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Ordered phases of atoms adsorbed in nanotube arrays
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The low temperature properties of matter confined in an array of narrow one-dimensional channels are
discussed. Weak interchannel interactions can stabilize a crystalline phase. The melting transition is expected
to be continuous for both two- and three-dimensional arrays. Possible experimental realizations are suggested.
Crystals of noble gas series elements confined inside 1 nm wide nanotube arrays are expected to be stable at
temperatures up to 1 K.
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The effect of geometric confinement or reduced dim
sionality on the properties of matter has attracted much
tention over the years. It is well known that fluctuations b
come increasingly important as dimensionality is reduc
making it impossible for one-dimensional systems with fin
range interactions to order~except at zero temperature!.1

Steady progress in materials science provides an ever g
ing number of experimental realizations of one-dimensio
matter. A prime example is an array of atoms confined ins
carbon nanotubes or intercalated in the interstitial chan
of a nanotube bundle.2,3 Other interesting examples ar
alkane-urea inclusion compounds, in which guest alk
molecules are laterally confined, but retain axial mobili
inside subnanometer-sized one-dimensional channels
crystalline urea structure.4

This paper investigates the possibility of the existence
a crystalline phase of atoms confined inside structure
one-dimensional channels that have macroscopic axial
mensions, but a nanometer-sized cross section, essen
forcing the guest atoms to line up in a row. The assumpt
is made throughout that the walls of the channels are smo
~This assumption a priori excludes the possibility that reg
try effects stabilize a commensurate solid phase. We
discuss this point further below.! When the channels ar
bundled up in regular arrays, even exceedingly weak in
channel interactions can stabilize ordered phases. It has
argued recently that a transition into a weakly bound, hig
anisotropiccommensuratesolid state is possible for helium
atoms confined to the interstitial channels of carb
nanotubes.5 The argument presented there applies more g
erally to other adsorbates and adsorbants. Here, we show
an additional state is possible, which has nontrivial o
dimensionalincommensuratecrystalline order along the axe
of the tubes. Since the order parameter of this state
scalar, its properties are markedly different from those
usual crystals in both two and three dimensions. In parti
lar, melting is expected to be a continuous single-step tr
sition in both two and three dimensions, and the melt
temperature is proportional to the square root of the sh
modulus, rather than to its first power. In view of the e
tremely small values of the shear modulus for these no
crystals, the square root dependency is important in mak
this state accessible to experiment.

We begin by considering a simple model of particles co
fined inside an array of parallel tubes, as depicted in Fig
We assume that the size of each tube is such that no m
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than one atom is allowed per cross section of the chan
~This condition can be easily met in an experiment.! The
figure may represent a flat two-dimensional array of na
tubes deposited on a surface, or a two-dimensional cross
tion, containing the axis of the tubes, of a three-dimensio
array. ~In a 3d array, the channel cross sections would o
cupy the sites of a honeycomb lattice, if the guest atoms
interstitially intercalated, or the sites of a triangular lattice
the atoms are adsorbed inside the tubes.!

Unlike the usual condensed phases, where structure is
termined primarily by packing constraints~i.e., hard core re-
pulsion!, the arrangement of atoms in adjacent channel
governed by the long range tail of the interatomic intera
tion. If this is attractive, as is normally the case, the ato
will tend to register in order to minimize the energy. In 2d,
for example, the preferred crystalline arrangement will b
rectangular, rather than triangular lattice.

Let us label the coordinate of thej th particle in thei th

tube byRW i , j1 ẑu( i , j )1uW'( i , j ), RW i , j being a lattice coordi-
nate. Let alsoa denote the lattice constant along thez direc-
tion, andb that in the transverse direction~s!. The total po-
tential energy can be written as

FIG. 1. Crystalline arrangement of guest atoms confined insid
host array of narrow channels.a is the lattice constant in the non
trivial direction. The value ofb is determined entirely by the struc
ture of the host.
R16 351 ©2000 The American Physical Society
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U5(
i , j

v„uRW i , j2RW i , j 211 ẑu~ i , j !2 ẑu~ i , j 21!1uW'~ i , j !

2uW'~ i , j 21!u…1v„uRW i , j2RW i 21,j1 ẑu~ i , j !2 ẑu~ i 21,j !

1uW'~ i , j !2uW'~ i 21,j !u…1w„uuW'~ i , j !u…, ~1!

wherev is an interparticle potential~e.g., the Lennard-Jone
interaction!. This interaction can be treated as nearest ne
bor without loss of accuracy. In the transverse direction,
particles are confined within each tube by a stiff harmo
potential,w. In the low temperature regime that we are co
cerned with here, we can regard the transverse degree
freedomu' as frozen out.

To make connection with elasticity theory,6 we use a con-
tinuum approximation, valid in the long wavelength lim
The effective Hamiltonian can be written as a function of t
scalar displacementu only:

U5U01
1

2E dd21r'dzFlS ]u

]zD 2

1mS ]u

]r'
D 2G , ~2!

where the elastic constants

l5
v9~a!a2

bd21a
; m5

v8~b!b

bd21a
~3!

are reminiscent of the bulk and shear moduli of stand
isotropic elastic theory.7 To determine the stability of the
crystalline phase in two and three dimensions, we exam
the fluctuations of the displacement fieldu.

2D. Order in two-dimensional crystals is characterized
a diffraction pattern displaying algebraic peaks, rather th
by sharp Bragg peaks.8 This is also true for matter in two
dimensional arrays of nanotubes, where the broadenin
the structure factor peak at reciprocal lattice vector 2pm/b,
2pn/a is given by

S~qW !;upu2(22h), ~4!

with p[A(qx22pm/b)21Al/m(qz22pn/a)2 and the ex-
ponent is

h5
2pT

a2Alm
. ~5!

We expect~quasi!-long-range order to be unstable to u
binding of dislocation pairs.8 Dislocations arise because o
the constraint, which implicitly accompanies Eq.~2!, that the
line integral of the displacement around a closed cont
must be an integer multiple of the lattice spacinga:6

E ]u

]r j
dr j52na. ~6!

A dislocation can be visualized as a missing semi-infin
string of atoms perpendicular to the direction of the tub
~Fig. 2!. Note that the Burger’s vector is necessarily para
to the direction of the tube. This is a direct consequence
the fact that the dynamical variable of the model,u, is a
scalar displacement. From this, it follows that this crys
melts, in two dimensions,through a one-step process, a con-
h-
e
c
-
of

d

e

y
n

of

r

e
s
l
of

l

tinuous vortex unbinding transition, qualitatively analogo
to the superfluid-to-normal transition in helium films. Th
behavior is unusual. For conventional 2D crystals, melting
predicted to happen through atwo-stepprocess:8 dislocation
unbinding that produces a hexatic phase with long range
entational order, followed at higher temperature by disclin
tion unbinding into the isotropic liquid phase.

The melting temperature in our model is given by

T2D5
Alma2

8p
, ~7!

so that the exponenth, just below the transition, takes on, a
usual, the universal valueh(T2D

2 )51/4. A similar transition
was recently predicted for a 2D colloidal crystal subject to
1D periodic potential.9

3D. The melting transition in three-dimensional arrays
expected to be continuous, unlike in conventional 3D cr
tals. Qualitatively, a continuous transition should be e
pected because of the geometric constraints forcing the
ticle to move in one dimension. As a consequence,
structural rearrangement is possible upon melting~i.e., the
local structure of the liquid is identical with that of the crys
tal, as happens in 2D!, so that no abrupt density change o
curs upon melting.10 The melting temperature can be es
mated by the Lindemann criterion.11 We evaluate the mean
square displacement of the particles along the axis of
tubes:

^u2&[
1

VE d3k

~2p!3^uku2k&5
kBT

4bAml
, ~8!

where the high-k cutoff in the transverse direction has be
set top/b. Following the Lindemann criterion, we assum
the crystal to melt when the root mean square displacem
is equal to a fractioncL of the lattice constanta. This yields
the melting temperature

T3d54cL
2Amlba2. ~9!

The system-dependent Lindemann constantcL typically
ranges in the interval 0.1,cL,0.3.

To make quantitative predictions for noble gases,
make a connection to the known values of the melting te
perature of their standard 3D crystalline phase. This can

FIG. 2. Schematic depiction of a dislocation. Note the failure
a contour drawn around the dislocation core to close.



os
d

nt

o

s

y
o

0.
ed
i
h

-

s

ac
be
s

tra
a

a

o-

-
eter,
the
-

s
ss

e
tion
n-
ed
the
ed

cal
n, it

ave
the

t
en-
-
gas
ases
on

w
ct
te
e-

ter-
ost

ve
by

:

gh
ns,
sta-
ly

ure
nal
ter-
lline
ing
ould

int
.

u-

RAPID COMMUNICATIONS

PRB 61 R16 353ORDERED PHASES OF ATOMS ADSORBED IN . . .
done in a straightforward manner, if one approximates th
crystals as isotropic elastic media. In that case, the Lin
mann criterion becomes

Tiso5
12p

35
cL

2a3E, ~10!

where, for isotropic media, Young’s modulusE52.5l. We
assume a Lennard-Jones potential,

v~r !54eF S s

r D 12

2S s

r D 6G , ~11!

for which it is known thatE;70e/s3.12 Thus, the Linde-
mann criterion predicts thatTiso.0.7e, with a value ofcL
50.1 anda.s. This prediction is in very good agreeme
with the experimental values ofTiso/e50.67, 0.68, 0.52,
0.70 for Ne, Ar, Kr, and Xe, respectively.13

Returning to the weak crystalline phase in an array
nanotubes, we find an anisotropy parameterc from Eq. ~3!
~we puts51):

c5
m

l
52S a

bD 6 ~2/b6!21

~26/a6!27
.

1

20S a

bD 6

. ~12!

Remembering thatl is related to the isotropic Young’
modulus of the 3D Lennard-Jones crystal byl
50.4(b/a)2E, we arrive at the prediction

T3D51.5Ac
a

b
Tiso.

1

3 S a

bD 4

Tiso. ~13!

Coordination effects are expected to raise this value b
factor ofAz/2, z being the number of nearest neighbors. F
single wall nanotubes with diameterd510 Å, we can put
b512 Å, and we obtain a melting temperature of about
K for interstitial Ne atoms and 1.2 K for Xe atoms adsorb
inside the tubes. More polarizable molecules, adsorbed
side nanotubes, would form stable crystalline states at hig
temperatures. For example, for C60 buckminster fullerene ad
sorbed inside 1.5-nm-wide tubes,14 we find a melting tem-
perature of about 110 K in 3D, using the LJ parametere
52300 K ands59.2 Å.15

It was recently pointed out that the interchannel inter
tions of atoms adsorbed interstitially within nanotu
bundles should stabilize a weakly bound condensed pha5

The condensation temperature was estimated from the
sition temperature of the strongly anisotropic lattice g
model, which yields

Tc5
1

2

v~a!

ln~1/cl !2 ln@ ln~1/cl !#
, ~14!

providedcl<0.1. ~Note that the anisotropy parameter has
different value in the liquid state, and is given bycl
5v(b)/v(a).(a/b)6, again ignoring a lattice-dependent c
e
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ordination correction.! For cl50.1, the condensation tem
perature is a sizable fraction of the Lennard-Jones param
Tc;e/3, that is, over an order of magnitude higher than
melting temperatureT3D . ~Stronger anisotropy has a rela
tively small effect onTc .) For comparison, the liquid-ga
critical temperature of the unconfined bulk system is le
than twice as high as the melting temperature.13

A subtle but important observation is in order. A lattic
gas model, such as that proposed in Ref. 5, by construc
can predict only one transition. This transition is often ide
tified with a gas-liquid transition. However, the condens
phase of a lattice gas model has a built-in registry with
underlying lattice. Thus, the identification of the condens
phase with a~highly anisotropic! liquid is unambiguous only
in the smooth channel approximation, on obvious physi
grounds. In the presence of strong substrate corrugatio
might well be interpreted as a transition into acommensurate
state, as is proposed in Ref. 5. In the present work, we h
considered atoms trapped in smooth channels, showing
presence of a genuineincommensuratecrystalline phase a
temperatures significantly lower than the lattice gas cond
sation temperatureTc . Registry effects could play an impor
tant role in real systems, noticeably in the case of noble
atoms in carbon nanotubes. For reference, all noble g
except Ar are known to form commensurate 2D solids
graphite in some pressure range.16 In this regard, the quali-
tative difference between Ar and Kr is quite striking in vie
of the very small difference in the LJ diameter. This fa
underscores that it will be very difficult to make accura
predictions without taking into account the quantitative d
tails of each system. These would include not just the in
atomic potentials, but also the precise structure of the h
channels~e.g., the chirality of the nanotubes!.

Finally, we comment on quantum effects, which ha
been ignored so far. Their importance can be gauged
evaluating the mean square fluctuation ofu due to the zero
point motion. Quantization of the Hamiltonian@Eq. ~2!#
leads to the following estimate, valid for large anisotropy

^u2&0

a2 .
0.08

s~Å !Ae~K!A
lnS 1

cD , ~15!

whereA is the atomic number. The values ofsAeA are 16.5,
74.6, and 241 for He, Ne, and Ar, respectively. Althou
anisotropy increases the importance of quantum fluctuatio
the dependence is logarithmic and is not expected to de
bilize the crystalline phase, certainly not for Ar and like
not for Ne.

In summary, we have investigated the low temperat
behavior of atoms adsorbed in an array of one-dimensio
channels with nanometer-sized cross section. Weak in
channel interactions can stabilize a phase that has crysta
order in the direction of the channels. The estimated melt
temperature for these novel crystals suggest that they sh
be well within experimental reach in several systems.

I wish to thank the authors of Ref. 5 for sending a prepr
of their work prior to publication. I am also grateful to D. R
Nelson for bringing Ref. 9 to my attention after this man
script was submitted.
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