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Exact study of the effect of level statistics in ultrasmall superconducting grains
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The reduced BCS model that is commonly used for ultrasmall superconducting grains has an exact solution
worked out long ago by Richardson in the context of nuclear physics. We use it to check the quality of previous
treatments of this model, and to investigate the effect of level statistics on pairing correlations. We find that the
ground-state energies are on average somewhat lower for systems with nonuniform than uniform level spac-
ings, but both have an equally smooth crossover from the bulk to the few-electron regime. In the latter,
statistical fluctuations in ground-state energies strongly depend on the grain’s electron number parity.
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Recent experiments by Ralph, Black, and Tinkham,
volving the observation of a spectroscopic gap indicative
pairing correlations in ultrasmall Al grains,1 have inspired a
number of theoretical2–11 studies of how superconductin
pairing correlations in such grains are affected by reduc
the grains’ size, or equivalently by increasing its mean le
spacingd}Vol21 until it exceeds the bulk gapD. In the
earliest of these, a grand-canonical~g.c.! BCS approach2–4

was applied to a reduced BCS Hamiltonian for uniform
spaced, spin-degenerate levels; it suggested that pairing
relations, as measured by the condensation energyEC, van-
ish abruptly onced exceeds a critical level spacingdc that
depends on the parity~0 or 1! of the number of electrons o
the grain, being smaller for odd grains (d1

c.0.89D) than
even grains (d0

c.3.6D). A series of more sophisticated ca
nonical approaches~summarized below! confirmed the parity
dependence of pairing correlations, but established6–11 that
the abrupt vanishing of pairing correlations atdc is an arti-
fact of g.c. treatments: pairing correlations do persist, in
form of so-called fluctuations, to arbitrarily large level spa
ings, and the crossover between the bulk superconduc
~SC! regime (d!D) and the fluctuation-dominated~FD! re-
gime (d@D) is completely smooth.10 Nevertheless, thes
two regimes are qualitatively very different:9,10 the conden-
sation energy, e.g., is an extensive function of volume in
former and almost intensive in the latter, and pairing cor
lations are quite strongly localized around the Fermi ene
«F , or more spread out in energy, respectively.

After the appearance of all these works, we became aw
that the reduced BCS Hamiltonian on which they are ba
actually has an exact solution. It was published by Richa
son in the context of nuclear physics~where it is known as
the ‘‘picket-fence model’’!, in a series of papers betwee
1963 and 1977~Refs. 12 and 13! which seem to have com
pletely escaped the attention of the condensed-matter c
PRB 610163-1829/2000/61~18!/11890~4!/$15.00
-
f

g
l

or-

e
-
ng

e
-
y

re
d
-

m-

munity. The beauty of this solution, besides its mathemat
elegance,14 is that it also works for the case of random
spaced levels. It thus presents us with two rare opportun
that are the subject of this paper:~i! to compare the results o
various previously used approximations against the ben
mark set by the exact solution, in order to gauge their r
ability for related problems for which no exact solutions e
ist; and very interestingly,~ii ! to study the interplay of
randomness and interactions in a nontrivial modelexactly, by
examining the effect of level statistics on the SC/FD cro
over.

There is a previous study of the latter question by Sm
and Ambegaokar~SA! using the g.c. mean-field BCS
approach,5 who concluded, interestingly, that randomne
enhancespairing correlations: compared to the case of u
form spacings,2 they found that a random spacing of leve
~distributed according to the gaussian orthogonal ensem!
on averagelowersthe condensation energyEC to more nega-
tive values and increases the critical level spacings at wh
EC vanishes abruptly, but these still are parity depend
(^d1

c&51.8D, ^d0
c&.14D). However, the abrupt vanishing o

EC found by SA can be suspected to be an artifact of th
g.c. mean-field treatment, as was the case in.2–4 Indeed, our
exact results for random levels show~1! that the SC/FD
crossover is as smooth as for the case of uniformly spa
levels; this means, remarkably, that~2! even in the presence
of randomness pairing correlations never vanish, no ma
how large d/D becomes; quite the opposite,~3! the
randomness-induced lowering ofEC is strongest in the FD
regime; in the latter, moreover,~4! the statistical fluctuations
in EC depend quite strongly on parity.

Exact solution. Ultrasmall superconducting grains a
commonly described2–11 by a reduced BCS model,

H5 (
j ,s56

« j scj s
† cj s2ld(

j j 8
cj 1

† cj 2
† cj 82cj 81 , ~1!
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for a set of pairs of time-reversed statesu j ,6& with energies
« j , mean level spacingd and dimensionless coupling con
stantl. Unbeknownst to the authors of Refs. 2–11, Richa
son had long ago solved this model exactly, for an arbitr
set of levels« j ~not necessarily all distinct!: Since singly
occupied levels do not participate in and rema
‘‘blocked’’ 15 to the pairscattering described byH, the labels
of such levels are good quantum numbers. Letun,B& denote
an eigenstate withN52n1b electrons,b of which sit in a
set B of singly occupied, blocked levels, thus contributin
EB5( i PB« i to the total energy. The dynamics of the rema
ing n pairs is then governed by

HB5 (
j ¹B

2« jbj
†bj2l d (

j , j 8¹B

bj
†bj 8 , ~2!

where the pair operatorsbj5cj 2cj 1 satisfy the ‘‘hard-core
boson’’ relationsbj

250 and@bj ,bj 8
†

#5d j j 8(122bj
†bj ), and

the sums are over allunblockedlevels. Richardson showe
that the lowest-lying of the eigenstatesun,B& has the~unnor-
malized! form ~Ref. 14 gives a simple proof!

un,B&G5)
i PB

cis
† )

n51

n S (
j ¹B

bj
†

2« j2en
D uVac&, ~3!

where then parametersen (n51, . . . ,n) are that particular
solution of then coupled algebraic equations

1

ld
1 (

m51(Þn)

n
2

em2en
5 (

j ¹B

1

2« j2en
~4!

that yields the lowest value for the ‘‘pair energy’’E(n)
5(n51

n en . Moreover, un,B&G has total energyE(n)1EB .
The lowest-lying of all eigenstates withn pairs and b
blocked levels, sayun,b&G with energyE b

G(n), is thatun,B&G

for which the blocked levels inB are all as close as possib
to «F , the Fermi energy of the uncorrelatedN-electron Fermi
seauFN&.

In this paper we shall always take all the« j to be nonde-
generate. Theen then coincide atl50 with the lowestn
energies 2« j ( j 51, . . . ,n), and smoothly evolve toward
lower values asl is turned on. With increasingl, the roots
turn complex two at a time@becoming a complex conjugat
pair, thusE(n) remains real#. Denote roots destined to be
come conjugates by (e2a21 ,e2a) @with l50 values
(2« j 2a21

,2« j 2a
), say#, with a51, . . . ,n/2 for even n, with

one further purely real root, saye0, for odd n. Writing
e2a215ja2 iha , e2a5ja1 iha , they can be conveniently
parametrized using the real variablesxa5ja2«2a212«2a

and ya52ha
2/@(«2a2«2a21)22xa

2#. When rewritten in
terms of these, Eq.~4! becomes less singular@see Eq.~2.10!
of Ref. 13 for details# and can easily be solved numerical
by increasing l from 0, using the set R
5$(« j 2a21

,« j 2a
),« j 0

% as ‘‘initial solution.’’17

Uniformly spaced levels.Our first application of the exac
solution is to check the quality of results previously obtain
by various other methods. Most previous works2–4,6–10stud-
ied a half-filled band with fixed width 2vD of uniformly-
spaced levels~i.e., « j5 j d), containingN52n1b electrons.
Then the level spacing isd52vD /N and in the limitd→0
-
y

-

d

the bulk gap isD5vDsinh(1/l)21. Following Ref. 9, we
take l50.224 throughout this paper. To study the SC/F
crossover, two types of quantities were typically calcula
as functions of increasingd/D, which mimics decreasing
grain size: the even and odd (b50,1) condensation energie

Eb
C~n!5E b

G~n!2^FNuHuFN& ~5!

and a parity parameter introduced by Matveev and Lark6

~ML ! to characterize the even-odd ground-state energy
ference,

DML~n!5E 1
G~n!2@E 0

G~n!1E 0
G~n11!#/2. ~6!

Following the initial g.c. studies2–6, the canonical study of
Mastellone, Falci, and Fazio,7 ~MFF! used Lanczos exac
diagonalization~with n<12) and a scaling argument t
probe the crossover regime. Berger and Halperin8 ~BH!
showed that essentially the same results could be achie
with n<6 by first reducing the bandwidth and renormalizin
l, thus significantly reducing the calculational effort in
volved. To access larger systems and fully recover the b
limit, fixed-n projected variational BCS wave function
~PBCS! were used in Ref. 9~for n<600); significant im-
provements over the latter results, in particular in the cro
over regime, were subsequently achieved in Ref. 10 us
the density-matrix renormalization group~DMRG! ~with n
<400). Finally, Dukelsky and Schuck11 showed that a self-
consistent random-phase approximation~RPA! approach,
that in principle can be extended to finite temperatures,
scribes the FD regime rather well~though not as well as the
DMRG!.

To check the quality of the above methods, we16 com-
putedEb

C(n) andDML(n) using Richardson’s solution~Fig.
1!. The exact results~a! quantitatively agree, ford→0, with
the leading2D2/2d behavior forEb

C(n) obtained in the g.c.
BCS approach,2–4 which in this sense is exact in the bu
limit, corrections being of orderd0; ~b! confirm that a com-
pletely smooth10 crossover occurs around the scaled.D at
which the g.c. BCS approach breaks down;~c! show that the
PBCS crossover9 is qualitatively correct, but not quantita
tively, being somewhat too abrupt;~d! are reproduced re
markably well by the approaches of MFF~Ref. 7! and BH;8

~e! are fully reproduced by the DMRG of Ref. 10 with
relative error of,1024 for n<400; our figures do not show
DMRG curves, since they are indistinghuishable from t
exact ones and are discussed in detail in Ref. 10.

The main conclusion we can draw from these compa
sons is that the two approaches based on renormaliza
group ideas work very well: the DMRG is essentially exa
for this model, but the bandwidth rescaling method of B
also gives remarkably~though not quite as! good results with
rather less effort. In contrast, the PBCS approach is ra
unreliable in the crossover region.

Randomly spaced levels.The remainder of this paper ad
dresses the question of how randomness of the levels« j af-
fects pairing correlations. We studied half-filled bands ofN
52n1b nonuniformly spaced but nondegenerate levels~for
N<260), with b50,1. The energy levels in small metalli
grains with time reversal symmetry follow the Gaussian
thogonal ensemble distribution.18 We generated sets of leve
« i ( i 51, . . . ,N) by diagonalizing 2N32N random matri-
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ces, takingN adjacent values from the central part of t
eigenspectrum~to avoid boundary effects! and performing
the rescaling5 «→(1/2p)@4N sin21(«/A4N)1«A4N2«2#,
to ensure an average level spacing of one in units ofd. In
Fig. 2 we show four such sets of randomly generated lev
for N528, together with the equally spaced set.

For each such set of 2n1b levels, we calculated the exac
ground-state energyE b

G(n), the condensation energyEb
C(n),

and the spectroscopic gap4

Eb
S~n!5E b12

G ~n21!2E b
G~n!, ~7!

FIG. 1. ~a! The even and odd (b50,1) condensation energie
Eb

C of Eq. ~5!, calculated with BCS, PBCS, and exact wave fun
tions, as functions ofd/D52 sinh(1/l)/(2n1b), for l50.224. For
comparison the dotted line gives the ‘‘bulk’’ resultE0

bulk5
2D2/(2d). ~b! Comparison of the parity parametersDML ~Ref. 6!
of Eq. ~6! obtained by various authors mentioned in the text. ML
analytical result isD(12d/2D) for d!D, andd/2 log(ad/D) for d
@D, with a51.35 adjusted to give asymptotic agreement with
exact result; for the grand-canonical BCS approach~dash-dotted
line!, the naive perturbative result1

2 ld is continued to the origin.

FIG. 2. Sets of energy levels withN528. Setc has equally
spaced levels, with spectroscopic gap@Eq. ~7!# E0

S/d51.54. Sets
a,b ~or c,d) are randomly spaced; among all sets withN528 we
studied, the ones shown have the smallest~largest! values forE0

S/d,
namely, 0.886, 0.891 (3.30,3.37), due to the small~large! spacing
between the two levels closest to«F , illustrating how random level
fluctuations affect energy gaps.
ls

which gives the energies needed to break a single pair in
~even or odd! ground state. Subsequently we calculated
ensemble average ^Eb

C(n)& and variance dEb
C(n)

5@^(Eb
C)2&2^Eb

C&2#1/2 ~and analogouslŷ Eb
S& and dEb

S)
over many realizations of random matrices. The ensem
size was 1000 for 24<N<40, and varied between 700 an
150 for 40<N<260. Figure 3 presents our results for the
ensemble averages~solid lines; fluctuation bars indicate var
ances! together with those for the uniformly spaced~u.s.! set
discussed above~dashed lines!. It shows a number of inter-
esting features.

Firstly, the two main conclusions of SA~Ref. 5! are con-
firmed, namely~a! that pairing correlations are on averag
stronger for randomly than for uniformly spaced~u.s.! lev-
els, ^Eb

C&,Eb
C(u.s.); and~b! that the parity effect persits in

the presence of randomness,^E0
C&,^E1

C&. In SA’s g.c. cal-
culation these facts could be understood5 from a condition,
derived from the BCS gap equation, for having nonvanish
pairing correlations, namely 2/l,( j ¹B1/u«̄ j2m̄u. Here «̄ j

and the g.c. chemical potentialm̄ are in units ofd, and the
number of terms in the sum is of order 2vD /d. As d in-
creases, this number decreases, until the inequality ceas
hold at a critical spacingdb

c . Since statistical fluctuations to

smaller values ofu«̄ j2m̄u carry more weight than those t
larger values, fluctuations on average tend to increasedb

c ,
which explains~a!; moreover, since the blocking of level
close tom̄ reduces the number of terms in the sum, it redu
db

c , which explains~b!.
Since the equation on which SA’s elegant argument

based breaks down in the FD regime, let us attempt ano
way of interpreting~a! and~b!: pairing correlations involve a
nonzero amplitude to find pair states with« j.«F doubly
occupied and ones with« j,«F empty. Such correlations be
tween states below and above«F , called ‘‘pair-mixing
across«F’’ in Ref. 2, gain interaction energy but cost som
kinetic energy. The latter cost is the smaller, the closer

-

FIG. 3. Exact even and odd condensation energiesEb
C for

equally spaced levels~dashed line!, and the ensemble average^Eb
C&

for randomly spaced levels~solid line!. The height of the fluctuation
bars gives the variancesdEb

C . The inset shows the correspondin
spectroscopic gapsEb

S and variancesdEb
S .
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states involved in pair-mixing across«F lie together~which
is why the bulk limitd→0 is so strongly correlated!. Statis-
tical fluctuations in level positions that yield more-closely
less-closely spaced levels around«F than for the uniform
case, would thus cause a respectively lower or higher kine
energy cost for pairmixing across«F ; according to~a!, the
former on average outweighs the latter, just as SA had c
cluded in Ref. 5. Furthermore, in odd grains the block
level at «F always causes the spacing between pair lev
below and above«F , and hence the kinetic energy cost f
pair mixing across«F , to be somewhat larger than in eve
grains, which explains~b!.

Now, the ability of the exact solution to correctly treat th
FD regime enables us to uncover several further facts tha
beyond the reach of SA’s g.c. mean-field approach:~c! The
SC/FD crossover is as smooth for randomly as for uniform
spaced levels, confirming that the abrupt vanishing of pair
correlations at some critical level spacing found by SA is
artifact of their g.c. mean-field treatment, just as in Refs
and 4.~d! Even in the presence of randomness, pairing c
relations never vanish, no matter how larged/D. Quite the
opposite,~e! the randomness-induced lowering in conden
tion energy to more negative values,^Eb

C&2Eb
C(u.s.), is

strongestin the FD regime; this perhaps somewhat count
intuitive result illustrates that the smaller the number of le
els is that lie ‘‘close to’’~i.e., within D of! «F , the stronger
is the effect of fluctuations in their positions on the kinet
energy cost for pair mixing; conversely, this randomne
induced lowering ofEb

C decreases in the crossover regim
and becomes negligible in the SC regime, in which ve
many levels lie withinD of «F . ~f! The variancesdEb

C are
.W
c-

n-
d
ls

re

y
g
n
2
r-

-

-
-

-

y

essentiallyd independent in the range 24<N<260, implying
that therelative statistical fluctuations ofEb

C should be neg-
ligible in the bulk limit, as expected.

Remarkably, we can also discern~g! three ‘‘parity-
dependent fluctuation effects,’’ in that the following thre
quantities are larger for even than for odd grains:~g1! the
variances dEb

C ~with dE0
C.2 dE1

C.D/2); and the
randomness-induced changes in~g2! condensation
energies u^Eb

C&2Eb
C(u.s.)u and ~g3! spectroscopic gaps

u^Eb
G&2Eb

G(u.s.)u ~inset of Fig. 3!. All three of these effects
have the same origin as the more familiar parity effect~b!,
namely blocking: the more levels around«F are blocked, the
larger the effective spacing between states involved in p
mixing across«F , and hence the smaller the sensitivity
the total energy to statistical fluctuations in level position

In conclusion, using Richardson’s exact solution we ha
found that level randomness does not modify the smo
nature of the SC/FD crossover. It just enhances pairing c
relations somewhat compared to those of uniformly spa
levels, having the strongest effect in the FD regime. In
latter we found that statistical fluctuations become stron
parity dependent.
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