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Spin-orbit interaction as a source of spectral and transport properties
in quasi-one-dimensional systems
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We present an exact theoretical study of the effect of the spin-@Kkit interaction on the band structure
and low temperature transport in long quasi-one-dimensional electron systems patterned in two-dimensional
electron gases in zero and weak magnetic fields. We reveal the manifestations of the SO interaction which
cannot in principle be observed in higher dimensional systems.

It is known that an electron moving in an electric field trum (especially to those involving the spiimay affect
experiences not only an electrostatic force but also a relativiransport properties and thereby help their understanding.
istic influence that is referred to as the spin-of80O) inter- Earlier theoreticd ' and experiment&t~*"works on the
action (or spin-orbit coupling). It is caused by Pauli cou- SO-related effects dealt mainly with 3D and 2D systems and
pling between the spin moment of an electron and alid not touch on aspects of the SO coupling in Q1DES. In
magnetic field which appears in the rest frame of the electrothis paper we present the results of a theoretical analysis of
due to its motion in the electric field. The Hamiltonian of the the effect of the SO interaction on the energy spectrum and
SO interaction has the forth: low temperatureg(ballistic) conductance of a long Q1DES.
Since the crystal-field contribution to the SO interaction en-
ergy can be made negligible in comparison with the
quantum-well effect in a variety of systertis,*’ we take into
account two sources of the SO coupling: the quantum-well
confinement in the direction perpendicular to the plane of the
. 2DEG and the confining electric potential transverse to the
Here My is the free electron massp, is the canonical mo-  2DEG. We show that even if the SO coupling due to the
mentum operatorg is the Pauli matriced:(R) is the elec- transverse potential is left out, the very presence of this po-
tric field, A(R) is a vector potential, anR is a 3D position tential changes drastically the SO-interaction effects caused
vector. Usually the Hamiltonian(l) results in a spin- by the quantum-well field in comparison with a purely 2D
orientation dependence of the electron energy and/or wavatuation. In addition to this, the contribution of the trans-
functions. This dependence can become important if electriverse potential to the SO coupling adds interesting features
fields acting on a system of moving electrons are sufficientlyto the electron energy spectrum and the conductance which
strong. cannot be accounted for by simply renormalizing the

One of the most promising solid-state nanostructures foguantum-well field. Also, we find that relatively weak mag-
the observation of SO-interaction effects is the quasi-onenetic fields emphasize the effects of the SO interaction in
dimensional electron systém (Q1DES patterned in two- QI1DES.
dimensional electron gas¢é2DEG). In contrast with higher A unique feature of semiconductor Q1DES is that their
dimensional structures, Q1DES havbree independent properties can be varied significantly at the stage of design
sources of strong electric field§) crystal-field potential that (via chemical composition, band engineering, external fields,
is present in all dimensionalities owing to the intermolecularetc). In particular, it is possible to create systems with a
forces; (i) a quantum-well potentidlthat confines electrons wide range of carrier concentrations including values where
to a 2D layer at the surface of the crystéli) a transverse the strength of electron-electron interactions is relatively
(in-plane electric potential that is applied to squeeze theweak. On the other hand, the strength of the SO coupling can
2DEG into a quasi-one-dimensional chanh&lThe strength  simultaneously be enhanced by, for example, increasing con-
of the in-plane potential determines an effective width of afining electric fields and using materials with larger SO con-
Q1DES that can be controlled by changing the transversstants(InAs, PbTe, etd. As a result, experimental situations
voltage. In sufficiently narrow channels the transverse elecean be achieved when the SO coupling becomes dominant.
tric field can be made comparable with the other two elecin this case it is reasonable to assume that the electron-
trostatic contributions. electron interaction does not remove SO effects in the band

The study of the SO interaction in Q1DES is interestingstructure of Q1DES and they can be studied within the
from the standpoint of remarkable transport phenomenaingle-particle approximation. As regards the ballistic con-
which they exhibit: ballistic quantization of conductarfce; ductance of a quantum wire, it has been proved not to be
the 0.7 conductance structutenagnetic depopulatiohand  renormalized by electron-electron interactidhsBased on
negative magnetoresistanc8ince these phenomena dependthese arguments, we consider here a free 2DEG within a
on the peculiarities of the energy spectrum of electrons, angne-band effective mass approximatiSiThe corresponding
new mechanism leading to nontrivial changes in the specHamiltonian has the form:

HSO: E(R) (}X

. e
—W p+ EA(R)”' (1)
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N 1 /(. e \? g - R the dimensionless transverse energy and coordinzklfes,
H=5n | PHcA] FV(R)+5ue(0B)+Hso. (2 =(2m/m2)E-K2, andy=(M/Mg)g/2.

As opposed to all the other terms in Eg), the operator
Hgo (4) is nondiagonalin the spin space. Therefore, as long
as thea coupling is finite(i.e., if 1 ,/1 ,#0), the equations
(6) are coupled to each other. It is therefore natural that the
behavior of the transverse energywhich is determined by
Egs.(6) crucially depends on whether or not thecoupling
is present in the system.

V(R)=V(X)=(Mw?/2)x2, 3) For zeroa cou_pling (,/1,=0), Eqs: (_6) decouple and
reduce to analytically solvable Hermitian equations. The
wherew controls the strength of the confining potential.  transverse energy is then given by

We assume that the SO HamiltoniBi, (1) in Eq. (2) is
formed by two contributionsHgo=Hg&q+HE,. The first

one, HE,, arises from the quantum-well electric field that F(12)(1, 11912 (k1 )2, 9

can reasonably be assumed uniform and directed along the _
axis. so thaﬂgo is given by n=0,1,2 ... and thewave functlon&b'{l(t) form complete

sets. The functions]'=e}'(k,) resemble well-known mag-

HereM is the effective electron massjs the Landeg factor,
and ug is the Bohr magneton. The vector potentfalis
chosen in the Landau gauggR)=Bxy with a magnetic
field B=curlA=Bz being perpendicular to the 2DEG. In
line with Refs. 20—22, thdransverse confining potential
V(R) is approximated by a parabola

ey'=(2n+Dal’x (1, /lg)>—a; " (1,/1)?

. al . [ e netoelectric parabolic subbarfdswith the only exception
Hgozg oX|p+ EA (4)  that finite 8 coupling brings in a spin-orientation dependence
z of the subband curvature.
The SO-coupling constant takes values 10'°-10"° eV We now consider the case of finite coupling (/1.
xcm for different system$!417 we will refer to this #0). We do not find that the coupled Ed§) can be solved
mechanism of the SO coupling ascoupling. in an explicitly analytical form. However, a strongly conver-

gent matrix form exists. This is found by expandiegch
unknown wave functionb(t) and® (t) in terms ofboth
#7(t) and ¢7(t) and then combining alfour expansions
obtained into aclosedlinear homogeneous system of alge-
R B X braic equations with respect to the coefficients of one of the
Hgo=g|— , l,=VhIMw. (5  expansions. The exact spectrumhas been found numeri-

X cally as zeros of the corresponding determinant as a function

By comparison with typical quantum-well and transverseOf Ky, (see Ref. 25 for more details for the zero-magnetic-field
electric fields, the SO-coupling constatin Eq. (5) can be case. The_ explo_ltatlon of thé_ourexpa_nsmns h_as allowed us
roughly estimated as at leggt-0.1a. Moreover, in square to avoid inversions of infinite matrices, while the conve-
quantum wells where the value of is considerably niently chosen bases have made the roots of the determinant
diminished!” the constang may well compete withv. We ~ fapidly convergent.
will call the SO interaction arising from the transverse con- Solid lines in Fig. 1a) present graphs af,=e,(k,1,,) for
fining potential(3) B coupling. zero B coupling (,/1;=0) and zero magnetic field. Here
To calculate the energy spectrum of electrons we mus{/® See two-fold spin degeneracy of all quantum levels at

find eigenvalue< of the Schrdinger equatioHV =EW, I(;V:O' Oncek, t?jecc_)mes finite, the SIQtt;Eterilct%o_n Iiffothls
where the wave functio =W (R)={W(R),¥(R),} is a CcJdeneracy proaucing an energy Spitling,=s, ex

. . oA : between electron states with different spin orientations. For
two-component spinor. Since the Hamiltonigin(2)—(5) is

lationallyv i iant in the directi h ‘ . small kI ,=2 this splitting is linear ink, and agrees with
translationally invariant in thg direction, the wave functions ¢ 115 °of both theoreticif* and experimentat=2° research
¥, (R) are plane waves propagating along thexis, i.e.,

- o . on the SO-interaction effects caused by the quantum-well
‘PTL(R)_eXkagy)f’H(X)’ and the longitudinal energy is fi|q jn 2D systems. However, in a purely 2D geometry the
given by E,=7%k;/2M, wherek, is the longitudinal wave |ineqr splitting Aeyk, is knowr? to be exact forll values
number. The eguatlons fob; (x) stem from the Schro ky, however large. In contrast to this, the Q1DES disper-
dinger equation: sion curves start to diverge from the linear behaviokaf,

_ ~2.5 and eventuallanticrosswith an energy branch corre-
" 2_ 2_
7y Flex+ v(lo/lg)"—ay = by t]0 (1) sponding to the next highélower) quantum numben. This
= N =D +[(1,/18) 2K I D (D)), (6) is a direct consequence of the presence of the transverse
confining potential3). Even though this potential does not

The second contributioRi£ to Fso comes from the in-
plane electric fieldE=—VzV=—Mw?x caused by the
transverse confining potentiéd):

oX

- €A
Pt

aH:1+(Iw”B)4i(lw”B)Z(lw”B)r (7) c_ontribyte to the SO interaction directlfbecausel,/l;
=0), it nevertheless strongly affects the othguantum-
b =2(k, w)[(lw/IB)zi(llz)(lw”B)]! (8) well) mechanism of the SO coupling. More specifically, in

the presence of the potentig), the transverse wave func-
where Ig=ychi/eB is the magnetic length and g tions @, (x) of the unperturbed systerti.e., with |,,/1,
=h%2Ma(B) are typical spatial scales associated with the=0) are no longer simple plane waves ékp( (as it is in a
a (B) coupling. The quantities,=(k,l,)? andt=x/l,, are  strictly 2D situation but become parabolic cylinder
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FIG. 1. The transverse energy vs k,l,, for finite @ coupling 4 ;
(1,M,=0.3): @ 1,/15=0; (b) I,/15=0.1. Solid and dotted lines :
correspond to zerol(/lz=0) and finite (,/Ig=0.3) magnetic *
field respectively. 2
: . 11
functions! When the SO perturbation operafdhe rhs of €
Eqgs.(6)] acts on these functions, it projects thth state onto o2 : z z T z
the (n=1)-st states producing an effectibgbridization of
“neighboring” states and therefore thenticrossingof the FIG. 2. The dimensionless subband enesgss k, I, (2) and the
energy branches in Fig.(d and the nonmonotonic depen- conductances vs the Fermi energye (c) for I, /1,=1.8,1,/1,
denceAe,(k,) (see Ref. 25 for more detalls =1,/1g=0. (b) shows a magnified bump on ar= 0 energy curve.

The application of a weal {/|z=1) perpendicular mag-
netic field bends all the energy curves downwards by armling, the anticrossing of energy branches in Figp) Lan be
amountockf, [cf. solid and dotted lines in Fig.(@]. This  seen in a wider region &I, up tok,l,~13—14. A weak
behavior is consistent with Eq9). We note that a weak magnetic field modifies the spectrum in Figbjlin basically
magnetic field has only a small effect on the dispersion lawthe same way as it does in Figal[cf. solid and dotted lines
to the left of the anticrossing region, i.e., feyl ,<3. For in Fig. 1(b)].

strong magnetic fieldsl(/Iz=10), when the distance be-  The electron eigenstates that were discussed above can be
tween Landau levels is very large, no anticrossing effects duproven to obey the fundamentaturrent-conservation
to the SO interaction can be seen. identity?>?®so that a current can travel adiabatically in any of

From Figs. 1a) and 1b) it is seen that switching onth@  these states without scattering into any other. This property
couplingenhanceshe anticrossing of “neighboring” energy allows the low temperaturéballistic) conductanceG of a
branches. Moreover, the strength of the anticrossing now dé1DES to be calculated directly from the energy spectrum
pends onn and grows withn. Interestingly, this effecte- by relating it to the numbeM of forward propagating elec-
ducesthe linear energy splittind e,k , in contrast to the tron modes at a given Fermi energy via simple Landauer
expectation that an additional mechanism of the SO interadormula?’ G=(e?/h)M(eg).
tion should intensify the splitting rather than suppress it. The most interesting effects dd are obtained for strong
What actually happens is that tifecoupling, as well as the « coupling whenl /I ,=1.4. Here the anticrossingion-

a coupling, gives a contribution to the hybridization of monotoni¢ portion of curvese,(k,) in Fig. 1(@) comes so
neighboring electron staté3As a result, the hybridization close to they axis that the longitudinal termk(l L2 in the
becomes stronger and leads to the more pronounced antdtal subband energy=e,+ (k| )2 does not disguise com-
crossing and effectively to theuppressionof the energy pletely the original nonmonotonicity of,(k,). As a result,
splitting. This effect indicates the independent natureBof we see a smalhonmonotonigortion (“bump” ) on all the
coupling and its irreducibility to ther coupling. Owing to  energy curveg (k) in Fig. 2a) [see a magnified bump for
the enhanced interstate hybridization caused bygheou-  the lowest leveh=0 in Fig. 2b)]. Remarkably, these bumps
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give rise tothree propagating electron modes as opposed taclear experimental indication of the presence of gheou-
just one created by any monotonic interval of the spectrumpling in the system.

Furthermore, two of these modé¢the two leftmost black In contrast toB coupling, a weak perpendicular magnetic
circles in Fig. 2b)] “mirror” each other in the sense that field emphasizes the conductance features caused by the
they have nearly the same spatial wave functions but 0ppQsoypling. Indeed, aegativeeffective potentiabck? due to a
S|tel_y1 directed longitudinal ~ group  velocities vy magnetic fieldsee Eq(9) and Figs. 1a) and Xb)] compen-
=h "(deldky). Itis therefore likely that weak elastic scat- giateq partially to the contribution of the longitudinal energy
tering between the forward and backward propagating mode&(yI ,)? to the total subband energy= 8x+(ky|w)2- Hence

may cause directed localizatidnand the twin modes. W'” the nonmonotonic portions of the transverse energy spectrum
not contribute to the net current. However, in a sufficiently . . . . .
in Figs. 1@ and Xb) are now more important in forming

clean system, the existence of such unusual modes couft

. . : L . ¢ than they were in the zero magnetic field. As a result, the
gg’se::zgntgg&ar)p;%12{25\/ widg periodic peaks in the amplitude (heighy of the bumps in Fig. @) will increase
F . .

A second manifestation of the coupling in Fig. Zc) is a and the conductance peaks in Figc)2become wider2-3

shift of the conductance quantization steps to lower energie%]n;es)r'egs r;gra:)dnsetge %izkztgﬁfr:ro¥fodmb¥h?EI!(:)(\)/\l/fs“tng’s the
in comparison with the case of zero SO interactiof solid y pp y 9

and dotted lines This effect is caused by energy branchesm""gneuc f'elq Is being increased.
: . . o In conclusion, we have revealed features of the energy
that go downwards in the region of the linear energy splitting

[see Fig. a)] and therefore lower the energy of a band edgespectrum of electrons and low temperature conductance aris-

In Fig. 1(b) we saw that switching on thg coupling ing frqm the_ specifics of the spln-(?rblt interaction in quasi-
reduces the enerav splitting created by teEounling. As one-dimensional electron systems: nonmonotonic wave vec-
apolied to the subggang ene? yk.) this r)rqeans SB ?éssion tor dependence of subband energies, anticrossings between

bp : guxKy ppres subbands, additional subband minima, and sharp peaks in the
of the nonmonotonic bumps and eventually quenching th

peaklike structure inG(eg). For example, for /I ;=0.2 Ballistic conductance.

only one(the lowest bump in Fig. Za) survives and hence A.V.M. thanks the ORS, COT, and Corpus Christi Col-
only the first peak irG(eg) can potentially be observed. The lege for financial support. C.H.W.B. thanks the EPSRC for
existence of the single pedér just a few peakscould be a  financial support.
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