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Interactions and interference in quantum dots: Kinks in Coulomb-blockade peak positions
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We investigate the spin of the ground state of a geometrically confined many-electron system. For atoms,
shell structure simplifies this problem—the spin is prescribed by the well-known Hund'’s rule. In contrast,
guantum dots provide a controllable setting for studying the interplay of quantum interference and electron-
electron interactions in general cases. In a generic confining potential, the shell-structure argument suggests a
singlet ground state for an even number of electrons. The interaction among the electrons produces, however,
accidental occurrences of spin-triplet ground states, even for weak interaction, a limit which we analyze
explicitly. Variation of an external parameter causes sudden switching between these states and hence a kink
in the conductance. Experimental study of these kinks would yield the exchange energy for the “chaotic
electron gas.’[S0163-182609)51448-3

The evolution of the properties of a system as a continugenerally, kinks should occur in generic quantum dots with
ous change is made to it is a ubiquitous topic in quantunno special symmetrigsin fact, the data of Ref. 4 show evi-
physics. The classic example is the evolution of energy levdence for kinks in large dots, though they were not the sub-
els as the strength of a perturbation is variefypically,  ject of that investigation.
neighboring energy levels do not cross each other, but rather Small circular dots behave much like atohence “arti-
come close and then repel in an “avoided crossing.” How-ficial atoms”): the circular symmetry causes degeneracy of
ever, if there is an exact symmetry, neighboring levels carthe orbital levels and so a large spacing between allowed
have different symmetries uncoupled by the perturbationenergies. In sharp contrast, there is no degeneracy in irregu-
and in this special case they can cross. lar dots: the typical single-particle orbital level separation is

A new and powerful way of studying parametric evolu- simply given byA=1/vV, wherev is the bulk density of
tion in many-body quantum systems is through thestates and/ is the volume of the dot. Kinks in the evolution
Coulomb-blockade peaks that occur in mesoscopic quantumf Coulomb-blockade peak positions may occur whenever
dots?~® The electrostatic energy of an additional electron onthe ground state of the dot is separated from an excited state
a quantum dot—an island of confined charge with quantizedvith different spin by an energy of ordér. The interference
states—blocks the flow of current through the dot—the Coueffects causing the separation are unique to each state and
lomb blockadé:” Current can flow only if two different change upon tuning. In fact, the two states may switch at a
charge states of the dot are tuned to have the same energertain point, the former excited state becoming the ground
this produces a peak in the conductance through the dot. Thetate: such switching corresponds to a kink. Note that kinks
position of the Coulomb-blockade peak depends on the difeccur in pairs: kinks in the peaks corresponding to he
ference in ground state energy upon adding an electron»N+ 1 transition, and that fo—1— N, both occur when
Eg(N+1)—Eg(N). Thus, the evolution of the peak position Eg(N) switches. We see from this argument that kinks in the
reflects the evolution of these many-body energy levels as avolution of peak positions with parameter is a general prop-
parameter, such as magnetic field or shape distortion, is vaerty of quantum dot§.
ied. Here we analyze these kinks explicitly in a particular

Since quantum dots are generally irregular in shape, thémit. Consider a large quantum dot in which the single-
orbital levels have no symmetry and so avoid crossing. Howparticle properties are “random:” the statistics of the ener-
ever, the spin degrees of freedom are often decoupled fromies follow the classic random matrix ensemBlasd the
the rest of the system, so states of different total spin camwave functions obey Gaussian statistics with a correlation
cross. Such a crossing will cause an abrupt change in thieinction given by the superposition of random plane
evolution of the Coulomb-blockade peak position—awavest® The single-particle properties of such random sys-
kink—as the spin of the ground state changes, even thougiems have been extensively investigated, and it has been con-
there is no crossing in the single-particle states. Such kinkgctured, with considerable evidence, that these are good
have been observed in small circular dots—"artificial models for quantum dots in which the classical dynamics is
atoms”—because of their special circular symmeétiiore  chaotic’*!
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To treat the Coulomb blockade, we must consider not drdr’

only single-particle properties but interactions among the §E<§n,n>—<§ﬁ,n+1}:2f —Vz—VSC,(r—r’)|F(r—r’)|2

particles as well. One natural way to proceed is to treat these

interactions in the basis of self-consistent single-particle 22—

states| #/m(r) x,(S)}, wherem ando are the labels of orbital =y Vselk—K"). 3

and spin states, respective{ye neglect the weak spin-orbit

interaction. In the limit of zero interaction, two electrons Here F(r)=exp(k’r), with the bar denoting the average

occupy each filled orbital state, except for the top level whenyyer the Fermi surfack’|=ke, andV is the volume of the

the total number of electrons is odd. Because of the interfergqt.

ence produced by confinement in the dOt, the electron den- In the above argument, we have |mp||c|t|y assumed the

sity is not smooth but rather has small deviations from thegpsence of time-reversal symmetry. Bot 0, the same basic

classical-liquid result. Due to the electron-electron interacyrgument holds, but the interaction in the Cooper channel

tion, these deviations contribute to the ground-state energghould be included:; this increasésnaking the proportion-

in addition to the conventional “classical-liquid” charging ajity constant in Eq(3) larger than 2.

energy. If the interaction does not change the double occu- e thus consider a modélwith a single nonzero inter-

pancy of the levels, one finds that the part of such contribuaction constang. This quantity is simply related to the usual

tion coming from the last doubly occupied levels electron gas parametey (the ratio of the Coulomb energy at
the mean interparticle distance to the Fermi engrgy
~(1INM2m)rgIn(Lirg)A for smallrg in two dimensions and in

fn,nEJ drdr [ ¢n(r)]2={| n(r)|?) Vel r—1") the absence of time-reversal symmetry. rAsncreases, the
considerations discussed here apply ugttA at which
X gn(r 2= ha(r )] (1)  point the Stoner criterion for a magnetic instability is ap-

proached. For instance, far,=1, averaging the Thomas-

It is appropriate to use the short-ranged screened interactio'%erml screened potential over the Fermi surface yiglds

. =0.6A in two dimensions.
Vserhere since the smooth background of the other electrons The distribution of electrons among the levels depends on

provides screening;. . . ) denotes the standard ensemble av- e single-particle level spacing comparedtThis is par-
eraging. If, because of the interactions, one of the electron |cularlgclepar when the togal nugmbech))f clectraxss e\E)en'
of that level is promoted to the next orbital state, the resul y : ) . :
(1) is modified to become he top two electrons can either be in the same orbital level at
a cost of¢ in interaction energy or one can be in lew2
and the other ilN/2+1 at an energy cost ofy11— €njz-

N ) ) 5 ) Since the magnitudes of botrand ey, 1 — €y are of order

g”'”“EJ drdr'[|¢n(r)|*= ([ #n(N]*)IVselr—1") A, sometimes the top level is doubly occupied and some-
5 ) times not. In the case of double occupation, the state is, of
X[+ 2T = (s 2(r )] course, a singlet; if two sequential levels are occupied, the
exchange interaction leads to a triplet state. If at most two
* f drdr’ ¢n(r)gh, 4 (r) orbital levels are singly occupied, the ground state energy of

a dot is, then, a sum of three terms:

X Vel =1 )Y (1) (1) 2
Egr: Ecnt E €n,oTME, (4)

The signs+ and — in Eq. (2) correspond to the singlet and (n.0) filled

triplet states, respectively. The Hartree-Fock approach ofyhereM is the number of doubly occupied levels. For our
and _is expected to_be relevant for the experimental Semicorbharging energg., is irelevant. Note that the energy) is
ducting and metallic quantum dots. equivalent to the simultaneous filling of two sequences of
For a large ballistic dotkeL>1, the lack of correlation |eyels, one of which is rigidly shifted bg from the other3
among the random wave functiong, and ¢, with n#m  gFipally, if several orbital level spacings in sequence are
leads to a hierarchy of the matrix elements of thesmall, more complicated configurations occur for both even
interactioﬁ'z (hel’ek,: is the Fermi wave vector of electrons and OddN.14'15 Moreover, the prob|em of the ground-state
in the dot, andL is the linear size of the dptThe first  gpin of a mesoscopic system becomes very complicated upon
integral in Eq.(2) vanishes in the limikzL —o0, and one is approaching the Stoner instability.
left only with the second, exchange interaction, term. In the ag g parameter is varied, the single-particle energies
same I|m|t, the eXChange interaction term has a nonzero a\éhange and may cause a Change in the level Occupations and
erage value and vanishingly small mesoscopic fluctuationsso g kink. This is explained and illustrated in Fig. 1. The
The lowest of two energieg; ,, , corresponds to the triplet parameter involved could be, for instance, an applied mag-
state (- — —). Neglecting the small mesoscopic fluctuationsnetic field or a gate voltage which changes the shape of the
of the energiest, , and &, ,.;, one finds the difference dot.
between the energies of the singlet state formed by doubly The distribution of the kinks in the parameter space fol-
occupied levels, and of the triplet state with two singly oc-lows from a random matrix model. We assume that the
cupied orbital levels: Hamiltonian of the dot follows the Gaussian orthogonal en-
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' ' ' ' ' The first quantity to consider is the mean density of kinks,
Puink - First, because a kink occurs whegR,,. 1— enp=¢&,

this density is proportional to the probability of having such
a level separation. Secongl,;, must reflect the rate at which
the levels change as a function of parameter. In fact, it is
known that the distribution of the slopes of the levels,
de/dX, is Gaussian and independent of the distribution of
the levels themselveé$.Thus, the two contributions are sim-
ply multiplied:

Levels

2 dE 2\ 12
pkink:\/_;p(gﬁ)(glA)<<d_x> > x&f for small &,

(6)

where p(f)(s) is the distribution of nearest-neighbor level
- - - - - separations, for which the Wigner surnfige an excellent
approximation py, has a strong dependence Bahené is
small because of the symmetry dependencp(ﬁ)f, and so
will be sensitive to a magnetic field. In fathe sensitivity to
magnetic field could be used to extract experimental values
for ¢ in quantum dots—a direct measure of the strength of
interactions
Next, an important property is the spacingXnbetween
two neighboring kinks. FoE<A, kinks occur when two
FIG. 1. Mechanism for kinks in the Coulomb-blockade peakorbita,I levels ‘?Ome Ver){ close and S_O are caused _by avoided
positions: Gaussian process simulation results as a function dif0SSings of single-particle levels. Since each avoided cross-
scaled parameter (8=2). (a) Three typical orbital energy levels; N produces two kinks, kinks will occur in pairs, with small
note the infrequent avoided crossings. Two sets of energy levels, intrapair and large interpair separations. The behavior near
one for singly occupied orbitalsolid) and the second for double an avoided crossing is dominated by just two levels and
occupancy(dashedl For a large dot, the doubly occupied levels are characterized by three parameters—the mean and difference
rigidly shifted from those for single occupancy by the interaction Of the slopes far from the crossing and the smallest separa-
(=0.5A here, see Eq(4). Consider an even number of electrons in tion. Wilkinson and Austin have derived the joint probability
which the top two particles are placed in the levels shown. Wherdistribution of these parameters for Gaussian random
the doubly occupied statéirst dashed linghas higher energy than processe$® By expressing the intrapair separation in terms
the next orbital levelsecond solid ling the ground state has two of these parameters and integrating over the joint distribu-
partially occupied levels—a triplet spin state. When these two levtion, we find that the distribution of intrapair separations is
els cross, the lowest energy in the triplet sector crosses the lowest
singlet state(c) Difference in energy upon adding an electron, pro- 2 (£/xA)2
portional to the Coulomb-blockade peak position. Traces offset by Pintra(x)zzx(g) j duexp(—u)
~ —E, for clarity. Crossings of the singlet and triplet levels cause 0
kinks in the peak position&@rrows mark two exampl@sTwo ad- :UZ, B=2 @
jacent peaks are affected by each change in a ground state: they X 21-1/2 _ 7
have kinks at the same and switch which orbital level they are u3/2[1—u(xA/§) ] //\/;’ p=1.

Levels

tracking. For smallx, P;y, iS linear in the separatiox both with and
_ o without a magnetic field.
semble in the absence of a magnetic fighDE, 5=1) and The separation between pairs is usually large for small

the Gaussian unitary ensemble for UOHZBT(GUE,B=2)-9 &—avoided crossings with small gaps are rare—typically
The dependence on the parameXes included by means of many correlation lengths. Hence, there is no correlation be-

a Gaussian proces$;’ we consider the process tween pairs:P;,(X) is Poisson(exponential for large x.
_ Correlation suppresses the probability of two close crossings.
H(X)=Hj cogX)+H;sin(X), (5)  We make a simple model for this by assumiBg>x for

where the distributions dfl; andH, follow the appropriate X<Xo and SO approximat®iper by

Gaussian ensemble. Extensive work on parametric correla- C (exg —(x—xg)al, X>Xo
tions has shown that the properties of Gaussian processes are Pinted X)= —
universal when the energy is measured in units of the mean @
level separatiom and the parameter is scaled by the typicalwhere C is for normalization.x, should be of order 1 in
rate at which energies are perturbégte/dX)?)1%*"18the  scaled units: we choose it to be the minimum of the correla-
two scaled variables afA andx=X((de/dX)*)*4A. For tion function ofde/dx, xo=0.85(0.6) for GOE (GUE). The
simplicity, we restrict our attention to kinks caused by amean density Eq(6) setsa,

change in configuration of the top two electrons wineis

even. Vpiink={(X) = 3[(XYingrat (Xinter] ©)

®

XIXg, X<Xgp,
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combined with the distributio®;,,. In this way we have a > B=1 T 0.10 B E—

parameter-free expression for the distribution of the separa- @15 T

tion between adjacent kinks. a N 05T T
While the above theory is faf< A, in the experiment$? z1or N\ 00 . i

r<~1 so thatt<A. Hence, we turn to numerical calculation S o5k % 10 18]

to test the range of validity of our expressions. Gaussian 6_9

processes were produced using the Hamiltofamvith ma- 0.0 : L

trix size 200 over the full intervake[0,27]; the middle 2 B=2 .. " 0.10 —

third of the spectrum was used. Sample energy levelgfor g 151 // ]

=2 are shown in Fig. 1. = 0051 1]
Figure 2 shows the distribution of kink spacings for the £ / 0.0 -

experimentally relevant valué=0.5A and 8=1,2. Though S o05) o 5 10 18]

outside the regime of immediate applicability, the theoretical ,5_9 T

curves agree closely with the numerical data. Thus the 0.0 : !

simple two-level calculation captures the main features of 0.0 0',5 ) 1.0 15

Kink Spacing

the kink distribution foré<A and so is adequate for describ-
ing experiments in large dofsNote that the pairing of kinks FIG. 2. Distribution of the separation between nearest-neighbor
can help to distinguish them from simple avoided crossingkinks in the Coulomb-blockade peak positions. The interaction
in experimental traces. strength is¢é=0.5A. Top: zero magnetic fieldtime-reversal sym-
Finally, the results here are based on two main approximetry, 3=1). Bottom: nonzero magnetic fiel3E&2). Insets: tails
mations, the Hartree-Fock starting point and the neglect o¢f the distributions. Both the analytic theory for smal(dashed
fluctuations in the interaction energies, ,. While the line) and the results of Gaussian process simulat{sokd line) are

former is strictly justified only for weak interactions, it is shown. The excellent agreement is remarkable consideringéthat

widely used and gives reasonable results if the interactions 0-2* 1S not small and the absence of any fitting parameter.

are not too strongrg~1). Fluctuations will become impor-
tant in small dots for which the spatial integrals in E¢b. We thank C. M. Marcus for a stimulating conversation
and(2) produce less averaging; in this case, a distribution ofvhich helped initiate this work and acknowledge valuable
¢ should be incorporated. Relaxing either of these assumpdiscussions with K. A. Matveev and I. L. Aleiner. H.U.B.
tions will change our quantitative predictions but will not and L.I.G. appreciate the hospitality of the ICCMP, Brasilia
change the main qualitative features. Brazil, where this work started. After completion of this
In conclusion, through the properties of kinks in the work, we learned of Ref. 14 by P. W. Brouwer, Y. Oreg, and
Coulomb-blockade traces, experiments on quantum dots ca®. |. Halperin in which some similar results were obtained.
directly determine the main interaction parameter in theséinally, we acknowledge support of NSF Grant No. DMR-
dots and so obtain the exchange energy for the chaotic ele®731756; the LPTMS is “Unitele recherche de I'Universite
tron gas. Paris 11 assoaeau C.N.R.S.”
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