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Interactions and interference in quantum dots: Kinks in Coulomb-blockade peak positions
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We investigate the spin of the ground state of a geometrically confined many-electron system. For atoms,
shell structure simplifies this problem—the spin is prescribed by the well-known Hund’s rule. In contrast,
quantum dots provide a controllable setting for studying the interplay of quantum interference and electron-
electron interactions in general cases. In a generic confining potential, the shell-structure argument suggests a
singlet ground state for an even number of electrons. The interaction among the electrons produces, however,
accidental occurrences of spin-triplet ground states, even for weak interaction, a limit which we analyze
explicitly. Variation of an external parameter causes sudden switching between these states and hence a kink
in the conductance. Experimental study of these kinks would yield the exchange energy for the ‘‘chaotic
electron gas.’’@S0163-1829~99!51448-3#
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The evolution of the properties of a system as a conti
ous change is made to it is a ubiquitous topic in quant
physics. The classic example is the evolution of energy l
els as the strength of a perturbation is varied.1 Typically,
neighboring energy levels do not cross each other, but ra
come close and then repel in an ‘‘avoided crossing.’’ Ho
ever, if there is an exact symmetry, neighboring levels
have different symmetries uncoupled by the perturbati
and in this special case they can cross.

A new and powerful way of studying parametric evol
tion in many-body quantum systems is through t
Coulomb-blockade peaks that occur in mesoscopic quan
dots.2–5 The electrostatic energy of an additional electron
a quantum dot—an island of confined charge with quanti
states—blocks the flow of current through the dot—the C
lomb blockade.6,7 Current can flow only if two different
charge states of the dot are tuned to have the same en
this produces a peak in the conductance through the dot.
position of the Coulomb-blockade peak depends on the
ference in ground state energy upon adding an elect
Egr(N11)2Egr(N). Thus, the evolution of the peak positio
reflects the evolution of these many-body energy levels a
parameter, such as magnetic field or shape distortion, is
ied.

Since quantum dots are generally irregular in shape,
orbital levels have no symmetry and so avoid crossing. Ho
ever, the spin degrees of freedom are often decoupled f
the rest of the system, so states of different total spin
cross. Such a crossing will cause an abrupt change in
evolution of the Coulomb-blockade peak position—
kink—as the spin of the ground state changes, even tho
there is no crossing in the single-particle states. Such k
have been observed in small circular dots—‘‘artific
atoms’’—because of their special circular symmetry.5 More
PRB 610163-1829/2000/61~4!/2425~4!/$15.00
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generally, kinks should occur in generic quantum dots w
no special symmetries.8 In fact, the data of Ref. 4 show evi
dence for kinks in large dots, though they were not the s
ject of that investigation.

Small circular dots behave much like atoms~hence ‘‘arti-
ficial atoms’’!: the circular symmetry causes degeneracy
the orbital levels and so a large spacing between allow
energies. In sharp contrast, there is no degeneracy in irr
lar dots: the typical single-particle orbital level separation
simply given byD[1/nV, wheren is the bulk density of
states andV is the volume of the dot. Kinks in the evolutio
of Coulomb-blockade peak positions may occur whene
the ground state of the dot is separated from an excited s
with different spin by an energy of orderD. The interference
effects causing the separation are unique to each state
change upon tuning. In fact, the two states may switch a
certain point, the former excited state becoming the grou
state: such switching corresponds to a kink. Note that ki
occur in pairs: kinks in the peaks corresponding to theN
→N11 transition, and that forN21→N, both occur when
Egr(N) switches. We see from this argument that kinks in t
evolution of peak positions with parameter is a general pr
erty of quantum dots.8

Here we analyze these kinks explicitly in a particul
limit. Consider a large quantum dot in which the singl
particle properties are ‘‘random:’’ the statistics of the en
gies follow the classic random matrix ensembles9 and the
wave functions obey Gaussian statistics with a correlat
function given by the superposition of random pla
waves.10 The single-particle properties of such random s
tems have been extensively investigated, and it has been
jectured, with considerable evidence, that these are g
models for quantum dots in which the classical dynamics
chaotic.7,11
R2425 ©2000 The American Physical Society
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To treat the Coulomb blockade, we must consider
only single-particle properties but interactions among
particles as well. One natural way to proceed is to treat th
interactions in the basis of self-consistent single-part
states$cm(r )xs(s)%, wherem ands are the labels of orbita
and spin states, respectively,~we neglect the weak spin-orb
interaction!. In the limit of zero interaction, two electron
occupy each filled orbital state, except for the top level wh
the total number of electrons is odd. Because of the inter
ence produced by confinement in the dot, the electron d
sity is not smooth but rather has small deviations from
classical-liquid result. Due to the electron-electron inter
tion, these deviations contribute to the ground-state ene
in addition to the conventional ‘‘classical-liquid’’ chargin
energy. If the interaction does not change the double oc
pancy of the levels, one finds that the part of such contri
tion coming from the last doubly occupied leveln is

jn,n[E drdr 8@ ucn~r !u22^ucn~r !u2&#Vscr~r2r 8!

3@ ucn~r 8!u22^ucn~r 8!u2&#. ~1!

It is appropriate to use the short-ranged screened interac
Vscr here since the smooth background of the other electr
provides screening;̂. . . & denotes the standard ensemble a
eraging. If, because of the interactions, one of the electr
of that level is promoted to the next orbital state, the res
~1! is modified to become

jn,n11
6 [E drdr 8@ ucn~r !u22^ucn~r !u2&#Vscr~r2r 8!

3@ ucn11~r 8!u22^ucn11~r 8!u2&#

6E drdr 8cn~r !cn11* ~r !

3Vscr~r2r 8!cn* ~r 8!cn11~r 8!. ~2!

The signs1 and2 in Eq. ~2! correspond to the singlet an
triplet states, respectively. The Hartree-Fock approach
Eqs.~1! and~2! is valid if the interactions are not too stron
and is expected to be relevant for the experimental semic
ducting and metallic quantum dots.

For a large ballistic dot,kFL@1, the lack of correlation
among the random wave functionscn and cm with nÞm
leads to a hierarchy of the matrix elements of t
interaction12 ~herekF is the Fermi wave vector of electron
in the dot, andL is the linear size of the dot!. The first
integral in Eq.~2! vanishes in the limitkFL→`, and one is
left only with the second, exchange interaction, term. In
same limit, the exchange interaction term has a nonzero
erage value and vanishingly small mesoscopic fluctuatio
The lowest of two energiesjn,n11

6 corresponds to the triple
state (6→2). Neglecting the small mesoscopic fluctuatio
of the energiesjn,n and jn,n11

2 , one finds the difference
between the energies of the singlet state formed by dou
occupied levels, and of the triplet state with two singly o
cupied orbital levels:
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j[^jn,n&2^jn,n11
2 &52E drdr 8

V2 Vscr~r2r 8!uF~r2r 8!u2

5
2

V
V̂scr~k2k8!. ~3!

Here F(r )[exp(ik8r ), with the bar denoting the averag
over the Fermi surfaceuk8u5kF , andV is the volume of the
dot.

In the above argument, we have implicitly assumed
absence of time-reversal symmetry. ForB50, the same basic
argument holds, but the interaction in the Cooper chan
should be included; this increasesj making the proportion-
ality constant in Eq.~3! larger than 2.

We thus consider a model13 with a single nonzero inter-
action constantj. This quantity is simply related to the usu
electron gas parameterr s ~the ratio of the Coulomb energy a
the mean interparticle distance to the Fermi energy!: j
'(1/&p)r s ln(1/r s)D for small r s in two dimensions and in
the absence of time-reversal symmetry. Asr s increases, the
considerations discussed here apply untilj*D at which
point the Stoner criterion for a magnetic instability is a
proached. For instance, forr s51, averaging the Thomas
Fermi screened potential over the Fermi surface yieldj
50.6D in two dimensions.

The distribution of electrons among the levels depends
the single-particle level spacing compared toj. This is par-
ticularly clear when the total number of electronsN is even:
the top two electrons can either be in the same orbital leve
a cost ofj in interaction energy or one can be in levelN/2
and the other inN/211 at an energy cost ofeN/2112eN/2 .
Since the magnitudes of bothj andeN/2112eN/2 are of order
D, sometimes the top level is doubly occupied and som
times not. In the case of double occupation, the state is
course, a singlet; if two sequential levels are occupied,
exchange interaction leads to a triplet state. If at most t
orbital levels are singly occupied, the ground state energ
a dot is, then, a sum of three terms:

Egr5Ech1 (
~n,s! filled

en,s1Mj, ~4!

whereM is the number of doubly occupied levels. For o
arguments, the number of electrons is constant and so
charging energyEch is irrelevant. Note that the energy~4! is
equivalent to the simultaneous filling of two sequences
levels, one of which is rigidly shifted byj from the other.13

Finally, if several orbital level spacings in sequence a
small, more complicated configurations occur for both ev
and oddN.14,15 Moreover, the problem of the ground-sta
spin of a mesoscopic system becomes very complicated u
approaching the Stoner instability.15

As a parameter is varied, the single-particle energ
change and may cause a change in the level occupations
so a kink. This is explained and illustrated in Fig. 1. T
parameter involved could be, for instance, an applied m
netic field or a gate voltage which changes the shape of
dot.

The distribution of the kinks in the parameter space f
lows from a random matrix model. We assume that
Hamiltonian of the dot follows the Gaussian orthogonal e



f

e
s
ea
a

a

ks,

ch

t is
ls,
of
-

el

ues
of

ided
oss-
ll
ear
nd

ence
ara-
ty
om
s

bu-
is

all
lly
be-

gs.

la-

ak
n
;
,
e
re

in
he

o
ev
we
ro-
t b
se

th
e

RAPID COMMUNICATIONS

PRB 61 R2427INTERACTIONS AND INTERFERENCE IN QUANTUM . . .
semble in the absence of a magnetic field~GOE,b51! and
the Gaussian unitary ensemble for nonzeroB ~GUE, b52!.9

The dependence on the parameterX is included by means o
a Gaussian process;16,17 we consider the process

H~X!5H1 cos~X!1H2 sin~X!, ~5!

where the distributions ofH1 andH2 follow the appropriate
Gaussian ensemble. Extensive work on parametric corr
tions has shown that the properties of Gaussian processe
universal when the energy is measured in units of the m
level separationD and the parameter is scaled by the typic
rate at which energies are perturbed,^(de/dX)2&1/2:16–18 the
two scaled variables arej/D andx[X^(de/dX)2&1/2/D. For
simplicity, we restrict our attention to kinks caused by
change in configuration of the top two electrons whenN is
even.

FIG. 1. Mechanism for kinks in the Coulomb-blockade pe
positions: Gaussian process simulation results as a functio
scaled parameterx (b52). ~a! Three typical orbital energy levels
note the infrequent avoided crossings.~b! Two sets of energy levels
one for singly occupied orbitals~solid! and the second for doubl
occupancy~dashed!. For a large dot, the doubly occupied levels a
rigidly shifted from those for single occupancy by the interactionj
~50.5D here!, see Eq.~4!. Consider an even number of electrons
which the top two particles are placed in the levels shown. W
the doubly occupied state~first dashed line! has higher energy than
the next orbital level~second solid line!, the ground state has tw
partially occupied levels—a triplet spin state. When these two l
els cross, the lowest energy in the triplet sector crosses the lo
singlet state.~c! Difference in energy upon adding an electron, p
portional to the Coulomb-blockade peak position. Traces offse
;2Ech for clarity. Crossings of the singlet and triplet levels cau
kinks in the peak positions~arrows mark two examples!. Two ad-
jacent peaks are affected by each change in a ground state:
have kinks at the samex and switch which orbital level they ar
tracking.
la-
are
n

l

The first quantity to consider is the mean density of kin
rkink . First, because a kink occurs wheneN/2112eN/25j,
this density is proportional to the probability of having su
a level separation. Second,rkink must reflect the rate at which
the levels change as a function of parameter. In fact, i
known that the distribution of the slopes of the leve
de/dX, is Gaussian and independent of the distribution
the levels themselves.16 Thus, the two contributions are sim
ply multiplied:

rkink5
2

Ap
pe

~b!~j/D!K S de

dXD 2L 1/2

}jb for small j,

~6!

where pe
(b)(s) is the distribution of nearest-neighbor lev

separations, for which the Wigner surmise9 is an excellent
approximation.rkink has a strong dependence onb whenj is
small because of the symmetry dependence ofpe

(b) , and so
will be sensitive to a magnetic field. In fact,the sensitivity to
magnetic field could be used to extract experimental val
for j in quantum dots—a direct measure of the strength
interactions.

Next, an important property is the spacing inX between
two neighboring kinks. Forj!D, kinks occur when two
orbital levels come very close and so are caused by avo
crossings of single-particle levels. Since each avoided cr
ing produces two kinks, kinks will occur in pairs, with sma
intrapair and large interpair separations. The behavior n
an avoided crossing is dominated by just two levels a
characterized by three parameters—the mean and differ
of the slopes far from the crossing and the smallest sep
tion. Wilkinson and Austin have derived the joint probabili
distribution of these parameters for Gaussian rand
processes.16 By expressing the intrapair separation in term
of these parameters and integrating over the joint distri
tion, we find that the distribution of intrapair separations

Pintra~x!52xS D

j D 2E
0

~j/xD!2

du exp~2u!

3H u2,

u3/2@12u~xD/j!2#21/2/Ap,
b52
b51. ~7!

For smallx, Pintra is linear in the separationx both with and
without a magnetic field.

The separation between pairs is usually large for sm
j—avoided crossings with small gaps are rare—typica
many correlation lengths. Hence, there is no correlation
tween pairs:Pinter(x) is Poisson~exponential! for large x.
Correlation suppresses the probability of two close crossin
We make a simple model for this by assumingPinter}x for
x,x0 and so approximatePinter by

Pinter~x!5
C

a Hexp@2~x2x0!/a#,
x/x0 ,

x.x0

x,x0, ~8!

where C is for normalization.x0 should be of order 1 in
scaled units; we choose it to be the minimum of the corre
tion function ofde/dx, x050.85 ~0.6! for GOE ~GUE!. The
mean density Eq.~6! setsa,

1/rkink5^x&5 1
2 @^x& intra1^x& inter#, ~9!
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combined with the distributionPintra. In this way we have a
parameter-free expression for the distribution of the sep
tion between adjacent kinks.

While the above theory is forj!D, in the experiments,4,5

r s;1 so thatj&D. Hence, we turn to numerical calculatio
to test the range of validity of our expressions. Gauss
processes were produced using the Hamiltonian~5! with ma-
trix size 200 over the full intervalxP@0,2p#; the middle
third of the spectrum was used. Sample energy levels fob
52 are shown in Fig. 1.

Figure 2 shows the distribution of kink spacings for t
experimentally relevant valuej50.5D andb51,2. Though
outside the regime of immediate applicability, the theoreti
curves agree closely with the numerical data. Thus
simple two-level calculation captures the main features
the kink distribution forj&D and so is adequate for descri
ing experiments in large dots.4 Note that the pairing of kinks
can help to distinguish them from simple avoided crossi
in experimental traces.

Finally, the results here are based on two main appro
mations, the Hartree-Fock starting point and the neglec
fluctuations in the interaction energiesjn,m . While the
former is strictly justified only for weak interactions, it i
widely used and gives reasonable results if the interact
are not too strong (r s;1). Fluctuations will become impor
tant in small dots for which the spatial integrals in Eqs.~1!
and~2! produce less averaging; in this case, a distribution
j should be incorporated. Relaxing either of these assu
tions will change our quantitative predictions but will n
change the main qualitative features.

In conclusion, through the properties of kinks in th
Coulomb-blockade traces, experiments on quantum dots
directly determine the main interaction parameter in th
dots and so obtain the exchange energy for the chaotic e
tron gas.
r,
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FIG. 2. Distribution of the separation between nearest-neigh
kinks in the Coulomb-blockade peak positions. The interact
strength isj50.5D. Top: zero magnetic field~time-reversal sym-
metry,b51!. Bottom: nonzero magnetic field (b52). Insets: tails
of the distributions. Both the analytic theory for smallj ~dashed
line! and the results of Gaussian process simulations~solid line! are
shown. The excellent agreement is remarkable considering thj
50.5D is not small and the absence of any fitting parameter.
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