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Density-functional calculations of the elastic properties of some polymer chains

F. Bartha
Department of Theoretical Physics, University of Szeged, Tisza Lajos krt. 84-86, H-6720 Szeged, Hungary

F. Boga
Department of Theoretical Physics, University of Szeged, Tisza Lajos krt. 84-86, H-6720 Szeged, Hungary
and Laboratory of the National Foundation for Cancer Research, Egerlandstrasse 3, D-91058 Erlangen, Germany

A. Peeters and C. Van Alsenoy
Chemistry Department, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium

V. Van Doren
Department of Physics, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerpen, Belgium
(Received 25 May 2000

The force constants and elastic properties of some polymers are calculated with a full-electron, crystal-
orbital density functional method. Calculations are carried out on single helical chains of polyethylene, poly-
tetrafluoroethylenéteflon), polyglycine (nylon-2), and nylon-3. The longitudinal elastic moduli are obtained
both from the Hessian and by direct elongation relaxations. The different degrees of freedom of the polymers
are ranked according to their contributions to the elastic response. It is shown, that a proper choice of the
internal coordinates makes it possible to keep some of them frozen during the process without a considerable
loss of elasticity.

[. INTRODUCTION infinite polymer chain is used explicitly in the chain direction
as it was used by several auth6rs.In our approach the
The calculation of the elastic properties of polymer chaingpotential energy surface of a single infinite chain is treated
from theory has been carried out by several authors usingy first principles density functional methd®FT), the he-
from semiempirical to first principles methods. However thelical symmetry along the polymer chain axis is utilized.
basic scheme is similar in all of these models. First the equi- The outline of our paper is as follows. In Sec. Il we sum-
librium structure is determined and after that, the elastianarize the theory of the calculation of the elastic properties
properties are determined from the properties of the energgf quasi one-dimensional polymer chains. The main features
hypersurface at this point. The main difference among thesef the DFT polymer program used and the details of the
models is the method that provides the required potentiahumerical realization are also given in this paragraph. The
energy surface. The first family of these models is based opalculated elastic properties of two vinyl type polymers
molecular force fields that substitutes the quantum mechanipolyethylene PE and polytetra fluoroethylgnand two

cal interaction of particles in the molecule with classical in-polyamides(polyglycine and nylon-Bare described in Sec.
teractions and uses classical mechanical laws to determing

the potential energy surface. In the second family of the '
models, the potential energy surface is calculated quantum
mechanically either using solid state physical approaches or
guantum chemical methods. In the solid state approach the
polymer chains are ordered in a three-dimensional crystal A. Treatment of helical chains with DFT
structure and the distance of the neighboring chains are cho-
sen large enough to neglect the interchain interaction. In the The total energy calculations are carried out with the
quantum chemical approaches the chain properties can l@Lyxa progrant® of Mintmire. Details about the code are
derived from oligomer calculations. These methods use onlpublished elsewhere; here the main features which are im-
a finite part of the polymer to calculate the elastic propertieportant for the present results are summarized. Full-electron
and try to reach the convergence by increasing the length afingle point total energy calculations are done with crystal
the finite chain. This method suffers from the “end effect,” orbitals. The crystal orbitats*3are expanded in Bloch or-
the structure of the finite chain differs from the structure ofbitals built from Gaussian atomic basis sets. The infinite he-
the infinite polymer. One of the possible solutions of thislical chain is subjected to a density functiof®FT) self-
problem is the cluster difference method used by Crist andonsistent field calculation. The Slatergpa-Kohn-Sham
Heréra' that minimizes the influence of the chain ends on thelocal density exchange is combined with the Perdew-Zunger
repeat unit energy by substracting the total energy of oligoparametrizetf correlation potential based on the Ceperley-
mers containingl +1 andM repeat units. Alder data'® Periodic boundary conditions are used but no
This problem does not arise if the helical symmetry of thefinite neighbor approximation has been done. A triple va-

II. METHOD
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lence zeta basis set with polarization functigdZVP) of The Young’s modulus is however an equilibrium property
Godboutet al!® is used throughout the calculations. of the system. The connection of it with the other equilib-
rium quantities
B. Force constants and longitudinal elastic properties
’ - Prop o _dc(x) . P*E(X)
The total energy of a general infinite polymer chain with g= , ihi— 6)
(9Xi 0 aXian 0

helical symmetry is considered as a function of the nuclear
frame geometry. In the Born-Oppenheimer approximations given by the exact relation

the nuclear frame is held fixed while the corresponding elec-

tronic state is obtained. In the general caséh no special F=(g,F gt (6)
symmetries N number of nuclei in the repeat unit of the L . . . . L

helix (unit cell) have 3N— 6 internal nuclear coordinates, the &S it is derived in the Appendix. This expression is directly
position and the orientation of the screw axis with the twoapplicable whenever thiénvertible) HessianF of the system
parameters fixing the screw operation gives six degrees d$ given. Hong and Keft&' used a scheme equivalent to the
freedom, which in total results inNB degrees of freedom for above one in order to calculate the Young’s modulus from
the whole helical chain. Choosing appropriate parameter§émiempirical and “spectroscopical” force constants.
(X1,X5, . .. Xp)=X with n<3N the conformation of the The full Hessian contains a lot more information than
po'ymer is given and a Single Va|uﬂx) energy can be what is needed for the |Ongitudina| elastic response. The
calculated. A fixed nuclear conformation determines the lin-valuation of all the second partial derivatives might be too
ear size of the system via geometricalrelation c=c(x). ~ €Xpensive or even practically unrealizable for a complex sys-
This typical linear extension for an infinite helix is chosen totem, for which the Young’s modulus could have been calcu-
be the translational distance in the screw operation. The rdated in an easier way by, e.g., the direct method. In this
sponse of the system with respect to elongations along theaper we investigate which coordinates are important in or-
chain axis is characterized by the total energy at a give,qler to obtain a good approximate characterization of the elas-

length defined as tic properties from a reduced set of degrees of freedom. The
use of the full Hessian is a powerful tool to carry out such a
E(c)=minE(x)=E[X(c)], (1) study. The Hessian calculated in one coordinate set
xel'¢ =(X1,X, ... Xy) is easily transformed to anothey

wherel . is the set of those configurations which results in a:_(yl’y2' T 'ym?’ possilaly reducedng<n) one with the
given c. This minimization provides a way in which the  aid of the Jacobian matrit= dy/dx as
=c(x) geometrical relation can be in a certain sense “in-

verted” to x=x(c). Fy=J"Fd. @)
Around the equilibrium configuration of the system |n particular in areduced sebf coordinates, where the re-
(%0:C0,Eo, - . ) theharmonic response to small elongations qyction is done with constraints which are automatically sat-
is given by the force constant isfied at the equilibrium configuratiofe.g., fixing a coordi-
P2 nate to its equilibrium valyeone has
F=—E(0)| . 2 L
dc? (©) @ fy:(nyy)B}—x 8

0

For single chain infinite polymers the more relevant quantit)}t)hecau‘lc‘e of the tvafn?htmnal fryatuni of E@) wn?gesp(lactt. to gif
is the longitudinal elasticity counted per unit length with the € enlargement of the configuration space. the relative dit-

definition ference

f=coF. &) are D

f
Whenever a cross section aréacan be attributed to the o o
chain (e.g., for crystallinelike parallel chainshe Young’'s ~Mmeasures the contribution of the omitted degrees of freedom

©)

modulus is related to these constants as to the longitudinal elastic modulus.
co f C. Numerical realizations
Yi]:K = K (4)

1. Structural optimization

In the direct “elongation-relaxation” methods one calcu-  Although for the polymers treated here one can find the
lates the response of the system to elongations by deformingtructure both from experiments and from papers on struc-
the equilibrium geometry so that the length changes. Keeptural optimization, one has to carry out an optimization when
ing this nonequilibrium length unchanged a constrained rethe second derivatives of the energy are in question. The
optimization of the structure is required. Calculations forsystem must be in the harmonic regime with respect to small
several strains samplégc) with a small number of points changes in the parameters around their relaxed values; the
{E(c;)}; from which the second derivative around the mini- Hessian of the system should be positive definite. In our case
mum can be calculated by fitting the data. This method ha# was achieved with adjusting the configuration until the
been extensively uséd for single chains and for the solid maximal component of the energy gradient became smaller
state of polymers. than a given tolerance typically around 0-10"* (under-
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stood in hartree/A or hartree/radiarThe numerical gradi- typically in the range of 10°-10 2 (in A or radian. Higher
ents are calculated from single point total energy calculationgrecision is unreliable because of the numerical noise, lower
with finite differences upon changing the parameters in thes inappropriate in order to stay in the harmonic region. A
order of magnitude 10°~10° (A or radian. We have tried  careful optimization followed by a numerical differentiation
several optimization algorithms, the most reliable and ecoin this way gives numerical second derivatives with preci-
nomic we found and used was the Broyden-Fletchersion not worse thant0.03. This has been tested by varying
Goldfarb-Shanno on¥. Starting from a reasonable guess onthe threshold for optimization, choosing different coordinates
the equilibrium coordinates the relaxation was found into describe the polymer, using different step size, etc. The
about the same number of steps as the number of optimizginal Young’s modulus is compared with the elongation-

tion parameters. relaxation one and shows, that the corresponding force con-
) ) stants are good within the precision given.
2. Elongation relaxation The polymers treated here have symmetries that make it
Our method consisted of the following steps. possible to reduce the maximaN3number of independent

(1) First we make a full optimization of the unconstrained degrees of freedom. The Young’s modulus can already be
energy. In addition to evaluating the energy gradients in eachalculated from the minimum number of such parameters,
relaxation step we also evaluate the gradignf the length ~ assuming, that the symmetry is preserved or the breaking of
as a function of the internal configuration parameters. Thes# has a negligible contribution to the longitudinal force con-
derivatives are calculated numerically. Although there mighttant.
be a way to use the ana|ytica| geometrica| re|a‘[ﬂ1§p‘q) to The Hessian matrix elements obtained here refer to the
get these gradients, this relation could be too complicated forin phase” or k=0 lattice vibrations, i.e., the deformations
nonsimple unit cells. Regarding the overall loss of precisiorin the unit cell are repeated periodically in all cells. This
in the full calculation, there is no need to have the exactmakes it difficult to compare the Hessian with that of a mol-
gradients instead of the numerical ones. ecule if the intercell coupling is not negligible. For example,

(I1) Next, we elongate the chain. In a complex polymerwe have onercc per unit cell for polyethylene, but when
the cell length itself is rarely chosen as an independent optichanging it we change this length over the whole chain. The
mization parameter. The screw parameters are often mo@mulative force constant is

conveniently defined with the use of internal coordinates be- "
tween nuclei in neighboring unit cells. Without a direct con- [0] [n]
. I = +
trol of the cell length there is an ambiguity as to how to F=F 2,2‘1 P (12)

change the internal parameters to achieve a desired chain

elongation. It is reasonable to select deformations propor/heéreF*=" is the ordinary diagonal force constant for elon
tional tog. If a strain gating exactly one ¢ bond in the polymer as supermol-

ecule, whereaB!" is an off-diagonal constant describing the
Ac  (g,Ax) coupling of two bond elongations done in two different cells
S (100 that arenth neighbor to each other.
The inversion of the Hessian is needed in order to use Eg.
is required, the following choice of parameter changes ig6) to obtain the longitudinal force constant. Care should be

appropriate: taken with nondefinite or poorly definite Hessians. Negative
eigenvalues can appear because of imprecise optimization,
Ax— Ce whereas zero or small eigenvalues can enter if such degrees

X= (0,9) g (1D of freedom are also considered, which do not have strong

influence on the energy. The elimination of these coordinates

(II') Then we carry out a constrained optimization of thisis done by diagonalizing the Hessian
deformed configuration. The constraint can be taken into ac- o
count as in Eq(Al), i.e., at each relaxation step the compo- UTFU=Q, Q=05 (13
nent of the energy gradient normal to the constraint surfac
(parallel tog) is to be canceled before making a step.

(IV) Typically we use five points with strains: (O, .
+0.77% *1.23%). These small distortions make it possible (g,F 1g) 1~
to relax the strained system with 3—4 relaxation steps to the
desired accuracy. This is rather important in the case of @mitting small eigenvalues is allowed only if the corre-

complex polymer, where one has a large number of paramspondingh? are small, in which case the indefinite 0/0 limit
eters for which the calculation of the full Hessian is practi-is peing excluded.

cally impossible.

&nd using
h?2

-1
—) ,h=0"g. (14)

wj>+e C!)i

IIl. RESULT
3. Second derivatives and inverse Hessian SULTS

The Hessian is calculated with finite difference method; A. Vinyl polymers

three-point formulas are used for the diagonal elements, For both polyethylengPE) and polytetrafluoroethylene
seven-point for the mixed partial derivatives. All points in (PTFE the (nontranslational unit cell consists of one

the configuration space are symmetric with respect to thg-CX,-] group, whereX is understood to be H for PE and F
central point(assumed minimuin We use displacements for PTFE. The helix is built with a screw operation involving
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mer. The coupling constant in the present calculations is
found to beF 4,=0.61 which is large compared to the diag-
onal elemenf y3;,=0.46 and consequently reduces the rigid-
ity of changing the CCC bond angle. This is but a misleading
artifactual effect of using this minimal set of coordinates.
When one specifies the CH bonds with their two bond angles
to the neighboring CC bonds, the deformation of the CCC
angles changes the orientation of the CH bonds heavily. The
FIG. 1. Internal coordinates of polyethylene utilizing the full F g force constant includes this effect of changing the CH
symmetry (left pane) and without symmetry restrictiongight ~ bond alignment to a great extent. This must be compensated
pane). with a subsequent relaxation of the CCH bonds not to distort
the tetrahedral group so much. We have carried out indepen-
a rotation of the cell with 180° combined with a translation, dent calculations treating all the nine degrees of freedom of
the distance of which is referred to as the cell length The ~ PE without symmetry constraints. The standard coordinates
assumed symmetry makes it possible to use the minimafsed arecc, CC bond distancecyy , CH; bond distances;
number of four free parameters fixing a configuration of the?, CCC bond angley;, CCH bond angles;r;, CCCH
chain. However this minimal set of parameters gives rise tdmproper torsion angles; and CCCC dihedral andreght
misleading effects, that is to be seen in the example of polyPanel of Fig. 1. This last angle is not listed in Table I, as its
ethylene. For a better understanding of the elastic respongénall distortions from the 180° value of the planar configu-
the release of symmetry requirement and the use of moréation has too small of an effect on the energetics of the

configurational parameters turns out to be more appropriat&ystem. Although symmetry has not been forced, the opti-
mized geometry is found to be symmetric. The spontaneous

1. Polyethylene conservation of the symmetry makes it possible to consider
the transformation r(Cc,rCHl,rCHz,’ﬂ,(Pl,@2,71,7’2)

_ The planar zigzag conformation is known to be the equi-_,(; . . 9 o) between the two parametrizations of Fig.
librium structure. The minimal set of parameters to build the; Using the Jacobian matrix ofsy

fuII-syanéeCtrlg cr(;aln vlvere cgoHsclan ati: ccC bong ggtjmce: ¢, T=m=—1, and cosf)=tan(e)[1—cos@)}sin(3)
(red, ond angle ), ength cp), an according to Eq(7) the 8x8 Hessian matrix of Table Il

bond angle ¢), as shown in the left panel of Fig. 1. The coniracts to the minimal 44 Hessian of Table I. This test
optimized values of the parameters obtained with our treatj‘ustifies the assumption on the numerical precision with

ment are listed in Table I. They compare well with other\ypich the optimized coordinates and the second derivatives
published data®?°~*?The columnA F measures the impor- are obtained in these calculations.

tance of the different degrees of freedom in the elastic pro- \yith the use of the eight configurational parameters, the

cess. These numbers show the increase of the longitudingifaciual effect of neglecting the CH bond’s relaxation is
force constant if the corresponding variable is kept fixed atygided. as the CH bonds are now fixed with their bond

its equilibrium value. For exampléy 7= 16.3% for variable  gnqi¢s) and a dihedral angle. The deformation of only the
¢ gives the relative error in the Young's modul@ecording  cC bonds does not induce big deformations in the CH
to Eq. (9] if it were calculated using the reducedl  groups F,,=0.39 becomes smaller and the coupling be-

=(rcc.fen,¥) coordinate set instead of the fulk  tween CCC bond angle and CCH or CCCH angles decreases.
=(rce.en, 9,¢) one. From Table | one concludes, that the Table Il the x column [calculated according to Eq.

two most important elastic degrees of freedom are the C : I
bond stretching and the bending of the CCC bond angle. Th AA5)] shows what changes are expected in the equilibrium

change in CH bond length does not contribute to thecoordinates after elo_ngations. The derivatib@@andb can-
Young’s modulus, it can be kept frozen at its equilibrium N0t be compared directly, as the former is dimensionless
value, as is intuitively expected. The noticeable role of theVhereas the latter is a quantity in radian/angstrom. A com-
CCH bond anglep is surprising. Hong and Kerse also parable property isbesidesA F) how the total strain is dis-
observed this phenomenon, namely, that the CCH bonlfibuted among the different degrees of freedom. This can be
angle is strongly coupled to the CCC bond angle and th&haracterized by
relaxation of it significantly reduces the modulus of the poly-

C

=rcHi=lcH2: = ¢1

dc(X) dxi_ . 15
%, "go 9% (15

ACii
TABLE |. Hessian matrix E), optimized geometry, and elastic

importance AF) for polyethylene. listed in columnAc.
With these coordinates the relaxation of the carbon-

Variable f:u Optimum A F(%) hydrogen bonds does not change the Young’s modulus more
than 3%; they could have been kept frozen during the cal-
lec 112 1513 83.0 culation within the accuracy used. Neither these CH bond
T 0.09 2.17 1112 0.0 changes contribute to the cell lengiit showing that strain
U 019 -0.10 046 113.6° 46.4 is not transferred to these degrees of freedom. These facts do
¢ 025 -017 0.61 3.07 109.4° 16.3  not mean, that the bonds themselves do not changed ¢
foc Fon 9 0 are one-fourth and one-fifth of the change of the CCC bond

angle (), respectively.
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TABLE Il. Hessian matrix, optimized coordinates, and their elastic response for polyethylene.

Variable E Optimum A F (%) X Ac(%)
lce 1.11 1.513 84.0 0.69 57.6
foy 005  1.07 1112 00 000 00
fa 005 002 1.07 1112 00 000 00
O 0.12 —-0.03 —0.03 0.39 113.7° 45.7 1.03 424
@1 0.02 —-0.00 —0.01 0.02 0.17 109.4° 0.9 —-0.25 0.0
o 0.02 —-0.01 —-0.00 0.02 0.03 0.17 109.4° 0.9 —-0.25 0.0
T 0.05 —-0.00 —0.083 —0.07 0.01 0.05 0.17 122.5° 0.4 0.20 0.0
T 0.05 —0.03 —0.00 —0.07 005 00l 009 017-122.5° 04 020 00
recc  ferr  Tche U 1 @2 T T

The longitudinal elastic constants calculated according t@lso indicated in parentheses. The replacement of hydrogens
Eq. (6) from the two polyethylene Hessians are the same upvith fluorines slightly softens the chain, the CC bond stretch-
to the four significant digits given in Table VII. The Young’s ing constant is smaller, and the bond itself becomes longer.
modulus,Y=323.2 GPa is similar to most of the calculated The more pronounced difference appears in the force con-
values in the literatur&?°-80ne expects the TZVP basis set stants which describe the distortion of the CF borfs,
and the density-functional method to predict a Young'sbecomes approximately twice as big as that of PE, but these
modulus close to a HFMP2 calculation in a multivalence changes do not considerably affect the longitudinal elastic
polarized basis set. The 336 GPa value of Crist and Héren behavior. The total neglect of CF relaxation-£, ¢, andr
is in a reasonable agreement with our result. The 276 GPa @l frozen gives an elastic modulus 3% higher, than the full
Suhaf?is not justified by the present calculations. The pos-calculation.
sible reasons for that extreme low value has been discussed The five calculations with strained geometry result/in
in Ref. 1, where the danger of the linear dependency of the=1.013 which is 2% higher than the value from the Hessian
basis set in crystal-orbital calculations was suspected tin Table VII. This is acceptable in the numerical precision
cause the discrepancy. The calculations presented in this pexpected.
per use crystal orbitals built from extended basis sets but the
Young’s modulus does not approach Suhai's value. 3. Polytetrafluoroethylene (helix)

The direct elongation-relaxation method using five differ- The common conformation of crystalline PTFE i€18/6)
ent elongations resulted ifF=1.069 hartree/angstrom, in helix, that is a helix with 163.5° screw angdf&'® The calcu-
accordance with the Hessian based value. lations show that the helix is not formed primarily because of
the crystal structure; the single chain already favors this ge-
ometry. The softening of the chain is expected with respect

Although for teflon the optimal configuration under nor- to the planar configuration. Out of plane relaxations should
mal pressure differs slightly from the planar one, for com-decrease the Young’s modulus and the rate of this is inves-
parison with polyethylene we optimized the structure by contigated here. In the calculations we kept the two CF bonds
straining the carbon backbone to be in a plane. The fivequivalent because of symmetry considerations. The length
parametersr(cc, 9, rce, ¢, and 7) induce theoy, planar  of the two bonds, their bond angles and dihedral angles
symmetry whereas the, plane is not used explicitly but with the corresponding CC bonds and CCC planes are kept
expected to be maintained by the optimization procedure itequal: X C*CF'=x C CF and X C C'CH
self. It was needed in order to decouple the CF bonds as x.C*C CF? where C (C") is the nextprevious carbon
much as possible from the CCC bond distortions, as waseighbor to C. The dihedral angle/ between subsequent
learned from the PE study. In Table Il the results are givenCCC sheets has been introduced as the sixth parameter. Glo-
for PTFE. The Hessian for PE in the same parametrization ibal optimization(see Table 1Y shows an absolute minimum

2. Polytetrafluoroethylene (planar)

TABLE Ill. Hessian matrix §), optimized geometry, and elastic importance) for planar teflon
(numbers in parentheses are values for polyethylene

Variable E Optimum A F(%)
ree 0.991.11 1.561 85.8
re(ren)  0.250.09  3.382.19 1.347 0.0
v 0.130.12 —0.18(—0.05) 0.390.39 113.1° 39.6
1 0.040.05 —0.09(—0.04) 0.080.05 0.650.41 108.5° 2.7
T 0.060.09 -—0.16(—0.06) —0.11(-0.13) 0.400.12 1.070.52 120.4° 1.6

lce rer(rch) ) ¢ T
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TABLE IV. Hessian matrix £), optimized geometry, and strain contributions for helical PTFE.

Variable = Optimum  AF(%)  Ac(%)

ree 1.00 1.555 77.8 56.6

v 0.13 0.41 112.3° 44.2 42.4

y 0.01 0.01 0.11 161.3° 0.9 1.0

ree 0.27 -0.15 0.01 3.39 1.347 0.0 0.0
0.07 0.09 0.03 -0.04 0.65 108.7° 5.2 0.0

T 0.07 -017 -0.05 -0.16 0.337 1.27 120.5° 3.3 0.0
l'ce L Y l'cr ¢ T

aty=161.3°, which corresponds to a helical rotational anglesijonal angles® around the N€ and ¥ around GC can
164.5° in good agreement with experimental crystal data anfl5ye 5 variety of values different from 180°. Distortions

. 4
calculated optimized structure of othérs from perfect planarity give rise, e.g., to rippled sheets,
The possibility to relax the system out of plane does nogleated sheets, or helical configurations. The interchain hy-

gﬂggge thvsitilassuri progrgrtlrel:ts, too n}ﬁcht;r(taf:%chJLw&shmgdulu rogen bonds may prefer one of these forms if the chains are
ges ome percentages, the 0 orte in a crystal, but for a single chain there is no such favored

ing) is correct but the value is of the same order as the error

in the calculations. The 161° dihedral angle turns out to be gonﬂguranon. With the modest 3@1(Ref. 29 basis set our

small distortion from the planar 180° case. The sriall optimization attempts could not find a stable minimum out of

force constant does not decrease the Young's modulus suff'Ee plan:—z. Dlasgu?tet al. [f)arallmet(lzedh_thﬁw forct(ra] f'elfd fo:j
stantially as long as changes jnhave a small effect on the (Deir‘;:ag)ip anac{G(;Emscc)i ;.]()3/8()"nsblnt\{[vh Ic tcas_e ley ctJunt_ |
cell length. The indirect contribution t¥ through the cou- B etween an » but their torsional potentia

pling to the most important coordinates; andd is small as Iﬁrtni?r;cr?]/sttalllnne\litr?sitnm?lecu:]esidlsrstc;] ﬂar‘lt %nlgglnrg ;? 1,?2
well which is due to the smalt~0.01 coupling constants. atit1s not co cing to consider the nonpianar structure

The fact, that slight deformations from the planar structurefor a chain. The polyglycme Il family is pharacter!zed by the
auchea-helix configuration. The elastic properties of such

do not have a drastic effect on the elasticity is rather imporag

tant. Even if the force constants related to the torsional de single helix must be dominated by the soft torsions at the

grees of freedom would be well described in the local den-methyl CH, group which requires very accurate force con-

sity approximation, their small value would come out with a?tar;Fs forft?r'ﬁ m:;unl)i van der \tNafa![i m#eractlo?.t;'.he Inves-
large relative error from the numerical total energy differ- \gation of this structure 1S out of the Tocus of this papef,
ences. Big changes in the elastic behavior are expected ﬁ?pec'?‘"y as the ?'?St'c properties of S.UCh c_halns are more
more twisted configurations, like in thgauche one for determined by their interaction with their environment than

which y~57°. Very careful determination of the torsional by_f_rr]]ew ||solatedt strtucture. be fixed by 13 ¢ h
force constants then becomes inevitable. € planar structure can be fixed by LS parameters when

It can be observed, that the relaxation of the CF bonds i%he two CH bonds are kept symmetric. The optimized struc-

now twice as important as it is for the planar configuration. ure 1 given in the Table_ V with some representative ele-
The total neglect of changes iige, @, and would result in ments of the Hessian. This skeleton Hessian contains those

a chain which is 6.3% harder. In addition keepingrozen at second derivatives, which have an absolute value greater

its equilibrium value would result in a 6.5% change instead{Echgrﬁolé;rehaézgg:]udrzg?lfrfc())rrncfhgosnksgiiqur']ss?r?ct‘:gﬁjaﬁrgg_
which shows that this effect does not originate from the cou- P Y . . .
pling to the CCC dihedral angle. ues from the_HeSS|an cannot be qmltted if they contribute to
or even dominate the linear elastic response.

The dominant response to stress is at the*l@®ond
B. Polyamides angle; other angles in the zigzag backbone bend much less.
This is rather unexpected in view of the fact that tHeNC
angle has a lower force constant but hardly absorbs strain. A

Polyglycine, as the simplest polypeptide has been of insimilar effect can be mentioned in the bond stretching con-
terest because of its biological importance. The secondaryibutions. The NC bond is the hardest of all in the backbone
structure of those proteins mostly does not possess periodibut it gives the largest response. The importance of these
ity in nature. Among the folded-twisted chains, the most im-unexpected deformations is due to the constraint to keep the
portant periodic structures are grouped in fhsheet(PG-I) chain linear. If more methyl groups appear between the
and thea-helix (PG-Il) families. Thea-helix type configu- amides the distortion of the latter is not required so much
rations are better studied in a biological contéxthile the  since the softer methyl groups can absorb the strain. The
nearly planar configurations are more relevant to a solid statexclusion of all degrees of freedom not directly associated
approach. Below we report in our calculations on a prototypeavith the backbone chain, i.e., freezing all the variables: 3, 4,
for a polyglycine-I chain, where the unit cell consists of a5, 8, 9, 10, 13as they are numbered in Table Would give
[ -C*H,-CONH-] group which is then used to build@&sheet a Young’s modulus which is 8.9% higher. This error reduces
strictly planar zigzag chain. In real crystdlshe two tor- to 4.1% if the OCC bond angle is allowed to relax.

1. Polyglycine
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TABLE V. Skeleton Hessiarf{iyj), optimized coordinates, and elastic contributions for planar polygly-

cine.
Variable

name index Fij Optimum  AF(%)  Ac(%)
I'ne 1 1.80 ; 1.335 20.8 19.7
roge 2 1.04, 1.512 9.0 15.5
roc 3 256, 0.29;, 0.1%, 1.239 0.5 0.0
I'NH 4 1.37,, 1.038 0.7 0.0
Ich 5 2245 1.110 0.0 0.0
I cen 6 1.356 1.428 12.8 16.7
- 7 0.48 ; 0.10,, —0.16,5 116.5° 6.8 10.3
Yocor 8 0.54¢ —-0.15, 0.15, 0.25- 120.4° 3.2 0.0
©HNe 9 0.224 —0.1%, 125.8° 1.9 0.0
®ncec 10 042010 110.7° 0.9 0.0
P 11 0.46;5;  0.20;, 106.0° 34.6 35.4
Icanc 12 0.3Q1, 0.10,; —0.12,, 0.13,, 122.1° 0.7 2.3
THCaCN 13 053313 —0.1636  0.1415:; 58.85° 1.1 0.0

The role of this bond angle is worth commenting upon. TheHessian is obtained with keeping four bond length param-
oxygen is not in the main backbone, so it does not affect theters frozen. These bonds are out of the backbone chain and
length directly.In this parametrizationhowever, it contrib- assumed not to contribute to the longitudinal elasticity. The
utes to the Young’'s modulus to a remarkable extent througloptimized values, diagonal elements of the Hessian, and lon-
its coupling to other coordinates. Applying stress to thegitudinal elastic data of the coordinates are listed in Table
chain, the NCC angle changes which forces the rotation of VI. Some qualitative remarks can be made for comparison
the OC bond as it is fixed in the plane with respect to thewith polyglycine. The NC and @ bonds become longer,
CC* bond through the OCC bond angle. The induced these longer bonds are also considerably softer, but the de-
change in the bond angle OCN is not favored so that théormations are tending to appear more at the methyl groups
oxygen must relax. Let us introduce a new parametrizatiorthan at the rigid amide planes. The forced deformation of the
of the geometry by replacinfocc With its other bond angle NC bond, which takes one fifth of the strain in glycine is
now not required; instead of this the two CCC bond angles
Yoen=360°— Jocor— Inece (16)  centered at the twe carbons deform upon elongations since

and transform the Hessian according to E). to the new these angles are the softest part of the chain. The Hessian
coordinates. The diagonal force constant ©fcce will looks strange at first sight, as the second derivatives seem to

change from 0.48 to 0.51 and the weight of the n@uey differ considerably from the corresponding ones for either

angle drops to _0'8% instead qf the prewqus 3.2% for the TABLE VI. Elastic data and optimized coordinates for nylon-3.
YJocor angle. Using these coordinates the six parameters that

fix the backbone give a longitudinal elastic constant onlyy4iape E Optimum AF(%) N
5.4% higher than the full relaxation.

Calculations at five strained configurations give a longitu-r,. 1.62 1.356 8.5 0.13
dinal force constant=0.440 with a fitting error of-0.002. M ccat 0.98 1.514 12.4 0.20
This is in full agreement with the data calculated from the, _, , 1.09 1.507 10.7 017
Hessian. oo 1.230

2. Nylon-3 FH 1.021
F caln 1.109

The first element of the odd nylon series contains two, 1.107
methyl groups in the helical unit cell[-C*?H,- rc ZH 123 1.446 12.4 0.18
C*'H,-CONH-] which in this case is the translational cell as ggczal 0.86 116.9° 20 0.22

well. The planar zigzag configuratibhis selected for the

calculations, although all the remarks made for polyglycine® cc'c* 0.65 109.0° 14.3 031
about nonplanarity apply for the nylons. The two hydrogensﬁOCN 0.54 122.0° 3.1 —0.16
of each methyl group are kept symmetric but the two pairs afHnc 0.21 121.0° 0.6 —0.10
the two groups are allowed to be different. The strict linear-¢nceic 0.42 109.5° 0.8 —0.08
ity of the main chain is assumed, which makes it necessargncezcet 0.47 110.6° 0.8 —0.08
to exclude one coordinate from the backbone as the translacaicezy 0.73 111.2° 13.1 0.32
tional symmetry fixes the value of it with all the others 7,cacy 0.49 58.72° 0.9 -0.08
given. This way 17 degrees of freedom are used in the strucz,..c.c 0.54 57.76° 0.3 —0.05

tural optimization and the “push and pull” calculations. The
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TABLE VII. Longitudinal force constants and Young’s moduli.

Screw angle  c[A] FIHIA?] fl[H/A] Area[A?] Y[GP4

Polyethylene 180.0° 1.266 1.068 1.352 1824 3232
Polytetrafluoroethylene 180.0° 1.302 0.991 1.291 24.84 226.5
Polytetrafluoroethylene 164.5° 1.286 0.977 1.256 24.84 2205
Polyglycine 180.0° 3.566 0.435 1.553 1752  386.4
Nylon-3 0.0° 4.872 0.308 1.501 17%2 373.6

&Crystal Ref. 18.
bTaken to be equal to nylon-3.

the vinyl polymers or polyglycine. For example, the diagonalwhat is happening in the polymer under stress, the former
elements of the angle bendings at the alpha carbons ateecomes incomparably more economical if the degrees of
nearly twice as big as for PE or PTREable lll). This is  freedom are large. The evaluation of the Hessian scales qua-
neither a computational error nor a physical hardening ofiratically with this number, whereas for a small strain some
these groups, but comes from the translational constrainfixed number3-5) of relaxation steps is required to reach a
There is an extra chemical degree of freedom not explicitlyreasonable convergence.

appearing in the calculation namely the bond angtéNC

which becomes a dependent variable if one keeps all the NC

bonds in the chain parallel. Any time a deformation is done APPENDIX: LONGITUDINAL ELASTICITY

in the remaining degrees of freedom this bond angle is im- FROM THE HESSIAN

plicitly forced to change in order to fulfill the matching con-  The constrained minimizatioft) implicitly definesx(c).
dition between the cells, to preserve the pure translationadiarting from the Lagrangian equation

symmetry. This way the force constant of thé?8C angle
shows up implicitly in all the elements of the Hessian. The
guantitative way, how it is counted in the present Hessian, is
a question of geometry. As a qualitative example, a look at
the geometry gives a rough guess, that a change in the coghereG=JE/dx andg=dc/dx an explicit expression for
angles at the alpha carbons induces an approximately equal

G=\g, (A1)

change of the constrained angle. The diagonal Hessian ele- . dx(c)
ments of the angles at the alpha carbons are the sum of CCC X|o= d (A2)
and CNC force constants. The estimated value for the CCC € lo

angle is about 0.4, while for CNC it is 0(&.g., from Table

V on polyglycine which sums up to the value of 0.7 similar can be derivedan overdot is used to denote differentiation

to what is found in Table VI. with respect tac). Indeed, multiplying Eq(A1) with x and
The calculated elastic modulus is again given in Tablerewriting the constraint asx(g)=1 one gets\ = (x,G) and

VII. The 7-in-backbone variables are responsible for most ot Lagrange equation becomes

the elasticity, they alone givie= 1.597 which is 6.4% higher

than the full one. Fronx of Table VI one can see, that the .
largest changes occur at the alpha carbons. The five-point G=(x,6)g. (A3)
elongation-relaxation calculations relaxing all 17 degrees of
freedom are fitted and give= 0.308+ 0.006, which is in full  The derivative of this equation with respectd@and takerat
accordance with the value calculated from the reduced Hesquilibrium (whereG=0 andG= |Ej() is |”:)'(:()'(,|A:>'()g_ With
sian with 13 degrees of freedom. The inclusion of an addign invertible Hessian this can be written as
tional methyl group results in a 3.3% softening with respect
to polyglycine. C A A

x=(x,Fx)F g (A4)

IV. CONCLUSION

which when multiplied withg gives

The calculation of the Young’s modulus for single helical
chains has been carried out. It has been shown that some
degrees of freedom of the polymer can be omitted from such
a theoretical calculation without a considerable loss of pre-
cision. This simplification however can be done only if the
side groups which are expected not to affect the main chain'&
elastic response very much, are defined by carefully chosen
appropriate coordinates.

The direct elongation-relaxation procedures are shown to d?

give the same elastic constants as the Hessian based method. F= FE(C) =(xF0=(g.F 9"
Although the latter reveals a more detailed picture about ¢ 0

o . F1
1=(x,Fx)(g,F 'g) and x=A—g
(9,F

A5
oy 49

ombining this result with definition€l) and(2) one has
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