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Influence of thermal fluctuations on Cherenkov radiation from fluxons
in dissipative Josephson systems

A. A. Antonov, A. L. Pankratov, and A. V. Yulin
Institute for Physics of Microstructures of RAS, GSP 105, Nizhny Novgorod 603600, Russia

J. Mygind
Department of Physics, Technical University of Denmark, DK-2800 Lyngby, Denmark

~Received 2 August 1999!

The nonlinear dynamics of fluxons in Josephson systems with dispersion and thermal fluctuations is ana-
lyzed using the ‘‘quasiparticle’’ approach to investigate the influence of noise on the Cherenkov radiation
effect. Analytical expressions for the stationary amplitude of the emitted radiation and its spectral distribution
have been obtained in an annular geometry. It is demonstrated that noise reduces the amplitude of the radiated
wave and broadens its spectrum. The effect of the radiated wave on the fluxon dynamics leads to a consider-
ably smaller linewidth than observed in the usual flux flow oscillator. A resonant behavior of both the mean
amplitude and the linewidth as functions of bias current is found. The obtained results enable an optimization
of the main parameters~power, tunability, and linewidth! of practical mm- and sub-mm wave Cherenkov flux
flow oscillators.
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I. INTRODUCTION

Cherenkov radiation in Josephson junctions, first s
gested by Kivshar and Malomed,1 has been widely discusse
during recent years.2–11There are several motivations for th
increasing interest. First, the resonant radiation emiss
from nonlinear systems and structures is an interesting th
retical task in it self. Second, taking into account the effec
Cherenkov radiation it is possible to explain a number
phenomena observed in experiments, e.g., microwave e
sion from high-temperature superconducting~HTSC!
ceramics,9 and fine structures in the current-voltage char
teristics ~IVC’s! of annular Josephson junctions.11 Finally,
and important for applications, the tunable resonant inte
tion of Josephson fluxons with electromagnetic waves allo
for a significant increase of the efficiency of Josephson
cillators based on fluxon dynamics. In addition to the
creased emitted mm- and sub-mm wave power, the reso
nature of the Cherenkov effect simultaneously allows fo
significant reduction of the linewidth and the content
higher harmonics. Compared to the standard flux flow os
lator ~FFO! ~Ref. 10! and the Josephson soliton oscillat
~JSO! ~Ref. 12! where the power is emitted only from th
end~s! of a one-dimensional long Josephson junction,
Cherenkov flux flow oscillator~CFFO! extracts energy from
the whole fluxon chain as it propagates through the junct
The CFFO therefore may be considered as a new typ
Josephson oscillator.

The influence of noise on the Cherenkov radiation eff
has not yet been practically investigated. The results
tained for the JSO, where the radiation linewidth is main
determined by fluctuations in the velocity of fluxons, free
moving in a long Josephson junction,13 cannot be directly
applied to the CFFO. For the FFO extensive measurem
of the linewidth have been made but no reliable noise the
has yet been proposed. Recently it has been shown tha
FFO can be phase locked to high harmonics of an exte
PRB 610163-1829/2000/61~14!/9809~11!/$15.00
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reference oscillator and tuned in-lock over a wide frequen
band ~270–440 GHz!.14,15 In the CFFO where fluxons ar
moving in the periodic potential created by the accumula
radiated wave generated by the fluxons themselves the p
lem becomes even more nonlinear, and at the present
there exists no elaborated theory for the linewidth. The
fluence of noise on power and radiation linewidth is impo
tant both from fundamental and practical points of view, a
the aim of this paper is to present a simple but sufficien
precise theory that enables a reliable estimation of the b
parameters needed for the practical design of the CFFO

II. THE BASIC PROBLEM

The physical system considered is a one-dimensional l
Josephson junction~LJJ! coupled to a linear external trans
mission line, e.g., a waveguide. The normalized junct
lengthl and widthw satisfyl @1 andw!1; normalization is
to lJ , the Josephson penetration depth. In a long junct
magnetic flux is quantized and enters in the form of fluxo
~Josephson vortices!, each containing a single flux quantu
F05h/(2e). Subjected to suitable bias conditions, usua
an applied dc bias current and magnetic field, a fluxon mo
along the junction as a solitary wave which in many respe
behaves as a~quasi!particle. Cherenkov radiation exist
when the particle velocity exceeds~or equals! the phase ve-
locity of the wave it generates. The type of radiation and
phase velocity depends on the surrounding medium.

In our system an external transmission line is the medi
which provides the ‘‘slow’’ waves that can be in resonan
with the moving fluxons in order to satisfy the Cherenk
condition. The Josephson junction, which in itself is a tra
mission line, cannot be used because the phase velo
~Swihart velocity! of its linear modes always is larger tha
the maximal fluxon velocity. There are several ways t
waves in the external transmission line may appear s
relative to the fluxon. The simplest coupling scheme we c
9809 ©2000 The American Physical Society
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propose is to overlay the junction with a meander sha
stripline that crosses~and couples! to the junction at regu-
larly spaced intersections. The wave generated in the s
line by a fluxon at a given intersection must travel a lo
distance in the side arm of the meander~and therefore is
considerably delayed! before it again meets the fluxon at th
next intersection. If the coupling between the junction a
the stripline is weak the propagating wave on the exter
transmission line obeys a simple wave equation containin
linear operator~see below!.

The coupling scheme suggested above is an examp
the general distributed system of Josephson junctions e
tromagnetically coupled to a wave guide. A distributed co
pling scheme similar to that shown in Fig. 1 for a LJJ and
corresponding discrete electronic circuit model has b
treated theoretically by Kurin and Yulin.16 They show that
the fluxons bunch in the decelerating phase of the fi
propagating in the waveguide in a process that closely m
ics the way electrons bunch in the traveling-wave and ba
ward wave tubes. If the wave guide system is periodic~e.g.,
contains resonant sections and thus appears dispersive! one
may, for simplicity, treat the system in the long wave lim
assuming that its spatial period is much smaller than
wavelength of the excited wave in the waveguide. T
avoids the additional difficulties with finding the necessa
eigenfunctions and the dispersion relation. The general c
where the slow wave also can be provided but where all
coefficients in the equations describing the system depen
the space coordinate can in principle be solved. This, h
ever, leads to very long calculations.

Recently Baryshevet al.17 proposed an alternative slow
wave structure consisting of a~main! transmission line
~waveguide! with periodically spaced resonant side arm
each of which are end coupled to the side of the LJJ. T
delay of the excited wave in the side arms makes the ret
ing wave to appear slow to the fluxons while the excit
waves in all side arms interfere constructively and propag

FIG. 1. Sketch of a section of a long Josephson junction coup
to a slow wave transmission line with dispersion~see text!. The
structure is one of the possible schemes realizing the Chere
flux flow oscillator ~CFFO!.
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in the main line. The waveguide system is spatially perio
but its wave equation can still be described by a linear
erator. The dispersion characteristic of the linear waves
hibits a zone structure and the required resonance cond
can be achieved in a sufficiently high numbered Brillou
zone~resonance between a fluxon and high space harm
of the eigenfunction of the linearized operator!.

In order to find analytical solutions for the CFFO wit
noise we will consider the simplest case, which is the annu
system, i.e., a long annular junction coupled to an overlay
annular transmission line, e.g., a microstrip line. A short s
tion of the structure is shown in Fig. 1. In the linear geo
etry the interaction of fluxons with the LJJ boundaries, a
collisions of fluxons and antifluxons can only be dealt w
using numerical simulations. We admit that the annular s
tem may appear somewhat academic, but we can use
demonstrate the most important features and effects. Ne
theless, the annular system can be realized in practice11,18

and what is very important is that the mm- or sub-mm wa
power generated by the Cherenkov process can be cou
out using either the meander or the resonant anten
waveguide systems suggested above. Both the linear an
annular geometry appear suitable for practical CFFO ap
cations.

Due to flux quantization the number of fluxons trapped
an annular junction is constant, depending only on how
system was prepared. For the current biased annular Jos
son junction the well known sine-Gordon equation can
written

w tt1aw t2wxx1sinS w1
2pNx

l D
52gcxx1bc tt1h01z~x,t !. ~1!

The transmission line is described by the equation

D̂c52gwxx1bw tt . ~2!

Herew12pNx/ l , a, h0 , z are, respectively, the phase di
ference of the order parameter of the Josephson junction
damping coefficient of the junction, the bias current, and
noise current. We assume that the current density is cons
and that the dc bias current is supplied uniformly along
junction. All currents are normalized to the critical current.N
is the number of fluxons trapped in the junction, andg andb
are dimensionless coefficients describing the coupling
tween the fluxon and the transmission line, see Refs. 19
Note that an annular junction can only be locally describ
by the differential equation for the Josephson phase dif
ence in the case when there is magnetic flux in the junct
The reason is that in this casewJ changes with 2pN when
one follows a closed pass along the junction. So this varia
is not differentiable in any point of the junction. Instead w
use in our equations the variablew5wJ22pNx/ l which is
well defined in the system. The linear integrodifferential o
eratorD̂ determines the dispersion properties of the exter
waveguide system which allows for the Cherenkov synch
nism. For example for the system shown on the Fig. 1
appearance ofD̂ in the long wave approximation is the fo
lowing:
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D~v,k!52v2
e2

e1

h1

W1
S W2

h2
1

d1

d

W

h2

tan~vW/v !

vW/v D
1k2

m1

m2

h112l

W1

W2

h212l
, ~3!

in the v-k representation, see Ref. 16. He
h1 , h2 , W, W1 , W2 , d, d1 are geometrical parameters
the Josephson junction and the transmission line, see Fi
e1 , m1 , e2 andm2 are dielectric and magnetic constants
the Josephson junction and the transmission line,l is Lon-
don penetration depth for the superconducting electrodev
5Ae1m1 /e2m2Ah2 /(h212l)/(h112l) is the velocity of
the light in the transmission line. It is seen that atv→0 the
expression~3! becomes the usual D’Alambert operator. B
the impedance of the side outgrowths of the transmission
is a function of frequency and so they can work as induct
as well as capacitors depending on the frequency. It is
counted by the term tan(vW/v)/vW/v in the expression for
D̂.

Equations~1!,~2! differ from the equations considered
Ref. 16 only by the noise currentz(x,t) introduced on the
right-hand side of Eq.~1!. Note here that in general we hav
to take into account also the thermal noise in the transm
sion line. But this noise is weak in terms of its influence
Josephson soliton dynamics~not only because these fluctu
tions have small intensity but also because the coupling
tween the Josephson junction and the transmission lin
supposed to be weak!. So the thermal noise in the transmi
sion line only leads to a small pedestal in the radiation sp
trum but not to a real broadening of the radiation linewid

Dimensionless variables are used throughout this pa
with time measured in units of the maximum inverse Jose
son plasma frequency (1/vp) and length in units of the Jo
sephson penetration length (lJ). This implies that velocities
are in units of the Swihart velocity (cs5lJvp). Subindexx
and t indicates spatial and temporal derivative, respective

A white Gaussian noise current is assumed

^z~x,t !&50,

^z~x1 ,t1!z~x2 ,t2!&5
16kBTa

E0
•d~ t12t2!•d~x12x2!,

~4!

whereT is the temperature,kB is Boltzmann’s constant, an
E0 is the rest energy of the fluxon.

Equations ~1! and ~2! have to be supplemented wit
proper boundary conditions. For the annular junction
boundary conditions can be written as

w~x!5w~x1 l !, c~x!5c~x1 l !.

In our model the transmission line and the junction ha
the same lengthl, e.g., they are placed directly on top of ea
other. This is not a major restriction, but it helps not
complicate the calculations unnecessarily. In the annular
ometry ~and even with a meanderlike transmission line! one
could have used an angular parameter~or x along the un-
folded meander! to characterize position on both the junctio
and the transmission line.
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Before we discuss the technical aspects of the noise p
lem it is appropriate to formulate our final goal which is
derive a self-consistent system of abridged equations
describe the Josephson system in terms of the fluxon m
ment and the transmission line in terms of a slowly varyi
complex amplitude of the radiated wave. The first step is
introduce thequasiparticle approachfor the junction.

When the terms in Eq.~1! corresponding to damping, bia
current and the backward action of the electrodynamic s
tem are small, the solitary wave solution to the nearly unp
turbed sine-Gordon equation dynamically behaves as a
siparticle which may be assigned an effective ma
momentum, kinetic energy, etc. In this quasiparticle appro
mation, and when the distance between successive fluxo
much larger than the fluxon length, the solution to Eq.~1!
may be presented as a sum of solitary solutions to the un
turbed sine-Gordon equation and a small nongrowing co
ponentw5(n51

N wsn1l. The solitary solution to Eq.~1! is
well known,

wsn~x,t !5 f sol@x2Xn~ t !#

564 arctan expS x2Xn

A12Ẋn
2D 2

2px

l
. ~5!

Let us consider the case when the direction of the flux
magnetic field corresponds to a minus sign in front of t
arctan in Eq.~5!. Following Ref. 12 one gets the following
equation for the centerXn of the nth fluxon:

Ẍn1aẊn5A12Ẋn
2S p

4
h02

1

8E2`

`

@z~x,t !2gcxx

1bc tt# f sol8 @x2Xn~ t !#dxD . ~6!

We have neglected the fluxon-fluxon interaction which
correct when the distance between neighbor fluxons is m
greater than their size. This condition probably will be fu
filled in the beginning of the Cherenkov generation proce
Later in the stationary resonant state the interaction with
wave leads to the situation where each fluxon is located n
a minimum of the electromagnetic wave, so that the fluxo
fluxon distance does not decrease. Inclusion of the flux
fluxon interaction requires numerical simulation.

In the noise-free case without coupling to the transmiss
line (g5b50,z50) the fluxons move uniformly as a ‘‘di-
luted’’ chain with the normalized velocityVa(h0) deter-
mined by the power balance condition

aVa

A12Va
2

5
p

4
h0 ,

which can be easely derived from either Eq.~6!, or, with
more calculations, directly from Eq.~1!.

Since the system is annular, the field in the stripline wa
guide can be represented in the following form:

c~x,t !5 (
m50

`

bm~ t !e2 ikmx1c.c.,
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wherekm52pm/ l is the normalized wave vector of themth
mode with amplitudebm(t). The most effective excitation
will take place for the wave running with a phase veloc
close to the fluxon velocity, in other words for the wa
which is in Cherenkov synchronism with the fluxons. T
condition of this synchronism isv/k5Vr where Vr is the
normalized fluxon velocity at resonance. This resonance
teraction will be considered below subjected to therm
noise.

Let only one mode with wave numberkr close to the
synchronism point be excited. This takes place when the
tances between modesDv5Vg(kr)2p/ l are much larger
than the dissipation constantG

Vg~kr !
2p

l
@G, ~7!

whereG is the mode damping rate andVg is the group ve-
locity of the transmission line.

Then the field in the electromagnetic system may be
proximated by

c~x,t !5a~ t !•exp~ iv r t2 ikrx!1c.c.,

a~ t !5A~ t !exp@ ix~ t !#. ~8!

Here a(t), A(t), and x(t) are slowly varying functions of
time on the time scale of 1/v r . The resonance frequenc
v05v r1 iG of the mode is determined fromD(v r
1 iG,kr)50, where

D~v,k!5
1

4p2E2`

1`E
2`

1`

D̂~ t,x!e2 ivt1 ikxdtdx

is the Fourier image of the dispersion operatorD̂. Note here,
that the complex amplitudea has the characteristic time sca
of variation that equalsG215@ Im(v0)#21, where G!v r .
We also have assumed that the offset of the fluxon velo
from the phase velocity of the electromagnetic waveVr
5v r /kr is so small that

uẊn2Vr u!~12Vr
2!/Vr ,

meaning that we can neglect changes in the shape of
fluxon.

Applying the method of slowly varying amplitudes let u
proceed with the abridged equations for the complex am
tudea. Taking the Fourier transform of left and right parts
Eq. ~2! wherew is a series of single soliton solutions@Eq.
~5!# one can obtain the equation

D̂~ t,kr !a~ t !eivr t52
is0

l (
n51

N

eikr Xn,

where s05kr(bVr
22g)/cosh@(p/2)krA12Vr

2#. Now let us

write out the representation ofD̂(t,kr) throughD(v,kr)

D̂~ t,kr !a~ t !eivr t5E
2`

`

D~v,kr !a~v2v r !e
ivtdv. ~9!

Sincea(t) is a slow function of time it is possible to subst
tute D(v r1 iG,kr)1(]D/]v)(v2v r2 iG) into Eq. ~9! in-
n-
l

s-

-

ty

he

i-

stead ofD(v,kr). Taking into account thatD(v r1 iG,kr)
50 after some simplification we have

D̂~ t,kr !a~ t !eivr t5eivr t
]D

]vE2`

`

~d2 iG!a~d!eidtdd

5eivr t
]D

]v S 2 i
]a

]t
2 iGaD .

And then, finally, we obtain the abriged equation fora(t) in
the form

ȧ1Ga5e (
n51

N

e2 ivr t1 ikr Xn, ~10!

e5
s0

l S ]D~v,kr !

]v Uv0D 21

, ~11!

and the quasiparticle equations for the fluxons, Eq.~6!,
wherec(x,t)5a(t)exp(ivr t2ikr x) has to be substituted in
cxx andc tt .

These equations can be cast in a more suitable form.
us write the equation for the wave amplitude in real~not
complex! variablesA andx. Writing out real and imaginary
parts of the Eq.~10! we obtain

Ȧ1GA5e (
n51

N

sinun , ~12!

ẋA52e (
n51

N

cosun , ~13!

where

un5kr Xn2v r t2x~ t !2p/2. ~14!

Note here that the fluxons can be described by their phase
is more convenient because this variable in particular ch
acterizes their interaction with the wave. The phase coo
nate un determines the fluxon location with respect to t
wave and may be used instead of the linear coordinateXn .
The time derivative of the phasex(t) represents the devia
tion of the frequency of the emitted wave from the resona
frequencyv r . In the new variablesun , A, x the equation
for the center of a fluxon takes the form

~ ün1ẍ !1a1~ u̇n1ẋ !5a1s1~h02h r !2sAsinun

1a1h f n~ t !, ~15!

where the normalized resonance bias current,h r , is deter-
mined byVa(h r)5Vr ;

s5
ps0

2
kr

2A12Vr
2, s15

p

4a1
krA12Vr

2, a15
a

12Vr
2

.

~16!

The random forceh f n(t) is a d-correlated Gaussian proces

^h f n~ t !&50, ^h f n~ t1!h f k~ t2!&52Ddn,kd~ t12t2!,

D5
8kT~12Vr

2!3/2kr
2

a1E0
. ~17!
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We now have a system of equations for the real am
tude, Eq.~12!, the phase of the wave, Eq.~13!, and the phase
coordinateun , Eq. ~15!, but unfortunately it is still too com-
plicated to be solved analytically. In order to proceed
consider a special case which on one hand is quite real
but on the other hand allows for analytical solutions.

When the fluctuations are small the following conditio

are fulfilled ^A&@A^A2&2^A&2, ^ẋ&@A^ẋ2&2^ẋ&2. This
assumption gives the possibility to neglect the fluctuations
both the amplitude and the frequency in Eq.~15! and substi-
tute ^A& for A and ^ẋ& for ẋ. All equations will be consid-
ered in the stationary limit when the steady-state values
the amplitude and the frequency have been reached.
condition together with the previous one^ẋ&
@A^ẋ2&2^ẋ&2 allows us to neglect also theẍ term. In other
words we neglect the influence of the fluctuations of
wave amplitude and the frequency on the dynamics of
fluxon phase. The justification for this procedure will b
given later when we have found the expressions for the s
tra of A and ẋ.

In the stationary limit we can rewrite Eq.~15! as

ün1a1u̇n5a1s1~h02h r !2a1^ẋ&2s^A&sinun

1a1h f n~ t !. ~18!

Equation~18! only depends on one variable,un , and can be
investigated analytically. After simplifications of Eqs.~12!,
~13!, and~15! we actually have two linear equations~12! and
~13! with some random process~noise! on the right-hand
sides ((n51

N sinun and(n51
N cosun!. These random processe

have complicated statistical properties that can be fo
from Eq. ~18!.

Equation~18! gives us the statistics forun which certainly
depends on̂ ẋ& and ^A&. On the other hand, knowing th
statistics ofun we can find̂ ẋ& and^A&. So, we have a set o
transcendental equations~12!–~18! for ^ẋ& and^A&. Solving
this system numerically we will be able to find the me
amplitude and the frequency deviation. Having done that
can finally investigate the spectral characteristics of the
cited wave. Below we will make the first step and investig
the statistical properties ofun .

Equation~18! is still rather complicated, but for many rea
cases we can assume thata1

2@s^A&. Indeed, the maxima
amplitude^A& is of the order of̂ A&'eN/G ~see Ref. 16!
and this condition takes the forma1

2G@seN. This can be
satisfied in a wide range of parameters. Notice, that the
condition does not imply that the junction is overdamped
has been demonstrated21 ~see also Ref. 22!, that the condition
a1

2@s^A& implies that the second time derivative ofun in
Eq. ~18! may be neglected.

Let us renormalize the amplitudeA8(t) so that the opti-
mal amplitude, reached in the absence of noise, is equa
unity; A8(t)5A(t)G/eN. Finally we get the following equa
tions for A8(t), ẋ(t), andun(t):

u̇n5
1

h
@jd2h^ẋ&2^A8&sin~un!#1h f n~ t !, ~19!
i-

e
tic

f

of
is

e
e

c-

d

e
x-
e

st
t

to

1

G
Ȧ8~ t !1A8~ t !5

1

N (
n51

N

sin@un~ t !#, ~20!

ẋ52
G

A8N
(
n51

N

cos@un~ t !#, ~21!

where h5Ga1 /seN includes the effective mode dampin
rateG and jd5hs1(h02h r) is an effective ‘‘current’’ dif-
ference between the dc bias current and the normalized
rent at resonance. The Langevin equation, Eq.~19!, is com-
pletely analogous to the corresponding equation t
describes the dynamics of a single overdamped Josep
junction.

III. MEAN AMPLITUDE OF CHERENKOV RADIATION
AND CURRENT-VOLTAGE CHARACTERISTIC

In order to obtain the averages ofA8 and ẋ, namely their
mean and correlation functions~spectra!, it is necessary to
know the corresponding averages of sin@un(t)# and cos@un(t)#
where the phaseun(t) is a stochastic variable governed b
the Langevin equation, Eq.~19!. All fluxons have the same
statistical properties, i.e., the random processun(t) does not
depend on the indexn. In this and the next section we deno
un(t)5u(t). The necessary averages of the phaseu may be
obtained using the Fokker-Planck equation~FPE! for the
probability densityW(u,t) corresponding to Eq.~19!

]W~u,t !

]t
52

]G~u,t !

]u

5D
]

]uH Fdu~u!

du
W~u,t !G1

]W~u,t !

]u J , ~22!

whereG(u,t) is the probability current andu(u) is the po-
tential

u~u!52@^A8&cos~u!1Dhu#/hD, Dh5jd2h^ẋ&.
~23!

The initial and boundary conditions for Eq.~22! with the
potential Eq.~23! are

W~u,0!5d~u2u0! and W~p,t !5W~2p,t !. ~24!

The mean steady-state amplitude and the mean frequ
shift may be found using only the stationary solution to t
FPE~see below!. In order to obtain the correlation function
it is necessary to know the nonstationary solution of the F
Eq. ~22!, but unfortunately this is not available. However, th
problem of obtaining the nonstationary solution may
avoided using the original approach presented in Sec. IV

Here we introduce another simplification that will be us
in the analysis of Eq.~21!. In this equation we have a quo
tient of two random processes;(n51

N cos@un(t)# and A8(t).
Within the frame of our previous restriction̂ A&
@A^A2&2^A&2 we can presentA8 as A85^A8&1Af8 , de-
compose the denominator of Eq.~21! to the set, and neglec
the small fluctuations of the amplitudeAf8 in comparison

with ^A8&. Accordingly, in the equation forẋ we will always
supposeA8'^A8&. This procedure does not give addition
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limitations because we already have assumed that the am
tude variation near its mean value is small.

When averaging Eq.~20! in the stationary casêȦ8&50
we get

^A8&5^sin~u!&, ~25!

utilizing (n51
N ^sin(un)&5N^sin(un)&5N^sin(u)&.

The averagêsinu&5*2`
` sin(x)W(x,t)dx may be obtained

using the approach of reduced phases.23,24 If free ~natural!
boundary conditions were used for the diffusion in the p
tential Eq.~23! then the steady-state solution of the FPE w
be zero;Wst(u)5W(u,`)50. Because of the periodicity o
the function sin(u) one can introduce periodic boundary co
ditions, Eq.~24!, and consider the process of diffusion with
the reduced interval (2p,p) due to the fact that

E
2`

`

sin~x!W~x,t !dx5 (
n52`

` E
2p

p

sin~x12pn!

3W~x12pn,t !dx

5E
2p

p

sin~x!Wr~x,t !dx,

where Wr(x,t) is the reduced probability density. This re
duced probability density will reach a nonzero steady-s
distribution for t→`. The steady-state reduced probabil
densityWr(u,`)5Wrst(u) may be obtained from Eq.~22!,
supposing that the time derivative is equal to zero, and in
grating the reminder parts twice. The two arbitrary consta
are determined from the periodic boundary condition, E
~24!, and from the normalization condition*2p

p Wrst(u)dx
51. The reduced steady-state probability densityWrst(u)
has the form

Wrst~u!5

e2u(x)E
x

x12p

eu(y)dy

E
2p

p

e2u(x)E
x

x12p

eu(y)dydx

, ~26!

where the potentialu(x) is given in Eq. ~23!. Using the
obtained reduced steady-state probability density one
^sin(u)& and substituting it into Eq.~25! one can write the
following transcendental equation for the mean steady-s
amplitude:

^A8&5

E
2p

p

sin~x!e2u(x)E
x

x12p

eu(y)dydx

E
2p

p

e2u(x)E
x

x12p

eu(y)dydx

, ~27!

whereu(x) @Eq. ~23!# is a function of^A8&.
A similar procedure may be used to obtain the transc

dental equation for̂ẋ&

^ẋ&52
G

^A8&

E
2p

p

cos~x!e2u(x)E
x

x12p

eu(y)dydx

E
2p

p

e2u(x)E
x

x12p

eu(y)dydx

, ~28!
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where^A8& should be substituted as a solution to Eq.~27!.
The system of transcendental equations Eq.~27! and Eq.~28!
can be solved numerically for any given value ofDh5jd

2h^ẋ& and the mean value of the amplitude may be plot
as function ofjd , the shifted normalized bias current. Whe
noise is absent (D50) the formula for the amplitude isA8
5ADh ~stable branch! or A85A2Dh21 ~unstable branch!.
In this case the pointjd51 (Dh51) corresponds to the
upper limit of the stable regime of the Cherenkov radiatio
This point also is the point of maximal amplitude.

Figure 2 shows plots of the normalized mean amplitu
^A8& as function ofjd for different values of the noise inten
sity, hD. As demonstrated in Fig. 2 when the noise intens
increases, the region of bias current where the Cheren
radiation exists becomes smaller and the bias current co
sponding to the maximal amplitude decreases, moving to
middle of the generation range. All curves in Fig. 2 are c
culated for a fixed value of the effective mode damping p
rameter,hG50.1.

The current-voltage characteristic~IVC! may be easily
obtained from the data calculated for the mean amplitu

^A8&. The normalized mean voltage drop is^V&5^Ẋn&
whereXn is the coordinate of the center of the fluxon. E
pressingXn from formula Eq.~14! and takinĝ un& from Eq.
~19! one finds the following formula for the normalize
mean voltage as function of the bias current:

^V&5
v r

kr
1

1

hkr
~jd2^A8&2!. ~29!

Figures 3 and 4 shows IVCs,U(jd)5^V(jd)&2v r /kr ,
calculated for different values of the noise intensity w
hG50.01 andhG51, respectively. The horizontal ‘‘cur
rent’’ variable isjd5hs1(h02h r) containing the difference
between the normalized dc bias current and the curren
resonance. It is seen, that the hysteresis increases for sm
values of the mode damping rateG. On the other hand, an

FIG. 2. Calculated dimensionless mean amplitude^A8& of the
radiation generated in an annular CFFO as function of bias cur
for different values of the noise intensityhD and fixed effective
mode damping ratehG50.1. The zero on the horizontal axis is th
Cherenkov synchronism resonance current. All parameters are
malized, see text.
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increase of either the noise intensityD or h ~e.g., decreasing
the coupling coefficients! reduces the hysteresis.

IV. CORRELATION FUNCTIONS AND SPECTRA
OF AMPLITUDE AND FREQUENCY

OF CHERENKOV RADIATION

The equation for the correlation function of the amplitu
may easily be obtained from Eq.~20!. Consider Eq.~20! at
time t1. Multiplying it by the same equation at timet2 and
averaging one gets the equation for the correlation func
KA@ t1 ,t2# of the radiation. Because we are interested in
stationary correlation function which depends only on
differencet22t15t one finally gets the following equatio
for KA@t#:

t0

dKA@t#

dt
1KA@t#5

1

N2
@NKsin@t#1N~N21!^sin~u!&2#,

~30!

FIG. 3. Current-voltage characteristic calculated for differe
values of the noise intensityhD with fixed hG50.01. The zero on
the horizontal axis is the Cherenkov synchronism resonance
rent. All parameters are normalized, see text.

FIG. 4. Current-voltage characteristic calculated for differe
values of the noise intensityhD, with fixed hG51. Compare to
Fig. 2 and note the different scales.
n
e
e

due to the fact thatun(t) andum(t), nÞm, are uncorrelated
Heret051/G. In order to find the correlation functionKA@t#
one must know the correlation functionKsin@t#
5^sin@u(t1)#sin@u(t11t)#&, t1→`.

By definition Ksin@t# is

Ksin@t#5E
2p

p

sin~u0!Wrst~u0!E
2p

p

sin~u!

3Wr~u,t;u0,0!dudu0 . ~31!

Here Wr(u,t;u0,0) is the reduced conditional probabilit
density which is simply the probability densityWr(u,t) ob-
tained for a delta-shaped initial distribution Eq.~24!. To ob-
tain Ksin@t# we apply the new approach for description
stochastic processes.25–27

First, let us define the correlation timetsin as

tsin5

E
0

`

@Ksin@t#2Ksin@`##dt

Ksin@0#2Ksin@`#
. ~32!

If the function Ksin@t# evolves exponentially in time
Ksin@t#;e2t/tsin then the time scaletsin in the factor of the
exponent coincides with the one defined by Eq.~32!.

In order to find this correlation time we first need to i
troduce the mean timetm(u0) of evolution of ^sin(u)&
5msin(t)5*2p

p sin(u)Wr(u,t)du

tm~u0!5

E
0

`

@msin~ t !2msin~`!#dt

msin~0!2msin~`!
. ~33!

This time scale depends on the coordinate of the de
shaped initial distributionu0. It is seen that the correlation
time tsin on the basis of the definitions~31!, ~32!, and~33!,
may be expressed viatm(u0)

tsin5

E
2p

p

sin~u0!Wrst~u0!tm~u0!@msin~0!2msin~`!#du0

Ksin@0#2Ksin@`#
.

~34!

The time scaletm(u0) may be found using the approac
by Malakhov.25 We skip here some very long calculation
and refer the interested reader to Ref. 27 where the time s
of evolution of average was obtained for another type
boundary conditions. Here we present only the final expr
sion for tm(u0)

tm~u0!5
1

D@msin~0!2msin~`!# H Eu0

p

@C12sin~x!#

3e2u(x)E
u0

x

eu(y)dydx1E
2p

p

@sin~x!2C1#

3e2u(x)E
2p

x

eu(y)E
2p

y

Wrst~v !dvdydxJ , ~35!

whereWrst(v) is expressed by Eq.~26! and

t

r-

t
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C15E
2p

p

sin~x!e2u(x)dxY E
2p

p

e2u(x)dx.

Substitutingtm(u0) Eq. ~35! into Eq. ~34! one finds the
correlation timetsin

tsin5
h

hD~Ksin@0#2Ksin@`#! H E2p

p

sin~u0!Wrst~u0!

3E
u0

p

@C12sin~x!#e2u(x)E
u0

x

eu(y)dydxdu0

1E
2p

p

sin~u0!Wrst~u0!du0E
2p

p

@sin~x!2C1#

3e2u(x)E
2p

x

eu(y)E
2p

y

Wrst~v !dvdydxJ , ~36!

where Ksin@0#5*2p
p sin2(x)Wrst(x)dx, Ksin@`#5^sin(x)&2,

and ^sin(x)&5*2p
p sin(x)Wrst(x)dx. In this formula we puth

both in the numerator and the denominator because late
shall see thattsin;h.

Once we know the time scale of the evolution of the c
relation function we can present it in the form

Ksin@t#5~Ksin@0#2Ksin@`#!e2t/tsin1Ksin@`#, ~37!

wheretsin is given by Eq.~36!. Our assumption about th
exponential behavior of the correlation function is based
previous investigations26,27 and is confirmed by compute
simulations.

The exponential approximation, Eq.~37!, and the results
of computer simulation of the correlation functionKsin@t#
are shown in Fig. 5. First, it is seen, that the exponen
approximation agrees well even in the limit where t
equivalent noise intensityhD is rather large compared wit
the barrier height that separates the stable states of the
tential Eq.~23!. Second, and important, is that the correlati

FIG. 5. Comparison between the exponential approxima
~dashed line! and results of computer simulation~solid line! of the
correlation functionKsin@t# for different values ofhD andDh. See
text.
e
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n

l
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time tsin is insensitive to variations ofhD and tsin5hC,
whereC is a numeric coefficient ranging from about 0.8–1
usuallyC'1.2.

Thus, Eq.~30! can be solved analytically with a solutio
of the following form:

KA@t#5H Ksin@`#1
~Ksin@0#2Ksin@`#!

N~tsin2t0!

3@tsine
2t/tsin2t0e2t/t0#J . ~38!

This is the correlation function of the amplitudeA8
5AG/eN and to get the correlation function forA the right-
hand side of Eq.~38! should be multiplied by (Ne/G)2.

Now, knowing the correlation function of the amplitud
we can find the variance of the amplitudeDA , which we
supposed to be small;^A8&@A^A82&2^A8&2. By definition
we haveKA@0#5^A82&, KA@`#5^A8&2. Also by the defini-
tion DA5^A82&2^A8&2, so the variance has the followin
form

DA5
~Ksin@0#2Ksin@`#!

N
. ~39!

It is seen that the variance of the amplitude is proportiona
the variance of sinun , Dsin5Ksin@0#2Ksin@`# which de-
creases with the noise intensity,hD ~see Fig. 6! and is in-
versely proportional to the number of fluxons emitting t
wave. If we reduce the amplitudêA8& in the potential, Eq.
~23!, e.g., corresponding to a reduced coupling, we obse
that the varianceDsin increases and reaches 0.5 for^A8&
50. Accordingly, the collective effect of the Cherenkov sy
chronism of fluxons with the emitted wave improves t
noise properties of the CFFO.

Finally, the spectrumSA(v)5*0
1`KA@t#cos(vt)dt may

be obtained as the Fourier transformation of the correla
function KA@t# and represents a sum of two Lorentzians

n FIG. 6. The calculated variance,Dsin5Ksin@0#2Ksin@`#, as
function of noise intensityhD for three bias current values,Dh
50.5, 0.8, and 0.9. See text.
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SA~v!5H ~Ksin@0#2Ksin@`#!

N~tsin2t0! F 2

~1/tsin
2 1v2!

2
2

~1/t0
21v2!

G
1Ksin@`#d~v!J . ~40!

The generation frequency equalsV05v01^ẋ& and we
will consider fluctuations nearV0 ; n(t)5ẋ2^ẋ&. The cor-
relation functionKn@t# and the spectrumSn@v# may be ob-
tained in the same way as the corresponding characteri
of the amplitude. From Eq.~21! one can get

Kn@t#5S G

^A8&
D 2

~Kcos@0#2Kcos@`#!

N
e2t/tcos, ~41!

where Kcos@0#5*2p
p cos2(x)Wrst(x)dx, Kcos@`#5^cos(x)&2,

and ^cos(x)&5*2p
p cos(x)Wrst(x)dx. The correlation timetcos

has the following form:

tcos5
h

hD~Kcos@0#2Kcos@`#! H E2p

p

cos~u0!Wrst~u0!

3E
u0

p

@C22cos~x!#e2u(x)E
u0

x

eu(y)dydxdu0

1E
2p

p

cos~u0!Wrst~u0!du0E
2p

p

@cos~x!2C2#

3e2u(x)E
2p

x

eu(y)E
2p

y

Wrst~v !dvdydxJ , ~42!

where C25*2p
p cos(x)e2u(x)dx/*2p

p e2u(x)dx. It is seen, that
the noise properties of the frequency deviations are simila
what is found for the amplitude

Dn5
1

N S G

^A8&
D 2

~Kcos@0#2Kcos@`#!,

i.e., the variance of the frequency decreases with decrea
noise intensityhD, mode damping rateG, and with increas-
ing number of fluxonsN. The correlation timetcos, also
similar to tsin, has the formtcos5hC, where C is of the
order unity.

The spectrum of the frequency deviations is given by

Sn~v!5S G

^A8&
D 2H ~Kcos@0#2Kcos@`#!

Ntcos
F 2

~1/tcos
2 1v2!

G J .

~43!

Now, when we know the basic characteristics of the am
tude and the frequency of the CFFO, namely, their corre
tion functions and spectra, we can perform the final analy
of the oscillator linewidth using standard procedures.

V. RADIATION LINEWIDTH OF THE CFFO

The theoretical methods for spectral analysis of oscillat
are well established~see, e.g., Ref. 28!. In the most genera
form the task may be formulated as follows; an oscillator h
an outputz(t)5A(t)cos@vt1x(t)#. The aim is to determine
ics

to

ing

i-
-

is

s

s

the spectrum of this signal if the statistical characteristics
A(t) andx(t) or ẋ(t) are known.

In the general case when the fluctuations ofA(t) andẋ(t)
are correlated, the analysis is possible only when the fluc
tions of amplitude are small and the correlation functi
KAn@t# is of the order or less thanKA@t#. Here we are work-
ing in the limit of small amplitude fluctuations so using th
approach of the previous section it can be shown that
spectrumKAn@t# is less thanKA@t#. Following Malakhov28

the spectrum of the emitted wavez(t)5A(t)cos@vt1x(t)#
consists of a narrow, slightly asymmetric peak centered n
the radiation frequencyV0 due to the frequency fluctuation
and a small, but broad, asymmetric pedestal originating fr
the amplitude fluctuations and the correlated amplitu
frequency fluctuations.

Let us analyze the spectral peak and its spectral w
~linewidth of the emitted signal!. According to Malakhov28 a
detailed analysis of the spectral formWz(V) and the line-
width DV may be done only for stationary frequency flu
tuations having a normal distribution. This is fulfilled her
In addition due to the central limit theorem the condition
a Gaussian distribution of the frequency fluctuations is f
filled for a large number of fluxonsN, because the random
process in Eq.~21! is a sum of a large number of near
equal components. In this case the form of a spectral p
Wz(V) is

Wz~V!5
^A&2

4p E
2`

1`

expF2E
0

t

~t2j!Kn@j#djGcosVtdt.

~44!

As usual@see Ref. 28 and Eq.~32!# the spectral width of
the frequency fluctuations is defined as

n05
Kn@0#

E
0

`

Kn@t#dt

5
1

p

Dn

Sn~0!
51/tcos. ~45!

Let us introduce the modulation index

m5Dntcos
2 5

pSn~0!

n0
. ~46!

For the particular case of an exponential correlation fu
tion for the frequency, Eq.~41!, one can find an exact ex
pression for the shape of the spectral line for arbitrary val
of m

Wz~V!5
^A&2

2p
emE

0

`

exp@m~2n0t2e2n0t!#cosVtdt

5
^A&2

2p
em(

l50

`
~2m!l

l!

n0~m1l!

n0
2~m1l!21V2

. ~47!

For m!1 the expression forWz(V) is ~see Ref. 28!

Wz~V!5
^A&2

2p

mn0
3

@n0
2m21V2#@n0

21V2#
. ~48!

In the opposite casem@1 the shape of the spectral line ha
a Doppler~or Gaussian! form
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Wz~V!5
^A&2

2

1

A2pDn

e2V2/(2Dn).

The spectral linewidthDV for arbitrarym may be written
as

DV5pmn0B~m!, B~m!5
e2m

(
l50

`
~2m!l

l!

m

~m1l!

.

~49!

For m!1

B~m!512m10.5m220.416m31••• ~50!

and, therefore,

DV5pmn0 , m!1. ~51!

For m@1

B~m!5A2p/mM~m!,

M ~m!5120.266
1

Am
10.084

1

m
10.153

1

mAm
1•••,

~52!

and the linewidth has the formDV5A2pDnM (m). Notice
that ~see Ref. 28! for m,0.1 one can use the expansion E
~50! and for m.10 the expansion Eq.~52!. For 0.1,m
,10 B(m) varies from approximately 0.9 form50.1 to 0.3
for m510.

The experimental parameters2,3 show that a small modu
lation index,m!1, is more realistic for practical CFFOs an
in this case the radiation linewidth, Eq.~51!, takes the form

DV5
phCG2

N
DV*

5
2Ga1C

kr
2lA12v r

2/kr
2

ReS ]D~v,kr !

]v Uv0D 21 Dcos

^A&2
, m!1,

~53!

where

DV* 5Dcos/^A8&2, ~54!

and Dcos5Kcos@0#2Kcos@`#5^cos(u)2&2^cos(u)&2. C is of
the order of unity. Thus, the radiation linewidth is propo
tional to the damping coefficients of the wave (G) and the
junction (a1), and is inversely proportional to the emitte
power ^A&2 and the wave numberkr

2 . The variance
Dcos(hD) is a nonlinear function of the noise intensityD and
the parameterh5Ga1 /seN.

Taking a150.1, h5100,N530, and hG50.01;0.1;1
~the corresponding IVCs were shown in Figs. 3 and 4!, one
finds DV51027DV* , DV51025DV* , and DV
51023DV* , respectively. In Eq.~49! and Eqs.~51!–~53!
the linewidth,DV, is expressed in units of the maximal J
sephson plasma frequency. For the usual FFO~Ref. 29! the
linewidth is 102621028 times the oscillator frequency. Fo
.

the CFFO the linewidth contains the factorDV* which is
smaller than unity and decreases to zero with decrea
noise intensity as demonstrated in Fig. 7 forhG50.1, and
D51023, D51024, and D50.531024. From the plot of
DV* , Eq. ~54!, versus bias currentDh, Eq. ~23!, one ob-
serves an interesting phenomenon. The linewidth has a m
mum at a certain bias current which is slightly different fro
the value yielding the maximal amplitude of generation.
summary, because of resonant character of the wave-flu
interaction, and substantiated by the estimations prese
above, the CFFO will have a significantly smaller linewid
than the usual FFO.

VI. CONCLUSIONS

In the present paper the influence of thermal fluctuatio
on the Cherenkov radiation effect in a long annular Jose
son junction with an overlaying transmission line has be
investigated. It is shown that the emitted radiation is redu
in the presence of noise. The physical explanation is t
without noise the maximal output power is obtained in t
synchronous regime when the fluxons bunch in the stron
‘‘slowing’’ field of the electromagnetic wave. In this critica
point of operation any additional increase of the bias curr
~e.g., also due to fluctuations! will destroy the state where th
fluxon is trapped by the wave. So, at the bias current wh
corresponds to the maximal output power without noise
synchronism between the fluxons and the wave is unst
with respect to fluctuations. This effect was consider
within the framework of a rather simple but still realist
model based on an annular Cherenkov flux flow oscilla
~CFFO!. It is believed that this is valid also for a CFFO wit
linear geometry.

Further it has been shown that the influence of the ra
ated wave on the fluxon dynamics leads to several new
interesting phenomenon. Both the mean amplitude of
emitted radiation and its linewidth exhibits a resonant beh
ior as functions of junction bias current at a given no
intensity. The found formulas for the radiation spectrum

FIG. 7. Linewidth of the emitted radiationDV* as function of
bias current for three values of the noise intensityhD. The zero on
horizontal axis is shifted compared to Figs. 1–3@see Eq.~23!#. All
parameters are normalized, see text.
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the CFFO predict a smaller radiation linewidth and a hig
emitted power than the usual flux flow oscillator~FFO!.

For low noise intensity and relatively week coupling b
tween the junction and the slow wave transmission line
obtained theoretical results allow for an optimization of t
main CFFO parameters~power, tunability, and bandwidth!.
In the limit the obtained analytical results are believed
enable practical design and realization of oscillators base
Cherenkov radiation of Josephson fluxons. Numerical sim
lations will be needed to explore the properties of futu
CFFOs operating in the limit of strong coupling and wi
more complex geometries.

The oscillator based on the Cherenkov radiation of
fluxons in Josephson systems is a new and promising so
of radiation. For applications as local oscillator for SIS mix
based mm- and sub-mm wave receivers the CFFO is par
larly attractive especially at frequencies above'1/3 of the
superconducting gap frequency where the linewidth of
usual Nb/AlOx/Al FFO increases due to higher dampi
caused by self-excitation of quasiparticles. Also surfa
.
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losses start to play a crucial role at such high frequenc
Similar to the FFO the CFFO can undoubtedly be ph
locked to an external reference oscillator. This, however, s
needs experimental verification. Finally, the CFFO conc
appears very promising for oscillators fabricated with hig
Tc superconductors.
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