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Waveguide diffusion modes and slowdown of D’yakonov-Perel’ spin relaxation
in narrow two-dimensional semiconductor channels

A. G. Mal’shukov
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K. A. Chao
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~Received 18 June 1999!

We have shown that in narrow two-dimensional semiconductor channels the D’yakonov-Perel’ spin relax-
ation rate is strongly reduced. This relaxation slowdown appears in special waveguide diffusion modes which
determine the propagation of spin density in long channels. Experiments are suggested to detect the theoreti-
cally predicted effects. A possible application is a field effect transistor operated with injected spin current.
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In connection to the possible use of electron spin for s
age and information transfer in quantum computers,1 there
have been many recent studies on spin transport in semi
ductor nanostructures. Among various materials for the
calledspintronic devices, a favorite candidate is III-V semi
conductors, because their spin-orbit split conduction ba
have unusual electron spin dynamics. The spin-orbit inte
tion ~SOI! in such materials has the formHso5h(k)•s,
wheres is the electron spin, and the direction and magnitu
of the vectorh~k! depend on the electron momentumk.
When an electron propagates, its spin precesses aroun
direction of h~k!. In materials with a narrow band gap, th
magnitudeuh(k)u, and hence the angle of spin rotation c
be varied by simply applying a gate voltage.2 While this
effect is valuable to those devices which make use of ba
tically propagating spin-polarized electrons,3 it requires a
high degree of coherency in electron propagation, beca
scattering from an impurity or the boundary changes the
rection ofh~k!. Scatterings thus randomize spin precessi
If the mean scattering timet is shorter than the precessio
frequencyuh(k)u21, the spin dynamics is more like a diffu
sive relaxation in the angular space with the D’yakono
Perel’ relaxation rate of the order of 1/ts5

1
2 th2(k).4 How-

ever, the evolution of an inhomogeneous spin polarizatio
a spatial region is determined not only by the diffusive ra
domization of the local spin orientation, but also by a b
ance of the incoming and outgoing spin currents. These
currents depend on the polarization gradient, and conta
component associated to the spin precession. Hence,
impossible to determine unambigously which part of the s
relaxation is due to the diffusion of spin orientation in t
angular space, and which is due to the spin diffusion in
coordinate space. On the other hand, one can examine
evolution of a given spin polarization by studying the d
namics of individual eigenmodes of the spin diffusion equ
tion. After a sufficiently long time, only those modes wi
the lowest spin relaxation rate survive, and this rate will
characteristic to the spin relaxation of the system under c
sideration.

In this paper we will study the spin diffusion in a 2
channel made from a quantum well with growth directi
along they axis. We choose our coordinate system to havx
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axis along the channel, and the boundaries of the channe
marked atz56d/2. The channel widthd is much shorter
than the spin precession lengthLs5v

F
/uh(kF)u, wherev

F
is

the electron Fermi velocity. On the other hand, the widthd is
much longer than the Fermi wavelength, so that the elec
motion perpendicular to the channel~along z axis! is semi-
classical. We will show that the long-time evolution of sp
polarization in such a channel is dominated by a wavegu
diffusion mode. The spin relaxation time of this mode
slowed down dramatically by a factorLs

2/d2 with respect to
the D’yakonov-Perel’ relaxation timets , which is the typi-
cal spin relaxation time for bulk materials and quantu
wells. Furthermore, the diffusion mode produces a perio
rotation of the spin polarization from point to point along th
2D channel. Such a phenomenon is similar to the spin p
cession of ballistic electrons considered in Ref. 3, but wit
difference: in our case the rotating spin has the spin quan
number 1 instead of 1/2. This difference is due to the f
that our nonequilibrium spin density is represented by tw
particle excitations with electrons above the Fermi level a
holes below it. As an example, we will demonstrate the
cillations in the resistance of a diffusive channel when
spin polarization is injected and probed via ferromagnets
both ends of the channel. We will also discuss qualitativ
the effects of spin relaxation slowdown in a channel on
weak localization behavior of transport parameters.

In terms of the creation and destruction operatorsck
†(t)

andck(t), the spin densityS(r ,t) of a two-dimensional~2D!
electron gas is defined as

S~r ,t !5(
k,q

eiqr^Tr@ck1q
† ~ t !sck~ t !#&,

where the average is taken over the ground state of the e
tron system. Taking into account the SOI and the less imp
tant Coulomb effects on spin density excitations, from t
quasiclassical kinetic equation for^Tr@ck1q

† (t)sck(t)#&, or
by means of the standard perturbation theory,7,5,6 one can
derive the diffusion equation for the spin densityS(r ,t).

It is convenient to representS(r ,t) in the basis set of three
eigenstates of thez componentJz of the angular momentum
R2413 ©2000 The American Physical Society



m

,

nd
ro
on

r-

n
um
el
on

u
in
to

e

rm

th
tu

-
ry

us
at
he

a

n

D
ith
we

ur-

ed

r

ich

.
r of

l-

an

th

ns

en-

as

ous
hat

RAPID COMMUNICATIONS

R2414 PRB 61A. G. MAL’SHUKOV AND K. A. CHAO
operatorJ, which has the angular momentum quantum nu
ber J51. Accordingly, we introducec15(Sx2 iSy)/A2,
c05Sz , andc2152(Sx1 iSy)/A2, where the indices 1, 0
and21 are the three eigenvalues ofJz . In term of this basis
set, the diffusion equation is expressed as

]c

]t
1t^~2 iv

F
•“ r1hk•J!2&dirc5I ~r ,t !, ~1!

where^ . . . &dir is an angular average over the Fermi line a
I (r ,t) represents a possible source of spin oriented elect
inside the channel. The corresponding eigenmode equati
simply

t^~2 iv
F
•“ r1hk•J!2&dirc5Gc. ~2!

The eigenvalueG is equal to the relaxation rate of the co
responding diffusion eigenmode. Equation~1! is valid if
v

F
u“ rcu!1/t and uh(kF)u!1/t. The second inequality ca

not be satisfied for some high mobility InAs based quant
wells with a strong SOI, because in these quantum w
v

F
/uh(kF)u<500 nm, according to Refs. 2 and 3. Equati

~1! can be generalized to the regionuh(kF)u>1/t, a situation
outside the scope of the present work.

In a semiconductor quantum well, there are two contrib
tions to the SOIh~k!: the Dresselhaus term has its origin
the bulk crystal spin splitting,8 and the Rashba term is due
the asymmetric potential profile in the quantum well.9 The
Rashba term is the dominating one in quantum wells mad
narrow gap semiconductors, such as InAs.2 Therefore, for the
systems of our interest, we will retain only the Rashba te
of SOI, which can be expressed ashz5akx , hx52aky ,
andhy50. After taking the average over the direction ofkF ,
Eq. ~2! becomes

DS i
]

]x
1m* aJzD 2

c1DS i
]

]z
2m* aJxD 2

c5Gc, ~3!

where D[v
F

2t/2 is the diffusion constant, andm* is the

electron effective mass. If we replaceD by 1/2m* , the above
equation is quite similar to the Schro¨denger equation for an
electron. However, an important difference is thatc is not a
two-component spinor, but a three-component vector in
three-dimensional Hilbert space of the angular momen
J51.

From Eq.~3!, the spin flux can be expressed as

F52D~“ r1 im* aJ3y!c,

wherey is the unit vector alongy axis. The boundary condi
tions at z56d/2 are no spin flux across each bounda
Hence,

DS 2 i
]

]z
1m* aJxDc uz56

d
2
50. ~4!

For an extended 2D electron gas withd→`, it is easy to
see from Eq.~3! that the relaxation rates of homogeneo
spin density are given by the eigenvalues of the oper
Dm* 2a2(Jz

21Jx
2). The two eigenvalues correspond to t

transverse~spin polarized inxz plane! D’yakonov-Perel’
spin relaxation rate 1/ts[Dm* 2a2, and the longitudinal
-
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~spin polarized iny direction! D’yakonov-Perel’ spin relax-
ation rate 2/ts . In a 2D channel of electron gas, such
homogeneous solution of Eq.~3! with spin polarized along
the channel, which satisfies the boundary conditions Eq.~4!,
also exists in the form ofc61561/A2 and c050. This
state relaxes with the rate 1/ts as in an extended 2D electro
gas.

However, we will prove in this paper that in a narrow 2
channel there exist inhomogeneous diffusion modes w
much lower spin relaxation rates. To derive these modes
will perform a canonical transformationc5U(z)c̃, where
U(z)5exp(2iJxz/Ls) with Ls51/m* a. The operatorU(z)
transforms Eq.~3! to

DF2 i
]

]x
2m* a J̃z~z!G2

c̃1D
]2

]z2
c̃5Gc̃, ~5!

with the boundary condition (]c̃/]z)uz56d/250, where
J̃z(z)5U21(z)JzU(z). If d!Ls , U(z) can be expanded in
powers of the small parameterz/Ls . To the second order we
get J̃z(z)5Jz1Jyz/Ls2Jz(z/Ls)

2/2 in which the last two
terms will be treated perturbatively. The lowest order pert
bation result gives the eigensolutions of Eq.~5!:

c̃M ,k,m~x,z!5exp~ ikx!xm~z!CM , ~6!

whereM andCM are eigensolutions ofJz with M561 and
0. The xm(z) functions are x

2n
(z)5cos(2pzn/d), and

x
2n11

(z)5sin@pz(2n11)/d# with integern.
The unperturbed relaxation rates are readily obtain

from Eq. ~5! as

GM ,k,m
0 5D~pm/d!21D~k2MLs

21!2. ~7!

Hence, the modes withmÞ0 relax very fast. On the othe
hand, the modes withm50, which correspond tox

0
(z)

5constant, can have very low spin relaxation rates, wh
become zero fork5MLs

21 . However, corrections due to
terms depending ondLs

21 in Eq. ~5! make these rates finite
Using the standard perturbation theory to the second orde
dLs

21 , we find

GM ,k,05GM ,k,0
0 1

~22M2!d2

24tsLs
2

~8!

for uk2MLs
21u!Ls

21 . The above equation indicates that a
though the relaxation rates of the modes withk5MLs

21 be-
come finite, their relaxation times retain much longer th
the D’yakonov-Perel’ relaxation timets .

There are three slowly relaxing diffusion modes wi
m50, M51, 0, 21, and k5MLs

21 . The two modes for
M561 correspond to inhomogeneous spin distributio
along the channel (x axis! with wave vectorsk57Ls

21 .
Linear combinations of these modes give periodic spin d
sity distributionsS(x) with electron spins rotating in the
plane perpendicular toz axis. Hence, such a spin density h
a finite projection along the channel. The third mode forM
50 corresponds to electron spins pointing alongz axis. The
lowest relaxation rate is then achieved by an inhomogene
spin density distribution along the channel. We notice t
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although form50 the eigenfunctions given by Eq.~6! are
independent ofz, their corresponding spin distributionsS~r !
depend onz. This is becauseS~r ! is expressed via thec
function, which is obtained by applying thez-dependent uni-
tary transformationU(z) to c̃M ,k,0(x).

We consider a stationary spin distribution in a channe
finite length L@d, with an applied electric voltageV be-
tween xl52L/2 at the left andxr5L/2 at the right. This
voltage can produce a magnetization in the channel, as
first proposed by Aronov.10 The channel is connected wit
two ferromagnetic contacts, and a spin fluxFl is injected into
the channel atx5xl . At x5xr a spin fluxFr is then col-
lected. The corresponding boundary conditions are

DS 2
]

]x
1 im* aJzDcux5xl ,r

5Fl ,r . ~9!

The stationary spin density in the channel can be deri
from Eq. ~5! with the above boundary conditions. Howeve
our goal is to calculate the change of dc resistance assoc
with the spin transport, which can be measured experim
tally. To tackle this problem, we will use the formalism d
veloped by Johnson and Silsbee.11 The semiconductor-
ferromagnet contacts are replaced by symmetric tun
junctions with identical conductancesG5Ae2N(EF)v

F
t/2,

whereA is the channel cross section area,t!1 the transmis-
sion probability, andN(EF) the density of states at the Ferm
energy.

A dc current through the system will cause interfac
voltage dropsDVl across the left junction, andDVr across
the right one. GradientsDSl ,r of nonequilibrium magnetiza
tion across the tunnel junctions are also generated. Follow
Ref. 11, the spin fluxes through the junctions can be writ
as

Fl ,r52G@~h l ,r /2e!DVl ,r2~j/e2!DSl ,r #, ~10!

where parametersh l and h r with uh l ,r u,1 depend on the
magnetizations of the ferromagnetic contacts.h l andh r have
same sign if the magnetic polarizations in contacts are
allel, and opposite signs if antiparallel. The first term in E
~10! represents the spin injected by the applied voltage,
the second term withj.1 is the spin transport driven b
gradientsDSl ,r . If in ferromagnets this magnetization re
laxes sufficiently fast,DSl ,r are determined mainly by th
spin polarizations in the channel atxl and xr , and soDSl
52c(xl) andDSr5c(xr). Under stationary condition, th
dc current is given by11

I 52G@DVl ,r2~h l ,r /2e!DSl ,r #. ~11!

In this paper we will investigate the two cases in whi
the magnetizations of the ferromagnet contacts are either
larized along thez axis ~perpendicular to the channel! or
along thex axis ~parallel to the channel!. For each case, th
magnetizations of the two contacts may be parallel or a
parallel. In terms of the momentum operatorJ, the magneti-
zation is represented by theM50 state if it is along thez
axis, but by a linear combination of theM561 states if it is
along thex axis. Hence, the corresponding injected fluxes
represented byFl ,r5 f l ,rc0 and Fl ,r5 f l ,r(c1-c21), respec-
tively. SinceL@d, the dominating contribution to the sta
f
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tionary spin distribution comes from the modes with lo
relaxation rates. The corresponding exponents of the stat
ary solutions of Eq.~5! can be derived from the equatio
GM ,k,050. In this way, from Eq.~8! we obtain k5kM

[MLs
216 i l M

21 , wherel M
215A(22M2)/24d/Ls

2 . In order to
satisfy the boundary conditions Eq.~9!, we have to make a
proper linear combination of the exp(x/lM) and exp(2x/lM)
solutions. Furthermore, to demonstrate the spin dynam
along the channel, we average Eq.~9! overz. It is easy to see
that the corrections which are linear ind/Ls vanish after the
averaging. If we ignore the higher order corrections, we c
representc as a linear combination of the zero order eige
functions Eq.~6! with m50 andk5kM . The spin density
distribution is thus represented by

c5(
M

cMeiMx/Ls@AM cosh~x/ l M !1BM sinh~x/ l M !#.

~12!

From Eq. ~9!, we derive A05( f l2 f r)Ls /
@2D cosh(L/2l 0)] and B052( f l1 f r)Ls /@2D sinh(L/2l 0)#
for the magnetization along thez axis. Similarly, for the
magnetization along thex axis, the coefficientsA61 andB61
are obtained as

AM5
MLs

2D cosh
L

2l M

F f l expS iML

2Ls
D2 f r expS 2

iML

2Ls
D G ,

BM52
MLs

2D sinh
L

2l M

F f l expS iML

2Ls
D1 f r expS 2

iML

2Ls
D G .

It is important to point out that although the boundary co
ditions require the spin polarization atx56L/2 to be along
the x axis, within the channel the spin polarization rotates
the xy plane due to the exponential factors exp(6iMx/Ls) in
Eq. ~12!. SinceLs! l M , the polarization makes many com
plete rotations within the spin relaxation lengthLs . As it will
be shown below, this can lead to an oscillation of the chan
resistance.

Substituting the expressions ofAM andBM into Eq. ~12!,
one can find the spin densities atx56L/2, and hence the
nonequilibrium magnetizationsDSl ,r . Together with Eqs.
~10! and ~11!, we have a closed set of equations to so
numerically. However, it is important to illustrate in analyt
cal form how the resistance depends on the spin trans
through the 2D channel. For this purpose we conside
sample of lengthL. l M , and having a low enough transmis
sion probability t such that the parameterk[t l M / l !1,
wherel is the electron mean free path. From Eqs.~10!–~12!,
we readily derive the spin-transport correction to the dc
sistance as

DR5~2k/G!~h l
21h r

2!coth~L/ l M !

2~2k/G!h lh r cos~ML/Ls!/sinh~L/ l M !. ~13!

The factorh lh r in the second term at the right-hand side
positive if the magnetizations of the two ferromagnetic co
tacts are parallel, but negative if antiparallel. Furthermo
when the magnetization is along the channel,M561, and
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so this second term oscillates as a function ofL/Ls . The
amplitude of oscillation decreases with increasingL/ l M .
However, due to the slowdown of the spin relaxation, we c
manipulate the sample parameters such thatl M.L.Ls .
Then, our theoretically predicted resistance oscillation can
observed experimentally with a gate to change the value
Ls .

In our analysis above we have neglected the Dresselh
contribution to the SOI, because in narrow gap syste
which we are interested in, the Rashba contribution do
nates the SOI. In quantum wells, the Dresselhaus contr
tion contains a linear term and a cubic term in electron m
mentum. It can be shown that the cubic term gives rise to
additional spin relaxation which is independent of the ch
nel width d. Hence this term imposes a limit on the slow
down of spin relaxation. The corresponding relaxation rat
estimated to be insignificant for narrow gap quantum we
However, in GaAs based quantum wells the cubic term is
negligible,6 and can wash out the slowdown of spin rela
ation.

Besides the classical spin diffusion, the spin relaxat
slowdown also affects the weak localization corrections
ev

.
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transport parameters. In systems with strong enough SOI
sign of such a correction to conductance is determined by
competition between the triplet and the singlet componen
the Cooperon propagator.13 The lifetime of the triplet is
equal to the spin relaxation time. If the temperature is
very low, in a sufficiently narrow channel12 this time can
increase and becomes comparable to the dephasing tim
the singlet. Hence, the sign of the correction can change f
positive to negative.

The weak localization corrections to the spin diffusio
coefficient and the D’yakonov-Perel’ relaxation rate al
contain contributions from the triplet and the singlet comp
nents of Cooperon.7,14 The spin diffusion coefficient is in-
cluded in the factork in Eq. ~13!. Therefore, by measuring
the change of channel resistanceDR with a controlled gate
voltage or a weak magnetic field, the variations of spin d
fusion coefficient can be investigated experimentally.
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