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Bloch electrons in electric and magnetic fields
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We investigate Bloch electrons in two dimensions subject to constant electric and magnetic fields. The
model that results from our pursuit is governed by a finite difference equation with a quasienergy spectrum that
interpolates between a butterflylike structure and a Stark ladder structure. These findings ensued from the use
of electric and magnetic translation operators.
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We consider the problem of an electron moving in a tw
dimensional lattice in the presence of applied electric a
magnetic fields. We refer to this as the two-dimensio
electric-magnetic Bloch problem~EMB!. The corresponding
magnetic Bloch system~MB! has a long and rich history. An
important early contribution to the analysis of the symm
tries of the MB problem was made by Zak,1 who worked out
the representation theory of the group of magnetic tran
tions. The renowned Harper equation was derived assum
a tight-binding approximation,2 and Rauh derived a dua
Harper equation3 in the strong magnetic-field limit. The stud
ies of Hofstadter and others4 of the Harper equation spectrum
have since created an unceasing interest in the problem
cause of the beautiful self-similar structure of the butter
spectrum.5 A remarkable experimental realization of th
Hofstadter butterfly was recently achieved, not for an el
tron system, but in the transmission of microwaves throu
an array of scatters inside a wave guide.6 The symmetries of
the EMB problem were analyzed some time ago by Ash
and Miller,7 who constructed the group of electric-magne
translation operators, and worked out their irreducible rep
sentations. In this paper we utilize the properties of
electric-magnetic operators in order to derive a finite diff
ence equation that governs the dynamics of the EMB pr
lem. The numerical solution of this equation displays an
teresting pattern which interpolates between a butterfly
structure and a Stark ladder structure.

For the purposes of our research we consider the mo
of an electron in a two-dimensional periodic potential, su
ject to a uniform magnetic fieldB perpendicular to the plan
and to a constant electric fieldEW , lying on the plane accord
ing to EW 5E(cosu,sinu) with u the angle betweenEW and the
lattice x1 axis. The dynamics of the electron is governed
a time-dependent Schro¨dinger equation that for convenienc
is written as

SC~ t,rW !5Fp02
p1

21p2
2

2m
2U~rW !GC~ t,rW !50, ~1!

wherep05p01A0 and pW 5pW 1AW , with the momentum op-
erator pm5@ i ]/]t,2 i¹W #. Units have been chosen here
which \5c5e51. Where necessary we use a covariant
PRB 610163-1829/2000/61~15!/9879~4!/$15.00
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tation with space-time three vectorsxm5(t,rW); m50,1,2.
Equation~1! can be considered as an eigenvalue equation
the operatorS with eigenvalue 0. We adopt a gaug
independent procedure, thus the gauge potential is writte

A05~b21!rW•EW ,

A15~a21/2!Bx22bE1t,

A25~a11/2!Bx12bE2t. ~2!

This potential yields the correct background fields indep
dent to parametersa andb. A general potential can be rep
resented by its Fourier decomposition, however, for simp
ity we shall consider the potential

U~x1 ,x2!5U1 cos~2px1 /a!1U2 cos~2px2 /a!. ~3!

Let (t,rW)→(t1t,rW1RW ) be a uniform translation in spac
and time, wheret is an arbitrary time andRW is a lattice
vector. The classical equations of motion remain invari
under these transformations, whereas the Schro¨dinger equa-
tion does not, the reason being the space and time de
dence of the gauge potentials. Nevertheless, quantum
namics of the system remain invariant under the combi
action of space-time translations and gauge transformati
Following Ashby and Miller7 we define the electric and mag
netic translation operators

T0~t!5exp~2 i tO0!, Tj~a!5exp~ iaOj !, ~4!

where j 51,2 and the symmetry generators are written
new covariant derivativesOm5pm1Am , with the compo-
nents of the gauge potentialsAm given by

A05brW•EW ,

A15~a11/2!Bx22~b21!E1t,

A25~a21/2!Bx12~b21!E2t. ~5!

The symmetry operators in Eq.~4! commute with the opera
tor S in Eq. ~1!. The electric-magnetic operators given b
Ashby and Miller include simultaneous space and time tra
lations; we deemed it more convenient to separate the e
9879 ©2000 The American Physical Society
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of the time evolution generated by theT0 to that of the space
translations generated byTj . The following commutators
can be worked out with the previous expressions

@p0 ,p j #52 iE j , @p1 ,p2#52 iB,

@O0 ,Oj #5 iE j , @O1 ,O2#5 iB, ~6!

with all other commutators being zero. The commutators
the second line of Eq.~6! are part of the more general Li
algebra of the magnetic-electric Euclidean two-dimensio
group.8 Schrödinger’s equation and the symmetry operato
are expressed in terms of covariant derivativespm andOm ,
respectively. A dual situation in which the roles ofpm and
Om are interchanged, could be considered. According to E
~2!, ~5!, and~6!, the dual problem corresponds to a simul
neous reverse in the directions ofB andEW .

The symmetry operators in Eq.~4! commute withS but
they do not commute with each other. We follow a three s
method to find a set of simultaneously commuting symme
operators.~1! First we consider a frame rotated at angleu,
with the axis along the longitudinal and transverse direct
relative to the electric field. An orthonormal bas
for this frame is given by êL5(cosu,sinu) and êT
5(2sinu,cosu). We assume a particular orientation of th
electric field, for which the following condition holds

r[tanu5
E2

E1
5

m2

m1
, ~7!

wherem1 andm2 are relatively prime integers. This cond
tion insures that spatial periodicity is also found both alo
the transverse and the longitudinal directions. Hence, we
fine a rotated lattice spanned by vectorsbW L5bêL and bW T

5bêT whereb5aAm1
21m2

2. The spatial components of th

symmetry generatorOW are projected along the longitudina
and transverse directions :OL5êL•OW and OT5êT•OW . It is
readily verified that@O0 , OT#50.

~2! For the rotated lattice, we regard the number of fl
quanta per unit cell to be a rational numberp/q, that is

f[
Bb2

2p
5

p

q
. ~8!

We can then define the extended supperlattice. A recta
made ofq adjacent lattice cells of sideb contains an intege
number of flux quanta. The basis vectors of the superlat
are chosen asqbW L and bW T . Under these conditions the lon
gitudinal and transverse magnetic translationsTL(qb)
5exp(iqbOL) and TT(b)5exp(ibOT) define commuting
symmetries under displacementsqbW L andbW T .

~3! We observe thatT0 and TL(qb) commute withTT .
Yet they fail to commute with each other:T0(t)TL(qb)
5TL(qb)T0(t)exp(2iqbtE). However the operatorsT0 and
TL(qb) will commute with one another by restricting time
in the evolution operator, to discrete values with period

t05
2p

qbE
5

1

p S b

vd
D , ~9!
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wherevd5E/B and we utilized Eq.~8! to write the second
equality.b/vd is the period of time it takes an electron wit
drift velocity vd to travel between lattice points. Hence, th
meaning of Eq.~9! is that the ratio of the Stark ladder spa
ing (bE) to the Brillouin zone for the quasienergy (2pvd /b)
is given by the rational numberf5p/q.

We henceforth consider that the three conditions~7!, ~8!,
and ~9! hold simultaneously. In this case the three EM
operators—the electric evolutionT0[T0(t0) and the mag-
netic translationsTL[TL(qb), and TT[TT(b)—form a set
of mutually commuting symmetry operators. In addition
the symmetry operators, we can define the energy transla
operator9

TE5expS 2 i
2p

t0
t D , ~10!

that produces a finite translation in energy by 2p/t0
[qbE. TE commutes with the three symmetry operators b
not with S. Its eigenfunction exp(2iqbEj) defines a quasi-
time j modulot0.

Having definedT0 , TL , andTT that commute with each
other and that also commute withS, we can look for solu-
tions of the Schro¨dinger equation characterized by th
quasienergyE and quasimomentumkL andkT quantum num-
bers according to

T0C5exp~2 i tE!c,

TLC5exp~ ikLqb!c,

TTC5exp~ ikTb!c. ~11!

In particular, the previous relations imply that if a simp
space-time translation acts on the wave function, the la
satisfy the generalized Bloch conditions

C~ t1t0 ,rW !5exp$2 i t0„E1A0~ t,rW !…%C~ t,rW !,

C~ t,rW1qbW L!5exp$ iqb„kL1AL~ t,rW !…%C~ t,rW !,

C~ t,rW1bW T!5exp$ ib„kT1AT~ t,rW !…%C~ t,rW !. ~12!

We now find convenient to apply a transformation to ne
variables given by

X052t, P05O0 ,

X15pT1m
E

B
, P15pL /B,

X25OL /B, P25OT1m
E

B
, ~13!

that satisfy@Xm ,Pm#5 i for m50,1,2. The explicit relation
between (Xm , Pm) and (xm ,pm) can be worked out using
the definition of pm , and Om and Eqs.~2! and ~5!. The
transformation is not canonical because of commuta
@P0 ,X2#5 iE/B, all others being zero. Applied to Eq.~1! the
transformation yields for the Schro¨dinger equation
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S P01
E

B
P2DC5FB2P1

21X1
2

2m
1

mvd
2

2
1U~x1 ,x2!GC,

~14!

where x1 and x2 have to be written in terms of the ne
variables as

x1

a
5

m2

b
~P12BX22EX0!1

m1

b
~BX12P2!,

x2

a
52

m1

b
~P12BX22EX0!1

m2

b
~BX12P2!. ~15!

For U50 the dynamics is cyclic in coordinatesX2 andX0.
The appearance of the time variableX0 introduced by the
periodic potential suggests that an approximation is requ
to solve the problem~e.g., adiabatic approximation!. How-
ever, as we show below the use of an appropri
representation makes such an approximation unneces
We adopt the P0 ,P1 ,P2 representation CE,kL ,kT

(P)

5^P0 ,P1 ,P2uE,kL ,kT& with quasienergyE and quasimo-
mentumkL and kT . In this representation theXm operators
act asX05 i ]/]P0 , X15 i ]/]P1, and X252 i (E/B)]/]P0
1 i ]/]P2. It is readily clear that the substitution of thes
relations in Eq.~15! eliminates the]/]P0 contribution. For
finding solutions of Eq.~14! we split the phase spac
(Xm ,Pm) in the (X1 ,P1) and the (X0 ,P0 ;X2 ,P2) variables.
For the first set of variables we choose a set of basis fu
tions in P1 given by the Landau wave functionsxn(P1);
these functions yield exact eigenvalues of the kinetic par
the right-hand side of Eq.~14!: (n11/2)vc , with the cyclo-
tron frequencyvc5B/m. For the subspace generated by t
variables (X0 ,P0 ;X2 ,P2), we notice that the four operator
(T 0

i , T L
j , T T

k , T E
l ) with all possible integer values o

( i , j ,k,l ) form a complete set of operators. The demons
tion follows similar steps as those presented by Zak in R
10. Hence a complete set of functions, for the subsp
(X0 ,P0 ;X2 ,P2), is provided by the eigenfunctions of th
operators (T 0

i , T L
j , T T

k , T E
l ), we write them down and verify

their correctness:

fkL ,kT ,e,j~P0 ,P2!5(
l ,m

cmei jsbE(pl2m)ei (2p/b)mkL

3d~P02E2 lqbE!

3dS P22kT1
2p

b
mD , ~16!

where we defineds[1/f5q/p. It is easy to check that this
function automatically satisfies the first and third EMB tra
lations in Eqs.~11!, whereas the second equation is satisfi
by imposing the periodicity conditioncm1p5cm . In addi-
tion, f is also eigenfuction of the energy translation opera
Eq. ~10! with eigenvalue exp(2iqbEj). The wave functionC
is then expanded in terms ofxn andfkL ,kT ,e,j . The operator

TE is not a symmetry of the problem, so we have to multip
f by a coefficientdj and add over all possible values ofj;
the resulting wave function can be recast as
d

e
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CkL ,kT ,e~P!5 (
n,l ,m

anxn~P1!hm2plcmei (2p/b)mkL

3d~P02E2 lqbE!dS P22kT1
2p

b
mD ,

~17!

where hm2pl5(jdje
i jsbE(pl2m). Of particular interest are

the following Bloch conditions obeyed byC with respect to
the eigenvalues:

C~E,kL1bB,kT!5C~E,kL ,kT!,

C~E,kL ,kT1qbB!5eiqbkLC~E1qbE,kL ,kT!. ~18!

These conditions are quite different from those satisfied
the usual Bloch and magnetic Bloch functions;1 the second
one is not periodic, because in addition to the Bloch ph
eiqbkL the kT→kT1qb shift leads to the change in energ
E→E1qbE.

Based on wave function~17! it is possible to work out a
complete solution of the EMB problem, similar to what h
been achieved for the magnetic-Bloch problem.11 This will
be analyzed elsewhere.12 Nevertheless, the approximated s
lution wherein the coupling between different Landau lev
is neglected is interesting enough, and probably more illu
nating. Within this approximation the Landau numbern is
also a conserved quantum number and the substitution
Eqs.~17! in ~14! yields the secular equation

S D2
Eb

2p
SmD c̃m

5 f n~s!@U1l~e2 im1Smc̃m1m2
1eim1Smc̃m2m2

!

1U2l* ~eim2Smc̃m1m1
1e2 im2Smc̃m2m1

!#, ~19!

where we defined c̃m5ei (2p/b)mkLhmcm , Sm5(2pm
2kTb)s, l5exp$2ipm1m2s%, f n(s)5e2ps/2Ln(ps) and
Ln are the Laguerre polynomials. The quasienergyE is re-
lated to the eigenvalueD according to E5(n11/2)vc

1mvd
2/21D.

The dynamics of the system is then described by Eq.~19!,
a finite difference equation with distant neighbor couplin
m1 andm2, which also includes a linear term proportional
EW . This equation generalizes Harper’s equation to include
effect of an electric field of arbitrary intensity. If the electr
field is switched off, it can be setm151, m250 in which
case Eq.~19! reduces to Harper’s equation.

We present results for particular cases when the elec
field is aligned along the axis of the original lattice~i.e.,
m151, m250). It is known that the experimental observ
tion of the butterfly spectrum could possibly be achieved
lateral surface superlattices,4,11 given that a value fors;1
can be obtained for feasible magnetic fields, due to the la
dimensions of the unit cell. Hence we select the followi
values:a;100 nm,U0[U15U250.5 meV,m50.07me ,
and E50.05 V / cm, which can be satisfied in curre
experiments.13 For these values,s51 corresponds to a mag
netic field of 10T, henceU0 /vc;0.05 and the condition
required for weak periodic potential is satisfied. Figures
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and 2 show plots for the scaledD spectrum as function ofs.
We recall that forEW 50 the spectrum forD/@U0f n(s)# is
invariant under the substitutions→s1N with N an integer.

In Fig. 1 for the lowest Landau level we observe that
a strong magnetic field the Hofstadter butterfly is clea
shown fors in the interval@0,1#. However, as the magneti
field decreases (s increases!, some of the fine-grained struc
tures of the spectrum are smeared by the effect of the ele
field. A weak distorted replica of the butterfly is still ob
served fors in the interval@1,2#. Finally, for bigger values
of s, the spectrum is strongly distorted by the electric fie
and the butterfly ‘‘flies away.’’ At this limit the effect of the
periodic potential is negligible and the spectrum consists
equally spaced levels with separationsEb, i.e., a Stark lad-

FIG. 1. Quasienergy spectrum for the lowest Landau level. T
energy axis is rescaled toD/@U0f 0(s)#, the parameters selected a
a;100 nm, U050.5 meV, m50.07me , E50.05V/cm andkT

50.
.

h

r

ric

f

der. For then52 Landau level~Fig. 2! three smeared repli
cas of the butterfly can be observed, the narrow waist s
ments of the plot corresponds to the flat band condition gi
by s5gn /p, with gn a zero of the Laguerre polynomial.

In conclusion, the electric and magnetic translation sy
metries are utilized to analyze the EMB problem. Blo
functions are derived and their properties established in E
~12! and~18!. The system is governed by Eq.~19!, the spec-
trum of which interpolates between a butterflylike structu
and a Stark ladder structure. This equation offers a very
teresting model, susceptible to analysis in terms of dyna
cal systems. We finally remark that the present formali
should set the basis for the study of Hall conductivity beyo
the linear response approximation.

We have profited from helpful discussions with Roc´o
Jáuregui and Jose´ Luis Mateos.

e FIG. 2. Quasienergy spectrum of the second Landau leven
52). In this case the energy axis is rescaled toD/(U0), the other
parameters are the same as in Fig. 1.
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