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Correlated sampling in quantum Monte Carlo: A route to forces
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In order to find the equilibrium geometries of molecules and solids and to performab initio molecular
dynamics, it is necessary to calculate the forces on the nuclei. We present a correlated sampling method to
efficiently calculate numerical forces and potential energy surfaces in diffusion Monte Carlo. This method
employs a coordinate transformation, earlier used in variational Monte Carlo, to greatly reduce the statistical
error. Results are presented for first-row diatomic molecules.
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Over the past decade, quantum Monte Carlo~QMC!
methods1–3 have been used to calculate the electronic pr
erties of a variety of atoms, clusters and solids, and h
provided the most accurate benchmark calculations of st
tural energies of systems with large numbers of electro
However, a major difficulty of QMC methods has been t
determination of equilibrium geometries and potential e
ergy surfaces. Hence, most QMC calculations have been
formed on geometries obtained with either density functio
theory ~DFT! or conventional quantum chemistry method
The computation of forces on nuclei has been a stumb
block that has limited a more widespread use of QMC me
ods.

DFT methods or standard quantum chemistry techniq
use the Hellman-Feynman theorem to compute the force
nuclei.4 Unfortunately, this is not practical within QMC fo
three reasons. First, the wave functions used in QMC
usually not obtained by minimizing the energy. Therefore
the Hellman-Feynman theorem were employed in variatio
Monte Carlo ~VMC!, the forces would have a systemat
error. Second, in fixed-node diffusion Monte Carlo~DMC!,
the Hellman-Feynman force has an error due to the disc
tinuity in the derivative of the fixed-node wave function
nodes.5 Finally, in both VMC and DMC, the statistical error
would be too large, since the fluctuations of the poten
energy are much larger than those of the total energy.

Alternatively, one could simply compute energy diffe
ences to obtain either forces~for an infinitesimal displace-
ment of the ions! or the full potential energy surface of th
system. However, while quantum chemistry methods
rely on having an approximately constant and smoot
varying error in the energy, a major disadvantage of QM
methods is that, in addition to systematic errors, one
statistical errors which make the determination of energy
ferences or smooth potential energy surfaces very comp
tionally expensive. Even though it is not possible to entir
eliminate the statistical errors, it is possible, by using cor
lated sampling,6 to make the statistical errors in the relativ
energies of different geometries much smaller than the er
in the separate energies and to make them vanish in the
that the two geometries become identical. In the past,
correlated sampling technique has been used within VMC7,8
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but there have been very few attempts9 to extend the ap-
proach to DMC, and these were approximate and/or ine
cient and were tested only on H2, H3

1 , and LiH.
In this paper, we present a DMC correlated sampl

technique to efficiently compute accurate forces and po
tial energy surfaces. The DMC bond lengths of first-row
atomic molecules computed with this algorithm are found
be in better agreement with experimental values than are
VMC, Hartree-Fock ~HF!, local density approximation
~LDA !, and generalized gradient approximation~GGA! val-
ues.

Correlated sampling in variational Monte Carlo. Corre-
lated sampling enables us to compute, from a single re
ence Monte Carlo walk, the relative energies of differe
geometries, a reference and one or more secondary ge
etries, with nuclear coordinatesRa andRa

s , HamiltoniansH
andHs, and wave functionsc and cs, respectively. Unbi-
ased expectation values are obtained by reweighting the
figurations sampled fromc2,

Es2E5
^csuHsucs&

^csucs&
2

^cuHuc&

^cuc&

5
1

Nconf
(
i 51

Nconf HHscs~Ri !

cs~Ri !
Wi2

Hc~Ri !

c~Ri !
J , ~1!

where the weights of theNconf MC configurations are

Wi5
Nconfucs~Ri !/c~Ri !u2

(
i 51

Nconf

ucs~Ri !/c~Ri !u2
, ~2!

andR[(r1 , . . . ,rN). The statistical error inEs2E goes to
zero linearly as the secondary geometry approaches the
erence geometry, thereby permitting the evaluation of
merical forces with a finite statistical error, that can be
duced by increasing the computer time.

Space-warp coordinate transformation. The electronic co-
ordinates sampled from the reference wave function squa
c2, will not be optimal for computing the energyEs corre-
sponding to the nuclear coordinatesRa

s , since the electron
R16 291 ©2000 The American Physical Society
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density will be peaked atRa rather than atRa
s . This problem

can be solved by mapping the electron coordinates so
the electrons close to a given nucleus move almost rig
with that nucleus:8

r i
s5r i1 (

a51

Natoms

~ra
s 2ra! va~r i !, ~3!

where

va~r i !5
F~ ur i2rau!

(
b51

Natoms

F~ ur i2rbu!

; (
a51

Natoms

va~r i !51. ~4!

~We use Latin indices for electronic coordinates and Gr
indices for nuclear coordinates.! F(r ) is any sufficiently rap-
idly decaying function, e.g.,r 2k, e2kr , or ek/r . The reduc-
tion in statistical error is large~see Fig. 1! and almost inde-
pendent of the choice forF(r ). In this paper, we useF(r )
5r 2k andk54.

The equation forEs2E @Eq. ~1!# is now

Es2E5
1

Nconf
(
i 51

Nconf S Hscs~Ri
s!

cs~Ri
s!

Wi2
Hc~Ri !

c~Ri !
D , ~5!

where

Wi5
Nconfucs~Ri

s!/c~Ri !u2J~Ri !

(
j 51

Nconf

ucs~Rj
s!/c~Rj !u2J~Rj !

, ~6!

andJ(R) is the Jacobian for the transformation@Eq. ~3!#.
Correlated sampling in diffusion Monte Carlo. In DMC,10

the primary walk is generated according to a stocha
implementation of the integral equation:

f ~R8,t1t!5E dR G~R8,R,t! f ~R,t !, ~7!

FIG. 1. VMC fluctuations (sVMC) of the relative energy of the
primary and secondary geometries divided by the bond stretch
B2. If correlated sampling were not used,sVMC would diverge at
DR50. The smallestsVMC is achieved by using warping alon
with reoptimized secondary wave functions.
at
ly

k

ic

where the importance-sampled Green’s functi
G(R8,R,t)5c(R8)^R8uexp$ 2 Ht%uR&/c(R), f 5fc, f is
the ground state wave function andc the trial wave function.
For small values of t ~short-time approximation!,
G(R8,R,t) is given by the product of three factors, drif
diffusion and growth/decay:

G~R8,R,t!'
1

~2pt!3N/2
e2[(R82R2V(R)t)2/2t]eS(R8,R,t),

~8!

where V5¹c(R)/c(R) and S(R8,R,t)5„2ET2EL(R8)
2EL(R)…t/2 with EL5Hc(R)/c(R). A set of primary
walkers characterized by the pairs (Ri ,wi) is a random real-
ization of the distributionf. Each walker executes a branc
ing random walk: a walker originally atR drifts to R
1V(R)t and then diffuses toR8 according to the Gaussia
term in Eq.~8!. To ensure that whenc is the ground state
wave function,c2 is sampled exactly despite the short-tim
approximation in the Green’s function, the move is accep
with probability

p5minH 1,
uc~R8!u2 T~R,R8,t!

uc~R!u2 T~R8,R,t!
J , ~9!

as prescribed by the detailed balance condition. We den
by T the drift-diffusion part of the Green’s functionG. Fi-
nally, the weight of the walker is multiplied by
exp@S(R8,R,t)#. In practice, we employ the improved ve
sion of G presented in Ref. 11.

Given a primary walk generated according to Eq. 8,
secondary walk is specified by the space-warp transfor
tion @Eq. ~3!#. Two complications, absent in VMC, arise fo
correlated sampling in DMC. First of all, the dynamics of t
secondary walker should have been governed by an im
tance sampled Green’s function constructed from the seco
ary wave functioncs, Gs(R

s8,Rs,t), and the move should
have been accepted with probabilityps obtained by substi-
tuting in Eq.~9! c andT with cs andTs , respectively. How-
ever, the secondary-geometry move was effectively propo
according to the drift-diffusion Green’s functio
T(R8,R,t)/J(R8) and accepted with probabilityp defined in
Eq. ~9!. To correct for the wrong dynamics, we should mu
tiply the weights of the secondary walkers by

r
Gs~Rs8,Rs,t!

T~R8,R,t!/J~R8!
, ~10!

where r 5ps/p if the move is accepted andr 5(12ps)/(1
2p) if the move is rejected. However, these products flu
tuate wildly (r can be anywhere between zero and infinit!.
Therefore, it is not practical to follow this route to perfor
correlated sampling unless bounds can be placed on the
tios while at the same time ensuring that unbiased results
obtained in thet→0 limit.

An additional complication is the common practice
fixed-node DMC to reject moves that cross nodes. If prim
and secondary walkers were to be treated on the same
ing (ps set to zero when the secondary walker crosses
own nodes!, the weights of the secondary walkers would
become zero in a sufficiently long run. Even though th

or
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problem can be easily overcome since it is legitimate to
fixed-node DMC allowing walkers to cross nodes,11 re-
weighting as in Eq.~10! remains impractical due to the larg
fluctuations.

In this paper, we propose an alternative correlated s
pling algorithm which is approximate but very accura
Given the successful implementation of correlated samp
within VMC and the large gain in efficiency obtained
DMC when including an accept/reject step, we wish to d
vise a scheme that differs as little as possible from VM
reduces to the DMC algorithm with accept/reject for the p
mary geometry, and yields results very close to the DM
value for the secondary geometry.

Observe that, in the absence of the growth/decay fa
and presence of the accept/reject step, we would be sam
c2 for the primary walk, andcs

2 for the secondary walk by
reweighting the averages with the ratio of wave functio
@Eq. ~6!#. By multiplying the weights of the primary an
secondary walkers by the corresponding growth/decay
tors, we recover the fixed-node solution for the prima
walk, but we do so only approximately for the seconda
walk since the moves were not proposed with the right
namics. To partially correct for this, we introduce a seco
ary time step as discussed below.

We summarize our algorithm as follows:~1! We generate
secondary walks from the reference walk according to
space-warp transformation.~2! In the averages, we retain th
ratios of the secondary and primary wave functions as
VMC @Eqs. ~5! and ~6!#. ~3! The secondary weights are th
primary ones multiplied by the product of the facto
exp@Ss(R

s8,Rs,ts)2S(R8,R,t)# for the last Nproj genera-
tions. (Nproj is chosen large enough to project out the s
ondary ground state, but small enough to avoid a consi
able increase in the fluctuations.! In the exponential factors
we introducedts because the secondary moves are eff
tively proposed with a different time step,ts , in the drift-
diffusion term of Eq.~8!. A sensible definition ofts is ts

5t^DRs
2&/^DR2&, whereDR is the displacement resultin

from diffusion, andDRs is the displacement needed to ta
the secondary walker from its drifted position to the positi
specified by the space-warp transformation.ts is computed
over the first equilibration blocks of the DMC run.

In the limit of vanishing displacement, the difference
primary and secondary energies and its statistical error v
ish linearly, so the force and its error are well behaved.

Secondary geometry wave functions. We considered three
choices for secondary geometry wave functions:

~1! The secondary wave functions have the same par
eters$p‰ as the primary one but the coordinates are rela
to the new nuclear positions:cs(Ri ,Ra

s )5c(Ri ,Ra
s ,ps)

with ps5p, possibly with the minimal changes required
impose the cusp conditions.

~2! The secondary geometry wave functions at warp
electron positions are related to the primary ones at the o
nal positions,cs(Ri

s,Ra
s )5c(Ri ,Ra ,p)/AJ(Ri). This wave

function depends on the transformation~it was used in Ref.
9~b! with a different transformation! and has the advantag
that the weightsWi in @Eq. ~2!# are unity. Surprisingly, it
gives larger fluctuations of the energy differences th
choice~1!.
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~3! cs(Ri ,Ra
s )5c(Ri ,Ra

s ,ps) with reoptimized param-
etersps. This choice gives the smallest fluctuation of th
energy differences and the best potential energy surface

We calculate all molecules with choice~1! but also dem-
onstrate the superiority of choice~3! for B2.

Results and conclusions.The algorithms presented in th
previous sections are tested on first-row homonucl
dimers. The primary wave functions3 were optimized close
to the experimental bond length by the variance minimi
tion method.2 The potential energy curves were obtain
with correlated sampling from ten geometries, using
warp transformation and recentered secondary geom
wave functions@choice~1! above#. Values ofNprojt of 5–10
H21 were sufficient to project out the secondary wave fun
tions.

To ascertain the efficiency of our method, we perform
two additional calculations for B2; in the first, we omitted the
warp transformation, whereas in the second we emplo
reoptimized, rather than recentered, secondary wave fu
tions. In Fig. 1, we present the VMC root-mean-square fl
tuations (sVMC) of the relative energy of primary and se
ondary geometries divided by the atomic displaceme
DE/DR, for B2. Introducing the warp transformation yield
a reduction of about a factor of 3.5–5 insVMC , which cor-
responds to a factor of 12–25 saving in computer tim
Moreover,sVMC is only slightly dependent on the seconda
geometry used. As expected, a further reduction insVMC is
obtained when the space-warp transformation is used
combination with reoptimized, rather than recentered, s
ondary geometry wave functions. The space-warp trans
mation was found to be of even greater help for heav
molecules, e.g., for F2 the reduction in the fluctuations was
least a factor of 3.5–10. In fact, in the absence of space-w
transformation for F2, it is even difficult to reliably estimate
the statistical error of secondary geometries that differ c
siderably from the primary one.

To test the accuracy of our DMC correlated sampling
gorithm, we performed DMC runs for H2 and B2 for three
different primary geometries,~a! the equilibrium geometry,
~b! a geometry stretched by 0.2, and~c! by 20.2 a.u. The
runs ~a!, ~b!, and ~c! should give identical potential energ
curves if the algorithm were exact. In Fig. 2, we show resu
for B2 that reveal the high accuracy of our DMC algorithm
the three DMC curves are very close and clearly distingui
able from the VMC results. These results are confirmed
the calculations for H2 where, despite the use of an inte
tionally poor wave function, the three curves gave the eq
librium bond lengths~a! 1.4014~2!, ~b! 1.4014~2!, and ~c!
1.4015~2! a.u. The true equilibrium bond length, from a car
ful fit to the results of Ref. 12, is 1.4011 a.u.

To test the improvement resulting from employingts
Þt, we performed, for H2, DMC correlated sampling with
ts5t. Since ts.t for DR.0 and ts,t for DR,0, we
expect this potential energy curve to yield an equilibriu
bond length that is too short. The equilibrium bond length
indeed 1.4003~2! a.u., which is 4 standard deviations fro
the true bond length, whereas that obtained with ourtsÞt
algorithm, 1.4014~2! a.u., is 1.5 standard deviation from th
true bond-length.

Having ascertained the accuracy and efficiency of our
gorithm, we computed the bond lengths of all first-ro
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dimers with VMC and DMC correlated sampling. In Table
we list the errors in the bond lengths obtained from restric
Hartree-Fock~RHF!,13 LDA,14 GGA,15 VMC, and DMC.
The RHF results show the worst agreement with experim
with Be2 not being bound. The DMC errors are, in all cas

FIG. 2. Potential energy curve for B2 in VMC and DMC. The
three DMC curves are obtained with three different primary geo
etries ~equilibrium, stretched by 0.2 and20.2 a.u.! and using re-
centered wave functions. All curves are shifted with the energ
the equilibrium distance~arrow! defined as the zero. Atomic unit
are used.
tt.
d

t,
,

either smaller than or comparable to those from VMC, a
are smaller than LDA and GGA errors by a factor of 3.9 a
2.6, respectively.

In this paper, we presented an efficient method to co
pute numerical forces in DMC, a long-standing unsolv
problem in QMC techniques. The method is very accur
and was tested on first-row dimers, where the DMC bo
lengths were found to agree with experiment better th
those from HF, LDA, GGA, and VMC.

This work was begun during a visit to the Institute f
Nuclear Theory in Seattle and was funded by Sandia
tional Laboratory.

-

t

TABLE I. Experimental bond lengths~Refs. 29 and 34 of Ref.
3! of first-row dimers and theoretical errors in RHF~Ref. 13!, LDA
~Ref. 14!, GGA ~Ref. 15!, VMC and DMC ~in a.u.!.

Molecule Expt. RHF LDA GGA VMC DMC

Li2 5.051 0.270 0.069 0.057 0.101~2! 0.018~3!

Be2 4.630 20.109 20.001 20.069(3) 20.014(5)
B2 3.005 0.086 0.025 0.042 0.018~2! 0.002~2!

C2 2.348 20.007 0.006 0.023 0.006~2! 0.008~1!

N2 2.074 20.061 20.006 0.011 0.012~2! 0.007~1!

O2 2.282 20.107 20.012 0.044 0.028~2! 0.023~4!

F2 2.668 20.161 20.053 0.040 0.021~4! 0.015~5!

rms ` 0.054 0.036 0.049 0.014
ys.
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