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In order to find the equilibrium geometries of molecules and solids and to pewbrimitio molecular
dynamics, it is necessary to calculate the forces on the nuclei. We present a correlated sampling method to
efficiently calculate numerical forces and potential energy surfaces in diffusion Monte Carlo. This method
employs a coordinate transformation, earlier used in variational Monte Carlo, to greatly reduce the statistical
error. Results are presented for first-row diatomic molecules.

Over the past decade, quantum Monte Cai@MC) but there have been very few attenipte extend the ap-
method$—3 have been used to calculate the electronic propproach to DMC, and these were approximate and/or ineffi-
erties of a variety of atoms, clusters and solids, and haveient and were tested only on,H H; , and LiH.
provided the most accurate benchmark calculations of struc- In this paper, we present a DMC correlated sampling
tural energies of systems with large numbers of electrongechnique to efficiently compute accurate forces and poten-
However, a major difficulty of QMC methods has been thetial energy surfaces. The DMC bond lengths of first-row di-
determination of equilibrium geometries and potential en-atomic molecules computed with this algorithm are found to
ergy surfaces. Hence, most QMC calculations have been pele in better agreement with experimental values than are the
formed on geometries obtained with either density functionaVMC, Hartree-Fock (HF), local density approximation
theory (DFT) or conventional quantum chemistry methods.(LDA), and generalized gradient approximati@GA) val-

The computation of forces on nuclei has been a stumbling/€s.
block that has limited a more widespread use of QMC meth- Correlated sampling in variational Monte Carl€orre-
ods. lated sampling enables us to compute, from a single refer-

DFT methods or standard quantum chemistry techniquegnce Monte Carlo walk, the relative energies of different
use the Hellman-Feynman theorem to compute the forces dggometries, a reference and one or more secondary geom-
nuclei? Unfortunately, this is not practical within QMC for etries, with nuclear coordinatés, andR;,, HamiltoniansH
three reasons. First, the wave functions used in QMC arandH, and wave functiongs and i, respectively. Unbi-
usually not obtained by minimizing the energy. Therefore, ifased expectation values are obtained by reweighting the con-
the Hellman-Feynman theorem were employed in variationafigurations sampled frony?,

Monte Carlo (VMC), the forces would have a systematic
error. Second, in fixed-node diffusion Monte Ca(®MC), A(udHdpy  (wlH|p)

the Hellman-Feynman force has an error due to the discon- Es—E= (pdwy (YY)

tinuity in the derivative of the fixed-node wave function at

nodes> Finally, in both VMC and DMC, the statistical errors 1 Neont Hsp(R;) Hy(R;)

would be too large, since the fluctuations of the potential - N eonf ;1 y(R) YR | @

energy are much larger than those of the total energy.

Alternatively, one could simply compute energy differ- where the weights of thal.,,; MC configurations are
ences to obtain either forcdfor an infinitesimal displace-

ment of the iongsor the full potential energy surface of the Neond R H(R;)|2

system. However, while quantum chemistry methods can Wi = o e, 2
rely on having an approximately constant and smoothly ﬁn | R)IH(R)|2

varying error in the energy, a major disadvantage of QMC = R :

methods is that, in addition to systematic errors, one has

statistical errors which make the determination of energy difandR=(r, ... ry). The statistical error ifE;— E goes to
ferences or smooth potential energy surfaces very computaero linearly as the secondary geometry approaches the ref-
tionally expensive. Even though it is not possible to entirelyerence geometry, thereby permitting the evaluation of nu-
eliminate the statistical errors, it is possible, by using corremmerical forces with a finite statistical error, that can be re-
lated sampling,to make the statistical errors in the relative duced by increasing the computer time.

energies of different geometries much smaller than the errors Space-warp coordinate transformatiofhe electronic co-

in the separate energies and to make them vanish in the limitrdinates sampled from the reference wave function squared,
that the two geometries become identical. In the past, the?, will not be optimal for computing the energdg corre-
correlated sampling technique has been used within VKIC, sponding to the nuclear coordinatgs, since the electron
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" where the importance-sampled Green’s  function
10 G(R',R,7)=y(R")(R'|exp — HT}|R) H(R), f= i, ¢ is
o the ground state wave function agidhe trial wave function.
For small values of = (short-time approximation
8 G(R’,R,7) is given by the product of three factors, drift,
3 7 diffusion and growth/decay:
GRS VMC rms fluctuations of AE/AR for Bz
é. S warp mesemered . ¥ | GIRUR e (R RHOTIE A,
4 ® warp, reoptimized ¥ (2m7)
s (8)
2 where V=V #(R)/¢(R) and S(R’,R,7)=(2E;—E_(R’)
; o o —E (R))r/2 with E, =H#(R)/#(R). A set of primary
° D S S walkers characterized by the paifR;(w;) is a random real-
® s on on 00 o o2 .;  ization of the distributiorf. Each walker executes a branch-

AR (a.u.)

ing random walk: a walker originally aR drifts to R
+V(R) 7 and then diffuses t®’ according to the Gaussian

_FIG. 1. VMC fluctuations gyuc) of the relative energy of the term in Eq.(8). To ensure that wheip is the ground state
primary and secondary geometries divided by the bond stretch fop,gyve function,i? is sampled exactly despite the short-time

B,. If correlated sampling were not usedg,yc would diverge at

approximation in the Green’s function, the move is accepted

AR=0. The smallesiryyc is achieved by using warping along \yith probability

with reoptimized secondary wave functions.

density will be peaked &, rather than aR® . This problem
can be solved by mapping the electron coordinates so that

[ IWR)Z T(RR,7)
p=miny 1, ,
[W(R)[? T(R",R,7)

(€)

the electrons close to a given nucleus move almost rigidlyys prescribed by the detailed balance condition. We denote

with that nucleu$:
NatOmS
F=rit 2 (15r,) o4(r),
a=1
where
NatOmS

D wu(r)=1.

Fdﬁ_rJ)

w,(ry)= Notoms

ﬁ; F(ri—rg)

©)

(4)

by T the drift-diffusion part of the Green’s functio@®. Fi-
nally, the weight of the walker is multiplied by
exdSR’,R,7)]. In practice, we employ the improved ver-
sion of G presented in Ref. 11.

Given a primary walk generated according to Eq. 8, the
secondary walk is specified by the space-warp transforma-
tion [Eq. (3)]. Two complications, absent in VMC, arise for
correlated sampling in DMC. First of all, the dynamics of the
secondary walker should have been governed by an impor-
tance sampled Green'’s function constructed from the second-

ary wave functionyrs, G{R®,R%,7), and the move should

(We use Latin indices for electronic coordinates and Greelf ave been accepted with probabilipy obtained by substi-
indices for nuclear coordinated: (r) is any sufficiently rap- tuting in Eq.(9) ¢ andT with ¢, andT., respectively. How-

; H ; —K —K «l
idly decaying function, e.gr,”", e "', ore”". The reduc-  gye the secondary-geometry move was effectively proposed
tion in statistical error is largésee Fig. 1 and almost inde- according to the drift-diffusion Green's function

pendent of the choice fdf(r). In this paper, we us€(r) (R’ R,7)/J(R’) and accepted with probabilifydefined in
=r_“andx=4. _ Eq. (9). To correct for the wrong dynamics, we should mul-
The equation folEs— E [Eq. (1)] is now tiply the weights of the secondary walkers by

1" [H@dRY  HY(R) G4R®,R%7)
E{‘E: :S MA— ’ (5 S —
Noont i1 | (R U(R;) IfT(R’,R,T)/J(R')’ 10

wherer =p¢/p if the move is accepted and=(1—py/(1

—p) if the move is rejected. However, these products fluc-
tuate wildly (r can be anywhere between zero and infinity
Therefore, it is not practical to follow this route to perform
correlated sampling unless bounds can be placed on the ra-
tios while at the same time ensuring that unbiased results are
andJ(R) is the Jacobian for the transformatipqg. (3)]. obtained in ther—0 limit.

Correlated sampling in diffusion Monte Carlm DMC,*° An additional complication is the common practice in
the primary walk is generated according to a stochastidixed-node DMC to reject moves that cross nodes. If primary
implementation of the integral equation: and secondary walkers were to be treated on the same foot-
ing (ps set to zero when the secondary walker crosses its
own nodey, the weights of the secondary walkers would all
become zero in a sufficiently long run. Even though this

Neond R/ (R [2I(R;)
Wi:Ncoanl//( (R , ®

;1 | RIW(R)|2I(R))

f(R’,H—r):JdRG(R’,R,T)f(R,t), (7)
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problem can be easily overcome since it is legitimate to do (3) #(R;,R})=#(R;,RS,p) with reoptimized param-
fixed-node DMC allowing walkers to cross nodésre-  etersp,. This choice gives the smallest fluctuation of the
weighting as in Eq(10) remains impractical due to the large energy differences and the best potential energy surface.
fluctuations. We calculate all molecules with choi¢#&) but also dem-

In this paper, we propose an alternative correlated sanmsnstrate the superiority of choid8) for B,.
pling algorithm which is approximate but very accurate. Results and conclusion$he algorithms presented in the
Given the successful implementation of correlated samplingprevious sections are tested on first-row homonuclear
within VMC and the large gain in efficiency obtained in dimers. The primary wave functiohsvere optimized close
DMC when including an accept/reject step, we wish to def0 the experimental bond length by the variance minimiza-
vise a scheme that differs as little as possible from Vmc ion method” The potential energy curves were obtained
reduces to the DMC algorithm with accept/reject for the pri-With correlated sampling from ten geometries, using the
mary geometry, and yields results very close to the DMCVarP trans_formatlo_n and recentered secondary geometry
value for the secondary geometry. w§\{e functlon_s[ghmce(l) a_lbovq. Values ofNpq7 of 5-10

Observe that, in the absence of the growth/decay factdf nswere sufficient to project out the secondary wave func-
an presenc_e of the accept/regect step, we would be sampln%’ To ascertain the efficiency of our method, we performed
- for the primary walk, andjg for the secondary walk by - . . ! :

N . . 2 two additional calculations for B in the first, we omitted the

reweighting the averages with t.h € ratio of wave funCtlon%/varp transformation, whereas in the second we employed
[Eq. (6)]. By multiplying the weights of the primary and

; reoptimized, rather than recentered, secondary wave func-
secondary walkers by the corresponding growth/decay faGjong |n Fig. 1, we present the VMC root-mean-square fluc-

torlsl; vl\:/)e reCO\éer ok filxed—node_ solultio? fOL the prirT(;arytuations ovmc) of the relative energy of primary and sec-
walk, but we do so only approximately for the secondary,,qan, geometries divided by the atomic displacement,

walk. since the Moves were not proposgd with the right dy'AE/A R, for B,. Introducing the warp transformation yields
namics. To partially correct for this, we introduce a second-a reduction of about a factor of 3.5—5 ifyc, which cor-

ary time step as discussed below. responds to a factor of 12—-25 saving in computer time.

We summarize our algorithm as follow&) We ge.nerate Moreover,ayyc is only slightly dependent on the secondary
secondary walks from the reference walk according to th%eometry used. As expected, a further reductionjgyc is
. , c

space-warp transformatio() Inthe averages, we retain the_ obtained when the space-warp transformation is used in
X tombination with reoptimized, rather than recentered, sec-
VMC [Egs. (5 and(_6)]_. (3) The secondary weights are the ondary geometry wave functions. The space-warp transfor-
primary ,ones multiplied by the product of the factors mation was found to be of even greater help for heavier
exgS§(R*,R%7) —S(R',R,7)] for the last Ny genera-  molecules, e.g., for fthe reduction in the fluctuations was at
tions. (N is chosen large enough to project out the secqeast a factor of 3.5—10. In fact, in the absence of space-warp
ondary ground state, but small enough to avoid a considefransformation for F, it is even difficult to reliably estimate
able increase in the fluctuationsn the exponential factors, he statistical error of secondary geometries that differ con-
we introducedrg because the secondary moves are Effecsiderably from the primary one.
tively proposed with a different time steps, in the drift- To test the accuracy of our DMC correlated sampling al-
diffusion term of Eq(8) A sensible definition OfTS is Ts gorithm' we performed DMC runs for é—'and & for three
=7(ARZ)/(AR?), whereAR is the displacement resulting different primary geometrie€a) the equilibrium geometry,
from diffusion, andAR; is the displacement needed to take (b) a geometry stretched by 0.2, afc by —0.2 a.u. The
the secondary walker from its drifted position to the positionruns (a), (b), and(c) should give identical potential energy
specified by the space-warp transformatiegis computed  curves if the algorithm were exact. In Fig. 2, we show results
over the first equilibration blocks of the DMC run. for B, that reveal the high accuracy of our DMC algorithm:

In the limit of vanishing displacement, the difference of the three DMC curves are very close and clearly distinguish-
primary and secondary energies and its statistical error varable from the VMC results. These results are confirmed by
ish linearly, so the force and its error are well behaved.  the calculations for K where, despite the use of an inten-

Secondary geometry wave functiolfée considered three tionally poor wave function, the three curves gave the equi-
choices for secondary geometry wave functions: librium bond lengths(a) 1.40142), (b) 1.40142), and (c)

(1) The secondary wave functions have the same paramt.40152) a.u. The true equilibrium bond length, from a care-
eters{p} as the primary one but the coordinates are relativey| fit to the results of Ref. 12, is 1.4011 a.u.

to the new nuclear positionsy(R;,RS)=#(R;,RS,py To test the improvement resulting from employing
with ps=p, possibly with the minimal changes required to # 7, we performed, for K, DMC correlated sampling with
impose the cusp conditions. 7= 7. Since rg>7 for AR>0 and 7<7 for AR<O, we

(2) The secondary geometry wave functions at warpedxpect this potential energy curve to yield an equilibrium
electron positions are related to the primary ones at the origibond length that is too short. The equilibrium bond length is
nal positions,y(R,R3) = #(R; ,R,,p)/VI(R;). This wave indeed 1.400@) a.u., which is 4 standard deviations from
function depends on the transformati6nwas used in Ref. the true bond length, whereas that obtained with a# 7
9(b) with a different transformationand has the advantage algorithm, 1.401) a.u., is 1.5 standard deviation from the
that the weightsW, in [Eq. (2)] are unity. Surprisingly, it true bond-length.
gives larger fluctuations of the energy differences than Having ascertained the accuracy and efficiency of our al-
choice(1). gorithm, we computed the bond lengths of all first-row
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0.011 v y y T T TABLE |. Experimental bond length&Refs. 29 and 34 of Ref.
0010 | Bz QMC Energies 3) of first-row dimers and theoretical errors in RiiRef. 13, LDA
0.000 | ﬁ Y)li‘kg (Ref. 19, GGA (Ref. 15, VMC and DMC (in a.u).

. :ZZ: | Molecule Expt. RHF LDA GGA VMC DMC

;5/ 0.006 Li, 5.051 0.270 0.069 0.057 0.1@ 0.0183)

g 0005 | Be, 4.630 ~0.109 —0.001 —0.069(3) —0.014(5)
5 o004 B, 3.005 0.086 0.025 0.042 0.0B8 0.0022

:ﬁ 0.003 | C, 2.348 —0.007 0.006 0.023 0.008 0.0081)
0.002 | N, 2.074 —0.061 —0.006 0.011 0.012) 0.00711)
0.001 + O, 2.282 —0.107 —0.012 0.044 0.0282) 0.0234)
0000 | ] F, 2.668 —0.161 —0.053 0.040 0.02%) 0.0155)

o001 r . . . . rms &3 0.054 0.036 0.049 0.014
275 280 285 280 295 300 305 310 315 320 325
R (a.u.)

FIG. 2. Potential energy curve for,Bn VMC and DMC. The either smaller than or comparable to those from VMC, and
three DMC curves are obtained with three different primary geom-2r€ smaller than LDA and GGA errors by a factor of 3.9 and

etries (equilibrium, stretched by 0.2 and 0.2 a.u) and using re-  2-6, res_pectively. o
centered wave functions. All curves are shifted with the energy at In this paper, we presented an efficient method to com-

the equilibrium distancéarrow) defined as the zero. Atomic units Pute numerical forces in DMC, a long-standing unsolved
are used. problem in QMC techniques. The method is very accurate

and was tested on first-row dimers, where the DMC bond

: . : lengths were found to agree with experiment better than
dimers with VMC and DMC correlated sampling. In Table I’éhose from HF, LDA, GGA, and VMC.

we list the errors in the bond lengths obtained from restricte

Hartree-Fock(RHP),*® LDA,** GGA® VMC, and DMC. This work was begun during a visit to the Institute for
The RHF results show the worst agreement with experimenfluclear Theory in Seattle and was funded by Sandia Na-
with Be, not being bound. The DMC errors are, in all cases,tional Laboratory.
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