 20.25 0.0
w2 0.02 20.01 20.00 0.02 0.03 0.17 109.4° 0.9 20.25 0.0
t1 0.05 20.00 20.03 20.07 0.01 0.05 0.17 122.5° 0.4 0.20 0.0
t2 0.05 20.03 20.00 20.07 0.05 0.01 0.09 0.172122.5° 0.4 0.20 0.0

r CC r CH1 r CH2 q w1 w2 t1 t2
t
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The longitudinal elastic constants calculated according
Eq. ~6! from the two polyethylene Hessians are the same
to the four significant digits given in Table VII. The Young
modulus,Y5323.2 GPa is similar to most of the calculate
values in the literature.1,2,5–8One expects the TZVP basis s
and the density-functional method to predict a Youn
modulus close to a HF1MP2 calculation in a multivalence
polarized basis set. The 336 GPa value of Crist and Here˜a1

is in a reasonable agreement with our result. The 276 GP
Suhai4,3 is not justified by the present calculations. The po
sible reasons for that extreme low value has been discu
in Ref. 1, where the danger of the linear dependency of
basis set in crystal-orbital calculations was suspected
cause the discrepancy. The calculations presented in this
per use crystal orbitals built from extended basis sets but
Young’s modulus does not approach Suhai’s value.

The direct elongation-relaxation method using five diffe
ent elongations resulted inF51.069 hartree/angstrom, i
accordance with the Hessian based value.

2. Polytetrafluoroethylene (planar)

Although for teflon the optimal configuration under no
mal pressure differs slightly from the planar one, for co
parison with polyethylene we optimized the structure by c
straining the carbon backbone to be in a plane. The
parameters (r CC, q, r CF, w, and t) induce thesh planar
symmetry whereas thesv plane is not used explicitly bu
expected to be maintained by the optimization procedure
self. It was needed in order to decouple the CF bonds
much as possible from the CCC bond distortions, as w
learned from the PE study. In Table III the results are giv
for PTFE. The Hessian for PE in the same parametrizatio
o
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also indicated in parentheses. The replacement of hydrog
with fluorines slightly softens the chain, the CC bond stret
ing constant is smaller, and the bond itself becomes lon
The more pronounced difference appears in the force c
stants which describe the distortion of the CF bonds,Ftt
becomes approximately twice as big as that of PE, but th
changes do not considerably affect the longitudinal ela
behavior. The total neglect of CF relaxation (r CF, w, andt
all frozen! gives an elastic modulus 3% higher, than the f
calculation.

The five calculations with strained geometry result inF
51.013 which is 2% higher than the value from the Hess
in Table VII. This is acceptable in the numerical precisi
expected.

3. Polytetrafluoroethylene (helix)

The common conformation of crystalline PTFE is a~13/6!
helix, that is a helix with 163.5° screw angle.18,19The calcu-
lations show that the helix is not formed primarily because
the crystal structure; the single chain already favors this
ometry. The softening of the chain is expected with resp
to the planar configuration. Out of plane relaxations sho
decrease the Young’s modulus and the rate of this is inv
tigated here. In the calculations we kept the two CF bon
equivalent because of symmetry considerations. The len
of the two bonds, their bond anglesw, and dihedral anglest
with the corresponding CC bonds and CCC planes are k
equal: ]C1CF15]C2CF2 and ]C2C1CF1

5]C1C2CF2 where C1(C2) is the next~previous! carbon
neighbor to C. The dihedral angle (g) between subsequen
CCC sheets has been introduced as the sixth parameter.
bal optimization~see Table IV! shows an absolute minimum
TABLE III. Hessian matrix (F̂), optimized geometry, and elastic importance (DF) for planar teflon
~numbers in parentheses are values for polyethylene!.

Variable F̂ Optimum DF(%)

r CC 0.99~1.11! 1.561 85.8
r CF(r CH) 0.25~0.09! 3.38~2.19! 1.347 0.0
q 0.13~0.12! 20.18(20.05) 0.39~0.39! 113.1° 39.6
w 0.04~0.05! 20.09(20.04) 0.08~0.05! 0.65~0.41! 108.5° 2.7
t 0.06~0.09! 20.16(20.06) 20.11(20.13) 0.40~0.12! 1.07~0.52! 120.4° 1.6

r CC r CF(r CH) q w t
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TABLE IV. Hessian matrix (F̂), optimized geometry, and strain contributions for helical PTFE.

Variable F̂ Optimum DF(%) Dc(%)

r CC 1.00 1.555 77.8 56.6
q 0.13 0.41 112.3° 44.2 42.4
g 0.01 0.01 0.11 161.3° 0.9 1.0
r CF 0.27 20.15 0.01 3.39 1.347 0.0 0.0
w 0.07 0.09 0.03 20.04 0.65 108.7° 5.2 0.0
t 0.07 20.17 20.05 20.16 0.337 1.27 120.5° 3.3 0.0

r CC q g r CF w t
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at g5161.3°, which corresponds to a helical rotational an
164.5° in good agreement with experimental crystal data
calculated optimized structure of others.23,24

The possibility to relax the system out of plane does
change the elastic properties too much; the Young’s mod
changes with some percentages, the trend of which~soften-
ing! is correct but the value is of the same order as the e
in the calculations. The 161° dihedral angle turns out to b
small distortion from the planar 180° case. The smallFgg
force constant does not decrease the Young’s modulus
stantially as long as changes ing have a small effect on the
cell length. The indirect contribution toY through the cou-
pling to the most important coordinatesr CC andq is small as
well which is due to the small;0.01 coupling constants
The fact, that slight deformations from the planar struct
do not have a drastic effect on the elasticity is rather imp
tant. Even if the force constants related to the torsional
grees of freedom would be well described in the local d
sity approximation, their small value would come out with
large relative error from the numerical total energy diffe
ences. Big changes in the elastic behavior are expecte
more twisted configurations, like in thegauche one for
which g;57°. Very careful determination of the torsion
force constants then becomes inevitable.

It can be observed, that the relaxation of the CF bond
now twice as important as it is for the planar configuratio
The total neglect of changes inr CF, w, andt would result in
a chain which is 6.3% harder. In addition keepingg frozen at
its equilibrium value would result in a 6.5% change inste
which shows that this effect does not originate from the c
pling to the CCC dihedral angle.

B. Polyamides

1. Polyglycine

Polyglycine, as the simplest polypeptide has been of
terest because of its biological importance. The second
structure of those proteins mostly does not possess perio
ity in nature. Among the folded-twisted chains, the most i
portant periodic structures are grouped in theb-sheet~PG-I!
and thea-helix ~PG-II! families. Thea-helix type configu-
rations are better studied in a biological context25 while the
nearly planar configurations are more relevant to a solid s
approach. Below we report in our calculations on a prototy
for a polyglycine-I chain, where the unit cell consists of
@-CaH2-CONH-# group which is then used to build ab-sheet
strictly planar zigzag chain. In real crystals26 the two tor-
e
d
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or
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,
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-
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te
e

sional angles,F around the NCa and C around CaC can
have a variety of values different from 180°. Distortion
from perfect planarity give rise, e.g., to rippled shee
pleated sheets, or helical configurations. The interchain
drogen bonds may prefer one of these forms if the chains
in a crystal, but for a single chain there is no such favo
configuration. With the modest 321G ~Ref. 27! basis set our
optimization attempts could not find a stable minimum out
the plane. Dasguptaet al.9 parametrized their force field fo
the nearly planara forms of nylons in which case they foun
F5C between 163° and 168°, but their torsional potent
for noncrystalline test molecules is so flat on going to 18
that it is not convincing to consider the nonplanar struct
for a chain. The polyglycine II family is characterized by th
gauchea-helix configuration. The elastic properties of su
a single helix must be dominated by the soft torsions at
methyl CH2 group which requires very accurate force co
stants for this mainly van der Waals interaction. The inv
tigation of this structure is out of the focus of this pape
especially as the elastic properties of such chains are m
determined by their interaction with their environment th
by their isolated structure.

The planar structure can be fixed by 13 parameters w
the two CH bonds are kept symmetric. The optimized str
ture is given in the Table V with some representative e
ments of the Hessian. This skeleton Hessian contains th
second derivatives, which have an absolute value gre
than 0.10. The longitudinal force constant is obtained fr
the complete Hessian, not from the skeleton since small
ues from the Hessian cannot be omitted if they contribute
or even dominate the linear elastic response.

The dominant response to stress is at the CCaN bond
angle; other angles in the zigzag backbone bend much
This is rather unexpected in view of the fact that the CaNC
angle has a lower force constant but hardly absorbs strai
similar effect can be mentioned in the bond stretching c
tributions. The NC bond is the hardest of all in the backbo
but it gives the largest response. The importance of th
unexpected deformations is due to the constraint to keep
chain linear. If more methyl groups appear between
amides the distortion of the latter is not required so mu
since the softer methyl groups can absorb the strain.
exclusion of all degrees of freedom not directly associa
with the backbone chain, i.e., freezing all the variables: 3
5, 8, 9, 10, 13~as they are numbered in Table V! would give
a Young’s modulus which is 8.9% higher. This error reduc
to 4.1% if the OCCa bond angle is allowed to relax
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TABLE V. Skeleton Hessian(F̂i , j ), optimized coordinates, and elastic contributions for planar polyg
cine.

Variable
name index F̂i , j Optimum DF(%) Dc(%)

r NC 1 1.801,1 1.335 20.8 19.7
r CCa 2 1.042,2 1.512 9.0 15.5
r OC 3 2.563,3 0.293,1 0.173,2 1.239 0.5 0.0
r NH 4 1.374,4 1.038 0.7 0.0
r CH 5 2.245,5 1.110 0.0 0.0
r CaN 6 1.356,6 1.428 12.8 16.7
qNCCa 7 0.487,7 0.107,2 20.167,3 116.5° 6.8 10.3
qOCCa 8 0.548,8 20.158,1 0.158,2 0.258,7 120.4° 3.2 0.0
wHNC 9 0.229,9 20.119,4 125.8° 1.9 0.0
wHCaC 10 0.4210,10 110.7° 0.9 0.0
qCCaN 11 0.4611,11 0.2011,2 106.0° 34.6 35.4
qCaNC 12 0.3012,12 0.1012,1 20.1212,4 0.1312,9 122.1° 0.7 2.3
tHCaCN 13 0.5313,13 20.1613,6 0.1413,11 58.85° 1.1 0.0
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The role of this bond angle is worth commenting upon. T
oxygen is not in the main backbone, so it does not affect
length directly.In this parametrization, however, it contrib-
utes to the Young’s modulus to a remarkable extent thro
its coupling to other coordinates. Applying stress to t
chain, the NCCa angle changes which forces the rotation
the OC bond as it is fixed in the plane with respect to
CCa bond through the OCCa bond angle. The induced
change in the bond angle OCN is not favored so that
oxygen must relax. Let us introduce a new parametriza
of the geometry by replacingqOCCa with its other bond angle

qOCN5360°2qOCCa2qNCCa ~16!

and transform the Hessian according to Eq.~7! to the new
coordinates. The diagonal force constant ofqNCCa will
change from 0.48 to 0.51 and the weight of the newqOCN
angle drops to 0.8% instead of the previous 3.2% for
qOCCa angle. Using these coordinates the six parameters
fix the backbone give a longitudinal elastic constant o
5.4% higher than the full relaxation.

Calculations at five strained configurations give a longi
dinal force constantf 50.440 with a fitting error of60.002.
This is in full agreement with the data calculated from t
Hessian.

2. Nylon-3

The first element of the odd nylon series contains t
methyl groups in the helical unit cell @-Ca2H2-
Ca1H2-CONH-# which in this case is the translational cell
well. The planar zigzag configuration18 is selected for the
calculations, although all the remarks made for polyglyc
about nonplanarity apply for the nylons. The two hydroge
of each methyl group are kept symmetric but the two pair
the two groups are allowed to be different. The strict line
ity of the main chain is assumed, which makes it necess
to exclude one coordinate from the backbone as the tran
tional symmetry fixes the value of it with all the othe
given. This way 17 degrees of freedom are used in the st
tural optimization and the ‘‘push and pull’’ calculations. Th
e
e
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Hessian is obtained with keeping four bond length para
eters frozen. These bonds are out of the backbone chain
assumed not to contribute to the longitudinal elasticity. T
optimized values, diagonal elements of the Hessian, and
gitudinal elastic data of the coordinates are listed in Ta
VI. Some qualitative remarks can be made for comparis
with polyglycine. The NC and CaN bonds become longer
these longer bonds are also considerably softer, but the
formations are tending to appear more at the methyl gro
than at the rigid amide planes. The forced deformation of
NC bond, which takes one fifth of the strain in glycine
now not required; instead of this the two CCC bond ang
centered at the twoa carbons deform upon elongations sin
these angles are the softest part of the chain. The Hes
looks strange at first sight, as the second derivatives see
differ considerably from the corresponding ones for eith

TABLE VI. Elastic data and optimized coordinates for nylon-3

Variable F̂i ,i Optimum DF(%) ẋ

r NC 1.62 1.356 8.5 0.13
r CCa1 0.98 1.514 12.4 0.20
r Ca1Ca2 1.09 1.507 10.7 0.17
r OC 1.230
r NH 1.021
r Ca1H 1.109
r Ca2H 1.107
r Ca2N 1.23 1.446 12.4 0.18
qNCCa1 0.86 116.9° 7.0 0.22
qCCa1Ca2 0.65 109.0° 14.3 0.31
qOCN 0.54 122.0° 3.1 20.16
wHNC 0.21 121.0° 0.6 20.10
wHCa1C 0.42 109.5° 0.8 20.08
wHCa2Ca1 0.47 110.6° 0.8 20.08
qCa1Ca2N 0.73 111.2° 13.1 0.32
tHCa1CN 0.49 58.72° 0.9 20.08
tHCa2Ca1C 0.54 57.76° 0.3 20.05
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TABLE VII. Longitudinal force constants and Young’s moduli.

Screw angle c@Å # F@H/Å 2# f @H/Å # Area @Å 2# Y@GPa#

Polyethylene 180.0° 1.266 1.068 1.352 18.24a 323.2
Polytetrafluoroethylene 180.0° 1.302 0.991 1.291 24.84a 226.5
Polytetrafluoroethylene 164.5° 1.286 0.977 1.256 24.84a 220.5
Polyglycine 180.0° 3.566 0.435 1.553 17.52b 386.4
Nylon-3 0.0° 4.872 0.308 1.501 17.52a 373.6

aCrystal Ref. 18.
bTaken to be equal to nylon-3.
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the vinyl polymers or polyglycine. For example, the diagon
elements of the angle bendings at the alpha carbons
nearly twice as big as for PE or PTFE~Table III!. This is
neither a computational error nor a physical hardening
these groups, but comes from the translational constra
There is an extra chemical degree of freedom not explic
appearing in the calculation namely the bond angle Ca2NC
which becomes a dependent variable if one keeps all the
bonds in the chain parallel. Any time a deformation is do
in the remaining degrees of freedom this bond angle is
plicitly forced to change in order to fulfill the matching con
dition between the cells, to preserve the pure translatio
symmetry. This way the force constant of the Ca2NC angle
shows up implicitly in all the elements of the Hessian. T
quantitative way, how it is counted in the present Hessian
a question of geometry. As a qualitative example, a look
the geometry gives a rough guess, that a change in the C
angles at the alpha carbons induces an approximately e
change of the constrained angle. The diagonal Hessian
ments of the angles at the alpha carbons are the sum of
and CNC force constants. The estimated value for the C
angle is about 0.4, while for CNC it is 0.3~e.g., from Table
V on polyglycine! which sums up to the value of 0.7 simila
to what is found in Table VI.

The calculated elastic modulus is again given in Ta
VII. The 7-in-backbone variables are responsible for mos
the elasticity, they alone givef 51.597 which is 6.4% highe
than the full one. Fromẋ of Table VI one can see, that th
largest changes occur at the alpha carbons. The five-p
elongation-relaxation calculations relaxing all 17 degrees
freedom are fitted and giveF50.30860.006, which is in full
accordance with the value calculated from the reduced H
sian with 13 degrees of freedom. The inclusion of an ad
tional methyl group results in a 3.3% softening with resp
to polyglycine.

IV. CONCLUSION

The calculation of the Young’s modulus for single helic
chains has been carried out. It has been shown that s
degrees of freedom of the polymer can be omitted from s
a theoretical calculation without a considerable loss of p
cision. This simplification however can be done only if t
side groups which are expected not to affect the main cha
elastic response very much, are defined by carefully cho
appropriate coordinates.

The direct elongation-relaxation procedures are show
give the same elastic constants as the Hessian based me
Although the latter reveals a more detailed picture ab
l
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what is happening in the polymer under stress, the form
becomes incomparably more economical if the degrees
freedom are large. The evaluation of the Hessian scales
dratically with this number, whereas for a small strain so
fixed number~3–5! of relaxation steps is required to reach
reasonable convergence.

APPENDIX: LONGITUDINAL ELASTICITY
FROM THE HESSIAN

The constrained minimization~1! implicitly definesx(c).
Starting from the Lagrangian equation

G5lg, ~A1!

whereG5]E/]x andg5]c/]x an explicit expression for

ẋu08
dx~c!

dc U
0

~A2!

can be derived~an overdot is used to denote differentiatio
with respect toc). Indeed, multiplying Eq.~A1! with ẋ and
rewriting the constraint as (ẋ,g)51 one getsl5( ẋ,G) and
the Lagrange equation becomes

G5~ ẋ,G!g. ~A3!

The derivative of this equation with respect toc and takenat

equilibrium ~whereG50 andĠ5F̂ẋ) is F̂ẋ5( ẋ,F̂ẋ)g. With
an invertible Hessian this can be written as

ẋ5~ ẋ,F̂ẋ!F̂21g ~A4!

which when multiplied withg gives

15~ ẋ,F̂ẋ!~g,F̂21g! and ẋ5
F̂21g

~g,F̂21g!
. ~A5!

Combining this result with definitions~1! and ~2! one has

F5
d2

dc2
E~c!U

0

5~ ẋ,F̂ẋ!5~g,F̂21g!21.



s

oo

hy

m

m

. J.

W.

em.

.

.

10 150 PRB 62F. BARTHA et al.
1B. Crist and P.G. Heren˜a, J. Polym. Sci., Polym. Phys. Ed.B34,
449 ~1996!.

2S. Suhai, J. Polym. Sci., Polym. Phys. Ed.21, 1341~1983!.
3S. Suhai, inQauntum Chemistry of Polymers—Solid State A

pects, edited by J. Ladik and J.-M. Andre´ ~Reidel, Dordrecht,
1984!, p. 101.

4S. Suhai, J. Chem. Phys.84, 5071~1986!.
5A. Karpfen, J. Chem. Phys.75, 238 ~1981!.
6J.C.L. Hageman, R.J. Meier, M. Heinemann, and R.A. de Gr

Macromolecules30, 5953~1997!.
7S.Y. Hong and M. Kerte´sz, Phys. Rev. B41, 11 386~1990!.
8N. Karasawa, S. Dasgupta, and W.A. Goddard III, J. Chem. P

95, 2260~1991!.
9S. Dasgupta, W.B. Hammond, and W.A. Goddard III, J. A

Chem. Soc.118, 12 291~1996!.
10J. W. Mintmire, in Density Functional Methods in Chemistry,

edited by J. Labanowski and J. Anzelm~Springer-Verlag, New
York, 1991!, pp. 125–138.

11G. Del Re, J. Ladik, and G. Biczo´, Phys. Rev.155, 997 ~1967!.
12J.M. Andre, L. Gouverneur, and G. Leroy, Int. J. Quantum Che

1, 427 ~1967!.
13J.J. Ladik,Quantum Theory of Polymers as Solids~Plenum, New

York, 1988!.
14J.P. Perdew and A. Zunger, Phys. Rev. B23, 5048~1981!.
-

t,

s.

.

.

15D.M. Ceperley and B.J. Alder, Phys. Rev. Lett.45, 566 ~1980!.
16N. Godbout, D.R. Salahub, J. Andzelm, and E. Wimmer, Can

Chem.70, 560 ~1992!.
17R. Fletcher, Comput. J.~UK! 13, 317~1970!; D. Goldfarb, Math.

Comput.24, 23 ~1970!; D.F. Shanno,ibid. 24, 647~1970!; C.G.
Broyden,ibid. 21, 368 ~1967!.

18H. Tadokoro, Structure of Crystalline Polymers~Wiley, New
York, 1979!.

19A. I. Kitagorodsky,Molecular Crystals and Molecules~Academic
Press, New York, 1973!.

20M.S. Miao, P.E. Van Camp, V.E. Van Doren, J.J. Ladik, and J.
Mintmire, Phys. Rev. B54, 10 430~1996!.

21H. Teramae, T. Yamabe, C. Satoko, and A. Imamura, Ch
Phys. Lett.101, 149 ~1983!.

22S. Hirata and S. Iwata, J. Chem. Phys.108, 7901~1998!.
23M.S. Miao, M.L. Zhang, V.E. Van Doren, J.J. Ladik, and J.W

Mintmire, Int. J. Quantum Chem.64, 243 ~1997!.
24M.S. Miao, M.L. Zhang, V.E. Van Doren, J.J. Ladik, and J.W

Mintmire, J. Phys. Chem. A104, 6809~2000!.
25I.A. Howard and M. Springborg, J. Chem. Phys.112, 416~2000!.
26A.V. Kajava, Acta Crystallogr., Sect. D: Biol. Crystallogr.55,

436 ~1999!.
27J.S. Binkley, J.A. Pople, and W.J. Hehre, J. Am. Chem. Soc.102,

939 ~1980!.


