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Bloch electrons in electric and magnetic fields
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We investigate Bloch electrons in two dimensions subject to constant electric and magnetic fields. The
model that results from our pursuit is governed by a finite difference equation with a quasienergy spectrum that
interpolates between a butterflylike structure and a Stark ladder structure. These findings ensued from the use
of electric and magnetic translation operators.

We consider the problem of an electron moving in a two-tation with space-time three vectoy§L=(t,F); w=0,1,2.
dimensional lattice in the presence of applied electric angquation(1) can be considered as an eigenvalue equation for
magnetIC fields. We refer to this as the tWO'd|menS|Onakhe Operators with eigenva|ue 0. We adopt a gauge-

electric-magnetic Bloch probleEMB). The corresponding  independent procedure, thus the gauge potential is written as
magnetic Bloch systerfMB) has a long and rich history. An

important early contribution to the analysis of the symme- Aoz(ﬁ_l)ﬁ E,

tries of the MB problem was made by Zakyho worked out

the representation theory of the group of magnetic transla- A;=(a—1/2)Bx,— BEt,

tions. The renowned Harper equation was derived assuming

a tight-binding approximatioh,and Rauh derived a dual A,=(a+1/2)Bx;— BE,t. (2

Harper equatiohin the strong magnetic-field limit. The stud-
ies of Hofstadter and othéref the Harper equation spectrum
have since created an unceasing interest in the problem b
cause of the beautiful self-similar structure of the butterfly
spectrunt. A remarkable experimental realization of the

This potential yields the correct background fields indepen-
ggnt to parameters and 8. A general potential can be rep-
resented by its Fourier decomposition, however, for simplic-
ity we shall consider the potential

Hofstadter butterfly was recently achieved, not for an elec- U(X1,Xy)=U; cog2mx, /a)+ U, cog2mx,/a).  (3)
tron system, but in the transmission of microwaves through
an array of scatters inside a wave gufdehe symmetries of Let (t,r)— (t+ 7, +R) be a uniform translation in space

the EMB F;“’b'em were analyzed some time ago by ASh.byand time, wherer is an arbitrary time anR is a lattice
and Miller,” who constructed the group of electric-magnetic

translation operators, and worked out their irreducible re re\_/ector. The classical equations of motion remain invariant
. perators, - . P'nder these transformations, whereas the Stihger equa-
sentations. In this paper we utilize the properties of th

Sion does not, the reason being the space and time depen-

2lfccér'g_T;?gﬁtgﬁa?pec:s;?;i 'Phgrge;;?n;ii”gftﬁg'gkﬁBd'ffgt;gence of the gauge potentials. Nevertheless, quantum dy-
q hat g . Y . . PrOb amics of the system remain invariant under the combined
lem. The numerical solution of this equation displays an in-

. S . action of space-time translations and gauge transformations.
teresting pattern which interpolates between a butterﬂyllkq:ollowing Ashby and Millef we define the electric and mag-
structure and a Stark ladder structure.

For the purposes of our research we consider the motioﬂetIC translation operators
of an electron in a two-dimensional periodic potential, sub- To(1)=exp—i70y), T;(a)=expia0;), 4
ject to a uniform magnetic fiel& perpendicular to the plane
and to a constant electric fiel, lying on the plane accord-
ing to E= E(cos#,sin6) with 6 the angle betweeRk and the
lattice x; axis. The dynamics of the electron is governed by

where j=1,2 and the symmetry generators are written as
new covariant derivative®,=p,+.4,, with the compo-
nents of the gauge potentialg, given by

a time-dependent Schiimger equation that for convenience Ag=pr-E
is written as 0 '
2 2 .A1=(a'+ l/Z)BXZ_(ﬁ_l)Elt,
N 1+ Ty N N
S¥(t,r)=|mo~—5— UM |¥(tr=0, (1) A,=(a—1/2Bx;,—(B—1)E,t. (5)

. e o The symmetry operators in E¢d) commute with the opera-
where mo=po+Ag and m=p+A, with the momentum op- tor Sin Eq. (1). The electric-magnetic operators given by
erator p,=[id/dt,—iV]. Units have been chosen here in Ashby and Miller include simultaneous space and time trans-
which#i=c=e=1. Where necessary we use a covariant nodations; we deemed it more convenient to separate the effect
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of the time evolution generated by tfig to that of the space wherevy=E/B and we utilized Eq(8) to write the second
translations generated by;. The following commutators equality.b/v is the period of time it takes an electron with

can be worked out with the previous expressions drift velocity vy to travel between lattice points. Hence, the
meaning of Eq(9) is that the ratio of the Stark ladder spac-
[7o,m]=—IEj, [mq,m]=—IB, ing (bE) to the Brillouin zone for the quasienergy 2 4/b)
is given by the rational numbes=p/q.
[00,0,]=IE;, [0;,0,]=iB, (6) We henceforth consider that the three conditi¢ns (8),

and (9) hold simultaneously. In this case the three EMB
with all other commutators being zero. The commutators inpperators—the electric evolutiol,=T,(7,) and the mag-
the second line of Eq6) are part of the more general Lie petic translations7; =T, (gb), and Zr=T(b)—form a set
algebra of the magnetic-electric Euclidean two-dimensionabf mutually commuting symmetry operators. In addition to
group? Schralinger’s equation and the symmetry operatorsthe symmetry operators, we can define the energy translation

are expressed in terms of covariant derivativgsand O, , operato?

respectively. A dual situation in which the roles of, and

0, are interchanged, could be considered. According to Egs. 2

(2), (5), and(6), the dual problem corresponds to a simulta- E:exl{ =i T—Ot), (10

neous reverse in the directions BfandE.
The symmetry operators in E¢4) commute withS but ~ that produces a finite translation in energy byr/2,

they do not commute with each other. We follow a three steg=0PE. 7e commutes with the three symmetry operators but
method to find a set of simultaneously commuting symmetrynot with S Its eigenfunction exptigbEs) defines a quasi-
operators(1) First we consider a frame rotated at angle time & modulo 7.

with the axis along the longitudinal and transverse direction Having definedZ, 7_, and 77 that commute with each
relative to the electric field. An orthonormal basis other and that also commute wifj) we can look for solu-
for this frame is given bye =(cosé,sind) and er tions of the Schrdinger equation characterized by the

= (—sinf,cosd). We assume a particular orientation of the duasienergy and quasimomentuiky,andkr quantum num-
electric field, for which the following condition holds bers according to

E, m, To¥ =exp(—itE) i,

p=tanf= —=—, (7)
B TV —exp(ik ab) .
wherem,; andm, are relatively prime integers. This condi- )
tion insures that spatial periodicity is also found both along Ty =expliktb) 4. (13)

the transverse a”‘?' the longitudinal dlrectjons.AHence,ﬁwe del‘h particular, the previous relations imply that if a simple
fine a rotated lattice spanned by vectdrs=be_ andbr  gnace-time translation acts on the wave function, the latter
=ber whereb=a\mj+mj5. The spatial components of the satisfy the generalized Bloch conditions
symmetry generato@ are projected along the longitudinal R ) R
and transverse directions?, =e,_-O and O;=¢e;-O. It is W(t+7o,r)=exp{—ito(E+ Ao(t,r))}W(t,r),
readily verified thaf Oy, O7]=0.
(2) For the rotated lattice, we regard the number of flux \If(t,F+q5L)=exp[iqb(kL+AL(t,F))}\If(t,F),
guanta per unit cell to be a rational numhgng, that is

W(t,r+by)=explib(ks+ A (t, )P (tr). (12

Bb> p ®
2m o We now find convenient to apply a transformation to new

, . variables given b
We can then define the extended supperlattice. A rectangle 9 y

made ofq adjacent lattice cells of side contains an integer _ _

. . Xo— t, Po— Oo,
number of flux quanta. The basis vectors of the superlattice
are chosen an,_ and BT. Under these conditions the lon- E
gitudinal and transverse magnetic translatiomg(qb) Xi=ar+m

¢

E y P1: K /B,
=explgb?®,) and T{(b)=exp(O;) define commuting
symmetries under displacements, andb. E
(3) We observe thaly and T, (gb) commute withT+. X,=0,IB, P,=0;+m=, (13
Yet they fail to commute with each othel,(7) T, (qb) B

=T.(gb)To(7)exp(—igb7E). However the operators, and
T, (gb) will commute with one another by restricting time
in the evolution operator, to discrete values with period

that satisfy[ X, ,P,]=i for x=0,1,2. The explicit relation
’ between X,, P,) and ,,p,) can be worked out using
the definition of7,, and O, and Egs.(2) and (5). The
transformation is not canonical because of commutator
’ (9) [Po,X,]=IiE/B, all others being zero. Applied to E€L) the

27 1( b
transformation yields for the Schdimger equation

™ GhE b

Ud



PRB 61 BRIEF REPORTS 9881

E v B2PZ+ X2  muj
Pot gPe| V=% —* 3

+U(X1,Xp) [P, \PKL’kT’E(P):an anXn(P1) N piCre 27K

(14 ,
an
where x; and x, have to be written in terms of the new Xﬁ(Po_E—'QbEW( Po—kr+ Fm)’
variables as

17)
X, m, m; where hy,_ =3 .de'€7PEPI=™  Of particular interest are
2~ p (P1mBXemEXp)+ - (BX—Py), the following Bloch conditions obeyed by with respect to
the eigenvalues:
X2 my m; V(& k +bB,kt)="(& kK, Ky),
2= (P BXo— EXo) 2 (BXy—Py). (15) (B +DBIn) =W (k)

P(E k. kr+qbB)=e9"¥(g+gbEk, k). (18)

For U=0 the dynamics is cyclic in coordinaté, and Xo. These conditions are quite different from those satisfied by

Tgre'ozpcpes'::rzlt(':zl of thz tt'mteh;a:r?l;[@ Irr:)trp,g:»?gg 'byrethe're%ye usual Bloch and magnetic Bloch functidngje second
periodic p 1al SUggests pproximation IS requiréf, o s ot periodic, because in addition to the Bloch phase

to solve the problente.g., adiabatic approximatipnHow- @l the ky—k;+qb shift leads to the change in energy
ever, as we show below the use of an appropr|ateg_>g+quT T
representation makes such an approximation unnecessary. Based O'n wave functiofl?) it is possible to work out a

We adopt the PO’Pl’_PZ repr.esentauon \I’&"L"‘T(_P) complete solution of the EMB problem, similar to what has
=(Po.P1,P5|€k. kr) with quasienergys and quasimo- peen achieved for the magnetic-Bloch probfEnThis will
mentumk_ andky. In this representation th¥, operators  pe analyzed elsewhet@Nevertheless, the approximated so-
act asXo=id/dPq, X;=id/dP;, and X;=—i(E/B)d/dPy  |ution wherein the coupling between different Landau levels
+|(9/(9P2 It is readily clear that the substitution of these is neg|ected is interesting enough, and probab|y more illumi-
relations in Eq.(15) eliminates thed/dP, contribution. For  nating. Within this approximation the Landau numisers
finding solutions of Eq.(14) we split the phase space also a conserved quantum number and the substitution of
(X, ,P,) inthe (X1,P;) and the Kq,Po;X;,P>) variables.  Eqs.(17) in (14) yields the secular equation

For the first set of variables we choose a set of basis func-

tions in P, given by the Landau wave functiong,(P4); Eb ),.

these functions yield exact eigenvalues of the kinetic part o A- Ezm Cm

the right-hand side of Eq14): (n+ 1/2)w,, with the cyclo-

tron frequencyw.=B/m. For the subspace generated by the  =f,(o)[Us\(e™"™*mCyy, o +eM™FmC )
variables ¥q,Pq;X;,P,), we notice that the four operators

(Th, 71, 7%, Tb) with all possible integer values of +UN* (M2 nicy,, o e M2t ne, )], (19

(i,j,k,I) form a complete set of operators. The demonstra-
tion follows similar steps as those presented by Zak in Refwhere we defined ¢,,=e@™»mkp ¢ = 3 =(27m
10. Hence a complete set of functions, for the subspace kb)o, \=exp—immymyo}, f (0)=e "L (7o) and
(Xo,Pg:X5,Py), is provided by the eigenfunctions of the L, are the Laguerre polynomials. The quasienefgig re-
operators Ty, 71 , 74-} TE), we write them down and verify lated to the eigenvalue\ according to &= (n+1/2)w.
their correctness: +mui2+A.

The dynamics of the system is then described by(E$),

a finite difference equation with distant neighbor couplings

bx, ky.ee(Po.P2)= ;ﬂ Ce/ PRI mgi(mb)mie m; andm,, which also includes a linear term proportional to
' E. This equation generalizes Harper's equation to include the
X 8(Po—E—IqbE) effect of an electric field of arbitrary intensity. If the electric
5 field is switched off, it can be seh;=1, m,=0 in which
X 8| Py—ko+ _Trm), (16) ~ case Eq(19) reduces to Harper's equation. _
b We present results for particular cases when the electric

field is aligned along the axis of the original latticee.,
where we defined=1/¢=q/p. It is easy to check that this m, =1, m,=0). It is known that the experimental observa-
function automatically satisfies the first and third EMB tran-tjon of the butterfly spectrum could possibly be achieved in
lations in Egs(11), whereas the second equation is satisfiedateral surface superlatticds? given that a value for~1
by imposing the periodicity conditiogy,,,=Cp. In addi-  can be obtained for feasible magnetic fields, due to the large
tion, ¢ is also eigenfuction of the energy translation operatordimensions of the unit cell. Hence we select the following
Eq. (10) with eigenvalue exp{igbEf). The wave functionV'  values:a~100 nm,Uo=U;=U,=0.5 meV,m=0.07m,,
is then expanded in terms @f, and . ¢ The operator and E=0.05 V/cm, which can be satisfied in current
7Tt is not a symmetry of the problem, so we have to multiplyexperimentsl.3 For these valuesr=1 corresponds to a mag-
¢ by a coefficientd, and add over all possible values &f  netic field of 10, henceUy/w.~0.05 and the condition
the resulting wave function can be recast as required for weak periodic potential is satisfied. Figures 1



9882

FIG. 1. Quasienergy spectrum for the lowest Landau level. The

energy axis is rescaled t/[Uqfq(0o)], the parameters selected are
a~100 nm, U,=0.5 meV, m=0.07m,, E=0.05V/cm andkt
=0.

and 2 show plots for the scalédspectrum as function af.

We recall that forE=0 the spectrum foA/[Uyf,(0)] is
invariant under the substitution— o+ N with N an integer.

In Fig. 1 for the lowest Landau level we observe that for
a strong magnetic field the Hofstadter butterfly is clearly

shown foro in the interval[ 0,1]. However, as the magnetic
field decreasesd increases some of the fine-grained struc-

tures of the spectrum are smeared by the effect of the electr

field. A weak distorted replica of the butterfly is still ob-
served foro in the interval[ 1,2]. Finally, for bigger values

of o, the spectrum is strongly distorted by the electric field

and the butterfly “flies away.” At this limit the effect of the

periodic potential is negligible and the spectrum consists of

equally spaced levels with separatioib, i.e., a Stark lad-
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FIG. 2. Quasienergy spectrum of the second Landau lavel (
2). In this case the energy axis is rescaled\fgU,), the other
parameters are the same as in Fig. 1.

der. For then=2 Landau levelFig. 2) three smeared repli-
cas of the butterfly can be observed, the narrow waist seg-
ments of the plot corresponds to the flat band condition given
by o= vy,/, with y, a zero of the Laguerre polynomial.

In conclusion, the electric and magnetic translation sym-
metries are utilized to analyze the EMB problem. Bloch
functions are derived and their properties established in Egs.
(12) and(18). The system is governed by Ed.9), the spec-
trum of which interpolates between a butterflylike structure
%nd a Stark ladder structure. This equation offers a very in-
%eresting model, susceptible to analysis in terms of dynami-
cal systems. We finally remark that the present formalism
should set the basis for the study of Hall conductivity beyond
the linear response approximation.

We have profited from helpful discussions with Rmcl
Jauregui and Joseuis Mateos.
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