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Conductivity sum rule: Comparison of coherent and incoherentc-axis coupling
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We calculate thec-axis kinetic-energy difference between normal and superconducting state for coherent
and for incoherent interlayer coupling between CuO2 planes. For coherent coupling the ratio of the missing
conductivity spectral weight to the superfluid density is equal to one and there is no violation of the conven-
tional sum rule, but for the incoherent case we find it is always greater than one whatever the nature of the
impurity potential may be. To model more explicitly YBa2Cu3O72x around optimum doping, which is found
to obey the sum rule, we consider a plane-chain model and show that the sum rule still applies. A violation of
the sum rule of either sign is found even for coherent coupling when the in-plane density of electronic states
depends on energy on a scale of the order of the gap.
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It has been proposed that the interlayer coupling along
c axis of a high transition temperature (Tc) superconductor is
incoherent, and the electronic kinetic energy along thec axis
changes when the system enters the superconducting sta1–4

Recently, Basovet al.5 have reported that there is a signi
cant discrepancy between the superfluid densityrs and the
spectral weight missing from the real part of thec-axis con-

ductivity Nn2Ns58*
01

vc dv@s1c
n (v)2s1c

s (v)#, wherevc is

a cutoff frequency of the order of a bandwidth, in seve
high-Tc cuprate superconductors such as optimally do
Tl2Ba2CuO61x (Tl2201). This implies that the conventiona
sum rule of Ferrel, Grover, and Tinkham~FGT! ~Ref. 6! is
violated. However, the spectral discrepancy becomes van
ing for YBa2Cu3O6.85 and disappears for the optimally dope
YBa2Cu3O6.95 ~YBCO! crystal withTc.93 K as thec-axis
response become more coherent with increasing oxy
content.5,7 Basovet al. also pointed out that there is no suc
discrepancy in the in-plane response for any cuprate. M
over, for overdoped Tl2201, the sum-rule discrepancy v
ishes and a Drude-like peak develops in the conductivity
T.Tc .8 Theses observations, therefore, suggest that for
herent interlayer coupling in the cuprate superconductors
conventional sum rule is obeyed.

In this paper, we consider both coherent and incohe
c-axis coupling between CuO2 planes. For the coherent cas
we find that the superfluid density remains equal to the m
ing optical spectral weight; in other words, it does not viola
the FGT sum rule. Thec-axis kinetic energies in the norma
and superconducting state have the same value. For inco
entc-axis coupling the ratio of the missing area to the sup
fluid density is always larger than one in disagreement w
some recent experiments. In YBCO the CuO chains play
important role in the electrodynamics and at the optimal d
ing a plane-chain model9,10 is needed to be complete. He
we use this model to investigate thec-axis conductivity sum
rule. An algebraic calculation of the electronic kinetic en
gies is complicated and a numerical calculation is requi
although it can be reduced a lot in a special case, in wh
only the leading order in perturbation theory is kept. Th
case is particularly interesting because it has been show
exhibit a pseudogap in thec-axis conductivity.10 Finally, we
PRB 610163-1829/2000/61~18!/11886~4!/$15.00
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discuss the possibility that the FGT sum rule is violated
the plane-plane case when the in-plane density of states
pends on energy even for coherent case.

The HamiltonianH for a cuprate superconductor with co
herentc-axis coupling isH5H01Hc , whereH0 describes a
d-wave superconductor in a plane andHc5( ist'@ci1s

1 ci2s

1ci2s
1 ci1s# is a coherent interlayer coupling due to the ove

lap of electronic wave functions which is represented byt' ;
therefore, by coherent coupling we mean a tight-binding-l
coupling along thec axis. It will not be necessary to treatt'
as a constant in what follows. It can depend on an angle
the plane. For incoherent coupling the Hamiltonian isHc8
5( isVi@ci1s

1 ci2s1ci2s
1 ci1s#, whereVi is an impurity scat-

tering potential, so that impurity scattering mediates
c-axis hopping and an impurity average is implied.11,12

In the presence of an external vector potentialAz , Hc is
modified to Hc(Az) by the phase factor exp(2ieAz) for
ci1s

1 ci2s and exp(ieAz) for ci2s
1 ci1s . For the response to a

external field,Hc(Az) is expanded up to the second order
Az to obtain the currentj c52dHc(Az)/dAz5 j p1 j d , where
j p52 ied( ist'@ci1s

1 ci2s2ci2s
1 ci1s# and j d5e2d2HcAz

with d the interlayer spacing. In linear-response theo
^ j c&5@2P1e2d2^Hc&#Az , whereP is the current-current
correlation function associated withj p and ^Hc& is the per-
turbation of j d due to Hc . The conductivitysc(q,v) is
given by

sc~q,v!5
i

v
@P~q,v!2e2d2^Hc&#. ~1!

In the Matsubara formalism,

P~q,v!52~ed!2T(
v8

(
k

t'
2

3Tr@ t̂0Ĝ~k,v8!t̂0Ĝ~k,v81v!#, ~2!

and

^Hc&52T(
v

(
k

t'
2 Tr@ t̂3Ĝ~k,v!t̂3Ĝ~k,v!#, ~3!
R11 886 ©2000 The American Physical Society
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wheret̂ i is the Pauli matrix in the spin space, andĜ(k,v) is
the Green’s function in Nambu representation, name
Ĝ(k,v)52( ivt̂01jkt̂32Dkt1)/(v21jk

21Dk
2) with jk the

in-plane energy andDk the gap which hasdx22y2 symmetry
in the cuprates.

The c-axis conductivity sum rule4,13,14of the system is

2

pE0

`

dvs1c~v!52e2d2^Hc&. ~4!

We use the unit such that\5c5kB51 and set the volume
of the system to be unity. From the sum rule, the superfl
densityrs can be written as

rs58E
01

vc
dv@s1c

n ~v!2s1c
s ~v!#24pe2d2@^Hc&

s2^Hc&
n#,

~5!

where vc is the cutoff frequency for interband transition
that Hc does not account for.

Since the difference between the superfluid density
the missing spectral weight is proportional to the kinet
energy difference between normal and superconducting s
as seen in Eq.~5!, it is necessary to calculatêHc&

s2^Hc&
n

to see if the FGT sum rule is violated by coherentc-axis
coupling. For the normal state,

^Hc&
n54T(

v
(

k
t'
2 G0~k,v!2, ~6!

where G0(k,v) is a normal-state Green’s function andt'
may depend onkz andf5tan21(ky /kx). We assume a cy
lindrical Fermi surface withj5k2/2m2m, where m is a
chemical potential in the plane, and ad-wave gap Dk
5D(T)cos 2fk . Then, we obtain

^Hc&
n54(

kz

E df

2p
t'
2 E

2vc

vc
djN~j!

] f ~j!

]j

524N~0!(
kz

E df

2p
t'
2 tanhS vc

2TD , ~7!
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where the integration range is limited byvc , and the density
of states,N(j), is approximated by a constant valueN(0)
around the Fermi energy. Later, we will discuss the effect
N(j) on ^Hc& and will note the possibility that the FGT sum
rule may be violated even for coherentc-axis coupling. Since
] f (j)/]j52d(j) at zero temperature (T50), ^Hc&

n turns
out to be24N(0)(kz

* df/(2p)t'
2 . For a superconducting

state with superconducting Green’s functionsG(k,v) and
F(k,v),

^Hc&
s54T(

v
(

k
t'
2 @G~k,v!22F~k,v!2#

524T(
v

(
kz

E df

2p
t'
2 E

2vc

vc
djN~j!

v22j21Dk
2

~v21j21Dk
2!2

524N~0!(
kz

E df

2p
t'
2 vc

Avc
21Dk

2
tanhSAvc

21Dk
2

2T
D .

~8!

The difference between̂Hc&
s and ^Hc&

n is of the order of
(D(T)/vc)

2; therefore, coherentc-axis coupling does no
violate the FGT sum rule as long asvc@D(0) even if t'
depends onf. Note that the difference is largest atT50 and
vanishes asT→Tc .

The calculations for incoherent~impurity mediated! c-axis
coupling proceed in the same way as before. Note tha
this case j p52 ied( isVi@ci1s

1 ci2s2ci2s
1 ci1s# and j d

5e2d2Hc8Az , and an impurity configuration average is r
quired. We derive the normalized missing spectral wei
(Nn2Ns)/rs under assumption of a constant density
states and show that it is greater than one.

The penetration depthlc can be calculated in two ways
Based on the Kramers-Kronig relation for the conductivi
we obtain lc , namely, 1/4plc

25 limv→0@v Im sc(0,v)#.
Alternatively, using Eq. ~5! we can also calculatelc

(51/Ars). Equate these two expressions oflc , then after
integration over energy we arrive the formula as follows:
~Nn2Ns!

rs
5

1

2
1

1

2

(
v

E dfkdfpuV~fk ,fp!u2F12
v2

Av21Dk
2Av21Dp

2G
(
v

E dfkdfpuV~fk ,fp!u2
Dk

Av21Dk
2

Dp

Av21Dp
2

. ~9!
ase.
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The second term in Eq.~9! can easily be shown to be bigge
than one half whatever the angular dependence of the im
rity potential V(fk ,fp) may be.15 Thus the normalized
missing spectral weight is always greater than one. I
simple model of impurity scattering,2,11 for which
uV(fk ,fp)u25uV0u21uV1u2 cos 2fp cos 2fk , we found that
(Nn2Ns)/rs>1.58. This incoherent coupling model, ther
fore, does not agree with recent findings. The sum rule is
for YBCO around optimum doping indicating cohere
u-

a

e

c-axis coupling and less than one for the underdoped c
To treat YBCO around optimum doping more realistica
we need to include the complications introduced by ex
tence of the chains along theb axis.

Penetration depth (la(b)) experiments16 in YBCO have
shown that bothla andlb are linearT at a low temperature
and that a considerable amount of the condensate reside
the chains. To treat this case we need to consider a pl
chain coupling model.9,10 We assume the hybridization o
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Fermi surfaces between plane and chain arising through
herent coupling. For simplicity we also assume the gap in
chain has ad-wave symmetry and its magnitude is of th
order of that in the plane. The Hamiltonian for a coupl
plane-chain system is H5(kĈk

1ĥkĈk , where Ĉk
1

5(C1k↑
1 ,C12k↓ ,C2k↑

1 ,C22k↓) and

ĥk5S j1k 2D1k t~kz! 0

2D1k 2j1k 0 2t~kz!

t~kz! 0 j2k 2D2k

0 2t~kz! 2D2k 2j2k

D , ~10!

where t(kz)52t0 cos(kzd/2) for coherent coupling betwee
plane and chain,j1(2) is the energy dispersion in the plan
~chain!, andD1(2) is a gap of the plane~chain!. We point out
here that the conclusion we make later does not depend
the simple form oft(kz), and thatD1(2) and j1(2) depend
only on kx andky .

The Hamiltonian of the plane-chain coupling model
also decomposed into two parts,H5H01Hc . H0 is for the
superconductivity in the plane-chain coupling system and
eigenvalues can be reduced to6E656Ae6

2 1Dk
2, where

e6 are normal-state energy dispersionse65(j11j2)/2
6A(j12j2)2/41t(kz)

2 with D1k5D2k5Dk for simplicity.
Extensive work on this Hamiltonian can be found in Ref.

In order to calculate the linear response of the system
the external electromagnetic field, we modifyHc with the
phase factor mentioned before and follow the same pro
dure to derive the currentj c5 j p1 j d . Then, we obtain

j p5
edt0

2 (
k

sin~kzd/2!Ĉk
1ŝ1^ t̂0Ĉk , ~11!

whered/2 is the distance between a plane and a chain andŝ1
is a Pauli matrix in the plane-chain space, andj d

5e2(d/2)2HcAz , where Hc5(kt(kz)Ĉk
1ŝ1^ t̂3Ĉk . The

c-axis conductivity forq50, sc(0,v), of the sysyem is also
derived to be sc(0,v)5( i /v)@P(0,v)2e2(d/2)2^Hc&#,
where

P~0,v!5~edt0/2!2T(
v8

(
k

sin2~kzd/2!

3Tr@ŝ1^ t̂0Ĝ~k,v8!ŝ1^ t̂0Ĝ~k,v81v!#,

~12!

and

^Hc&5t0
2T(

v
(

k
cos2~kzd/2!Tr@ŝ1^ t̂3Ĝ~k,v!ŝ1

^ t̂3Ĝ~k,v!#, ~13!

with Ĝ(k,t)52^T@Ĉk(t)Ĉk
1(0)#&, which is a (434) ma-

trix. The Green’s functionĜ(k,v) is given by Ĝ(k,v)
5( iv2ĥk)

21. We emphasize that the Hamiltonian in th
model is quite different from the usual macroscopic tunn
ing Hamiltonian,17 for which, for example, Ĝ13(k,t)
52^T@C1k↑(t)C2k↑

1 (0)#& is not allowed because each lay
o-
e

on

ts

.
to

e-

l-

is independent~as is the case for the previous couplin
model!; however, it is possible in the present model beca
of the hybridization through the chain between the two Fe
surfaces of plane and chain. Introducing a unitary matrixU

which diagonalizes ĥk , one can show Ĝi j (k,v)
5(m51

4 UimUm j
1 /( iv2Em), whereEm56E6 if D1k5D2k .

^Hc& becomes complicated and the energy dispersion
the chain is quite different from that in the plane so tha
numerical calculation is required to see if the difference
tween ^Hc&

s and ^Hc&
n is negligible. However, sincet0 in

Eq. ~13! is assumed small we may expand^Hc& in terms of
t0 and keep only the leading order, which ist0

2. This case
includes only interband Hamiltonian but is still very interes
ing as it can exhibit ac-axis pseudogap.10 In this approxima-
tion with D1k5D2k5Dk and for m85m as a special case
^Hc&

s becomes

^Hc&
s524T(

v
(

k
t~kz!

2
v22j1j21Dk

2

~v21j1
21Dk

2!~v21j2
21Dk

2!
.

~14!

Note that^Hc&
s in Eq. ~14! is almost same aŝHc&

s in Eq.
~8! for the simple coherent coupling case except that n
j1Þj2 andd/2 appears rather thand in t(kz). One, therefore,
may expect thatd^Hc& will vanish to order (D(T)/vc)

2. It is
obvious thatd^Hc& is identically zero along the nodal lines
and d^Hc& is largest along the antinodal directions. Sin
j15k2/2m2m and j25ky

2/2m2m, we introduce j5j1,
then j25j sin(f)22m cos(f)2. If f5p/2, then j25j;
therefore, it can be seen thatd^Hc&f5p/2 is of the order of
(D/vc)

2. For f50, j252m and it can be shown that

^Hc&f50
s .2N~0!(

kz

t'
2 E

2vc

vc
djF m

j22m2 tanhS m

2T
D

2
j2

~j22m2!Aj21D2
tanhS Aj21D2

2T
D G .

~15!

Now, the leading order ofd^Hc&f50 changes to (D/m)2. It
is possible to show that for an arbitraryf, as long asm and
vc@D, d^Hc&f is negligible, and consequently, the FG
sum rule is not violated in the plane-chain coupling mode

In a numerical calculation for the general case without
above simplification, we have computedd^Hc&/^Hc&

s,
which is the fractional change in kinetic energy. We ha
takenj25ky

2/2m2m8 for the chain energy dispersion, whe
m8 is a chemical potential in the chain. For simplicity, w
also assumem85m. It has been shown thatm82m(!m)
may correspond to the pseudogap seen in thec-axis response
of overdoped YBCO;10 however, it makes no difference i
the numerical evaluation ofd^Hc&/^Hc&

s. We chooseT
512 K, D(T)520 meV, t052 meV, m5500 meV andvc
5400 meV. We found thatd^Hc&/^Hc&

s becomes more neg
ligible as we increase the summation range of the Matsub
frequencyv. For uvu<200pT, d^Hc&/^Hc&

s.8.831023,
and for uvu<2000pT, d^Hc&/^Hc&

s.5.431023.
One may consider a plane-plane couplingthrough a

chain. In order to investigate thec-axis kinetic energy for
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such a coupling, one needs to replacej2 andD2 with j1 and
D1, respectively. For the hopping amplitude,t(kz) can be
simply changed tot(kz)

2 because the plane-chain and cha
plane distances are the same and equal tod/2. Then, one can
algebraically show thatd^Hc& is as negligible as before. It i
also possible to see thatd^Hc& has a symmetry with respec
to j1↔j2 andD1↔D2; in other words,d^Hc& for thechain-
plane coupling is the same as that for theplane-chaincou-
pling. Therefore, it implies thatd^Hc& along thec axis is
conserved for coherent coupling.

So far we have taken the density of states as a cons
N(j)5N(0) (2vc<j<vc) and concluded that the differ
ence of thec-axis electronic kinetic energies between norm
and supercondcuting state is negligible. Now we would l
to consider the effect ofN(j) on the sum rule when it is a
function of j to illustrate possible changes. If it varie
strongly withj, it clearly cannot be approximated byN(0).
We taylor expandN(j) up to j2 near j50. Then,N(j)
5N(0)1j]N(j)/]ju01(j/2)2]2N(j)/]j2u0. At T50,
^Hc&

n of Eq. ~7! does not change; however, Eq.~8! for ^Hc&
s

changes due to (j/2)2N9(0), whereN9(0)5]2N(j)/]j2u0.
Assumingt' in Eqs.~7! and ~8! does not depend onf, we
obtain

d^Hc&/^Hc&
n.@8N~0!#21N9~0!D~0!2 ln@vc /D~0!#.

~16!

Note that this correction can have either sign depending
the sign of the second derivative. ForN9(0)/N(0)
;1/vc

2 , d^Hc&/^Hc&
n;x21.65, where x5vc /D(0), be-

cause ln(x)/x2.x21.65 when x@1. If N9(0)/N(0)
;1/(D(0)vc), then d^Hc&/^Hc&

n;x20.65; thus, d^Hc& is
considerable. For this to be the caseN9(0) needs to exhibit
variation on an energy scale of orderD rather thanvc . In a
realistic model a Taylor expansion aboutj50 may not be
accurate but our calculations serve to illustrate the m
point. Violation of the FGT sum rule of either sign can res
.

-

nt:

l
e

n

in
t

from an energy dependence in the in-plane electronic den
of statesN(j). The exact amount depends on details a
cannot be known without a specific knowledge of the ba
structure involved. In-plane dynamics gets reflected inc-axis
properties.

For coherent interlayer coupling between CuO2 planes the
superfluid density is equal to the missing optical weight;
FGT sum rule is satisfied. This applies even in more reali
model for YBCO around optimum doping such as the pla
chain model with two atoms per unit cell. On the other ha
incoherentc-axis coupling mediated through impurity sca
tering gives a sum rule which is always larger than one an
in disagreement with experiment. To get the sum rule to
less than one as is observed in underdoped YBCO and o
systems such as optimally doped Tl2201, it may be nec
sary to go to more exotic non-Fermi liquid pseudogap mo
for the in-plane motion as discussed recently by Ioffe a
Millis. 18 Their arguments, however, do not apply to op
mally doped Tl2201 because this system does not sho
pseudogap. Their pseudogap argument that leads to the
cellation ofG(k,v) andG0(k,v) contribution to the ratio of
missing area to superfluid density making it one half inste
of one for the preformed pair model was made for coher
c-axis coupling, but we find it also applies to the incohere
case.15 Another interesting model for the in-plane dynami
is the ‘‘mode’’ model of Normanet al.19 introduced from
consideration of ARPES data. In more conventional mod
a sum rule violation of either sign can also be obtained
there is a strong energy dependence to the density of s
near the Fermi surface on the scale of a few times the g
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