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Waveguide diffusion modes and slowdown of D’yakonov-Perel’ spin relaxation
in narrow two-dimensional semiconductor channels
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We have shown that in narrow two-dimensional semiconductor channels the D’yakonov-Perel’ spin relax-
ation rate is strongly reduced. This relaxation slowdown appears in special waveguide diffusion modes which
determine the propagation of spin density in long channels. Experiments are suggested to detect the theoreti-
cally predicted effects. A possible application is a field effect transistor operated with injected spin current.

In connection to the possible use of electron spin for storaxis along the channel, and the boundaries of the channel are
age and information transfer in quantum computetisere  marked atz=*d/2. The channel widthd is much shorter
have been many recent studies on spin transport in semicothan the spin precession Iengig=vF/|h(kF)|, wherev_is

ductor nanostructures. Among various materials for the some electron Fermi velocity. On the other hand, the witlth
called spintronic devicesa favorite candidate is Ill-V semi-  mych longer than the Fermi wavelength, so that the electron
conductors, because their spin-orbit split conduction bandgotion perpendicular to the chann@long z axis) is semi-
have unusual electron spin dynamics. The spin-orbit interace|assical. We will show that the long-time evolution of spin
tion (SOI) in such materials has the fors,=h(k)-s,  polarization in such a channel is dominated by a waveguide
wheresis the electron spin, and the direction and magnitudejiffusion mode. The spin relaxation time of this mode is
of the vectorh(k) depend on the electron momentum  siowed down dramatically by a facttr?/d? with respect to
When an electron propagates, its spin precesses around the, D'yakonov-Perel’ relaxation time,, which is the typi-
direction ofh(k). In materials with a narrow band gap, the ¢5| gpin relaxation time for bulk materials and quantum
magnitudeh(k)|, and hence the angle of spin rotation canyye|is, Furthermore, the diffusion mode produces a periodic
be varied by simply applying a gate voltagevhile this _ rotation of the spin polarization from point to point along the
effect is valuable to those devices which make use of ballissp channel. Such a phenomenon is similar to the spin pre-
tically propagating spin-polarized electrohg requires a  cessjon of ballistic electrons considered in Ref. 3, but with a
high degree of coherency in electron propagation, becausgtierence: in our case the rotating spin has the spin quantum
scattering from an impurity or the boundary changes the dinymper 1 instead of 1/2. This difference is due to the fact
rection ofh(k). Scatterings thus randomize spin precessionga¢ our nonequilibrium spin density is represented by two-
If the mean scattering time is shorter than the precession particle excitations with electrons above the Fermi level and
fr_equency|h(k)|f1, the spin dynamics is more like a diffu- poles pelow it. As an example, we will demonstrate the os-
sive relaxation in the angular space with the D'yakonov-gjjations in the resistance of a diffusive channel when the
Perel’ relaxation rate of the order ofif 3 7h?(k).* How-  gpin polarization is injected and probed via ferromagnets at
ever, the evolution of an inhomogeneous spin polarization a§oth ends of the channel. We will also discuss qualitatively
a spatial region is determined not only by the diffusive ran-he effects of spin relaxation slowdown in a channel on the
domization of the local spin orientation, but also by a bal-\yeak localization behavior of transport parameters.

ance of the incoming and outgoing spin currents. These spin |, terms of the creation and destruction operam}ﬁ)

currents depend on the polarization gradient, and contain Andc (t), the spin densitys(r,t) of a two-dimensionai2D)
component associated to the spin precession. Hence, it aectrkon 'gas is defined as '

impossible to determine unambigously which part of the spin
relaxation is due to the diffusion of spin orientation in the
angular space, and which is due to the spin diffusion in the S(r,t)y=2, e‘q’(Tr[ch(t)sck(t)]),
coordinate space. On the other hand, one can examine the k.q
evolution of a given spin polarization by studying the dy-
namics of individual eigenmodes of the spin diffusion equa-where the average is taken over the ground state of the elec-
tion. After a sufficiently long time, only those modes with tron system. Taking into account the SOI and the less impor-
the lowest spin relaxation rate survive, and this rate will betant Coulomb effects on spin density excitations, from the
characteristic to the spin relaxation of the system under corguasiclassical kinetic equation fdr[cf, ,(t)sc,(t)]), or
sideration. by means of the standard perturbation theoty,one can

In this paper we will study the spin diffusion in a 2D derive the diffusion equation for the spin denssr,t).
channel made from a quantum well with growth direction It is convenient to represefr,t) in the basis set of three
along they axis. We choose our coordinate system to have eigenstates of the component], of the angular momentum
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operatorJ, which has the angular momentum quantum num-+spin polarized iny direction D’yakonov-Perel’ spin relax-
ber J=1. Accordingly, we introducezp1=(sx—isy)/\/§, ation rate 2f;. In a 2D channel of electron gas, such a
Yo=S,, andy_,= —(3<+isy)/\/§, where the indices 1, 0, homogeneous solution of E¢B) with spin polarized along
and—1 are the three eigenvaluesdyf. In term of this basis the channel, which satisfies the boundary conditions(&y.

set, the diffusion equation is expressed as also exists in the form ofy.;=+1/\2 and ,=0. This
state relaxes with the rate7l/as in an extended 2D electron
Y . ) gas.
E“L T<(_'VF' Vit he )% aird=1(r,0), @) However, we will prove in this paper that in a narrow 2D

channel there exist inhomogeneous diffusion modes with

where( . .. )qir i an angular average over the Fermi line andn,ch jower spin relaxation rates. To derive these modes we

[(r,t) represents a possible source of spin oriented eleCtronv‘T’/iII perform a canonical transformatiopr=U(2) %, where

inside the channel. The corresponding eigenmode equation ﬁ(z) — exp(idZLY with L.=1/m*a. The operatorU(z)
- X s .

simply transforms Eq(3) to

((—iv.- Vi +he D)%) gip=T . 2 5 ) 2
The eigenvalud” is equal to the relaxation rate of the cor- D) i (?—X—m* aJy(2) "HDE‘/’:Fw’ ®)
responding diffusion eigenmode. Equatiof) is valid if B
v |V ¢|<1/r and|h(ke)|<1/7. The second inequality can with the boundary condition d4/3z)|, +4,=0, where
not be satisfied for some high mobility InAs based quantumi,(z)=U"%(z)J,U(2). If d<L, U(z) can be expanded in
wells with a strong SOI, because in these quantum wellpowers of the small parametetl_ . To the second order we
v_/|h(ke)[<500 nm, according to Refs. 2 and 3. Equat'ongetjz(z)=JZ+JyZ/LS—JZ(z/LS)2/2 in which the last two
(1) can be generalized to the regitin(kg)|=1/7, a situation  terms will be treated perturbatively. The lowest order pertur-

outside the scope of the present work. bation result gives the eigensolutions of Eg):
In a semiconductor quantum well, there are two contribu- ~
tions to the SOh(k): the Dresselhaus term has its origin in I km(%,2) =explikX) xm(2) Py, (6)

the bulk crystal spin splittin.and the Rashba term is due to . . .
the asymmetric potential profile in the quantum welhe whereM and¥y, are (_algensolutlons af, with M=*1 and
Rashba term is the dominating one in quantum wells made df- The xm(z) functions are in(z) = cos(2mzn/d), and
narrow gap semiconductors, such as IfAerefore, for the X, . ,(2)=sin7z(2n+1)/d] with integern.

systems of our interest, we will retain only the Rashba term The unperturbed relaxation rates are readily obtained
of SOI, which can be expressed hg=ak,, h,=—ak,, from Eq.(5) as

andh,=0. After taking the average over the directionkef,

Eq. (2) becomes 'y km=D(mm/d)2+D(k—MLg )2 7)

P 2 Hence, the modes witm#0 relax very fast. On the other
iE—m* aJX> =Ty, (3) hand, the modes wittm=0, which correspond toy (z)
=constant, can have very low spin relaxation rates, which
where DEVET/Z is the diffusion constant, anth* is the  become zero fok=ML . However, corrections due to
electron effective mass. If we replaBeby 1/2m*, the above terms depending od LS_1 in Eq. (5) make these rates finite.
equation is quite similar to the Sclienger equation for an Using the standard perturbation theory to the second order of
electron. However, an important difference is tijais nota  dL !, we find
two-component spinor, but a three-component vector in the
three-dimensional Hilbert space of the angular momentum 0
J=1. P'vko=I'mkot
From Eq.(3), the spin flux can be expressed as

2
y+D

. d
D<|5+m*a\]z

(2—M?)d?

— 8
247 2 ®

- v tims for [k—ML; /<L . The above equation indicates that al-
F=—D(V,+im*alxy)y, though the relaxation rates of the modes withML_ * be-
wherey is the unit vector along axis. The boundary condi- come finite, their relaxation times retain much longer than

tions atz==+d/2 are no spin flux across each boundary.the D’yakonov-Perel relaxation times.
Hence, There are three slowly relaxing diffusion modes with

m=0, M=1, 0, -1, andk=ML_'. The two modes for
. d M==1 correspond to inhomogeneous spin distributions
D( - E“Lm* a‘]X) Yla-25=0. ) along the channelx axis) with wave vectorsk=FL_*.
Linear combinations of these modes give periodic spin den-
For an extended 2D electron gas with-, it is easy to  sity distributions S(x) with electron spins rotating in the
see from Eq.(3) that the relaxation rates of homogeneousplane perpendicular tpaxis. Hence, such a spin density has
spin density are given by the eigenvalues of the operatoa finite projection along the channel. The third mode Nbr
Dm*zaz(JerJi). The two eigenvalues correspond to the =0 corresponds to electron spins pointing alaraxis. The
transverse(spin polarized inxz plane D'yakonov-Perel’ lowest relaxation rate is then achieved by an inhomogeneous

spin relaxation rate ¥=Dm*2a?, and the longitudinal spin density distribution along the channel. We notice that
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although form=0 the eigenfunctions given by E¢6) are tionary spin distribution comes from the modes with low
independent of, their corresponding spin distributiossr) relaxation rates. The corresponding exponents of the station-
depend onz. This is because&(r) is expressed via theg  ary solutions of Eq(5) can be derived from the equation
function, which is obtained by applying tlredependent uni- I'y; c=0. In this way, from Eq.(8) we obtain k=ky
tary transformatior (z) to ¥  o(X)- =ML, '=il ', wherel y*= \(2—M?)/24d/L . In order to

We consider a stationary spin distribution in a channel ofsatisfy the boundary conditions E@), we have to make a
finite length L>d, with an applied electric voltag¥/ be-  proper linear combination of the exfly,) and exptx/ly)
tweenx,=—L/2 at the left andx,=L/2 at the right. This solutions. Furthermore, to demonstrate the spin dynamics
voltage can produce a magnetization in the channel, as wadong the channel, we average £@).overz Itis easy to see
first proposed by Arono¥ The channel is connected with that the corrections which are linear diL ; vanish after the
two ferromagnetic contacts, and a spin fidis injected into ~ averaging. If we ignore the higher order corrections, we can
the channel ak=x,. At x=x, a spin fluxF, is then col- represents as a linear combination of the zero order eigen-

lected. The corresponding boundary conditions are functions Eq.(6) with m=0 andk=ky, . The spin density
distribution is thus represented by

J
D| — —+im*ad, | ¥l =F,. 9 _
( xme >¢| b © 1/12% e Ay costix/ly) + By sinh(x/1y)].

The stationary spin density in the channel can be derived (12)

from Eq. (5) with the above boundary conditions. However,

our goal is to calculate the change of dc resistance associated From  Eq. (9), we derive Ay=(f—f,)Ls/

with the spin transport, which can be measured experimer2D cosh(/2l,)] and By=—(f,+f,)Ls/[2D sinh(L/2ly)]

tally. To tackle this problem, we will use the formalism de- for the magnetization along the axis. Similarly, for the
veloped by Johnson and Silsb¥eThe semiconductor- magnetization along theaxis, the coefficienta. ; andB..

ferromagnet contacts are replaced by symmetric tunnedre obtained as

junctions with identical conductance’s=AeZN(EF)thIZ,

whereA is the channel cross section areg,1 the transmis- Ay= ML, f, ex% %) —f, exy{ _M L”
sion probability, andN(Ef) the density of states at the Fermi 2D cos L 2Ls 2L
energy. I"2|_M
A dc current through the system will cause interfacial
voltage dropsAV, across the left junction, andV, across MLy iML iML
the right one. Gradientd S, , of nonequilibrium magnetiza- ~ Bm=~ | "3')(F<2_|_S + ex;{ - 2LS) '
tion across the tunnel junctions are also generated. Following 2D sinh2|—
Ref. 11, the spin fluxes through the junctions can be written M
as It is important to point out that although the boundary con-

5 ditions require the spin polarization at +L/2 to be along
Fir=—Gl(n,/2)AV|;—(&/e)AS ], (100  thex axis, within the channel the spin polarization rotates in

where parametersy, and 7, with |7 ,|<1 depend on the thexy plane due to the exponential factors ex{Ix/Ly) in

magnetizations of the ferromagnetic contagtsand 7, have ~ E9: (12). SinceLs<Iy, the polarization makes many com-
same sign if the magnetic polarizations in contacts are paRIet€ rotations within the spin relaxation length. As it will
allel, and opposite signs if antiparallel. The first term in Eq_be shown below, this can lead to an oscillation of the channel

(10) represents the spin injected by the applied voltage, anffSistance. _ _
the second term witki=1 is the spin transport driven by  Substituting the expressions &f, andBy, into Eq.(12),
gradientsAS, ;. If in ferromagnets this magnetization re- °N€ can find the spin densities xt = L/2, and hence the

laxes sufficiently fastAS, , are determined mainly by the nonequilibrium magnetizationd§ , . Together_with Egs.
spin polarizations in the channel gt andx, , and SoAS, (10) and (11), we have a closed set of equations to solve

=—(x) andAS, = y(x,). Under stationary condition, the numerically. However, it is important to illustrate in analyti-
dc current is given ' ’ cal form how the resistance depends on the spin transport

through the 2D channel. For this purpose we consider a
|=—G[AV, ,— (7 ,/2e)AS]. (1D sample of length.=1,,, and having a low enough transmis-
sion probabilityt such that the parametet=tl,,/I<1,

In this paper we will investigate the two cases in whichwherel is the electron mean free path. From EG€)—(12),
the magnetizations of the ferromagnet contacts are either pave readily derive the spin-transport correction to the dc re-
larized along thez axis (perpendicular to the channebr  sistance as
along thex axis (parallel to the channglFor each case, the 5 5
magnetizations of the two contacts may be parallel or anti- AR=(2«k/G) (5 + n;)coth(L/1y)
parallel. In terms of the momentum operafpithe magneti- B :
zation is represented by thHd =0 state if it is along the (2/G) e COAMLILISINN(L/ ). (13
axis, but by a linear combination of thé= *1 states ifitis = The factorz, 7, in the second term at the right-hand side is
along thex axis. Hence, the corresponding injected fluxes argpositive if the magnetizations of the two ferromagnetic con-
represented by, . =f, . andF, =1, (1-4_,), respec- tacts are parallel, but negative if antiparallel. Furthermore,
tively. SinceL>d, the dominating contribution to the sta- when the magnetization is along the chanik =1, and
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so this second term oscillates as a functionLéEs. The  transport parameters. In systems with strong enough SOI, the
amplitude of oscillation decreases with increasing,, . sign of such a correction to conductance is determined by the
However, due to the slowdown of the spin relaxation, we carcompetition between the triplet and the singlet component of
manipulate the sample parameters such fhatL>L,.  the Cooperon propagatbt.The lifetime of the triplet is
Then, our theoretically predicted resistance oscillation can bequal to the spin relaxation time. If the temperature is not
observed experimentally with a gate to change the value ofery low, in a sufficiently narrow chanrtélthis time can

Ls increase and becomes comparable to the dephasing time of

In our analysis above we have neglected the Dresselhayge singlet. Hence, the sign of the correction can change from
contribution to the SOI, because in narrow gap systemgsitive to negative.

which we are interested in, the Rashba contribution domi-  the \weak localization corrections to the spin diffusion

nates the SOI. In quantum wells, the Dresselhaus Comr'b'“b'oefficient and the D'yakonov-Perel' relaxation rate also

tion contains a linear term and a CUb'? term m_elect_ron MO%ontain contributions from the triplet and the singlet compo-
mentum. It can be shown that the cubic term gives rise to a

e ; . e Rents of CooperoA® The spin diffusion coefficient is in-
addmgnal Spin relaxat_lon Wh'(.:h IS |ndeper_1d_ent of the Chan'cluded in the factow in Eq. (13). Therefore, by measuring
nel width d. Hence this term imposes a limit on the slow-

: X . . .the change of channel resistant® with a controlled gate
down of spin relaxation. The corresponding relaxation rate '%/oltage or a weak magnetic field, the variations of spin dif-

estimated to be insignificant for narrow gap quantum wells. . - : : :
. . . usion coefficient can be investigated experimentally.
However, in GaAs based quantum wells the cubic term is no¥ g P y

negligible® and can wash out the slowdown of spin relax- We acknowledge the support of the Royal Swedish Acad-
ation. emy of Science under the Research Cooperation Program

Besides the classical spin diffusion, the spin relaxatiorbetween Sweden and the former Soviet Union, Grant No.
slowdown also affects the weak localization corrections tol2527.

1D. P. DiVincenzo and D. Loss, Superlattices Microstr@&.419 8G. Dresselhaus, Phys. Rel0Q, 580(1955.

(1998; B. E. Kane, NaturéLondon 393 133(1998. %Yu. L. Bychkov and E. I. Rashba, J. Phys.1C, 6093(1984).
2J. Nitta, T. Akazaki, H. Takayanagi, and T. Enoki, Phys. Rev.1°A. G. Aronov, Pis'ma Zh. Esp. Teor. Fiz24, 37 (1976 [JETP
Lett. 78, 1335(1997). Lett. 24, 32 (1976)].

%S. Datta and B. Das, Appl. Phys. Lefi, 665(1990; S. Garde- 1\, Johnson and R. H. Silsbee, Phys. Re\3® 4959(1987): 37,
lis, C. G. Smith, C. H. W. Barnes, E. H. Linfield, and D. A. 5312(1989.
Ritchie, cond-mat/990205@npublishegt 2\We assume that the channel stays in the metallic regime, hence it

4 i .
M. I. D’yakonov and V. I. Perel, Fiz. Tverd. TelE8, 3581(1971) must be wide enough, so thatc NI, whereN is the number of
[Sov. Phys. Solid Stat&3, 3023(1972]; Zh. Eksp. Teor. Fiz.

60, 1954 (1971 [Sov. Phys. JETRB3, 1053(1971)].

5s, V.'Iordanskii, Yu. B. Lyanda-Geller, and G. E. Pikus, Pis’'ma
Zh. Eksp. Teor. Fiz60, 199(1994 [JETP Lett.60, 206(1994].

6F. G. Pikus and G. E. Pikus, Phys. Rev5B 16 928(1995.

"A. G. Mal'shukov, K. A. Chao, and M. Willander, Phys. Scr.
T66, 138(1996.

transmission eigenstates.

13g. |, Altshuler and A. G. Aronov, irElectron-Electron Interac-
tions in Disordered Systemedited by A. L. Efros and M. Pol-
lak (North-Holland, Amsterdam, 1985

1A, G. Mal'shukov, K. A. Chao, and M. Willander, Phys. Rev.
Lett. 76, 3794(1996.



