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Phase-locking of vortex lattices interacting with periodic pinning
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We examine Shapiro steps for vortex lattices interacting with periodic pinning arrays driven by ac and dc
currents. The vortex flow occurs by the motion of the interstitial vortices through the periodic potential
generated by the vortices that remain pinned at the pinning sites. Shapiro steps are observed By fields
<B<2.28, with the most pronounced steps occurring for fields where the interstitial vortex lattice has a high
degree of symmetry. The widths of the phase-locked current steps as a function of the magnitude of the ac
driving are found to follow a Bessel function in agreement with theory.

Vortex lattices interacting with periodic pinning arrays ning sites. With a superimposed ac drive we observe Shapiro
show a wide range of interesting commensurability orsteps. We find that for certain commensurate fields, such as
matching effects when the number of vortices is a multipleB=2B,, the system can be modeled as an overdamped
or rational multiple of the number of pinning sites. Thesedriven pendulum with the associated phase-locking. We find
pinning arrays can be created with lithographic techniques imumerically that the widths of the steps depend on the mag-
which arrays of microholes or “antidot$”® and magnetic hitude of the ac driving as a Bessel function in agreement
dot array4 can act as pinning sites. For small pinning sitesWith theory. The Shapiro steps are most pronounced for
only one vortex is trapped on a site as observed in transpohigmy symmetric interstitial vortex lattice arrangements. For
measurements, Lorentz-microscopy experimerts, and ~ B>2B, the steps vanish out due to complicated vortex con-
simulations’ Additional vortices sit in the areas between the figurations leading to nontrivial flow patterns.
pins and under the influence of an applied driving force they We numerically integrate the overdamped equation of
can flow between the vortices that have remained trapped &totion for a vortex
the pinning site$:>® The flowing interstitial vortices experi-
ence a periodic potential caused by the repulsive interactions fi=fV P+ +fac=V;. (N
from the vortices at the pinning sites. The motion of the
driven interstitial vortices is then analogous to an over-Here the total force acting on vortexis f;. The vortex-
damped particle moving down a tilted washboard. With thevortex interaction potential is logarithmit), = —In(r), and
addition of an ac driving current, interference effects in thethe force on vortexi from all the other vortices id}"
form of Shapiro steps can be expected to occur when the E;\‘iiViUu(fij)-“ We impose periodic boundary condi-
frequency of the particles moving over the washboardions and evaluate the periodic long-range logarithmic inter-
matches with one of the harmonics of the driving action with an exact and fast converging stfiiThe pinning
gequencﬂt'_ Recently Shapiro stleps h,?r:’e been (cj)_bserved f?fs modeled as attractive parabolic wells  witf’P

riven vortices moving in samples with a periodic array of _ - @
pinning sites at twice the matching fiek=2B , (Ref. 10, f—(f,;_/rp)(z)p()l_ri;hr(kpl)ll)\)t.ri(f). ngrej )\_i& .|strt]he step
whereB, is the field for which there is one vortex per pin- 'UNC1OM. T 1S the location of pinning SIt&, T, 1S In€ maxi-
ning site. The height of these current stépenge of phase- Mum pinning force, and = (r;—r{”)/|r;—r{P|. The pin-
locking) strongly suggests that the vortex motion consists ohing is placed in a rectangular array,(L ) with the ratio of
the interstitial vortices moving in the periodic potential from the pinning radiusr, to pinning lattice constant, being
the pinned vortices. Shapiro steps have also been observég/L,=0.164, close to the ratio 0.2 used in the
by Martinoli etal® for vortices moving over a one- experiments’ The pinning is placed in aX4 array and the
dimensional periodic potential created from a periodic thick-initial vortex configurations are obtained by annealing from a
ness modulation. It has further been proposed that Shapifdigh-temperature state where the vortices are liquid and cool-
steps can be seen for vortices in driven flux transformers. ing to T=0. For certain parameters we have also considered

In this paper we investigate numerically and analyticallysimulations for pinning arrays up to X0 and found only
the Shapiro steps for driven vortices in thin-film supercon-minor differences. We only consider the case Bor B, so
ductors with periodic pinning arrays. The vortex lattice con-that the vortex motion will be strictly from the flow of inter-
sists of the pinned vortices at the pinning sites and the sulstitial vortices. The driving forcdy represents the Lorentz
lattice of vortices that sit in the interstitial region. As a force from an applied current. We gradually incremént
function of increasing drive we observe the interstitial vorti- from zero simulating each dc current value for 17 500 time
ces moving in one-dimensional channels between the pinsteps(the normalized time step idt=0.003072) to obtain
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where we have neglected the pinning interaction and motion
in the transverse direction. We will make the additional as-
sumptions that unpinned vortices form a perfect rectangular
lattice, meaning that they effectively do not interact due to
symmetry, and that the pinned vortices are effectively pinned
exactly to their pinning site; i.e., that the pinned vortices
have no dynamics and form a perfect rectangular lattice with
dimensiond., andL, .

Under these assumptions each moving vortex obeys the
following equation of motiort?

X
in 27—
d T D siny <7 LX)
. . , , a0 % L[ 1 X
0 0.42 0.84 126 cosh2m—| k+ =||—cog 27—
dc Driving Force f, Ly« 2 Ly
FIG. 1. Average vortex velocity, versus applied dc driving for =fg+fac. (©)

varying applied ac driving oflfrom top to bottom f,=0.814,  cqngidering only the leading term in the above sum, we can

0.5078, 0.22135, and O fd=28, . The curves have been shifted simplify the interaction between pinned and unpinned vorti-
up from the O curve for presentation. Here clear steps can be S€€lL< 1o vield the overdamped eaquatidn
for finite applied ac drives. Inset: the typical vortex trajectories, y P q ’

positions(black circle$ and pinning sitegopen circles from the d 20 L X
simulations. Here the motion consists of interstitial vortices moving ~ —x— —Seclf | Sih( 27— | =f4+f,coqwt), (4)
in one-dimensional channels between the vortices pinned at the pin- Lx Lx Lx

ning sites. Parameters ake=1.6276 and.,=L,=1.83. where we have considered only the contributidas,— 1,0,

N ] and allowed for a relative error in the force of

the average of the vortex velocities. The resulting dc force-_ sech@rL,/L,), which is obviously small as long as /L,
velocity curve is proportional to the dc current-voltage curveis not small. This equation describes the driven overdamped
The ac offset is added &g cos(t). We conduct a series of pendulum, and we can therefore apply the procedure for
simulations where the amplitudg, is varied. In this work  eyaluating phase-locking ranges between a pendulum and an
both the dc and ac driving forces will be in thelirection. ac drive®

We first consider th&8=2B,, case where the.|nterst|t|al Assuming phase-locking where the penduluwortex)
vortices form a perfectly ordered square sublattice. The vormoves with a frequencpw, we insert the following ansatz
tex trajectories above depinning are shown in the upper insq{alid for large ac amplitudésinto the above equation,
of Fig. 1 for this case. Here the interstitial vortices travel N (t)=xo+nw(L/2m)t+f,/wsinet, and equate the dc
one-dimensional paths between the pinned vortex sublatticgomponents of the resulting expression, yielding the relation-

Further, the moving interstitial vortex lattice retains the sameship petween the applied ac force and the phase2L,,
square symmetry as the pinned interstitial vortex lattice. Figfor a given integen:

ure 1 shows typical simulation results of the voltage response

V,=(1IN,)=" V;-x versus an applied dc driving force at w 27 Ly, [27fq| Xo

| . : . nLy=——-—sech =—|J, sinl 27— | =1y,
several different ac amplitudes f8=2B,. The simulation 27 Ly Ly ol Ly
parameters arep=1.6276 andL,=L,=1.83. For zero ac 5)

driving the vortex velocities increadeearly with the dc
driving force. With applied ac driving there are clear step
where the vortex velocities remain constant for a finite ran
of dc driving, indicative ofphase-lockingof the vortex mo-
tion. The widths of the steps depend on the magnitude of th

where J, is the nth order Bessel function of the first kind.
SThe size of the range\fy, in fy4 for which the vortex mo-
9%ion may stay locked to the ac drivefgh harmonic is then
given by the extreme values of §&wr(xy/Ly)):

ac drive. dor L orf
In order to demonstrate that the phase-locking of the in- Afd=—SeC|f 7-,_3’) Jn(_a) ) (6)
terstitial vortex motion is indeed closely related to the well- Lx Lx wly

known Shapiro steps in the ac driven pendulum equdtion,
we first make the observation from the inset in Fig. 1 that th
interstitial vortices are movingne dimensionallalong thex
direction at the symmetry line between the pinned vortice
y=L,/2, whereL, is the distance between two pinning cen-
ters along they direction. This allows us to write the equa-
tion of motion for the unpinned vortices as

e By conducting a series of simulations with different ac
driving amplitudes we can compare our simulation results
i{or the dependence of the step widths with those predicted
rom Eg. (6). In Fig. 2a) we plot the widths of the locking
ranges for the harmonice=0,1,2, predicted for our param-
eters from Eq(6) (solid lineg and the widths of the simu-
lated locking ranges;=0 (@), n=1 (O), andn=2 ().
There is very good agreement between the simulation data
EX_ f_vv( X,y = ﬂ) —f +f @) and the predicted curves. We note that although(&qs for
dt A2 d’ tac a single interstitial moving vortex &=2B; the interstitial
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AN | constant ac drivind ,=0.5078 for varying field¢from top to bot-
f: i . tom) B/B,=2.25,2.125,2.0,1.68,1.5,1.375,1.25,1.0625. Each
= 0.6} (om)n=1 curve has been shifted for clarity. Parameters arel.6276 and
B i A . Ly=L,=1.83.
n L n ® - 4
l [ 4
{ 0.4 " o DDSDD e "] analysis are not well within validity. However, performing
= ] - o \ the same simulations, but at the matching field vatte ad-
™~ 02+ a7 A s o Y 5 5 ditional interstitial vortex(filled markers, reveals locking
3 [ a = S o ranges very close to what is predicted. This underlines that
00lam o OO N, O AR the harmonic potential assumption made in &q.is reason-
0 1 5 3 4 5 6 able even folL,=2L, . Closer examination of the dynamics
ont, /oL, atB=2B, (open markersshows that internal modes in the

moving vortex lattice are being excited and the assumption
FIG. 2. The solid lines show the predicted dependence of th®f cancelation of interstitial vortex interactions become in-

widths of the steps in the velocity-force curves for varying appliedvalid, which is responsible for the deviation between simu-
ac drive amplitude from Eq(6) for the first three harmonica lations and our prediction in Fig.(®) for B=2B,,. Itis, of
=0, n=1, andn=2. Markers represent the simulation results of course, important to emphasize that the overall features of
the phase-locking range in dc curreat=1.6276. ac amplitudd,, the locking range is still predicted well by E(f).
is varied fromf,=0 to f,~2.93,/L,. (& L,=L,=1.83 andB The above analysis suggests that whenever the interstitial
=2B,. (b) Ly=2L,=3.66; open markers represent simulations atyortex lattice is rectangular and the interstitial vortex inter-
B=2B, and filled makers represent simulations with a single un-actions therefore cancel, Shapiro steps should be observed
pinned vortex. and be well approximated by E¢6) when sechfrL,/L,) is

small. Square interstitial vortex arrangements are found at
vortex lattice is symmetrifsee Fig. 18)] so the interstitial-  B/B,=2, 1.5, 1.25, 1.0625. For other filling fractions the in-
interstitial vortex interactions cancel. We also obtain gooderstitial vortex lattice is not symmetrical and the interstitial-
agreement for the predicted widths from E®) and the interstitial interactions do not cancel, leading to some devia-
simulations for the higher harmonigs>2 which are not tions from the predicted phase-lockifidpe locking range is
shown here. We note that the agreement between the simusually smaller than predictgdThis is illustrated in Fig. 3
lation data and the predicted behavior is not expected to berhere we show the widths of the Shapiro steps for different
exact since the force that the interstitial vortices experiencéilling fractions for a fixed ac amplitude and frequency. The
from the pinned vortex lattice is not strictly sinusoidal. We Shapiro step widths for the different symmetrical vortex con-
have also tested E¢6) for different ratios ofL, /L, by con-  figurations aB/B,=2, 1.5, and 1.0625 are essentially iden-
sidering a rectangular pinning array with /L,=2. The ra-  tical. ForB/B,=1.375 and 1.68, the steps are considerably
tio of the step widths for the different directions4s52 in  reduced and somfactional Shapiro steps also appear. We
good agreement with the theoretical predictior~e67. The  find in general that foB ,<B<2B,, the filling fractions
agreement is still good when we compare the simulatedhat produce square interstitial vortex lattices have the same
ranges of phase-locking with those predicted by @&g.for ~ Shapiro step widths as &=2B,.
the same parameters as above, but with=2L,=3.66. Interestingly forB>2B,, we find that the step widths re-
Since the vortices are forced in thelirection, this is a case main the same as &=2B,; however, there is a component
where the harmonic potential approximation made in@y. in V, of the steps that linearly increases with increading
is not expected to be as good as for the square lattice cas@or increasing magnetic fields this linear increasé/jnof
Ly=Ly. Figure 2b) shows that simulations at the second the steps increases unBE=2.23,,, when the steps can no
matching field,B=2B,, (OO and O) show less than pre- longer be discerned. This linear increase suggests that only a
dicted ranges of locking suggesting that assumptions in thportion of the vortices are phase locked. The imagest



RAPID COMMUNICATIONS

PRB 61 PHASE-LOCKING OF VORTEX LATTICES . .. R11917

@ ' © ‘ from a row containing an extra vortex f@=2.0623 .
Here the same oscillation as in Figgagand (b) is seen,
indicating that phase-locking is occurring; however, there is
> an additional lower frequency oscillation superimposed. The
082 ] | soliton like nature of this disturbance can be seen by noting
this extra oscillation out of phase between the two vortices;
032 = : similar to a kink soliton on a Frenkel-Kontorova chafh.
{b) (@ . ) .

In conclusion, we have observed Shapiro steps in the
current-voltage characteristics of driven vortex lattices inter-
o acting with periodic pinning. AB=2B, where the vortex

0.32 1 i motion consists of the one-dimensional flow of interstitial
vortices between the pinned vortices, Shapiro steps are ob-
served in agreement with recent experiméfitsVe show
that for certain filling fractions the equation of motion for a
driven interstitial vortex with a drive can be mapped to a

FIG. 4. (&) The time dependent vortex velocity for two different driven overdamped pendulum. We derive the widths of the
vortices in a single row foB=2B,, in the middle of then=1 step  Shapiro steps as a function of relevant experimental param-
for the same system as in Fig. (b) The same foB=2.0628,.  eters, and find excellent agreement between theory and simu-
Parameters arew=1.6276, L,=L,=183, f;=0.38, and f,  |ations. For filling fractions where interstitial-interstitial vor-
=0.442. tex interactions become relevant the step widths are reduced.

For B>2B, the steps begin to vanish due to an additional
shown from the simulations suggest that the extra vorticessolitonlike flow and other dynamical complexity.
which have been added to tlige=2B, sublattice cause an
additional solitonlike motion which moves at a different We thank C. J. Olson for a critical reading of this manu-
speed than the interstitial vortices. To examine this we ploscript. This work was supported by the Director, Office of
in Fig. 4 the time dependent vortex velocities for two sepa-Advanced Scientific Computing Research, Division of Math-
rate interstitial vortices along the same row at thel step  ematical, Information, and Computational Sciences of the
(f4=0.39). In Figs. 4a) and(b) for B=2B,, the signals for U. S. Department of Energy under Contract No. DE-AC03-
the two particles are identical indicating that the vortices are/6SF00098 as well as CLC and CULARos Alamos Na-
moving in phase. In Figs.(d) and (d) we plot the signal tional Laboratory.

0.97

0.97

%500 20500 500 20500

time time

1M. Baertet al,, Phys. Rev. Lett74, 3269(1995; J.Y. Lin et al, (1997.
Phys. Rev. B54, R12 717(1996; A. Bezryadin, Yu. N. Ovchin-  ’S. Shapiro, Phys. Rev. Lett1, 80 (1963.
nikov, and B. Pannetieiibid. 53, 8553(1996; A. Castellanos & A. Barone and G. Patern®hysics and Applications of the Jo-

et al, Appl. Phys. Lett.71, 962(1997; V.V. Metlushkoet al, sephson EffedtJohn Wiley, New York, 198p
Europhys. Lett41, 333(1998; V.V. Moshchalkovet al., Phys. °P. Martinoli, O. Daldina, C. Leemann, and E. Stocker, Solid State
Rev. B57, 3615(1998; V.V. Metlushko et al,, ibid. 59, 603 Commun.17, 205(1975.
(1999. 10, van Looket al, Phys. Rev. B50, R6998(1999.
2E. Rosseekt al, Phys. Rev. B53, R2983(1996. IN. Gronbech-Jensen, A.R. Bishop, and D. Doguez, Phys.
3K. Haradaet al, Science271, 1393(1996. Rev. Lett.76, 2985(1996.
4J.1. Marfn et al, Phys. Rev. Lett79, 1929(1997; D.J. Morgan  '2N. Grénbech-Jensen, Int. J. Mod. Phys7(873(1996; Comput.
and J.B. Kettersonibid. 80, 3614 (1998; Y. Jaccardet al., Phys. Commun119, 115(1999.
Phys. Rev. B58, 8232(1998; M.J. Van Baelet al,, ibid. 59, 14 3A. Schmid and W. Hauger, J. Low Temp. Phy4, 667 (1973;
674(1999; J.I. Martn et al, Phys. Rev. Lett83, 1022(1999. N. Gronbech-Jensen and M. R. Samuelsen, Phys. Lett9A
5C. Reichhardt, C.J. Olson, and F. Nori, Phys. Rev5® 7937 57 (1994.
(1998. 14p. s. Lomdahl and D. J. Srolovitz, Phys. Rev. L&t, 2702

6C. Reichhardt, C.J. Olson, and F. Nori, Phys. Rev. L#8t.2648 (1986.



