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Internal transitions of confined magnetoexcitons in GaAs:Ga,Al)As quantum wells
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Internal transitions of confined magnetoexcitons in G&&a;Al)As quantum wells have been theoretically
studied under magnetic fields applied along the growth direction. Results are obtained within the effective-
mass approximation and by using a variational procedure. Calculations are performed for transitions from
1s-like to 2p-, 3p-, and 4o-like magnetoexciton states as functions of the applied magnetic field, and for
several well widths. Theoretical results for the far-infrared intraexcitonic transition energies are then compared
with recent experimental measurements using optically detected resonance techniques.

In the last two decades there has been considerable inteénr GaAs{Ga, Al) As QW’s. In particular, we are interested
est in the study of excitonic statef in low-dimensional in evaluating the internal magnetoexciton transitions in
semiconductor heterostructures. In particular, magnetoGaAs-Gg-AlgAs QW’s in order to compare with the ex-
optical properties have been studied in both type-I andoerimental data by @neetal,> Salib et al.® and Nickel
type-ll semiconductor superlattices by means of absorptiorgt al’®
photoluminescence, magnetoreflectance, and other tech- We consider exciton states in a GaAs QW of width
niques. Experimental results have shown that excitons hav@urrounded by Ga,Al,As barriers in the presence of a
discrete internal energy levels, behaving essentially as “atMagnetic field parallel to the growth direction. We work in
oms in semiconductors,” and the transition energies of excithe effective-mass approximation, and assume a parabolic

tons in semiconductor superlattices are found in the fardispersion for electrons and a four band model for holes,
infrared region. although, for simplicity, we discard the off-diagonal ele-

Recently, @rne et al® have investigated the terahertz Ments in the hole Hamiltonian, i.e., effects due to hole sub-

(THz) dynamics of magnetoexcitons in GaGa, Al) As band mixing are not included in the calculation. In addition,
undoped multiple quantum wel@QW’s) under magnetic We have assumed the GaAs values for the conduction- and
fields applied perpendicular to the well interfaces, and obVvalence-band mass parameters in both GaAs and
served resonant far-infraréBIR) absorption by the confined Ga&-xAlxAs, and neglected effects due to the small differ-
magnetoexcitons. The dominant resonance irence in the dielectric constant of well and barrier materials,
GaAs-Gag Alg sAs MQW's (with well and barrier widths of 1-€- image-charge effgcts are not considered and the
100 and 150 A, respectivelyvas assigned to thest>2p, electron-hole Coulomb interaction is assumed to be screened
intraexcitonic transition of the heavy-hole exciton. The ab-Py the GaAs static dielectric constant. The values of the
sorption feature was found to persist even when the F|Fpotent|al—well barriers/, andV, are determined from the Al
electric field is comparable to the electric field that binds thefoncentration and assumed to be 60 and 40% of the total
exciton. Similar results were obtained by Saéibal® and ~ €nergy-band-gap discontinuity, respectivelyloreover, for
Nickel et al”® who performed a detailed optically detected @ €xciton confined in a semiconductor QW, we take the
resonancODR) experimental study of internal transitions €Xciton envelope wave function as proportional  to
of confined magnetoexcitons in two GaAs{gGAlyAs (€€ R/VS) ye(p.ze,2y), whereS is the transversal area of
MQW Structureile'A We”/lSO-A barrier, and SO-A well/ the QW’ K is the exciton in-p]ane wave Vectcﬁ, is thexy

150-A barriey, with several resonances assigned o 1 gjative coordinate, ang is the in-plane coordinate of the
—2p., 3p,, and 4, internal excitonic transitions. exciton center of mass. One may write
In this work we are concerned with a theoretical study,

within the effective-mass approximation and following a
variational procedure, of the properties of magnetoexcitons Pe(p,26,2n) =To(Ze) Tr(zn) Pe(p, 26, 2h), (1)
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wheref, andf,, are thez part of the QW electron and hole 550 — o iton ' T
wave functions, respectively, in the absence of the Coulomb (i) Ih exclton )
potential, and assume that the relative motion of carriers and 5
) p, (+1/2, +1/2) ..
of the center of mass are independent. The heavy—h]ﬂe ( 450 |
s . N . N : ~ 4501 2p (1/2,-1/2) -
=+3) and light-hole §;= = 3) exciton Hamiltonians, with ‘s T
energies—measured with respect to the band gap of the < p.(+1/2,+ ) |
GaAs bulk material—expressed in units of rydberdg, ( e
=mye*/24?), lengths in hydrogen Bohr radii af g 3501 .
=%2/mye?), and magnetic fields in terms of the dimension- 2 0p (Af2,-112)
less quantityy=e#B/2m,cR,, may be taken &s 18 (4172, 41/2) o |
, R s (172, -1/2)
HES = — 0 - +V ﬁ-l - +V,(zp) + (y1+ Yoz 46 wow
32" " 072 o(Ze) — i o(Zn) +(y1t 72 magnetic field (T)
400 . : :
, vp? (ii) hh exciton FapEr o
+my/me)| = Vi+ 7 +(—y1— 7 2p, (+1/2,4312)." 1@
2p, (-1/2, -3/2)‘_.‘-'“",.%?,\
/ L 3 27 2 Oe ~ 300 }.
+mg/m + +— - =, g
o/me) yL, K 4 qly 8|re_rh| 2 Y E,
ey
2 5|
2 2000
exc Mo 7 FV(z2) 1 g TV, (20)+ (
<12~ " 52 T VelZe) T =2 o2 Z)+(n—y Al2, -
+1/2 me 825 c\%e mh 172 &Zﬁ v 1 2 1s (-1/2, -3/2)
, ¥p? = 4 6 8 10
+mo/me)| —Vi+ 4 t(=rnt7r magnetic field (T)
1 2 Je FIG. 1. Calculated variational energies of thednd 2p.. states
+mg/mg) yL, = | k+ 297~ mij ¥, (3)  of the light-hole(i) and heavy-holdii) magnetoexcitons as func-
e 'h tions of the growth-direction applied magnetic field for an
with =125-A GaAs-Gg;Aly30As QW. Magnetoexciton energy states
are labeled as/m(J¢,J") which correspond to an/m-like ex-
9 citon state composed of & electron(with J¢=+3) and aJ!! hole
LZ_% (4) (with J;‘= + % + %). Vertical arrows indicate spin-conserving mag-

netoexciton $—2p.. transition energies.
as the operator for the orbital angular momentum in zhe

direction, and which correspond to anim-like exciton state composed of a
J¢ electron (with J==+12) and aJ hole (with J¢=+1,
? 19 1 & + 3y
Vie ot —+ 5 — (5) 2 - .
P 9p2  pap plig We have performed variational calculations for heavy-

_ _ _ . ("= +32) and light-hole (7= + %) magnetoexciton states in
is the two-dlmgnsmnal Laplac_lan in the .QW plane. TheGaAs-G@_7AIO_3As QW's and compare theoretical results
gaAs conduction-band effective mass is taken m@s  ith recent infraexcitonic experimental data obtained via op-
=0.067m, (wherem, is the free-electron maks tically detected resonant technique& One should note that

UmEd2— ., o 6 actual measurements are for GaAs;&d ;AS superlattices
Myh =717 272, 6) and, for simplicity, we have ignored tunneling effects and
N performed calculations for singisolatedGaAs-Gg ;Al g /AS
1img Y%= y1+2y,, (7) QWss.
the Luttinge? valence-band parametéfsare taken asy, The growth-direction magnetic-field dependence of the 1

=7.36, y,=2.57, k=1.2, q=0.04, and theg factor of the and 2. light- and heavy-hole magnetoexciton variational

conduction-band electrérasg.= — 0.44. For simplicity, we energies are displayed in Fig. 1, in the case of lan

consider orthogonalizé8variational wave functions, i.e., we =125-A GaA_S'GQWAIO-WA‘S_ QW. '_I'here, we _also indicate
take (see arrows in Fig. )1possible spin-conservingst-2p-.

intraexcitonic transition energies. In that respect, if one looks
5.2.,2)=p™ exp(ime)P,, (r)exp —\. ¢ 8 at the light-hole spin-conserving intraexcitonic transitions
Pe(p.Ze,2n)=p'™ eXPiM)Pp (r)exp(—Np ) (8) such as & (—2.—1) -2p (=3 —3) or 1s (43, +1)

in Eq. (1), where theP, (r), with r=p%+(ze—2z,)?, are —2p_ (+3,+3), for example, both transitions have the
hydrogeniclike polynomial functions for exciton states with same energy, as one would expect from the spin-dependence
principal quantum number and orbital quantum numbéy  of the Hamiltonian[cf. Egs. (2) and (3)]. Although not
and the\, | are variational parameters. In what follows, shown in Fig. 1, we have also performed calculations for the
magnetoexciton energy states are Iabelednaa(.]s,.]*z‘) 3p- light- and heavy-hole magnetoexciton states inlLan
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FIG. 2. Light-hole (dashed curvgs and heavy-hole (full FIG. 3. Light-hole and heavy-hole spin-conserving—np..
curves spin-conserving 4—2p.. (i) and 1s—3p.. (i) theoretical (n=2,3,4) theoretical magnetoexciton transition energiesLin
magnetoexciton  transition  energies in anL=125-A =80A andL=100A (ii) GaAs-Gg Al g3As QW's as functions

GaAs-Ga 7oAl 30As QW as functions of the growth-direction ap- of the growth-direction applied magnetic field. Also shown are the
plied magnetic field. Also shown are the experimental results ofexperimental results of Salib et éRef. 6 and Gerneet al. (Ref. 5.
Nickel et al. (Refs. 7 and 8

o —4p light- and heavy-hole intraexcitonic transition energies
=125-A GaAs-Gg-Alg3As QW. The magnetic-field de- for L=80- and 100-A GaAs-GgAlysAs QW's are dis-

pendence of the spin-conserving intramagnetoexciton lightplayed in Fig. 3 in comparison with experimental measure-
and heavy-hole 4—2p. and 1s—3p.. transition energies ments by Salitet al® and Grneet al,’ respectively. Varia-
are shown in Fig. 2 for aih =125-A GaAs-Gg;AlgsAS  tional theoretical results for thesi>2p. intraexcitonic
QW and compared with the experimental results by Nickelight- (3= + 1) and heavy-holeI}= + £) transitions are in

7.8 . . . A i
etal.”” As can be seen from Fig. @), the variational trl?eo- excellent agreement with the experimental data for Hoth
retical results for the 4—2p_ intraexcitonic light- 0,= =80- and 100-A GaAs-GaAlysAs QW’s. The two up-
+1) and heavy-hole =+ %) transitions(curvesb andd,  triangle experimental transitions by Saébal® are in good
respectively are in quite good agreement WI}Q the experi-agreement with the theoreticals4>3p_ light-hole (3"=
mental datgset of full squaresby Nickelet al,”” and sug-  + 1) intraexcitonic transitions. On the other hand, the assign-
gest that these observed intraexcitonic transitions occur ifhent of the two full diamond experimental features to spe-
both heavy- and light-hole magnetoexcitons. This contrastgific intraexcitonic transitions is uncertain, in our opinion,

with the assignment by Saliét al° and Nickelet al.”®of the  and would certainly require further experimental and theoret-
observedsee set of full squargintraexcitonic transitions to  jcal work.

nearly degeneratest-2p. heavy-hole transitions. Also,  To conclude, we have made a systematic study ®f 1
theoretical 5—2p_ intraexcitonic light- OL‘: +1) and —2p+, 1s—3p., and Is—4p. light- and heavy-hole
heavy-hole Q*Z‘=i§) transitions(curvesa and c, respec- magnetoexcitonic transition energies in GaAs;G#l,As
tively) reproduce the qualitative features of the magnetic-QW’s within a variational procedure in the effective-mass
field dependence of the experimental data by Niekedl.”®  approximation. Although some of the theoretical magnetoex-
[see full up and down triangles in Fig.(B], although quan- citon transition energies agree very well with experimental
titative agreement is clearly not good. Theoretical curves aneheasurements, other calculated results only reproduce quali-
open experimentaP symbols in Fig. 2(ii) correspond to tative features and quantitative agreement is not good. We
1s—3p- light- and heavy-hole intraexcitonic transition en- believe that effects due to hole subband mixing, which are
ergies, and again only qualitative features are loosely repraaot included in the present work, should be taken into ac-
duced. count for a proper quantitative understanding of the experi-
Theoretical results for the sk=2p, 1s—3p, and Is  mental data. Also, several theoretically possible magnetoex-
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