RAPID COMMUNICATIONS

PHYSICAL REVIEW B VOLUME 61, NUMBER 18 1 MAY 2000-I1

From antiferromagnetism to d-wave superconductivity in the two-dimensionalt-J model
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We have found that the two dimensiortal model, for the physical parameter rangfé= 0.4 reproduces
the main experimental qualitative features of higheopper oxide superconductoswave superconducting
correlations are strongly enhanced upon small doping and clear evidence of off-diagonal long-range order is
found at the optimal doping~0.15. On the other hand, antiferromagnetic long-range order, clearly present at
zero hole doping, is suppressed at small hole density with clear absence of antiferromagnétisma@at.

The interplay between antiferromagnetism and supercon- All these approximations allow to obtain a rather accurate
ductivity in the CuQ layers of the highT . compounds is one value of the ground-state energy of the model, with an error
of the most important effects where strong electron correlatypically less than 1% of the correlation energy even for
tion may play the main rol&é? However, after many years of largeL. However, this kind of accuracy for the energy cer-
theoretical studies and experimental effdtise most obvi- tainly does not allow us to draw reasonable conclusions on
ous question is still unclear: whether the occurrence of higlihe interesting long-range properties of the model, see, e.g.,
T. superconductivity is determined by the proximity of the Ref. 11. On the other hand, it is reasonable to expect that, by
compound to a perfect antiferromagnetic insulator. using approximate techniques that do not spoil the local

In case strong correlation is the dominant force drivingcharacter of the Hamiltonian, a similar good accuracy can be
from antiferromagnetism to superconductivity a well ac-obtained on the ground-state expectation value of short-range
cepted model is the two-dimension@D) t-J model? operators such as, for instance, the kinetic energy and the

exchange energies in E(). These operator®, acting only
1 + on nearest-neighbor sites, share the important property that,
H:J%% S-S znin; _t%:) (CisCistHC), (D it added to the HamiltonianH,—H—hO), they do not
change its local character. Moreover, this kind of perturba-

Wherecfg creates an electron of spinon the sitei, n;, and  tion typically leads to a sizable change of the ground-state
S being the electron number and spin operators, respe@nergy per site E, even in the linear regimeE,
tively. Double occupations are forbidden afidj) denotes =Eq—h(O)/L+o0(h), providing a very reliable estimate of
nearest-neighbor summation over théattice sites with pe- the ground-state expectation val(@), as the energ¥(h)
riodic boundary conditions. can be accurately determined for few values of the field

In the last decade the investigation of the properties of the So far, in the literaturé?***°the ground-state expectation
2D t-J model(and of the parent Hubbard modélas been a value of the squared order parame@? is estimated on an
challenge for numerical calculations. Exact diagonalizationapproximate ground staig,, by taking, simply, its bare ex-
(ED) (Ref. 4 shows that antiferromagnetic correlations arepactation valug |0 P). For long-range operators such

.resistant.up t05~.0.15 and sup.erco.nductivity. is present at asO?2, this may lead to very poor approximations, unless the
intermediate doping but the lattice sizes considered were t0g,athod is almost exact.

small for being conclusive. On the contrary the quantum |, order to detect superconducting long-range order with a
Monte Carlo(QMC) methods allow simulations on larger nore controlled approximation, we perform simulations in
systems but suffer from the well known “minus sign prob- {4 grand canonical ensemble and addHi@ short-range

lem” instability, which makes the simulation impossible at operator which creates or destroys-avave singlet Cooper
low enough temperatures. pair

At present, this instability can be controlled, only at the
price of introducing some approximation, such as the fixed . .
node (FN) approximatiorT, which is strictly variational on H(h)=H—-h(A"+A)—uN, @)
the ground-state energy, the constrained path quantum . P )
Monte Carl§ and the Green’s-function Monte Carlo with WhereA™ =2 »M;;(cii¢j +cjici) andMj=1 or —1 if
stochastic reconfiguratiofGFMCSR),” which has been de- the bond(i,j) is in thex ory direction, respectively, whilg
veloped to improve the accuracy of the FN. Both the FN ands the chemical potential ard the particle operator. FN and
GFMCSR techniques will be extensively used in this work. GFMCSR allow to compute quite accurately the ground-state
Similar approximations on the ground-state wave functiorenergyE(h) also in presence of the field To this purpose
can be obtained by applying orler more Lanczos steps a fundamental role is played by the guiding wave function
(LS) to the variational wave functioft;*° or also using the which allows to perform importance sampling. We general-
density-matrix renormalization groy@MRG), which in 2D  ize the N particle, d-wave symmetry, BCS guiding wave
is also affected by a sizable error, and is not “numericallyfunction* (|BCS)) to the grand canonical ensemble by in-
exact” as in 1D. troducing a proper weighty for eachN particle sector:
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FIG. 1. pg for N=16, L=18. FIG. 2. VMC (arrow9, FN (empty dot$, and GFMCSR(full
dot9 calculation ofpy at J=0.4t (see text for details
|he)= EN: fnPnPs|BCS), (3  accuracy of the calculation and the dependency of the results

from the chosen guiding wave function, by reducing the op-

wherePg projects out doubly occupied sites aRg selects timal energy variational parametexp,,=0.65 [dots con-
the N-particle component of the wave function. nected by full lines in Fig. @] to the value ofApy=0.3

Our purpose is to compute the anomalous average of th@ashed lings This implies a sizable reduction @f; within
order parameterpg=|(N+2|A"|N)|/L, where [N) and VMC. The FN evaluation ofpy correctly enhances this
IN+2) are theN and N+ 2 particle ground state, respec- value, getting closer to the more reliable estimate obtained
tively. py can be nonzero even on a finite size and zerowith the optimal energy variational parameter. The
external field. Moreover, if superconducting long-range or-GFMCSR method, the most accurate technique used here, is,
der occurspy remains finite forlL —oo. remarkably, rather insensitive to the choice of the guiding

In order to computgdy on finite-size systems we have function, being the difference for the two GFMCSR results a
implemented the following simple strategy. We choose theconservative estimate of the possible error in the determina-
chemical potentiak in a way that the ground-state energiestion of p;. GFMCSR seems to improve by the same amount
per siteEy andEy ., for the N andN+ 2 particles are de- the FN estimate opy, both for the 18 sitegFig. 1) and 50
generate. In order to reduce the ground-state energy statisgites[Fig. 2@@)], and this improvement is expected to remain
cal error we optimize the variational parametégsby re-  even for larger sizes, being GFMCSR, as well as FN, a size
stricting ourselves to the subspaced\bAndN+2 particles  consistent approximation. The 98-site calculation shows that
relevant for the matrix elememiy, f being zero otherwise. the VMC value of py is enhanced both by the FN and
In the guiding functionf, andfy. , are then determined by GFMCSR calculation and remarkably the computed value is

requiring that the average particle numb(e,#G|N|,/,G> is  very close to the one obtgined for the 50 _site lattice.
equal toN+ 1. The first-order correction to the energy due to _ Our results at this doping aniit value displayall con-

the perturbation(2) in this restricted Fock space is given by Sistently, stronger and strongérwave correlations, as the
the eigenvalues of the secular matrix: accuracy of our numerical techniques are improved and lat-

tice size increased. We believe that this represents a robust

En  *hpg evidence ofd-wave superconductivity in the 2BJ model.
+hpy E . 4 However the limited number of lattice sizes considered does
— o hd N+2 not allow us to perform an accurate finite-size scaling. As
It easily follows thatE(h)=Ey—hpy, meaning that the shown in Fig. 3, size effects are present also at the varia-
anomalous average of the order parameter can be computéieinal level and the true order parameter may be much below
as an energy differenceEy—E(h)]/h for h—0. A long-  the value~0.12 reported in the picture.
range property of the model can be probed by studying the Since thet-J model originates from the doping of an an-
ground-state energy change under the effect of a local pertiferromagnetic Mott insulator it is interesting to understand
turbation. We expect this scheme to be a much more conif the antiferromagnetic character of the undoped ground
trolled and accurate way to characterize the long-distancetate is resistant upon doping. Following a similar procedure
behavior of a model. to the one used for the superconducting long-range order, we

As can be seen from the comparison with the exact resultgdded to the Hamiltonian a short-range perturbation coupled
in Fig. 1(a), at J=0.4t, the VMC highly overestimates the to the staggered magnetizatian;, = 1/L 3 gsz(—)R, namely
order parameter. The FN reduces this value. The GFMCSR{ —H —hZgsi(—)R, and computem,, in presence of the
implemented by reconfiguring the unperturbed energy of théield h either by differentiating the energy per sita,
two subspaces dil and N+ 2 particles in an independent =—dE(h)/dh or by using the forward walking technique,
way, is almost exact. whenever possibldFN).!® For this quantity the FN and

In order to attempt a finite-size scaling for the order pa-GFMCSR are consistent for small field, meaning that the FN
rameter we computpy for much larger sizegFig. 2). Ascan is already enough accurate for the magnetic phase diagram.
be seen in theL=50 lattice case both the FN and the For the Heisenberg antiferromagnet, where broken sym-
GFMCSR reduce the variational value. We have tested thenetry occurs, the magnetization as a function of the rescaled




RAPID COMMUNICATIONS

R11 896 MATTEO CALANDRA AND SANDRO SORELLA PRB 61
T T T T I T y [T T T T T T ] .
0.15 B /B L BCS (6=0)—=> 0.3 1 :
%: A VMC (6=0.135)
L /;?*/ - 0 VMC (6=0.08) " 7
0.1 .7 N 02
L - - OVMC (5=0.02) - 0.9 - =
o -/ ©
4 I - .
[ OGFMCSR @ —
0.05 " o FN N 1Vv- 0.8 - -
C avMe 6=0.135:/€e/9/: i i
0 TR R e BN B 0 0.7 ] | 1 ]
0 0.1 0 0.1 0 0.5 1
1/V1L 1/vVL J/t

FIG. 3. Size scaling opy4 at J=0.4t. The lines connecting FN FIG. 5. Instability (PS of the uniform phase evaluated by
and GFMCSR in(a) are guides to the eye, least square fit for the GFMCSR using the Maxwell construction for the 98 site lattice.
variational method irb). The errors are estimates of finite-size effects and correspond to

twice the difference between the 98 and 50 site critical dofiRef.

field h—hL lies on a universal cur?& which weakly de- 22). The SC label represenss=0.14, Whe@d h?S been computed,
aSrEd the AF label is the antiferromagnetic region.

pends on the system size. This size dependence is almo
negligible if compared to the one affecting the squared order

parametefFig. 4(b)].1>1" This feature strengthens the valid- rich uniform phase and an undoped antiferromagnetic insu-
ity of our results that arall based upon ground-state expec- lator. In the phase diagram shown in F{§), that we have
tation values of short-range operators in presence of a fieldbtained with the same methd@FMCSR using only the

At finite doping, computationally heavier, we have chosen toenergy in the reconfiguration schemssed for the computa-
work with a single field for each size and tuned at zero doption of thed-wave order parameter, the PS boundary is quite
ing in order to reproduce on theivailable fiﬂite systems thear from the optimal doping region dft=0.4. However the
infinite size order parameteh=x/JL with x=0.392. It  compressibility of the electron system is very largg(dn
turns out that the antiferromagnetic correlations are present0.54) about 20 times larger than the corresponding spin-
even at finite doping up t@,=0.10 see Fig. &), in quali-  |ess fermion compressibilityn surprising numerical agree-
tative agreement with experimental findingssc{’  ment with a spinless fermion model with renormalized flat
~3-5%). For a quantitative agreement, other terms muspand®® Thus the proximity to an antiferromagnetic insulator
be probably added to the Hamiltonian, as suggested in Reétrongly enhances charge fluctuations determining—for
18. In the optimal doping region the staggered magnetizatiophysicald/t values—ad-wave superconducting phase before
is vanishingly small even in presence of a sizable magnetighe ps instability.

field, meaning that long-range order has disappeared favor- \ye pelieve that a large value of the compressibility is
ing a pured-wave superconducting state.

diagram of thet-J model. For small doping the matrix ele-
ment (N+2|A™|N), is strongly suppressed but antiferro-
magnetism is still present. Close to the Mott insulatér (
=0), as pointed out previously;?? there is a strong ten-
dency to have a phase-separation instability between a ho

compressibility the Thomas-Fermi screening lengéh
=(1/2me?)du/dn®* is very short compared to the Cu-Cu
distance, so that the screening is very much effective. We
peave verified this picturéon smaller sizesby adding to the

t-J model a repulsive nearest-neighbor interactitiy;;,n;n;

and found still strong superconducting correlations, weakly

03 g T S AL 08 suppressed even for larygJ~1.
i (a) E L=98 0.4 Another mechanism in competition with superconductiv-
- . S ity, is the formation of so called “stripes” in the ground
021 I T P state of the-J model, as recently found by White and Scala-
g 1 & iT ] pino with DMRG® In order to test this possibility we have
L i o) Joz2 compared our results with the DMRG ones on exB2sys-
0.1 7 o ® L-98 tem with 8 holes and open boundary conditiong/at=0.4.
L 1 o o L=50 0.1 In this case, DMRG is quite more accurate than our tech-
[ OL=s0 i Fl (b) 1 niques in the energy estimate, but it is not yet clear whether
0 NI -F plotin i g the same is true for correlation functions. Within our accu-
0 00501015 A racy for correlation functionsye have not found any clear

indication of “stripes.” in qualitative disagreement with the
FIG. 4. Staggered magnetizatiom, for x=hJL=0.392(a). m;, DMRG results, and confirming our previous wdfkob-
for =0 (b). The horizontal dotted line represents the squared ordetained with periodic boundary conditions. In this case, re-
parameter value. Remaining lines are guides to the eye. markably, the possibility to use translation invariance, allows
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calculations by far more accurate and reliable even compareddformation to establish the absence or presence of long-

with the best DMRG results, both for energies and correlafange order. . _
tion functions. We finally remark that it is extremely important to use a

Jery accurate method to rule out superconductivity at small

In this model we thus recover the most simple scenari .
that appeared in the early days of highsuperconductivity doping for a strongly.cqrrelated system such as It{q]e
'’ model. Even at the variational level, the superconducting or-

namely, that the strong correlatiaonemay drive the sys-  ger parameter that is very large before Gutzwiller projection
tem from antiferromagnetism to superconductivity. becomes an extremely small quantity after this projection
The contradictory results present in the literature so fafsee Fig. 8)]. This strong suppression afwave pairing,
are, in our opinion, mainly due to the general attempt ofcan be easily shown at the variational leyste Fig. 3 and
computing a long-range quantity by using approximationsProven até=0, and is a crucial property of strongly corre-
that weakly affect energy estimates but may lead to sizabli€d systems.
systematic errors on correlation functions. With our tech- e acknowledge S. White for sending us numerical re-
nique we overcome this difficulty by estimating only short- sults before publication, M. Fabrizio, L. Capriotti, M. Ca-
range operators expectation values with energy differencpone, and F. Becca for useful discussion, and A. Parola for
calculations. The short-range operators’ expectation valuegareful reading of the manuscript. This work was supported
are less sensitive to finite-size effects, and contain the usefly INFM (PRA HTCS, and partly by MURST COFIN97

and COFIN99.
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