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Ground-state properties of the Hubbard model by Lanczos diagonalizations
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We investigate the Hubbard model on a two-dimensional cluster of 18 sites using Lanczos algorithm for
different strengths of Coulomb repulsion in the low doping region. Energies and correlation functions are given
for half-filling and two holes. In the strong coupling regime we compare our results witty Jh@odel. We
confirm the tendency of holes to repel, although a significant value ad,thg..-wave superconductive order
parameter is measured. These data represent a benchmark for future quantum simulations.

The discovery of high-temperature superconductors hasx4 lattice®>=> By contrast, due to the smaller Hilbert space,
certainly stimulated considerable progress in the numericadeveral data on theJ model are available in the literature
methods for strongly correlated electron systems. An outfor bigger lattice$™®
standing, yet unsolved, problem is if, despite the complexity ~Unfortunately, in the & 4 cluster at low doping, the non-
of the real materials, it is possible to capture the basic lownteracting(i.e., U=0) model is affected by a huge degen-
energy physics by simple models of interacting electronseracy, only barely lifted by the interaction. In such a circum-
Indeed, after more than a decade of investigations, it iS NOtance, size effects are expected to be severe and calculations

clear what is th? minimal model capable to degcribg thei, small lattices cannot be considered representative of the
complex properties, and several proposals are still being d‘?hermodynamic limit. Instead, it is known that finite size

gattvsg-. d-li—rzirfls?:ﬁllglsltar:t]ﬁ: 2eilsd§]zcutﬂgg;?éer?gggﬁ electrons "Bfects for nondegenerate closed shell fillings are very well
' behaved. For instance, in one dimensidn,is possible to
obtain accurate critical indices with a finite size scaling using
H=—t E CiTaCj U+UE N (1) o_nIy clpsed shell filling on .smaII clustgrs. In the two-
i\ye 0 T dimensional case, though it is not possible to perform an
analogous finite size scaling by the Lanczos method, it is
where( ) stands for nearest neighbors,, (cf’a) destroys natural to expect reasonably well behaved finite size effects
(createy an electron with spino at site i, and n;,  close to a nondegenerate filling. Therefore, it would be ex-
=ciTyociyg. tremely useful to have precise Lanczos data for several
The most interesting region is near half-filling at interme- physical quantities in a square cluster with the low doping
diate and large coupling, where correlations play a relevantegion close to a nondegenerate filling. The most satisfactory
role in renormalizing bare particle properties. In the stronggeometry is probably the 45° tilted squares with- |2
coupling limit, i.e.,U>t, projecting out the subspace with x|./2 sites which possess the full spatial symmetries of the
double occupancies, the Hubbard model can be mapped oniitfinite lattice and, at the same time, have a nondegenerate
the so-called-J modef ground state aty=0 and half-filling for| odd. The 3/2
X 342 sites, in this respect, is the nontrivial lattice, satisfy-
1 — ing the above requirements, where exact diagonalization can
Hiy=32 (S-Sj—znin,-) ~t > ¢ ,C, (2 still be afforded.
Ry hne In this paper, we report extensive results for the Hubbard
~4 + B _ ~ Hamiltonian(1) using the Lanczos technique on the=18
wherec; ,= ¢ ,(1—n; 5), N =2,N; , is the electron density  sjte cluster. In the strong coupling limit, our data are com-
on sitei, SZEUYU/C:YUTUVWCLW is the spin operator, being pared with diagonalizations of thieJ model (2). Periodic
7,.,» Pauli matrices. The antiferromagnetic coupling is re-boundary conditions are imposed in both systems. The model
lated to HubbardJ by J=4t?/U. In the following we set is studied in separate subspaces labeled by quantum numbers
t=1. identifying the spatial symmetry: momentuknand, when
No reliable analytical treatment of the Hubbard model atdefined, angular momentuns,(p, or d). We concentrate on
intermediate or strong coupling is available yet, while quanthe two cases of half-filingl = 18 electronsand two holes
tum Monte-Carlo simulations suffer from the Fermi sign (N=16) for several strengths of the local Coulomb repulsion
problem and cannot reach the accuracy usually achieved id. The z component of the total spin is set equal to zero,
bosonic systems. On the other hand, Lanczos diagonalizéahereby imposing no restriction on the total spin subspace. At
tions are hindered by the exponential growth of the Hilberthalf-filling, the Hilbert space dimensidny is 16 421 304 in
space dimensions and a systematic study of the two dimerthe one-dimensional representation of the full spatial symme-
sional Hubbard model has been performed only for the 4ry group of the 18 site cluster. The largest calculation we
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TABLE I. Ground state energies foi= 18 (first column and TABLE IIl. Ground state values for the density-density correla-
N=16 (second columnas a function olJ for the Hubbard model. tion function(Ng) for N=16 electrons in the Hubbard model.
At half-filling, the wave function hak=(0,0) ands-wave symme-
try, for N=16 it hask=(0,0) andd,2_,2 symmetry. The energy of U R=1 R=2 R=2 R=.5 R=3
thet-J model forN=16 is reported in the third column, the wave

function hask=(0,0) andd,2_,2 symmetry, the value afis related 0 0705248 0.777776 0.791666 0.765432 0.783950
Hubbard model are reported in the last column. 6 0.750564 0.784146 0.783728 0.782556 0.784968
8 0.760044 0.784976 0.784060 0.783958 0.784946
U En-18 En-16 EN-16 (D) 10 0.766380 0.785298 0.784318 0.784550 0.784996
12 0.770518 0.785342 0.784494 0.784814 0.785080
0 —32.00000 —30.00000 0.194444
4 1795239  —19.28248 0.106440 16 0.775182 0.785170 0.784714 0.785032 0.785282
6 — 12.68227 B 16.09451 0.072198 20 0.777530 0.784958 0.784858 0.785136 0.785484
8 0869535 - 13.96011 0048118 40 0.780776 0.784370 0.785204 0.785338 0.786096
10 —8.072161 —12.52076 —11.86277 0.033076
12 -6.827395 -11.50999 —10.86623  0.023796 ground state energies of two holes in the Hubbard &dd
16 —5212890 —10.20242  —9.641987  0.013830  mqdel, respectively. Although they get closer for increasing
20 —4211077  —9.400274  —8.921199  0.008966 atU=40 there is still a sizable difference, to be ascribed
40 —2.137196  —7.780419 —7.521899 0.002240

to the presence of three-site terms in the strong coupling
limit of the Hubbard Hamiltoniaf.In the last column of

Table | we report the value of the double occupancies for
present here ha3; =42 982 720 and occurs for two holes at \— 16-

finite momentum. Use has been made of the factorization
property of the kinetic matrix elements on the two spin pro-
jections in order to speed up the calculation.

According to a theorem by Lield, the ground state at \here
half-filling | ¥ gp,) is unique and haS=0 for everyU>0. In
a closed shell case, this theorem implies that the ground state 1
is characterized by the same quantum numbers obtk€® D= T E Ni N |- (4)
limit, i.e., swave symmetry and vanishing momentum for all :
U’s. In Table | we report the values of the energy in this
sector as a function df. We remark that in a previous work
on the same latticE, only the energies at half-filling were
presented. Moreover, we found that for large valuedJof
these results are slightly overestimated, probably due to
lack of accuracy in the convergence criterion of the Lanczo
algorithm.

For two holes, al=0 andS*=0, the ground statgV )
is 16 times degenerate: 10 singlets and 6 triplets. First order
perturbation theory irJ partially lifts this degeneracy leav-
ing as ground states a singlet wkhk (0,0) andd,2_y2 sym-
metry, a pair of triplets witkk=(0,0) andp-wave symmetry,
and four triplets withk=(*27/3,+=27/3), odd in thex—y U
interchange. We checked that alreadylat 1 the d-wave
singlet is the unique ground state. Therefore, we believe that0 0.069173 0.090278 0.093750 0.085820 0.091449
the lowest energy state remains in this symmetry subspace4 0.031289 0.044764 0.044117 0.042808 0.044834
even at larget).** In Table Il we show the energies of the 6 0.021030 0.030680 0.029681 0.029331 0.030262
three previously mentioned stateslats 1 andU=4. 8 0.014901 0.021978 0.020921 0.020949 0.021368

In the second and third columns of Table I, we report the10 0.011435 0.016978 0.016029 0.016202 0.016433

12 0.009404 0.014027 0.013260 0.013489 0.013675

TABLE II. Energies for two holes in the symmetry subspaces 16 0.007271 0.010919 0.010545 0.010798 0.011040
mentioned in the text ay=1 andU=4. The quantum numbers 20 0.006219 0.009387 0.009351 0.009590 0.009941
identify the momentum of the state. The label stands for sin@et 40 0.004646 0.007115 0.007965 0.008096 0.008854

or triplet (T). HCB 0.004178 0.006368 0.007521 0.007639 0.008287

27 2w J
( )T 0.4 0.006076 0.008704 0.005066 0.006776 0.004625
0.25 0.005015 0.007534 0.006308 0.007297 0.006495
1 —26.71409 —26.69543 —26.69349 0.2 0.004703 0.007146 0.006711 0.007428 0.007160
4 —19.28248 —19.09544 —19.08215 0.1 0.004185 0.006466 0.007411 0.007627 0.008357

(D)=(W,|D|¥ ), )

Some interesting physics associated to the Hubbard model
can be extracted from the static correlation functions. The
charge fluctuations are related to the density-density correla-
gons and may provide a clue about the possible occurrence
§’f phase separation or charge orderistripe phasesin the
model. We computed the density-density correlation func-
tions

TABLE IV. Ground state values for the hole-hole correlation
function (Hg) for N=16 electrons for the Hubbard and tieJ
model. The results for two hard core bos@h<B) are also shown.

R=1 R=.2 R=2 R=.5 R=3

U (0,0)s (0,0)¢
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TABLE V. Ground state values for the spin-spin correlation funct8g) for N=16 electrons for the
Hubbard and thé-J model.

u R=1 R=.2 R=2 R=\5 R=3
0 —0.075231 0.000000 —0.010417 —0.009258 0.004630
4 —0.126253 0.020716 —0.013366 —0.013378 0.022120
6 —0.151878 0.032860 —0.010998 —0.016710 0.028539
8 —0.170436 0.041484 —0.008676 —0.019063 0.032266
10 —0.181257 0.045817 —0.008014 —0.019633 0.035292
12 —0.186952 0.047362 —0.008722 —0.019021 0.038352
16 —0.190945 0.046825 —0.011872 —0.016560 0.044284
20 —0.190963 0.044725 —0.015409 —0.013983 0.049314
40 —0.181974 0.034168 —0.027390 —0.006100 0.061881
J
0.4 —0.222067 0.072946 0.026787 —0.044076 —0.001026
0.25 —0.207861 0.058035 0.003334 —0.027552 0.029508
0.2 —0.201502 0.051814 —0.005781 —0.021352 0.040615
0.1 —0.182838 0.035070 —0.026016 —0.008154 0.061084
(NR)=(Wn|Ng|¥2p), 5 SrR=S5-S;. (10)
and the hole-hole correlations In Table V we show the values of E() for the Hubbard
and thet-J model at different couplings and two holes. It is
(Hr)=(Wan|Hr| W 2n), (6)  possible to appreciate the strong similarity between the two

cases which becomes quantitative foE16: spin correla-
tions do not distinguish between the two models.

@ One of the most interesting open questions in the physics
of strongly correlated electron systems is to understand if it
is possible to have a superconducting ground state in models

Her=hih;, ®  with only repulsive forces. Clearly, we cannot address such a
with |i—j|=R and hi=(1-n;)(1-n; ) is the hole den- Qe_licat_e i_ssue by diagonalization on a small lattice. Howeyer,
sity operator. it is still interesting to see the trend of the superconductive

We report in Table 11l the values of E@5) for the Hub- order parameter as the coupling increases. Usually, the quan-
bard model at different values df and in Table IV the tity which is measured in numerical calculations is the square

values of Eq.(6) for the Hubbard and-J model. In both of the order parameter,

cases, the hole correlations are small but the overall behavior ~ ~ =t

of the two models is rather different and gets similar only in Pa=(Wan|AgAg|Van), (11

the strong coupling regime. In the Hubbard model, the hole-
. . - .~ “where

hole correlations are always repulsive for all the interactions

U and not very much structured. As the Coulomb potential is

@ncreased, holes rep_el each other more and more anCBEq. M:i 2 b SIS (12)

is strongly renormalized with respect to the noninteracting \/I o L

case. In agreement with previous calculatibnge confirm

that no sign of charge ordering is present also in the 18 site TABLE VI. Ground state values fad,2_ 2 superconducting or-

cluster and the behavior of hole correlations is qualitativelyder paramete(13) for the Hubbard and the-J model. The values

similar to the hard core boson result, also shown in Table IVof Eg. (11) are also reported.

Conversely, thet-J model shows some sign of attraction

between holes which might indeed lead to some sort of U Z4 zy Py Py

charge ordering in larger systems. Only at sndalhole re-

being

NR:ninj s

pulsion prevails and the charge correlations become quite 0 0.2117 0.1671
close to the hard core boson result. It would be interesting to 4 0.1945 0.1077
analyze the issue of charge ordering in thd model on 6 0.2112 0.0878
larger sizes, necessarily by use of other numerical methods. 8 0.2096 0.0737
Another important quantity is the spin-spin correlation 10 0.2004 0.2569 0.0639 0.0771
function 12 0.1915 0.2317 0.0570 0.0649
16 0.1763 0.1982 0.0478 0.0505
(Se)= (W 51| Sel War), 9) 20 0.1642 0.1768 0.0419 0.0424
40 0.1303 0.1300 0.0291 0.0276

being
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with ¢ j=+1 if j=ixx, ¢;j=—1if j=ixy, and ¢, ; with U (for U>8) suggesting that a strong Coulomb repul-
=0 elsewhere. We believe that a more appropriate choice ision does not favor nearest neighbor pairing, probably due to
to concentrate on the corresponding weightvhich is less the drastic reduction of nearest neighbor hole correlations
affected by high energy processes. In the 18 site cluster wisee Table IV asU increases.

calculate the quantity: In conclusion, we performed Lanczos diagonalizations of
the Hubbard model on the 18 site cluster at low doping. The
zd:<\p0h|zg|\p2h>_ (13 results strongly support the picture that no charge ordering is

present in this region of the phase diagram. A remarkable
Z4 is just the overlap betwedW ) andAl|¥,,). Indeed, difference between the Hubbard and models emerges in
due to the different quantum numbers [dfy,) and |V ,;,), hole correlations which appear to be much more structured in
an operatoi® | exists withd,2_,2 symmetry that makes the thet-J case. Some signal of superconductivity can be found
overlap betweer| W) and ®|¥,,) sizable. The occur- in both the Hubbard and-J models, which in fact show

rence of superconductivity is related to the fact that such aﬁ_u':e S|mt|rl]ar bhehflVIOI’. These r$SUItSf’ t?]es;_(;lesbgl\gng udselfult
operator is in factocal: acting only at short range. In our INts on the short range properties of the Hubbard model &

L~ . ) intermediate and strong coupling, do provide a valuable
case we limitA, to nearest neighbor sites. In Table VI we

report the values of Eq¢11) and (13) in the Hubbard and ﬁ}([ehnr::]gmark for testing future numerical simulation algo
t-J model for different values of) andJ. Again, the agree-

ment between the two models is remarkable, suggesting that, We are greatly indebted to S. Cozzini for technical help
for this range of couplings, the pairing properties in the twoon SGI-Origin 2000. One of u$A.P.) acknowledges the
systems are indeed quite similar. Howevé&y, decreases warm hospitality at SISSA.
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