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Conductivity sum rule: Comparison of coherent and incoherentc-axis coupling
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We calculate thec-axis kinetic-energy difference between normal and superconducting state for coherent
and for incoherent interlayer coupling between Guianes. For coherent coupling the ratio of the missing
conductivity spectral weight to the superfluid density is equal to one and there is no violation of the conven-
tional sum rule, but for the incoherent case we find it is always greater than one whatever the nature of the
impurity potential may be. To model more explicitly YBau;O;_, around optimum doping, which is found
to obey the sum rule, we consider a plane-chain model and show that the sum rule still applies. A violation of
the sum rule of either sign is found even for coherent coupling when the in-plane density of electronic states
depends on energy on a scale of the order of the gap.

It has been proposed that the interlayer coupling along thdiscuss the possibility that the FGT sum rule is violated in
c axis of a high transition temperaturé) superconductor is the plane-plane case when the in-plane density of states de-
incoherent, and the electronic kinetic energy alongthgis ~ pends on energy even for coherent case.
changes when the system enters the superconducting state. The HamiltonianH for a cuprate superconductor with co-
Recently, Basowt al® have reported that there is a signifi- herentc-axis coupling isH =Hy+H,, whereH, describes a
cant discrepancy between the superfluid denitand the —d-wave superconductor in a plane aHd=ZX;,t, [¢1,Cizs
spectral weight missing from the real part of thexis con-  +Ci5,Ci1,] is @ coherent interlayer coupling due to the over-
ductivity Ny~ Ns=8/ *dw[ o}o(@) — 03,(w)], wherew is lap of electronic wave functions which is represented by
a cutoff frequency of the order of a bandwidth, in SeVeraltherefore, by coherent coupling we mean a tight-binding-like

. : oupling along thee axis. It will not be necessary to tregt
high-T, cuprate supercond_uc_tors_such as optimally _dope s a constant in what follows. It can depend on an angle in
T1,Ba,CuQ;..« (TI2201). This implies that the conventional yhe piane. For incoherent coupling the HamiltonianH
sum rule of Ferrel, Grover, and T|nkhatﬁG'I‘) (Ref. 6 is =3, V(G Ciawt ChuCity], WhereV, is an impurity scat-
ylolated. However, the spgctral discrepancy bepomes Van'SQéring potential, so that impurity scattering mediates the
ing for YBa,CuzOg g5 and dlsapp_ears for the optimally d(_)ped c-axis hopping and an impurity average is impliéd?
YBa;Cug0 95 (YBCO) crystal withT.=93 K as thec-axis In the presence of an external vector potertig) H. is

response become more coherent with increasing oxygemodified to H.(A,) by the phase factor exp(eA,) for
content’ Basovet al. also pointed out that there is no such C,Cizy and expieA,) for ¢5,Cir, . For the response to an
discrepancy in the in-plane response for any cuprate. Morgsyserna| fieldH,(A,) is expanded up to the second order of
over, for overdoped TI2201, the sum-rule discrepancy vana i, optain the currenji.= — SH (A,)/ 5A,=
Z C Cc Z z

) . . e/ =]ptiq, Where
ishes and a Drude-like peak develops in the conductivity for *_ . + + 2242

i =—ied>;,t,[C1,Ci2s—Cis,Ci1,] and =e“d“H A
T>T,..® Theses observations, therefore, suggest that for cc{,-\‘l’ 1L [Ci16Ci20 ™ CigCin] ld ¢z

h {interl ing in th ‘ ductors th ith d the interlayer spacing. In linear-response theory,
erent interiayer coupling in the cuprate superconductors ﬁc>=[—H+e2d2(Hc>]Az, wherell is the current-current
conventional sum rule is obeyed.

orrelation function associated wifly and(H,) is the per-

In this paper, we consider both coherent and inCOhereq?leration of j due toH,. The conductivity s (q,) is
c-axis coupling between Cuyplanes. For the coherent case given by d ¢ c\Ms

we find that the superfluid density remains equal to the miss®
ing optical spectral weight; in other words, it does not violate i
the FGT sum rule. The-axis kinetic energies in the normal oo(q,0)=—[11(q,0) —e?d*(H¢)]. 1)
and superconducting state have the same value. For incoher- w

entc-axis coupling the ratio of the missing area to the super- h bara f i
fluid density is always larger than one in disagreement Withln the Matsubara formalism,
some recent experiments. In YBCO the CuO chains play an

important role in the electrodynamics and at the optimal dop- 1(q,0)=2(ed)?T>, > t?

ing a plane-chain modt® is needed to be complete. Here o K

we use this model to investigate thexis conductivity sum ~ A ~ A

rule. An algebraic calculation of the electronic kinetic ener- XTr7G(k, ") 7oG(K, 0"+ w)], (2
gies is complicated and a numerical calculation is required

although it can be reduced a lot in a special case, in whicl"fmd
only the leading order in perturbation theory is kept. This
case is particularly interesting because it has been shown to _ 24t A ~ A

exhibit a pseudogap in theaxis conductivity!® Finally, we (He) ZTE(;' zk: TGk 0)mGkel,
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where; is the Pauli matrix in the spin space, aB¢k,») is ~ Where the integration range is limited by, and the density
the Green’s function in Nambu representation, namelyof states,N(&), is approximated by a constant valt0)
E(K,w)=—(i07o+ Era— Ale)/(wz+§k+A ) with £, the around the Fermi energy. Later, we will discuss the effect of

N(&) on(H.) and will note the possibility that the FGT sum
I h hich h _ ¢/ . ) .
:2 ?hinfug?z;?sy and the gap which has:,> symmetry rule may be violated even for coherenaxis coupling. Since

The c-axis conductivity sum rufet314of the system is ~ 9f(§)/9€=—5(¢) at zero tempegatureT(=O), (Ho)" turns
out to be—4N(O)Eka d¢/(2)t] . For a superconducting

2 (= state with superconducting Green’s functioB$k,») and
;fo dowore( @)= —€2d%(H,). @ e P g &)

We use the unit such that=c=kg=1 and set the volume
of the system to be unity. From the sum rule, the superfIU|d<H >s_4-|-2 E t2[G(K, )2~ F(K,w)?]
densitypg can be written as

e n s 242 s n 2_§2+AE
ps=8 | , doloi(w)=oi(w)]-4me dT(He)* (He)", :—4TE —M di(f)W
)
[ 2 2
where w. is the cutoff frequency for interband transitions =—4N(0)E f ___° tank(ﬂ _
thatH. does not account for. \/w +Ak 2T

Since the difference between the superfluid density and ®)
the missing spectral weight is proportional to the kinetic-

energy difference between normal and superconducting sta . s n
as seen in Eq5), it is necessary to calculatél.)’—(H,)" II(’:‘he difference betweefH.)® and(H.)" is of the order of

2. H H
to see if the FGT sum rule is violated by cohererxis (A(T)/@c)7 therefore, coherent-axis coupling does not
: violate the FGT sum rule as long as>A(0) even ift;
coupling. For the normal state, ; .
depends orp. Note that the difference is largestt 0 and
. 5 ) vanishes a3 —T,.
(He) :4T§w: Ek t7Go(k, )%, (6) The calculations for incoheretimpurity mediated c-axis
coupling proceed in the same way as before. Note that in
where Gy(k,w) is a normal-state Green’s function and  this case Jp=—iEdEiaVi[CﬂUCiza—Cﬁgcila] and jgq
may depend ork, and ¢=t_an71(k2y/kx) We assume a cy- =e?d?H/A,, and an impurity configuration average is re-
lindrical Fermi surface witht=k“/2m—u, whereu is @  quired. We derive the normalized missing spectral weight
chemical potential in the plane, and dawave gapAyx  (N,—Ng)/ps under assumption of a constant density of

=A(T)cos 2. Then, we obtain states and show that it is greater than one.
af(g) The penetration depth, can be calculated in two ways.
(H >n_42 J _tZJ dgN(f) Based on the Kramers-Kronig relation for the conductivity,
we obtain \¢, namely, 1/4r\2=lim,_ o[ Imo.(0,w)].

Alternatively, using Eq.(5) we can also calculate\,

= —4N(0)D f d_d)tftam(&), (7)  (=1Npy). Equate these two expressionsXof, then after
ks 2m 2T integration over energy we arrive the formula as follows:

w2

2 —
1 1§Jd¢kd¢plw¢k,¢p>l{1 \/w2+AE\/w2+AS
11 | ©
2 2

Ay
E fd¢kd¢p|v(¢k ép)|? Jo 2+Ak \/w2+A§

(Np—Ns)
Ps

The second term in Eq9) can easily be shown to be bigger c-axis coupling and less than one for the underdoped case.
than one half whatever the angular dependence of the impudro treat YBCO around optimum doping more realistically
rity potential V(¢ ,¢,) may be!® Thus the normalized we need to include the complications introduced by exis-
missing spectral weight is always greater than one. In aence of the chains along theaxis.

simple model of impurity scatterimgt! for which Penetration depthN\y,)) experiment® in YBCO have
IV(ék, bp)|?=|Vo|?+|V4|? cos 2p,cos 2p,, we found that shown that both, and\,, are linearT at a low temperature
(N,—Nsg)/ps=1.58. This incoherent coupling model, there- and that a considerable amount of the condensate resides on
fore, does not agree with recent findings. The sum rule is onthe chains. To treat this case we need to consider a plane-
for YBCO around optimum doping indicating coherent chain coupling model:l® We assume the hybridization of
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Fermi surfaces between plane and chain arising through cds independentas is the case for the previous coupling
herent coupling. For simplicity we also assume the gap in thenode); however, it is possible in the present model because
chain has ad-wave symmetry and its magnitude is of the of the hybridization through the chain between the two Fermi
order of that in the plane. The Hamiltonian for a coupledsurfaces of plane and chain. Introducing a unitary métkix

plane-chain system is H=Ekég’ﬁkék, where (AZ,(+ which diagonalizes ﬁk, one can show Gij(k,w)
=(Ciy; .Ci1-k; ,C3¢; ,C2-x|) and =37 UimUnf/(io—Ey), whereEy,=*E. if Aj=Ay.
(H¢) becomes complicated and the energy dispersion in
i —Au tky) 0 the chain is quite different from that in the plane so that a
A —Ay — & 0 —t(K,) numerical calculation is required to see if the difference be-
h.= , (10  tween(H.)® and(H.)" is negligible. However, sincég, in
t(kz) 0 Sk —Ax Eq. (13) is assumed small we may expafid.) in terms of
0 —t(ky) —Ay  —&x to and keep only the leading order, Whicht'@s This case

includes only interband Hamiltonian but is still very interest-
ing as it can exhibit @-axis pseudogaf. In this approxima-
tion with A, =A,.=A, and for u'=pu as a special case,
énH o)° becomes

wheret(k,) = —tg cosk,d/2) for coherent coupling between
plane and chainé,,) is the energy dispersion in the plane
(chain, andA, ) is a gap of the planéchain. We point out
here that the conclusion we make later does not depends
the simple form oft(k,), and thatA,,) and &;(,y depend
only onk, andk, .

The Hamiltonian of the plane-chain coupling model is
also decomposed into two partd=Hy+H.. Hj is for the
superconductivity in the plane-chain coupling system and it

w?— 16+ A
(@ +E+AD (0 +E+AF)
(14
Note that(H.)® in Eq. (14) is almost same a&H.)® in Eq.

(He)s=—4T> X t(k,)?
w k

eigenvalues can be reduced toE.==* \/52i+A2k, where
e. are normal-state energy dispersiols =(&;+ &5)/2
= (&~ )24+ t(Ky)? with Ay =A,=A for simplicity.

(8) for the simple coherent coupling case except that now
&,# &, andd/2 appears rather thahin t(k,). One, therefore,
may expect thab(H ) will vanish to order A(T)/wg)?. Itis

Extensive work on this Hamiltonian can be found in Ref. 9. pvious thats(H.) is identically zero along the nodal lines,
In order to calculate the linear response of the system Qg 5(H.) is largest along the antinodal directions. Since

the external electromagnetic field, we modii, with the

phase factor mentioned before and follow the same proceyq, £,= € sin(@)2— u cos@)?. If ¢=ml2, then &,=¢&

dure to derive the current=j,+j4. Then, we obtain

11

ed A A oa
ip Tto ; sin(k,d/2)C, 01® 7oCy,

whered/2 is the distance between a plane and a chaincand
is a Pauli matrix in the plane-chain space, afg
=e?(d/2)’H A,, where H,=3t(k,)C. 01®73C. The
c-axis conductivity fog=0, o(0,0), of the sysyem is also
derived to be 0(0,0)=(i/w)[11(0,0) —e*(d/2)%(H)],
where

[1(0,w)=(edty/2)2T>, ; sir?(k,d/2)

XTH 010 756(K,0") 0@ 7,G(k, 0’ + )],
(12)

and
(Ho)=t2T> }k‘, co(k,d/2) Tr{ o, ® 73G(k, w) oy

@ 136(K,0)], (13

with G(k,7) = —(T[C(7)C; (0)]), which is a (4x4) ma-
trix. The Green’s functionG(k,w) is given by G(k,®)
=(iw—hy) L. We emphasize that the Hamiltonian in this

1=K¥2m—p and &=k/2m—pu, we introduce £=¢;,
therefore, it can be seen thétH.),— ., is of the order of
(Alwg)?. For =0, &=—pu and it can be shown that

o
Mz tan
§2

- t
(@ g %

M
&-

(HG-o=2NO)F 1] J w;dg{

(15

Now, the leading order ob(H.),—o changes to &/w)?. It
is possible to show that for an arbitrag; as long asu and
w>A, 6H.), is negligible, and consequently, the FGT
sum rule is not violated in the plane-chain coupling model.
In a numerical calculation for the general case without the
above simplification, we have computed(H.)/(H.)®,
which is the fractional change in kinetic energy. We have
takené&,= k§/2m— ' for the chain energy dispersion, where
p' is a chemical potential in the chain. For simplicity, we
also assumeu’ = u. It has been shown thai’ — u(<u)
may correspond to the pseudogap seen ircthris response
of overdoped YBCO® however, it makes no difference in
the numerical evaluation ob(H.)/(H.)®. We chooseT
=12 K, A(T)=20 meV,t;=2 meV, ©=500 meV andw.
=400 meV. We found thas(H.)/(H.)® becomes more neg-
ligible as we increase the summation range of the Matsubara
frequencyw. For |w|<2007T, &(H:)/(H.)°=8.8x10 3,

model is quite different from the usual macroscopic tunnel-ang for|w|<20007T, S(H)/(H)5=5.4x103.

ing Hamiltonian!” for which, for example, G,5(k,7)

One may consider a plane-plane couplittyough a

= —<7[C1KT(T)C;M(O)]> is not allowed because each layer chain In order to investigate the-axis kinetic energy for
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such a coupling, one needs to repldgeandA, with ¢, and  from an energy dependence in the in-plane electronic density
A4, respectively. For the hopping amplitudgk,) can be of statesN(§). The exact amount depends on details and
simply changed ta(k,)? because the plane-chain and chain-cannot be known without a specific knowledge of the band
plane distances are the same and equdl2o0 Then, one can structure involved. In-plane dynamics gets reflected-axis
algebraically show thas(H_) is as negligible as before. It is properties.
also possible to see thaf{H.) has a symmetry with respect  For coherent interlayer coupling between Guglanes the
to &, & andA 1 A,; in other words 8(H.) for thechain-  superfluid density is equal to the missing optical weight; the
plane coupling is the same as that for tpéane-chaincou- FGT sum rule is satisfied. This applies even in more realistic
pling. Therefore, it implies that(H.) along thec axis is  model for YBCO around optimum doping such as the plane-
conserved for coherent coupling. chain model with two atoms per unit cell. On the other hand
So far we have taken the density of states as a constariicoherentc-axis coupling mediated through impurity scat-
N(£&)=N(0) (—w.s=£&<w.) and concluded that the differ- tering gives a sum rule which is always larger than one and is
ence of thec-axis electronic kinetic energies between normalin disagreement with experiment. To get the sum rule to be
and supercondcuting state is negligible. Now we would likeless than one as is observed in underdoped YBCO and other
to consider the effect oi(&) on the sum rule when it is a Systems such as optimally doped TI2201, it may be neces-
function of ¢ to illustrate possible changes. If it varies sary to go to more exotic non-Fermi liquid pseudogap model
strongly with &, it clearly cannot be approximated by(0).  for the in-plane motion as discussed recently by loffe and
We taylor expandN(&) up to &% near é=0. Then, N(&) Millis. *® Their arguments, however, do not apply to opti-
=N(0)+ EIN(E)/ 9&| o+ (£12)?0°N(&)19€,. At T=0, mally doped TI2201 because this system does not show a
(Ho)" of Eq. (7) does not change; however, E8) for (H.)® pseudogap. Their pseudogap argument that leads to the can-
changes due to£(2)?N"(0), whereN"(0)=8°N(£&)/3&?|,. cellation ofG(k,w) andGy(k,w) contribution to the ratio of
Assumingt, in Egs.(7) and(8) does not depend o, we missing area to superfluid density making it one half instead

obtain of one for the preformed pair model was made for coherent
c-axis coupling, but we find it also applies to the incoherent
S(H)I(H)"=[8N(0)] IN"(0)A(0)2In[w/A(0)]. case™® Another interesting model for the in-plane dynamics

(16)  is the “mode” model of Normaret al'® introduced from
Note that this correction can have either sign depending ofiPnSideration of ARPES data. In more conventional models
the sign of the second derivative. FON”(0)/N(O) a sum rule violation of either sign can also be obtained if
~ 12 SHYI(H)"~x 185 where x=w./A(0), be- there is a strong energy dependence to the density of states
c? C C [ [l

cause Ing/x%=x"1% when x>1. If N"(0)/N(0) near the Fermi surface on the scale of a few times the gap.

~1(A(0)w.), then S(HM(H)"~x"%55 thus, 8(H.) is

considerable. For this to be the cas$®0) needs to exhibit W.K. is grateful to N. D. Whelan and C. Kallin for useful
variation on an energy scale of orderrather tharw,. Ina  discussions, and J.P.C. to D. Basov for discussions. This
realistic model a Taylor expansion abaf#0 may not be work was supported in part by the Natural Sciences and En-
accurate but our calculations serve to illustrate the maigineering Research Council of Cana@NSERQ and by the
point. Violation of the FGT sum rule of either sign can result Canadian Institute for Advanced ReseafCHAR).
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