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Ground-state properties of the Hubbard model by Lanczos diagonalizations
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We investigate the Hubbard model on a two-dimensional cluster of 18 sites using Lanczos algorithm for
different strengths of Coulomb repulsion in the low doping region. Energies and correlation functions are given
for half-filling and two holes. In the strong coupling regime we compare our results with thet-J model. We
confirm the tendency of holes to repel, although a significant value of thedx22y2-wave superconductive order
parameter is measured. These data represent a benchmark for future quantum simulations.
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The discovery of high-temperature superconductors
certainly stimulated considerable progress in the numer
methods for strongly correlated electron systems. An o
standing, yet unsolved, problem is if, despite the complex
of the real materials, it is possible to capture the basic
energy physics by simple models of interacting electro
Indeed, after more than a decade of investigations, it is
clear what is the minimal model capable to describe th
complex properties, and several proposals are still being
bated. The simplest model describing interacting electron
a two-dimensional lattice is the Hubbard model:1

H52t (
^ i , j &,s

ci ,s
† cj ,s1U(

i
ni ,↑ni ,↓ , ~1!

where ^ & stands for nearest neighbors,ci ,s (ci ,s
† ) destroys

~creates! an electron with spins at site i, and ni ,s

5ci ,s
† ci ,s .
The most interesting region is near half-filling at interm

diate and large coupling, where correlations play a relev
role in renormalizing bare particle properties. In the stro
coupling limit, i.e.,U@t, projecting out the subspace wit
double occupancies, the Hubbard model can be mapped
the so-calledt-J model2

HtJ5J(
^ i , j &

S Si•Sj2
1

4
ninj D2t (

^ i , j &,s
c̃i ,s

† c̃ j ,s , ~2!

wherec̃i ,s
† 5ci ,s

† (12ni ,s̄), ni5(sni ,s is the electron density

on site i, Si5(s,s8c̃i ,s
† ts,s8c̃i ,s8 is the spin operator, being

ts,s8 Pauli matrices. The antiferromagnetic coupling is
lated to HubbardU by J54t2/U. In the following we set
t51.

No reliable analytical treatment of the Hubbard model
intermediate or strong coupling is available yet, while qua
tum Monte-Carlo simulations suffer from the Fermi sig
problem and cannot reach the accuracy usually achieve
bosonic systems. On the other hand, Lanczos diagona
tions are hindered by the exponential growth of the Hilb
space dimensions and a systematic study of the two dim
sional Hubbard model has been performed only for the
PRB 610163-1829/2000/61~24!/16287~4!/$15.00
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34 lattice.3–5 By contrast, due to the smaller Hilbert spac
several data on thet-J model are available in the literatur
for bigger lattices.6–8

Unfortunately, in the 434 cluster at low doping, the non
interacting~i.e., U50) model is affected by a huge dege
eracy, only barely lifted by the interaction. In such a circu
stance, size effects are expected to be severe and calcula
on small lattices cannot be considered representative of
thermodynamic limit. Instead, it is known that finite siz
effects for nondegenerate closed shell fillings are very w
behaved. For instance, in one dimension,9 it is possible to
obtain accurate critical indices with a finite size scaling us
only closed shell filling on small clusters. In the two
dimensional case, though it is not possible to perform
analogous finite size scaling by the Lanczos method, i
natural to expect reasonably well behaved finite size effe
close to a nondegenerate filling. Therefore, it would be
tremely useful to have precise Lanczos data for sev
physical quantities in a square cluster with the low dop
region close to a nondegenerate filling. The most satisfac
geometry is probably the 45° tilted squares withL5 lA2
3 lA2 sites which possess the full spatial symmetries of
infinite lattice and, at the same time, have a nondegene
ground state atU50 and half-filling for l odd. The 3A2
33A2 sites, in this respect, is the nontrivial lattice, satis
ing the above requirements, where exact diagonalization
still be afforded.

In this paper, we report extensive results for the Hubb
Hamiltonian ~1! using the Lanczos technique on theL518
site cluster. In the strong coupling limit, our data are co
pared with diagonalizations of thet-J model ~2!. Periodic
boundary conditions are imposed in both systems. The mo
is studied in separate subspaces labeled by quantum num
identifying the spatial symmetry: momentumk and, when
defined, angular momentum (s, p, or d). We concentrate on
the two cases of half-filling (N518 electrons! and two holes
(N516) for several strengths of the local Coulomb repuls
U. The z component of the total spin is set equal to ze
thereby imposing no restriction on the total spin subspace
half-filling, the Hilbert space dimensionDH is 16 421 304 in
the one-dimensional representation of the full spatial symm
try group of the 18 site cluster. The largest calculation
R16 287 ©2000 The American Physical Society
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present here hasDH542 982 720 and occurs for two holes
finite momentum. Use has been made of the factoriza
property of the kinetic matrix elements on the two spin p
jections in order to speed up the calculation.

According to a theorem by Lieb,10 the ground state a
half-filling uC0h& is unique and hasS50 for everyU.0. In
a closed shell case, this theorem implies that the ground s
is characterized by the same quantum numbers of theU50
limit, i.e., s-wave symmetry and vanishing momentum for
U ’s. In Table I we report the values of the energy in th
sector as a function ofU. We remark that in a previous wor
on the same lattice,11 only the energies at half-filling were
presented. Moreover, we found that for large values oU
these results are slightly overestimated, probably due
lack of accuracy in the convergence criterion of the Lanc
algorithm.

For two holes, atU50 andSz50, the ground stateuC2h&
is 16 times degenerate: 10 singlets and 6 triplets. First o
perturbation theory inU partially lifts this degeneracy leav
ing as ground states a singlet withk5(0,0) anddx22y2 sym-
metry, a pair of triplets withk5(0,0) andp-wave symmetry,
and four triplets withk5(62p/3,62p/3), odd in thex↔y
interchange. We checked that already atU51 the d-wave
singlet is the unique ground state. Therefore, we believe
the lowest energy state remains in this symmetry subsp
even at largerU.12 In Table II we show the energies of th
three previously mentioned states atU51 andU54.

In the second and third columns of Table I, we report

TABLE I. Ground state energies forN518 ~first column! and
N516 ~second column! as a function ofU for the Hubbard model.
At half-filling, the wave function hask5(0,0) ands-wave symme-
try, for N516 it hask5(0,0) anddx22y2 symmetry. The energy o
the t-J model forN516 is reported in the third column, the wav
function hask5(0,0) anddx22y2 symmetry, the value ofJ is related
to U by J54t2/U. The double occupancies^D& for N516 in the
Hubbard model are reported in the last column.

U EN518 EN516 EN516
tJ ^D&

0 232.00000 230.00000 0.194444
4 217.25239 219.28248 0.106440
6 212.68227 216.09451 0.072198
8 29.869535 213.96011 0.048118

10 28.072161 212.52076 211.86277 0.033076
12 26.827395 211.50999 210.86623 0.023796
16 25.212890 210.20242 29.641987 0.013830
20 24.211077 29.400274 28.921199 0.008966
40 22.137196 27.780419 27.521899 0.002240

TABLE II. Energies for two holes in the symmetry subspac
mentioned in the text atU51 andU54. The quantum number
identify the momentum of the state. The label stands for singlet~S!
or triplet ~T!.

U (0,0)S (0,0)T
S62p

3
,6

2p

3 D
T

1 226.71409 226.69543 226.69349
4 219.28248 219.09544 219.08215
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ground state energies of two holes in the Hubbard andt-J
model, respectively. Although they get closer for increas
U, at U540 there is still a sizable difference, to be ascrib
to the presence of three-site terms in the strong coup
limit of the Hubbard Hamiltonian.2 In the last column of
Table I we report the value of the double occupancies
N516:

^D&5^C2huDuC2h&, ~3!

where

D5
1

L (
i

ni ,↑ni ,↓ . ~4!

Some interesting physics associated to the Hubbard m
can be extracted from the static correlation functions. T
charge fluctuations are related to the density-density corr
tions and may provide a clue about the possible occurre
of phase separation or charge ordering~stripe phases! in the
model. We computed the density-density correlation fu
tions

TABLE III. Ground state values for the density-density corre
tion function^NR& for N516 electrons in the Hubbard model.

U R51 R5A2 R52 R5A5 R53

0 0.705248 0.777776 0.791666 0.765432 0.7839
4 0.737746 0.782798 0.783718 0.779566 0.7851
6 0.750564 0.784146 0.783728 0.782556 0.7849
8 0.760044 0.784976 0.784060 0.783958 0.7849

10 0.766380 0.785298 0.784318 0.784550 0.7849
12 0.770518 0.785342 0.784494 0.784814 0.7850
16 0.775182 0.785170 0.784714 0.785032 0.7852
20 0.777530 0.784958 0.784858 0.785136 0.7854
40 0.780776 0.784370 0.785204 0.785338 0.7860

TABLE IV. Ground state values for the hole-hole correlatio
function ^HR& for N516 electrons for the Hubbard and thet-J
model. The results for two hard core bosons~HCB! are also shown.

U R51 R5A2 R52 R5A5 R53

0 0.069173 0.090278 0.093750 0.085820 0.0914
4 0.031289 0.044764 0.044117 0.042808 0.0448
6 0.021030 0.030680 0.029681 0.029331 0.0302
8 0.014901 0.021978 0.020921 0.020949 0.0213

10 0.011435 0.016978 0.016029 0.016202 0.0164
12 0.009404 0.014027 0.013260 0.013489 0.0136
16 0.007271 0.010919 0.010545 0.010798 0.0110
20 0.006219 0.009387 0.009351 0.009590 0.0099
40 0.004646 0.007115 0.007965 0.008096 0.0088
HCB 0.004178 0.006368 0.007521 0.007639 0.0082

J
0.4 0.006076 0.008704 0.005066 0.006776 0.0046
0.25 0.005015 0.007534 0.006308 0.007297 0.0064
0.2 0.004703 0.007146 0.006711 0.007428 0.0071
0.1 0.004185 0.006466 0.007411 0.007627 0.0083
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TABLE V. Ground state values for the spin-spin correlation function^SR& for N516 electrons for the
Hubbard and thet-J model.

U R51 R5A2 R52 R5A5 R53

0 20.075231 0.000000 20.010417 20.009258 0.004630
4 20.126253 0.020716 20.013366 20.013378 0.022120
6 20.151878 0.032860 20.010998 20.016710 0.028539
8 20.170436 0.041484 20.008676 20.019063 0.032266

10 20.181257 0.045817 20.008014 20.019633 0.035292
12 20.186952 0.047362 20.008722 20.019021 0.038352
16 20.190945 0.046825 20.011872 20.016560 0.044284
20 20.190963 0.044725 20.015409 20.013983 0.049314
40 20.181974 0.034168 20.027390 20.006100 0.061881

J
0.4 20.222067 0.072946 0.026787 20.044076 20.001026
0.25 20.207861 0.058035 0.003334 20.027552 0.029508
0.2 20.201502 0.051814 20.005781 20.021352 0.040615
0.1 20.182838 0.035070 20.026016 20.008154 0.061084
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^NR&5^C2huNRuC2h&, ~5!

and the hole-hole correlations

^HR&5^C2huHRuC2h&, ~6!

being

NR5ninj , ~7!

HR5hihj , ~8!

with u i 2 j u5R and hi5(12ni ,↑)(12ni ,↓) is the hole den-
sity operator.

We report in Table III the values of Eq.~5! for the Hub-
bard model at different values ofU and in Table IV the
values of Eq.~6! for the Hubbard andt-J model. In both
cases, the hole correlations are small but the overall beha
of the two models is rather different and gets similar only
the strong coupling regime. In the Hubbard model, the ho
hole correlations are always repulsive for all the interactio
U and not very much structured. As the Coulomb potentia
increased, holes repel each other more and more and Eq~6!
is strongly renormalized with respect to the noninteract
case. In agreement with previous calculations,4 we confirm
that no sign of charge ordering is present also in the 18
cluster and the behavior of hole correlations is qualitativ
similar to the hard core boson result, also shown in Table
Conversely, thet-J model shows some sign of attractio
between holes which might indeed lead to some sort
charge ordering in larger systems. Only at smallJ, hole re-
pulsion prevails and the charge correlations become q
close to the hard core boson result. It would be interestin
analyze the issue of charge ordering in thet-J model on
larger sizes, necessarily by use of other numerical meth

Another important quantity is the spin-spin correlati
function

^SR&5^C2huSRuC2h&, ~9!
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SR5Si•Sj . ~10!

In Table V we show the values of Eq.~9! for the Hubbard
and thet-J model at different couplings and two holes. It
possible to appreciate the strong similarity between the
cases which becomes quantitative forU>16: spin correla-
tions do not distinguish between the two models.

One of the most interesting open questions in the phy
of strongly correlated electron systems is to understand
is possible to have a superconducting ground state in mo
with only repulsive forces. Clearly, we cannot address suc
delicate issue by diagonalization on a small lattice. Howev
it is still interesting to see the trend of the superconduct
order parameter as the coupling increases. Usually, the q
tity which is measured in numerical calculations is the squ
of the order parameter,

P̃d5^C2huD̃dD̃d
†uC2h&, ~11!

where

D̃d
†5

1

A4L
(
i , j

f i , j c̃i ,↑
† c̃ j ,↓

† , ~12!

TABLE VI. Ground state values fordx22y2 superconducting or-
der parameter~13! for the Hubbard and thet-J model. The values
of Eq. ~11! are also reported.

U Z̃d Z̃d
tJ P̃d P̃d

tJ

0 0.2117 0.1671
4 0.1945 0.1077
6 0.2112 0.0878
8 0.2096 0.0737

10 0.2004 0.2569 0.0639 0.0771
12 0.1915 0.2317 0.0570 0.0649
16 0.1763 0.1982 0.0478 0.0505
20 0.1642 0.1768 0.0419 0.0424
40 0.1303 0.1300 0.0291 0.0276
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with f i , j511 if j 5 i 6x, f i , j521 if j 5 i 6y, and f i , j
50 elsewhere. We believe that a more appropriate choic
to concentrate on the corresponding weightZ which is less
affected by high energy processes. In the 18 site cluster
calculate the quantity:

Z̃d5^C0huD̃d
†uC2h&. ~13!

Z̃d is just the overlap betweenuC0h& and D̃d
†uC2h&. Indeed,

due to the different quantum numbers ofuC0h& and uC2h&,
an operatorQd

† exists withdx22y2 symmetry that makes th
overlap betweenuC0h& and Qd

†uC2h& sizable. The occur-
rence of superconductivity is related to the fact that such
operator is in factlocal: acting only at short range. In ou
case we limitD̃d to nearest neighbor sites. In Table VI w
report the values of Eqs.~11! and ~13! in the Hubbard and
t-J model for different values ofU andJ. Again, the agree-
ment between the two models is remarkable, suggesting
for this range of couplings, the pairing properties in the t
systems are indeed quite similar. However,Z̃d decreases
ng
su

d

is

e

n

at,

with U ~for U.8) suggesting that a strong Coulomb repu
sion does not favor nearest neighbor pairing, probably du
the drastic reduction of nearest neighbor hole correlati
~see Table IV! asU increases.

In conclusion, we performed Lanczos diagonalizations
the Hubbard model on the 18 site cluster at low doping. T
results strongly support the picture that no charge orderin
present in this region of the phase diagram. A remarka
difference between the Hubbard andt-J models emerges in
hole correlations which appear to be much more structure
the t-J case. Some signal of superconductivity can be fou
in both the Hubbard andt-J models, which in fact show
quite similar behavior. These results, besides giving us
hints on the short range properties of the Hubbard mode
intermediate and strong coupling, do provide a valua
benchmark for testing future numerical simulation alg
rithms.

We are greatly indebted to S. Cozzini for technical he
on SGI-Origin 2000. One of us~A.P.! acknowledges the
warm hospitality at SISSA.
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