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Spin-orbit interaction as a source of spectral and transport properties
in quasi-one-dimensional systems
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~Received 3 August 1999; revised manuscript received 25 October 1999!

We present an exact theoretical study of the effect of the spin-orbit~SO! interaction on the band structure
and low temperature transport in long quasi-one-dimensional electron systems patterned in two-dimensional
electron gases in zero and weak magnetic fields. We reveal the manifestations of the SO interaction which
cannot in principle be observed in higher dimensional systems.
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It is known that an electron moving in an electric fie
experiences not only an electrostatic force but also a rela
istic influence that is referred to as the spin-orbit~SO! inter-
action ~or spin-orbit coupling1!. It is caused by Pauli cou
pling between the spin moment of an electron and
magnetic field which appears in the rest frame of the elec
due to its motion in the electric field. The Hamiltonian of th
SO interaction has the form:1

ĤSO52
\

~2M0c!2
E~R!F ŝ3H p̂1

e

c
A~R!J G . ~1!

Here M0 is the free electron mass,p̂ is the canonical mo-
mentum operator,ŝ is the Pauli matrices,E(R) is the elec-
tric field, A(R) is a vector potential, andR is a 3D position
vector. Usually the Hamiltonian~1! results in a spin-
orientation dependence of the electron energy and/or w
functions. This dependence can become important if elec
fields acting on a system of moving electrons are sufficien
strong.

One of the most promising solid-state nanostructures
the observation of SO-interaction effects is the quasi-o
dimensional electron system2,3 ~Q1DES! patterned in two-
dimensional electron gases~2DEG!. In contrast with higher
dimensional structures, Q1DES havethree independent
sources of strong electric fields:~i! crystal-field potential that
is present in all dimensionalities owing to the intermolecu
forces;~ii ! a quantum-well potential3 that confines electron
to a 2D layer at the surface of the crystal;~iii ! a transverse
~in-plane! electric potential that is applied to squeeze t
2DEG into a quasi-one-dimensional channel.2,3 The strength
of the in-plane potential determines an effective width o
Q1DES that can be controlled by changing the transve
voltage. In sufficiently narrow channels the transverse e
tric field can be made comparable with the other two el
trostatic contributions.

The study of the SO interaction in Q1DES is interesti
from the standpoint of remarkable transport phenom
which they exhibit: ballistic quantization of conductance4

the 0.7 conductance structure;5 magnetic depopulation;6 and
negative magnetoresistance.7 Since these phenomena depe
on the peculiarities of the energy spectrum of electrons,
new mechanism leading to nontrivial changes in the sp
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trum ~especially to those involving the spin! may affect
transport properties and thereby help their understanding

Earlier theoretical8–11 and experimental12–17works on the
SO-related effects dealt mainly with 3D and 2D systems a
did not touch on aspects of the SO coupling in Q1DES.
this paper we present the results of a theoretical analysi
the effect of the SO interaction on the energy spectrum
low temperature~ballistic! conductance of a long Q1DES
Since the crystal-field contribution to the SO interaction e
ergy can be made negligible in comparison with t
quantum-well effect in a variety of systems,13–17we take into
account two sources of the SO coupling: the quantum-w
confinement in the direction perpendicular to the plane of
2DEG and the confining electric potential transverse to
2DEG. We show that even if the SO coupling due to t
transverse potential is left out, the very presence of this
tential changes drastically the SO-interaction effects cau
by the quantum-well field in comparison with a purely 2
situation. In addition to this, the contribution of the tran
verse potential to the SO coupling adds interesting featu
to the electron energy spectrum and the conductance w
cannot be accounted for by simply renormalizing t
quantum-well field. Also, we find that relatively weak ma
netic fields emphasize the effects of the SO interaction
Q1DES.

A unique feature of semiconductor Q1DES is that th
properties can be varied significantly at the stage of des
~via chemical composition, band engineering, external fie
etc.!. In particular, it is possible to create systems with
wide range of carrier concentrations including values wh
the strength of electron-electron interactions is relativ
weak. On the other hand, the strength of the SO coupling
simultaneously be enhanced by, for example, increasing c
fining electric fields and using materials with larger SO co
stants~InAs, PbTe, etc.!. As a result, experimental situation
can be achieved when the SO coupling becomes domin
In this case it is reasonable to assume that the elect
electron interaction does not remove SO effects in the b
structure of Q1DES and they can be studied within
single-particle approximation. As regards the ballistic co
ductance of a quantum wire, it has been proved not to
renormalized by electron-electron interactions.18 Based on
these arguments, we consider here a free 2DEG withi
one-band effective mass approximation.19 The corresponding
Hamiltonian has the form:
R2464 ©2000 The American Physical Society
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Ĥ5
1

2M S p̂1
e

c
AD 2

1V~R!1
g

2
mB~ŝB!1ĤSO. ~2!

HereM is the effective electron mass,g is the Lande´ g factor,
and mB is the Bohr magneton. The vector potentialA is
chosen in the Landau gaugeA(R)5Bx y with a magnetic
field B5curlA5Bz being perpendicular to the 2DEG. I
line with Refs. 20–22, thetransverse confining potentia
V(R) is approximated by a parabola

V~R![V~x!5~Mv2/2!x2, ~3!

wherev controls the strength of the confining potential.
We assume that the SO HamiltonianĤSO ~1! in Eq. ~2! is

formed by two contributions:ĤSO5ĤSO
a 1ĤSO

b . The first

one, ĤSO
a , arises from the quantum-well electric field th

can reasonably be assumed uniform and directed alongz
axis, so thatĤSO

a is given by

ĤSO
a 5

a

\ F ŝ3S p̂1
e

c
AD G

z

. ~4!

The SO-coupling constanta takes values 10210–1029 eV
3cm for different systems.9,14–17 We will refer to this
mechanism of the SO coupling asa coupling.

The second contributionĤSO
b to ĤSO comes from the in-

plane electric fieldE52¹RV52Mv2x caused by the
transverse confining potential~3!:

ĤSO
b 5

b

\

x

l v
F ŝ3S p̂1

e

c
AD G

x

, l v5A\/Mv. ~5!

By comparison with typical quantum-well and transver
electric fields, the SO-coupling constantb in Eq. ~5! can be
roughly estimated as at leastb;0.1a. Moreover, in square
quantum wells where the value ofa is considerably
diminished,17 the constantb may well compete witha. We
will call the SO interaction arising from the transverse co
fining potential~3! b coupling.

To calculate the energy spectrum of electrons we m
find eigenvaluesE of the Schro¨dinger equationĤC5EC,
where the wave functionC5C(R)5$C(R)↑C(R)↓% is a
two-component spinor. Since the HamiltonianĤ ~2!–~5! is
translationally invariant in they direction, the wave functions
C↑↓(R) are plane waves propagating along they axis, i.e.,
C↑↓(R)5exp(ikyy)F↑↓(x), and the longitudinal energy i
given by Ey5\2ky

2/2M , whereky is the longitudinal wave
number. The equations forF↑↓(x) stem from the Schro¨-
dinger equation:

F↑↓9 1@«x7g~ l v / l B!22a↑↓t22b↑↓t#F↑↓~ t !

5~ l v / l a!$6F↓↑8 1@~ l v / l B!2t1kyl v#F↓↑~ t !%, ~6!

a↑↓511~ l v / l B!46~ l v / l B!2~ l v / l b!, ~7!

b↑↓52~kyl v!@~ l v / l B!26~1/2!~ l v / l b!#, ~8!

where l B5Ac\/eB is the magnetic length andl a(b)
5\2/2Ma(b) are typical spatial scales associated with
a (b) coupling. The quantities«x[(kxl v)2 and t5x/ l v are
e

-

st

e

the dimensionless transverse energy and coordinateskx
2

5(2M /\2)E2ky
2 , andg5(M /M0)g/2.

As opposed to all the other terms in Eq.~2!, the operator
ĤSO

a ~4! is nondiagonalin the spin space. Therefore, as lon
as thea coupling is finite~i.e., if l v / l aÞ0), the equations
~6! are coupled to each other. It is therefore natural that
behavior of the transverse energy«x which is determined by
Eqs.~6! crucially depends on whether or not thea coupling
is present in the system.

For zeroa coupling (l v / l a50), Eqs.~6! decouple and
reduce to analytically solvable Hermitian equations. T
transverse energy is then given by

«x
↑↓5~2n11!a↑↓

1/26g~ l v / l B!22a↑↓
21@~ l v / l B!2

7~1/2!~ l v / l b!#2~kyl v!2, ~9!

n50,1,2, . . . and thewave functionsf↑↓
n (t) form complete

sets. The functions«x
↑↓5«x

↑↓(ky) resemble well-known mag
netoelectric parabolic subbands23 with the only exception
that finiteb coupling brings in a spin-orientation dependen
of the subband curvature.

We now consider the case of finitea coupling (l v / l a
Þ0). We do not find that the coupled Eqs.~6! can be solved
in an explicitly analytical form. However, a strongly conve
gent matrix form exists. This is found by expandingeach
unknown wave functionF↑(t) and F↓(t) in terms ofboth
f↑

n(t) and f↓
n(t) and then combining allfour expansions

obtained into aclosedlinear homogeneous system of alg
braic equations with respect to the coefficients of one of
expansions. The exact spectrum«x has been found numeri
cally as zeros of the corresponding determinant as a func
of ky ~see Ref. 25 for more details for the zero-magnetic-fi
case!. The exploitation of thefour expansions has allowed u
to avoid inversions of infinite matrices, while the conv
niently chosen bases have made the roots of the determ
rapidly convergent.

Solid lines in Fig. 1~a! present graphs of«x5«x(kyl v) for
zero b coupling (l v / l b50) and zero magnetic field. Her
we see two-fold spin degeneracy of all quantum levels
ky50. Onceky becomes finite, the SO interaction lifts th
degeneracy producing an energy splittingD«x5«x

↑2«x
↓Þ0

between electron states with different spin orientations.
small kyl v&2 this splitting is linear inky and agrees with
results of both theoretical9,24 and experimental14–16 research
on the SO-interaction effects caused by the quantum-w
field in 2D systems. However, in a purely 2D geometry t
linear splitting D«x}ky is known9 to be exact forall values
of ky , however large. In contrast to this, the Q1DES disp
sion curves start to diverge from the linear behavior atkyl v

'2.5 and eventuallyanticrosswith an energy branch corre
sponding to the next higher~lower! quantum numbern. This
is a direct consequence of the presence of the transv
confining potential~3!. Even though this potential does no
contribute to the SO interaction directly~becausel v / l b
50), it nevertheless strongly affects the other~quantum-
well! mechanism of the SO coupling. More specifically,
the presence of the potential~3!, the transverse wave func
tions F↑↓(x) of the unperturbed system~i.e., with l v / l a
50) are no longer simple plane waves exp(ikxx) ~as it is in a
strictly 2D situation! but become parabolic cylinde
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functions.1 When the SO perturbation operator@the rhs of
Eqs.~6!# acts on these functions, it projects thenth state onto
the (n61)-st states producing an effectivehybridizationof
‘‘neighboring’’ states and therefore theanticrossingof the
energy branches in Fig. 1~a! and the nonmonotonic depen
denceD«x(ky) ~see Ref. 25 for more details!.

The application of a weak (l v / l B&1) perpendicular mag
netic field bends all the energy curves downwards by
amount}ky

2 @cf. solid and dotted lines in Fig. 1~a!#. This
behavior is consistent with Eq.~9!. We note that a weak
magnetic field has only a small effect on the dispersion
to the left of the anticrossing region, i.e., forkyl v&3. For
strong magnetic fields (l v / l B*10), when the distance be
tween Landau levels is very large, no anticrossing effects
to the SO interaction can be seen.

From Figs. 1~a! and 1~b! it is seen that switching on theb
couplingenhancesthe anticrossing of ‘‘neighboring’’ energy
branches. Moreover, the strength of the anticrossing now
pends onn and grows withn. Interestingly, this effectre-
ducesthe linear energy splittingD«x}ky , in contrast to the
expectation that an additional mechanism of the SO inte
tion should intensify the splitting rather than suppress
What actually happens is that theb coupling, as well as the
a coupling, gives a contribution to the hybridization
neighboring electron states.25 As a result, the hybridization
becomes stronger and leads to the more pronounced
crossing and effectively to thesuppressionof the energy
splitting. This effect indicates the independent nature ob
coupling and its irreducibility to thea coupling. Owing to
the enhanced interstate hybridization caused by theb cou-

FIG. 1. The transverse energy«x vs kyl v for finite a coupling
( l v / l a50.3): ~a! l v / l b50; ~b! l v / l b50.1. Solid and dotted lines
correspond to zero (l v / l B50) and finite (l v / l B50.3) magnetic
field respectively.
n

e

e-

c-
t.

ti-

pling, the anticrossing of energy branches in Fig. 1~b! can be
seen in a wider region ofkyl v up to kyl v'13214. A weak
magnetic field modifies the spectrum in Fig. 1~b! in basically
the same way as it does in Fig. 1~a! @cf. solid and dotted lines
in Fig. 1~b!#.

The electron eigenstates that were discussed above ca
proven to obey the fundamentalcurrent-conservation
identity25,26so that a current can travel adiabatically in any
these states without scattering into any other. This prop
allows the low temperature~ballistic! conductanceG of a
Q1DES to be calculated directly from the energy spectr
by relating it to the numberM of forward propagating elec
tron modes at a given Fermi energy«F via simple Landauer
formula:27 G5(e2/h)M («F).

The most interesting effects onG are obtained for strong
a coupling whenl v / l a*1.4. Here the anticrossing~non-
monotonic! portion of curves«x(ky) in Fig. 1~a! comes so
close to they axis that the longitudinal term (kyl v)2 in the
total subband energy«5«x1(kyl v)2 does not disguise com
pletely the original nonmonotonicity of«x(ky). As a result,
we see a smallnonmonotonicportion ~‘‘bump’’ ! on all the
energy curves«(ky) in Fig. 2~a! @see a magnified bump fo
the lowest leveln50 in Fig. 2~b!#. Remarkably, these bump

FIG. 2. The dimensionless subband energy« vs kyl v ~a! and the
conductanceG vs the Fermi energy«F ~c! for l v / l a51.8, l v / l b

5 l v / l B50. ~b! shows a magnified bump on ann50 energy curve.
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give rise tothreepropagating electron modes as opposed
just one created by any monotonic interval of the spectru
Furthermore, two of these modes@the two leftmost black
circles in Fig. 2~b!# ‘‘mirror’’ each other in the sense tha
they have nearly the same spatial wave functions but op
sitely directed longitudinal group velocities vy
5\21(]«/]ky). It is therefore likely that weak elastic sca
tering between the forward and backward propagating mo
may cause directed localization28 and the twin modes will
not contribute to the net current. However, in a sufficien
clean system, the existence of such unusual modes c
give rise to sharp (;0.1 meV wide! periodic peaks in the
dependenceG(«F) @Fig. 2~c!#.

A second manifestation of thea coupling in Fig. 2~c! is a
shift of the conductance quantization steps to lower ener
in comparison with the case of zero SO interaction~cf. solid
and dotted lines!. This effect is caused by energy branch
that go downwards in the region of the linear energy splitt
@see Fig. 1~a!# and therefore lower the energy of a band ed

In Fig. 1~b! we saw that switching on theb coupling
reduces the energy splitting created by thea coupling. As
applied to the subband energy«(ky) this means suppressio
of the nonmonotonic bumps and eventually quenching
peaklike structure inG(«F). For example, forl v / l b50.2
only one~the lowest! bump in Fig. 2~a! survives and hence
only the first peak inG(«F) can potentially be observed. Th
existence of the single peak~or just a few peaks! could be a
s-
,

o
.

o-

es

ld

es

s
g
.

e

clear experimental indication of the presence of theb cou-
pling in the system.

In contrast tob coupling, a weak perpendicular magnet
field emphasizes the conductance features caused by ta
coupling. Indeed, anegativeeffective potential}ky

2 due to a
magnetic field@see Eq.~9! and Figs. 1~a! and 1~b!# compen-
states partially to the contribution of the longitudinal ener
(kyl v)2 to the total subband energy«5«x1(kyl v)2. Hence
the nonmonotonic portions of the transverse energy spect
«x in Figs. 1~a! and 1~b! are now more important in forming
« than they were in the zero magnetic field. As a result,
amplitude~height! of the bumps in Fig. 2~a! will increase
and the conductance peaks in Fig. 2~c! become wider~2–3
times!. As regards the peaks destroyed by theb coupling,
they reappear one by one starting from the lowest as
magnetic field is being increased.

In conclusion, we have revealed features of the ene
spectrum of electrons and low temperature conductance
ing from the specifics of the spin-orbit interaction in qua
one-dimensional electron systems: nonmonotonic wave v
tor dependence of subband energies, anticrossings betw
subbands, additional subband minima, and sharp peaks in
ballistic conductance.

A.V.M. thanks the ORS, COT, and Corpus Christi Co
lege for financial support. C.H.W.B. thanks the EPSRC
financial support.
.

1L. D. Landau and E. M. Lifshitz,Quantum Mechanics~Pergamon
Press, Oxford, 1991!.

2T. J. Thorntonet al., Phys. Rev. Lett.56, 1198~1986!.
3M. J. Kelly, Low-Dimensional Semiconductors: Material, Phy

ics, Technology, Devices~Oxford University Press, Oxford
1995!.

4B. J. van Weeset al., Phys. Rev. Lett.60, 848 ~1988!; D. A.
Wharamet al., J. Phys. C21, L209 ~1988!.

5K. J. Thomaset al., Phys. Rev. Lett.77, 135 ~1996!.
6B. K. van Weeset al., Phys. Rev. B38, 3625~1988!.
7I. Eisele and G. Dorda, Phys. Rev. Lett.32, 1360~1974!.
8G. Dresselhaus, Phys. Rev.100, 580 ~1955!.
9E. I. Rashba, Fiz. Tverd. Tela~Leningrad! 2, 1224 ~1960! @Sov.

Phys. Solid State2, 1109 ~1960!#; Yu. A. Bychkov and E. I.
Rashba, Pis’ma Zh. Eksp. Teor. Fiz.39, 66 ~1984! @JETP Lett.
39, 78 ~1984!#.

10R. Eppenga and M. F. H. Schuurmanns, Phys. Rev. B37, 10 923
~1988!.

11V. A. Edelstein, J. Phys.: Condens. Matter7, 1 ~1995!.
12H. L. Stormeret al., Phys. Rev. Lett.51, 126 ~1983!.
13S. I. Dorozhkin and E. B. Ol’shanetski�, Pis’ma Zh. Eksp. Teor.

Fiz. 46, 399 ~1987! @JETP Lett.46, 502 ~1987!#.
14B. Das, S. Datta, and R. Reifenberger, Phys. Rev. B41, 8278
~1990!.

15J. Luoet al., Phys. Rev. B41, 7685~1990!.
16J. Nitta and H. Takayanagi, Phys. Rev. Lett.78, 1335~1997!.
17T. Hassenkamet al., Phys. Rev. B55, 9298~1997!.
18D. L. Maslov and M. Stone, Phys. Rev. B52, R5539~1995!.
19B. K. Ridley, Quantum Processes in Semiconductors~Clarendon

Press, Oxford, 1993!.
20S. E. Laux, D. J. Frank, and F. Stern, Surf. Sci.196, 101 ~1988!.
21H. Drexleret al., Phys. Rev. B49, 14 074~1994!.
22B. Kardynałet al., Phys. Rev. B55, R1966~1997!.
23S. Datta, Electronic Transport in Mesoscopic Systems~Cam-

bridge University Press, Cambridge, 1995!.
24Yu. A. Bychkov, V. I. Mel’nikov, and E. I. Rashba, Zh. Eksp

Teor. Fiz.98, 717 ~1990! @Sov. Phys. JETP71, 401 ~1990!#.
25A. V. Moroz and C. H. W. Barnes, Phys. Rev. B~to be pub-

lished!.
26H. U. Baranger and A. D. Stone, Phys. Rev. B40, 8169~1989!.
27R. Landauer, IBM J. Res. Dev.1, 223 ~1957!.
28C. Barnes, B. L. Johnson, and G. Kirczenow, Phys. Rev. Lett.70,

1159 ~1993!; Can. J. Phys.72, 559 ~1994!.


