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Phase-locking of vortex lattices interacting with periodic pinning
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We examine Shapiro steps for vortex lattices interacting with periodic pinning arrays driven by ac and dc
currents. The vortex flow occurs by the motion of the interstitial vortices through the periodic potential
generated by the vortices that remain pinned at the pinning sites. Shapiro steps are observed for fieldsBf

,B,2.25Bf with the most pronounced steps occurring for fields where the interstitial vortex lattice has a high
degree of symmetry. The widths of the phase-locked current steps as a function of the magnitude of the ac
driving are found to follow a Bessel function in agreement with theory.
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Vortex lattices interacting with periodic pinning array
show a wide range of interesting commensurability
matching effects when the number of vortices is a multi
or rational multiple of the number of pinning sites. The
pinning arrays can be created with lithographic technique
which arrays of microholes or ‘‘antidots’’1–3 and magnetic
dot arrays4 can act as pinning sites. For small pinning sit
only one vortex is trapped on a site as observed in trans
measurements,2 Lorentz-microscopy experiments,3 and
simulations.5 Additional vortices sit in the areas between t
pins and under the influence of an applied driving force th
can flow between the vortices that have remained trappe
the pinning sites.2,3,6 The flowing interstitial vortices experi
ence a periodic potential caused by the repulsive interact
from the vortices at the pinning sites. The motion of t
driven interstitial vortices is then analogous to an ov
damped particle moving down a tilted washboard. With
addition of an ac driving current, interference effects in t
form of Shapiro steps can be expected to occur when
frequency of the particles moving over the washbo
matches with one of the harmonics of the drivin
frequency.7,8 Recently Shapiro steps have been observed
driven vortices moving in samples with a periodic array
pinning sites at twice the matching fieldB52Bf ~Ref. 10!,
whereBf is the field for which there is one vortex per pin
ning site. The height of these current steps~range of phase-
locking! strongly suggests that the vortex motion consists
the interstitial vortices moving in the periodic potential fro
the pinned vortices. Shapiro steps have also been obse
by Martinoli et al.9 for vortices moving over a one
dimensional periodic potential created from a periodic thi
ness modulation. It has further been proposed that Sha
steps can be seen for vortices in driven flux transformers

In this paper we investigate numerically and analytica
the Shapiro steps for driven vortices in thin-film superco
ductors with periodic pinning arrays. The vortex lattice co
sists of the pinned vortices at the pinning sites and the s
lattice of vortices that sit in the interstitial region. As
function of increasing drive we observe the interstitial vor
ces moving in one-dimensional channels between the
PRB 610163-1829/2000/61~18!/11914~4!/$15.00
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ning sites. With a superimposed ac drive we observe Sha
steps. We find that for certain commensurate fields, suc
B52Bf , the system can be modeled as an overdam
driven pendulum with the associated phase-locking. We fi
numerically that the widths of the steps depend on the m
nitude of the ac driving as a Bessel function in agreem
with theory. The Shapiro steps are most pronounced
highly symmetric interstitial vortex lattice arrangements. F
B.2Bf the steps vanish out due to complicated vortex c
figurations leading to nontrivial flow patterns.

We numerically integrate the overdamped equation
motion for a vortexi

f i5f i
vv1f i

vp1fd1fac5vi . ~1!

Here the total force acting on vortexi is f i . The vortex-
vortex interaction potential is logarithmic,Uv52 ln(r), and
the force on vortexi from all the other vortices isf i

vv

5( j Þ i
Nv ¹ iUv(r i j ).

11 We impose periodic boundary cond
tions and evaluate the periodic long-range logarithmic int
action with an exact and fast converging sum.12 The pinning
is modeled as attractive parabolic wells withf i

vp

5( f p /r p)Q(ur i2r k
(p)u/l) r̂ ik

(p) . Here, l51, Q is the step
function,r k

(p) is the location of pinning sitek, f p is the maxi-

mum pinning force, andr̂ ik
(p)5(r i2r k

(p))/ur i2r k
(p)u. The pin-

ning is placed in a rectangular array (Lx ,Ly) with the ratio of
the pinning radiusr p to pinning lattice constantLy being
r p /Ly50.164, close to the ratio 0.2 used in th
experiments.10 The pinning is placed in a 434 array and the
initial vortex configurations are obtained by annealing from
high-temperature state where the vortices are liquid and c
ing to T50. For certain parameters we have also conside
simulations for pinning arrays up to 10310 and found only
minor differences. We only consider the case forB.Bf so
that the vortex motion will be strictly from the flow of inter
stitial vortices. The driving forcefd represents the Lorent
force from an applied current. We gradually incrementfd
from zero simulating each dc current value for 17 500 tim
steps~the normalized time step isdt50.003072) to obtain
R11 914 ©2000 The American Physical Society
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PRB 61 R11 915PHASE-LOCKING OF VORTEX LATTICES . . .
the average of the vortex velocities. The resulting dc for
velocity curve is proportional to the dc current-voltage cur
The ac offset is added asf a cos(vt). We conduct a series o
simulations where the amplitudef a is varied. In this work
both the dc and ac driving forces will be in thex direction.

We first consider theB52Bf case where the interstitia
vortices form a perfectly ordered square sublattice. The v
tex trajectories above depinning are shown in the upper i
of Fig. 1 for this case. Here the interstitial vortices travel
one-dimensional paths between the pinned vortex sublat
Further, the moving interstitial vortex lattice retains the sa
square symmetry as the pinned interstitial vortex lattice. F
ure 1 shows typical simulation results of the voltage respo
Vx5(1/Nv)( i 51

Nv v̂i• x̂ versus an applied dc driving force a
several different ac amplitudes forB52Bf . The simulation
parameters arev51.6276 andLx5Ly51.83. For zero ac
driving the vortex velocities increaselinearly with the dc
driving force. With applied ac driving there are clear ste
where the vortex velocities remain constant for a finite ran
of dc driving, indicative ofphase-lockingof the vortex mo-
tion. The widths of the steps depend on the magnitude of
ac drive.

In order to demonstrate that the phase-locking of the
terstitial vortex motion is indeed closely related to the we
known Shapiro steps in the ac driven pendulum equatio8

we first make the observation from the inset in Fig. 1 that
interstitial vortices are movingone dimensionallyalong thex
direction at the symmetry line between the pinned vorti
y5Ly/2, whereLy is the distance between two pinning ce
ters along they direction. This allows us to write the equa
tion of motion for the unpinned vortices as

d

dt
x2 f i

vvS x,y5
Ly

2 D5 f d1 f ac , ~2!

FIG. 1. Average vortex velocityVx versus applied dc driving for
varying applied ac driving of~from top to bottom! f a50.814,
0.5078, 0.22135, and 0 forB52Bf . The curves have been shifte
up from the 0 curve for presentation. Here clear steps can be
for finite applied ac drives. Inset: the typical vortex trajectori
positions~black circles! and pinning sites~open circles! from the
simulations. Here the motion consists of interstitial vortices mov
in one-dimensional channels between the vortices pinned at the
ning sites. Parameters arev51.6276 andLx5Ly51.83.
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where we have neglected the pinning interaction and mo
in the transverse direction. We will make the additional a
sumptions that unpinned vortices form a perfect rectang
lattice, meaning that they effectively do not interact due
symmetry, and that the pinned vortices are effectively pinn
exactly to their pinning site; i.e., that the pinned vortic
have no dynamics and form a perfect rectangular lattice w
dimensionsLx andLy .

Under these assumptions each moving vortex obeys
following equation of motion:12

d

dt
x2

p

Lx
(

k

sinS 2p
x

Lx
D

coshF2p
Ly

Lx
S k1

1

2D G2cosS 2p
x

Lx
D

5 f d1 f ac . ~3!

Considering only the leading term in the above sum, we
simplify the interaction between pinned and unpinned vo
ces to yield the overdamped equation,13

d

dt
x2

2p

Lx
sechS p

Ly

Lx
D sinS 2p

x

Lx
D5 f d1 f a cos~vt !, ~4!

where we have considered only the contributions,k521,0,
and allowed for a relative error in the force o
;sech(pLy /Lx), which is obviously small as long asLy /Lx
is not small. This equation describes the driven overdam
pendulum, and we can therefore apply the procedure
evaluating phase-locking ranges between a pendulum an
ac drive.8

Assuming phase-locking where the pendulum~vortex!
moves with a frequencynv, we insert the following ansatz
~valid for large ac amplitudes! into the above equation
x(t)5x01nv(Lx/2p)t1 f a /v sinvt, and equate the dc
components of the resulting expression, yielding the relati
ship between the applied ac force and the phase, 2px0 /Lx ,
for a given integern:

nLx

v

2p
2

2p

Lx
sechS p

Ly

Lx
D JnS 2p f a

vLx
D sinS 2p

x0

Lx
D5 f d ,

~5!

whereJn is the nth order Bessel function of the first kind
The size of the range,D f d , in f d for which the vortex mo-
tion may stay locked to the ac drive’snth harmonic is then
given by the extreme values of sin„2p(x0 /Lx)…:

D f d5
4p

Lx
sechS p

Ly

Lx
D UJnS 2p f a

vLx
D U. ~6!

By conducting a series of simulations with different
driving amplitudes we can compare our simulation resu
for the dependence of the step widths with those predic
from Eq. ~6!. In Fig. 2~a! we plot the widths of the locking
ranges for the harmonics,n50,1,2, predicted for our param
eters from Eq.~6! ~solid lines! and the widths of the simu
lated locking ranges,n50 (d), n51 (s), andn52 (h).
There is very good agreement between the simulation d
and the predicted curves. We note that although Eq.~6! is for
a single interstitial moving vortex atB52Bf the interstitial
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vortex lattice is symmetric@see Fig. 1~a!# so the interstitial-
interstitial vortex interactions cancel. We also obtain go
agreement for the predicted widths from Eq.~6! and the
simulations for the higher harmonicsn.2 which are not
shown here. We note that the agreement between the s
lation data and the predicted behavior is not expected to
exact since the force that the interstitial vortices experie
from the pinned vortex lattice is not strictly sinusoidal. W
have also tested Eq.~6! for different ratios ofLx /Ly by con-
sidering a rectangular pinning array withLx /Ly52. The ra-
tio of the step widths for the different directions is'52 in
good agreement with the theoretical prediction of'57. The
agreement is still good when we compare the simula
ranges of phase-locking with those predicted by Eq.~6! for
the same parameters as above, but withLx52Ly53.66.
Since the vortices are forced in thex direction, this is a case
where the harmonic potential approximation made in Eq.~4!
is not expected to be as good as for the square lattice c
Lx5Ly . Figure 2~b! shows that simulations at the seco
matching field,B52Bf , (h and s) show less than pre
dicted ranges of locking suggesting that assumptions in

FIG. 2. The solid lines show the predicted dependence of
widths of the steps in the velocity-force curves for varying appl
ac drive amplitude from Eq.~6! for the first three harmonicsn
50, n51, andn52. Markers represent the simulation results
the phase-locking range in dc current.v51.6276. ac amplitude,f a ,
is varied from f a50 to f a'2.93Lx /Ly . ~a! Lx5Ly51.83 andB
52Bf . ~b! Lx52Ly53.66; open markers represent simulations
B52Bf and filled makers represent simulations with a single
pinned vortex.
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analysis are not well within validity. However, performin
the same simulations, but at the matching field withonead-
ditional interstitial vortex~filled markers!, reveals locking
ranges very close to what is predicted. This underlines
the harmonic potential assumption made in Eq.~4! is reason-
able even forLx52Ly . Closer examination of the dynamic
at B52Bf ~open markers! shows that internal modes in th
moving vortex lattice are being excited and the assump
of cancelation of interstitial vortex interactions become
valid, which is responsible for the deviation between sim
lations and our prediction in Fig. 2~b! for B52Bf . It is, of
course, important to emphasize that the overall feature
the locking range is still predicted well by Eq.~6!.

The above analysis suggests that whenever the inters
vortex lattice is rectangular and the interstitial vortex inte
actions therefore cancel, Shapiro steps should be obse
and be well approximated by Eq.~6! when sech(pLy /Lx) is
small. Square interstitial vortex arrangements are found
B/Bf52, 1.5, 1.25, 1.0625. For other filling fractions the i
terstitial vortex lattice is not symmetrical and the interstitia
interstitial interactions do not cancel, leading to some dev
tions from the predicted phase-locking~the locking range is
usually smaller than predicted!. This is illustrated in Fig. 3
where we show the widths of the Shapiro steps for differ
filling fractions for a fixed ac amplitude and frequency. T
Shapiro step widths for the different symmetrical vortex co
figurations atB/Bf52, 1.5, and 1.0625 are essentially ide
tical. For B/Bf51.375 and 1.68, the steps are considera
reduced and somefractional Shapiro steps also appear. W
find in general that forBf,B,2Bf , the filling fractions
that produce square interstitial vortex lattices have the sa
Shapiro step widths as atB52Bf .

Interestingly forB.2Bf we find that the step widths re
main the same as atB52Bf ; however, there is a componen
in Vx of the steps that linearly increases with increasingf d .
For increasing magnetic fields this linear increase inVx of
the steps increases untilB>2.25Bf , when the steps can n
longer be discerned. This linear increase suggests that on
portion of the vortices are phase locked. The images~not

e

t
-

FIG. 3. Average vortex velocityVx versus driving force for
constant ac drivingf a50.5078 for varying fields~from top to bot-
tom! B/Bf52.25, 2.125, 2.0, 1.68, 1.5, 1.375, 1.25, 1.0625. Ea
curve has been shifted for clarity. Parameters arev51.6276 and
Lx5Ly51.83.
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shown! from the simulations suggest that the extra vortic
which have been added to theB52Bf sublattice cause an
additional solitonlike motion which moves at a differe
speed than the interstitial vortices. To examine this we p
in Fig. 4 the time dependent vortex velocities for two sep
rate interstitial vortices along the same row at then51 step
( f d50.39). In Figs. 4~a! and~b! for B52Bf the signals for
the two particles are identical indicating that the vortices
moving in phase. In Figs. 4~c! and ~d! we plot the signal

FIG. 4. ~a! The time dependent vortex velocity for two differe
vortices in a single row forB52Bf in the middle of then51 step
for the same system as in Fig. 1.~b! The same forB52.0625Bf .
Parameters arev51.6276, Lx5Ly51.83, f d50.38, and f a

50.442.
s
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e

from a row containing an extra vortex forB52.0625Bf .
Here the same oscillation as in Figs. 4~a! and ~b! is seen,
indicating that phase-locking is occurring; however, there
an additional lower frequency oscillation superimposed. T
soliton like nature of this disturbance can be seen by no
this extra oscillation out of phase between the two vortic
similar to a kink soliton on a Frenkel-Kontorova chain.14

In conclusion, we have observed Shapiro steps in
current-voltage characteristics of driven vortex lattices int
acting with periodic pinning. AtB52Bf where the vortex
motion consists of the one-dimensional flow of interstit
vortices between the pinned vortices, Shapiro steps are
served in agreement with recent experiments.10 We show
that for certain filling fractions the equation of motion for
driven interstitial vortex with a drive can be mapped to
driven overdamped pendulum. We derive the widths of
Shapiro steps as a function of relevant experimental par
eters, and find excellent agreement between theory and s
lations. For filling fractions where interstitial-interstitial vor
tex interactions become relevant the step widths are redu
For B.2Bf the steps begin to vanish due to an addition
solitonlike flow and other dynamical complexity.
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