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Effective field theory for layered quantum antiferromagnets with nonmagnetic impurities
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We propose an effective two-dimensional quantum nonlinear sigma model combined with classical perco-
lation theory to study the magnetic properties of site diluted layered quantum antiferromagnets such as
La,Cu,_,M,0, (M=2Zn,Mg). We calculate the staggered magnetization at zero temperady(g), the
magnetic correlation lengtl(x, T), the NMR relaxation rate, T4(x, T), and the Nel temperatureT (), in
the renormalized classical regime. Due to quantum fluctuations we find a quantum critical point at
~0.305 at lower doping than the two-dimensional percolation threskptd0.41. We compare our results
with the available experimental data.

The discovery of high-temperature superconductivity invalue of the magnetizatiom=(S(Q)), at the antiferromag-
La, ,SrCuQ, has motivated an enormous number of ex-netic ordering vectoQ=(w/ay,7/ay)(a,=3.8 A).
perimental and theoretical studies of this and related materi- |n the pure system, in accord with the Hohenberg-
als. LaCuQ, has attracted much interest because it is a clasMermim-Wagner theorem, LRO for a system with continu-
sical example of a quantum Heisenberg antiferromagnegus symmetry is only possible at finite temperatures in di-
(QHAF). La,CuQ, is a layered quasi-two-dimension@D)  mensions larger than 2. In the absence of disorder the system
QHAF, with an intraplanar coupling constanl(J/kg  has a Goldstone mode which is a spin wave aroQnaith
~1500 K) much larger than the interplanar couplidg  energyE(k) and linear dispersion relation with the wave
(=10"%J).! The quantum nonlinear sigma model (QXM)  vectork: E(k)=4c|k|, wherec is the spin-wave velocity.
is probably the simplest continuum model with correct sym-This dispersion relation is a consequence of the Lorentz in-
metry and spin-wave spectrum that reproduces the lowvariance of the system. In the paramagnetic phase, where the
energy behavior of a QHAF. It has been successfully tisedcontinuous symmetry is recovered, all excitations are gapped
to explain many magnetic properties ofLgSrCuQ,.” because order is only retained in a region of sjzén this

In this paper we propose a QMM allied to classical case the excitations have dispersion
percolation theory to study the site dilution effect in
La,Cu, _,M,O,, whereM is a nonmagnetic atom. While the E(k)=fAc\k2+ 1/£2%. 2
theory of disordered classical magnetic systems is fairly
developed we still lack deep understanding of the behavior Now consider the case where quenched disorder is
of the site diluted QHAF.As we show below, the interplay Present. Spin-wave theory, which can only be applied to Eq.
between quantum fluctuations and disorder leads to effectd) at T=0, predicts that Lorentz invariance is lost even for
which cannot be found in classical magnets. In particular wen infinitesimal amount of impuritie’s. The dispersion
show that long-range ordétRO) is lost before the system changes tdIn(k) and the spin waves become damped at a
reaches the classical percolation threshold. Furthermore, wi@te proportional tok when k—0. These resultgstrictly
have only two independent parameters in the theory: thealid in 2D andT=0) are not directly applicable to the
spin-wave velocityc, [~0.74 eV A (Ref. 5] and the systems in question which order at finite temperafuse.
bare coupling constarg, [~0.685 (Ref. 1] of the clean finite temperatures and weak disorder we can consider the

system &=0). The results for the staggered magnetization criterion established by Harris for the relevance of disorder

correlation length, NMR relaxation rate, and éigempera- " critical phenomena.First, we can cI_assify the phase dia-
ture are derived without any further adjustable parameters.9ram of the pure system ‘asenormalized classicalRC),
Our starting point is the 2D site diluted nearest-neighbotVhere&(T) diverges as exe/T) [whereT, is a character-
isotropic Heisenberg model istic temperature scale, see EG)]; quantum critical(QQC),
where ¢(T)«1/T; and quantum disorderedQD), where
E(T)= ¢, is constant. If we imagine the pure system being
H=JZ p(rOp(r)S- S, (1) divided into regions of siz&, each part will have fluctua-
i tions in the microscopic coupling constarg, for instancg,
which by the central limit theorem are proportional to the
where p(r) is the distribution function for Cu siteg(r)  square root of the number of spif&)=£2 in that region.
=1 on Cu sites ang(r)=0 on M sites. Although transla- That is, there are statistical fluctuations of ordég(¢)
tional invariance has been lost in E@), the Hamiltonian  o«1/\{/N(&)>1/¢. On the other hand, the thermal fluctuations
retains the S(2) invariance for rotations in spin space. Sincein the system are of ordefT(£)«1/In(&ay) in RC, ay/€ in
the symmetry is continuous Goldstone’s theorem predicts ththe QC and vanishingly small in the QD region. For the
existence of a gapless mode in the broken-symmetry phasetitical behavior of the system with weak disorder to be es-
The ordered phase is characterized by a finite expectatiosentially the same as for the pure system, one must require
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that 8T(&)> 8g(¢&) whené>a,. Observe that this condition 1.0

is always fullfilled in the RC regime and therefore we expect

the critical behavior to be the same as in the pure system, A 0.8

that is, described by a QNtM.! In the QC and QD regimes =3 '

the situation is not clear becaugd@ (¢) ~ 89(¢) and there- =

fore the effect of disorder is strong. We conjecture that in Y 081

these regimes the critical behavior is different from the one A

described by a QN&M. In this work we focus entirely in 2 041

the RC regime. Having these results in mind we can apply \3,‘

classical percolation theory to E€1).2%* The main param- 0.2

eters of the problem depend on geometrical factors such as

the probability of finding a spin in the infinite cluster 0.0 : : ,

P.(x) (=1—x, for x<1) and the bond dilution facttt 0.0 0.1 0.2 0.3

A(x) (=1—mx+mx3/2) [in the expressions below..(x) .

andA(x) are valid for allx as given by the numerical simu- X (Zn concentratlon)

lations (Ref. 11)]. In the classical case the spin stiffness

p(x) is related to the undoped stiffness byg(X) F_IG. 1. Effective moment &i=0 as afunction_ ok (normalized
=A(X)ps(0), while the transverse susceptibility is given by relative to the undoped cagseand the experimental data for
X (09 =[P.()/A(X)1x. (0) 50 that® pe(x) =c2(x)x, (x).  -PCh-xZNOs (Rer. 6.

In this paper we propose an effective-field theory whichis . .
valid for Ty=T<J/kg and combines the Lorentz invariance vanishes as In the pure 2D _cdé’el.\levertheless there. are
implied in Eq. (2), the Harris criterion and the results of always statistical fluctuations in a random system which are

percolation theory. In percolation theory, besides the infinite®f OFIdEW'T'—’ WhirEN.' is the number oM ions. Thu?‘, the .
cluster, we always have finite clusters. A finite cluster of sizdoPological term has importance as we discuss at the end o

L has discrete energy levels and therefore a gap of ordéP€ Paper. o
fic/L. In what follows we assumé>L and ignore the con- The great advantage of E@) is its simplicity and close

tribution of finite clusters to the magnetic properties and fo_re]ationship to the description of the undoped problem. In
cus entirely on the physics of the infinite cluster. It is obvi-th's_ paper we use the large approach f(_)r_the QNM

ous from the definition ofp(r) that on average(p(r)) which has been so successful in describing the undoped
—P.(x). Furthermore, site dilution implies than?(r) systemt® At zero temperature, a critical value of the cou-
—p(r). Thus, on average we haVen2(r))=P..(x). In the pling constantg.(x) separates the R_C from the QD region.
continuum limit of Eq.(1) the Harris criterion discussed gc(.x):47TP_°°(X%/A(X) Calrgl br? obtgmefd hfrom thI(_a saddle-
above indicates that in the long-wavelength low-energy limitPO'" equatlon' or Eq(4). _ The ratio O._t € coupling con-
the magnetic properties of the site diluted problem can bé&tant to the critical coupling constant ggx)=g(x)/g.(x)

described in terms of an effective QNM: =go/P..(x), which implies that nonmagnetic doping drives
the system from RC region to QD region & where
z:f Dné[n?—P..(x)]exp{ — Set/A}, P.(X;)=go at T=0. The critical concentratiom is com-

pletely determined by the value gf in the undoped case.
where Using the dilute result folP,(x) and g,=0.685, we find

o X.~0.3 which is indeed smaller than the percolation
Seff:]-/ZJ’ er dr[x, (0024 py(x)|Vn[2] (3 threshold ?(,)~0.41.10 This result has to be contrasted

0 with classical calculatiof8 where long-range order is lost
at percolation threshold only. We also performed a
one-loop renormalization-group analysis and calculated
the zero-temperature staggered magnetiz&tioM (x)

and 7 is the imaginary time direction with3=1/(kgT).
Equation(3) leads to a natural description of the undoped
system and provides an effective-field theory for the = ) )
QNLoM in the presence of impurities. Moreover, it has in- :MO(X), 1,_9()()' Here, MO(X) IS the clgssmal staggered
corporated the correct properties of the classical percolatioft@gnetization for the perfect Mespin alignment and the
problem added to the quantum fluctuations of the QHAF. |f€maining factor is dL_Je to quant_um_fluctuanons. Thus, the
is very simple to show by a change of variables that thd°c@l average magnetic moment is given by

action in Eq.(3) can be rewritten as —
(m(x))  Mg(x)/Mg(x) 1-g(x)

Setr 1 [0 ) (1(0)) ~ M{(0)/Mo(0) N 1-g(0)’
- _—Zg(x)jo drf dr(d,n)?, (4)

Observe that the average local moment indeed vanishes at
whereg(x) =7 c(x)/ps(X) is the effective coupling constant x.. For the undoped case, E&) predicts that the maximum
of the theory. Moreover, because of the continuum limit themeasured magnetic moment of Cu ion is QuWg6which
theory has an intrinsic ultraviolet cutoff A(x) agrees with the measured value 8@ 155 . It is also in
=2ymP.(x)/ay, which is fixed by the total number of good agreement with the existing experimental sublattice
states. In writing Eq(4) we have not included the topologi- magnetization measured SR for various doping concen-
cal term. In a random system one suspects that this terations as shown in Fig. 1. Notice that for the Ising magnet
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FIG. 3. The Cu IF; normalized to the undoped case at high
FIG. 2. Inverse correlation length as a function of temperaturdemperaturesT=900 K). The lines from top to bottom are far

for x=0 (solid line) and x=0.05 (dashed ling The open x=0) =0 (solid), x=0.025 (long dash, x=0.08 (short dash and x
and solid symbolsX=0.05) are the neutron-scattering d&Ref. =0.11(dotted dash x=0 [solid circles—NQR dat&Ref. 179] and
16). x=0.025 (open trianglg, x=0.08 (open square and x=0.11

(cross [NQR data(Ref. 18].
w1 (x) only deviates fromu(0) atx,. The larger reduction of . . _
the moment in the QHAF is due to quantum fluctuationswherey is the nuclear gyromagnetic rati8, =80 kG and

present in the QN&M. B=83 kG are the hyperfine constanfsand
The magnetic correlation length can be directly calcu- >
lated from the QNIzM. The interpolation formula from the 3 2J°kgzSS+1)
RC to the QC region reats® we(X) =A(X) 352
efic(x) | exp(2mpg s(X)/KgT) (wherez is the number of nearest-neighbor spiissthe cor-
§(x,T)= 4 4 ’ ®)  rected Heisenber h f Fi 3 sh th
TPra(X) T KgT g exchange frequency. Figure 3 shows the

_ NMR relaxation rate normalized to the high-temperature
where pgrs(X)=ps(X)[1—9(x)] is the renormalized spin value as given by the experimental data and the result of our
stiffness. This result agrees very well with the Monte Carlocalculations. The growth of the relaxation rate at low tem-
simulations in a large temperature range in the undopegeratures is due to fast growth @ As the system ap-
case’* As far as we know the only existing neutron scatter-proaches the QCP one starts to see the crossover from RC to
ing results for magnetic correlation length are for the purethe QC regime where th& grows like 1T leading to slower
system andk=0.05"® In Fig. 2 we plot the available data growth of the relaxation rate. This behavior is clearly seen in
and the prediction of our model given in E&). As itis well  the data forx=0.11, where growth is very slow from 800
known, samples withx=0.05 have problems with the oxy- down to 400 K. The agreement between data and theory is
gen stoichiometry® Excess O introduces mobile holes in the again quite reasonable.
plane which produce strong frustration effects which are not The 3D Nel order can be obtained from the weak inter-
accounted for in our theory. Thus, direct comparison beplane couplingd, and it is given by2227
tween the theory and experiment for this sample is problem-
atic, especially at high temperatures. Thus, only new experi- &(x,Ty) 2( 'Vls(X))2

ap Mo(x)

ments with controlled O content can directly test our theory.

Chakravarty and Orbaéh have calculated the nuclear L ) .
spin-lattice relaxation rate of Cu for L&UO, using the dy- Which is a transcendental equation fy(x) . The interplanar
namical structure factor from the QNIM. A detailed calcu-  COUPling constant is msenqu% to doping because the
lation was done in Refs. 18 and 26. These calculations can K12nge in lattice parameters is negligiflen the undoped

easily extended for the doped case. Here, we just quote tHe2Se the Nel temperaturéy(0) is of order of 315 K. The
result for A&s1: Initial suppression rate of the Metemperature with doping,

I=—dIn(Ty(x))/dx, whenx—0 can be directly obtained

KgTn=J, P(X)

)

1 ) . from Eq. (7) and, due to quantum fluctuations it is much
T P..(x)\27°S(S+1) faster than in the Ising cagdashed line on Fig.)4 We find
' I ~4.7 in good agreement with the data. Indeed, in Fig. 4 we
2A,B show our theoretical results in comparison with various dif-
Xe(AL—4P.(X)B) \/ 1~ ——— ferent experimental measurements. The critical concentration
AT+4B X, for which the system loses long-range order by moving

_ 2 2 from the RC region to the QD region, is approximately
X[(Ai 4P (X)B)£"+4P..(x)Bag In(£A)] , 0.305, in agreement with the loss of long-range order at zero
Bwe(X)Eag(In(€A))? temperature as given in E@5). Finally, it is also easy to
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of the induced moments in the paramagnetic phase, as seen
experimentally**32
In conclusion, we have proposed an effective QML to
describe the magnetic diluted QHAF. Our model combines
the result of classical percolation theory and the quantum
fluctuations of the Heisenberg model. Although our model is
N fairly simple it gives a good quantitative description of the
N magnetism in LgCu; ,M,0,. The success of our model in
| describing the physics of the RC regime is due to the fact
! that the 2D correlations are very long at finite temperatures
; : : : % ,‘Xp and the effect of disorder in the critical behavior is rather
0.0 0.1 0.2 0.3 0.4 weak. Disorder induces quantum fluctuations in the system
. which lead to the final destruction of LRO ®t. This effect
X (Zn concentration) is not found in classical magnets where LRO is solely deter-
ined by the percolation problem. Finally, our arguments
ndicate that an alternative approach is required in the QC
and QD regions where the NIM is probably not applicable.

FIG. 4. Neel temperature normalized to the undoped case. Soli
line: 7; dashed line: Ising result. Experimental data for
La,Cuy;_,Zn,0O,: Solid and open circles are the NQR amER
data, respectivelyRef. 18; the straight and upside-down triangles We thank J. Baez, W. Beyermann, F. Borsa, BcBuer,
are the magnetic susceptibility daf@ef. 31); crosses are the mag- P. Carreta, G. Castilla, A. Chernyshev, M. Greven, P. C.

netization datgRef. 33. Hammel, B. Keimer, D. MacLaughlin, U. Mohideen, and S.

Sachdev for useful discussions and comments. We thank P.
show using the procedure given in Ref. 30 that the topologiCarretta for providing us with his experimental results. We
cal term will lead to induced moments close to the impuri-also acknowledge support by the A. P. Sloan Foundation and
ties. These moments interact through a random magnetic esupport provided by the DOE for research at Los Alamos
change of ordede™ (2)/¢xT) Thjs effect can lead to order National Laboratory.
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