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The nonlinear dynamics of fluxons in Josephson systems with dispersion and thermal fluctuations is ana-
lyzed using the “quasiparticle” approach to investigate the influence of noise on the Cherenkov radiation
effect. Analytical expressions for the stationary amplitude of the emitted radiation and its spectral distribution
have been obtained in an annular geometry. It is demonstrated that noise reduces the amplitude of the radiated
wave and broadens its spectrum. The effect of the radiated wave on the fluxon dynamics leads to a consider-
ably smaller linewidth than observed in the usual flux flow oscillator. A resonant behavior of both the mean
amplitude and the linewidth as functions of bias current is found. The obtained results enable an optimization
of the main parameter@ower, tunability, and linewidthof practical mm- and sub-mm wave Cherenkov flux
flow oscillators.

I. INTRODUCTION reference oscillator and tuned in-lock over a wide frequency
band (270-440 GHz**® In the CFFO where fluxons are

Cherenkov radiation in Josephson junctions, first sugsmoving in the periodic potential created by the accumulated
gested by Kivshar and Malomédas been widely discussed radiated wave generated by the fluxons themselves the prob-
during recent years:! There are several motivations for the lem becomes even more nonlinear, and at the present time
increasing interest. First, the resonant radiation emissiothere exists no elaborated theory for the linewidth. The in-
from nonlinear systems and structures is an interesting thedluence of noise on power and radiation linewidth is impor-
retical task in it self. Second, taking into account the effect oftant both from fundamental and practical points of view, and
Cherenkov radiation it is possible to explain a number ofthe aim of this paper is to present a simple but sufficiently
phenomena observed in experiments, e.g., microwave emigrecise theory that enables a reliable estimation of the basic
sion from high-temperature superconductingHTSC) parameters needed for the practical design of the CFFO.
ceramics’ and fine structures in the current-voltage charac-
terist_ics(IVC’s) of annular Josephson junctioHsFinaI_Iy, Il THE BASIC PROBLEM
and important for applications, the tunable resonant interac-
tion of Josephson fluxons with electromagnetic waves allows The physical system considered is a one-dimensional long
for a significant increase of the efficiency of Josephson osdosephson junctiofLdJ) coupled to a linear external trans-
cillators based on fluxon dynamics. In addition to the in-mission line, e.g., a waveguide. The normalized junction
creased emitted mm- and sub-mm wave power, the resonatgngthl and widthw satisfyl>1 andw<1; normalization is
nature of the Cherenkov effect simultaneously allows for ao \;, the Josephson penetration depth. In a long junction
significant reduction of the linewidth and the content of magnetic flux is quantized and enters in the form of fluxons
higher harmonics. Compared to the standard flux flow oscil{Josephson vorticgseach containing a single flux quantum
lator (FFO) (Ref. 10 and the Josephson soliton oscillator ®,=h/(2e). Subjected to suitable bias conditions, usually
(JSO (Ref. 12 where the power is emitted only from the an applied dc bias current and magnetic field, a fluxon moves
ends) of a one-dimensional long Josephson junction, thealong the junction as a solitary wave which in many respects
Cherenkov flux flow oscillatofCFFO extracts energy from behaves as gquasjparticle. Cherenkov radiation exists
the whole fluxon chain as it propagates through the junctionwhen the particle velocity exceedsr equal$ the phase ve-
The CFFO therefore may be considered as a new type dbcity of the wave it generates. The type of radiation and its
Josephson oscillator. phase velocity depends on the surrounding medium.

The influence of noise on the Cherenkov radiation effect In our system an external transmission line is the medium
has not yet been practically investigated. The results obwhich provides the “slow” waves that can be in resonance
tained for the JSO, where the radiation linewidth is mainlywith the moving fluxons in order to satisfy the Cherenkov
determined by fluctuations in the velocity of fluxons, freely condition. The Josephson junction, which in itself is a trans-
moving in a long Josephson junctiGhcannot be directly mission line, cannot be used because the phase velocity
applied to the CFFO. For the FFO extensive measurementSwihart velocity of its linear modes always is larger than
of the linewidth have been made but no reliable noise theorghe maximal fluxon velocity. There are several ways the
has yet been proposed. Recently it has been shown that theaves in the external transmission line may appear slow
FFO can be phase locked to high harmonics of an externaklative to the fluxon. The simplest coupling scheme we can
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W W2 in the main line. The waveguide system is spatially periodic
h but its wave equation can still be described by a linear op-
=3 h erator. The dispersion characteristic of the linear waves ex-
1 hibits a zone structure and the required resonance condition
can be achieved in a sufficiently high numbered Brillouin
zone(resonance between a fluxon and high space harmonic
of the eigenfunction of the linearized operator
In order to find analytical solutions for the CFFO with
d1 noise we will consider the simplest case, which is the annular
system, i.e., a long annular junction coupled to an overlaying
annular transmission line, e.g., a microstrip line. A short sec-
tion of the structure is shown in Fig. 1. In the linear geom-
Josephson etry the interaction of fluxons with the LJJ boundaries, and
junction . . .
collisions of fluxons and antifluxons can only be dealt with
/ using numerical simulations. We admit that the annular sys-
W tem may appear somewhat academic, but we can use it to
3 demonstrate the most important features and effects. Never-
\ theless, the annular system can be realized in prattite
and what is very important is that the mm- or sub-mm wave
FIG. 1. Sketch of a section of a long Josephson junction couplegpower generated by the Cherenkov process can be coupled
to a slow wave transmission line with dispersitsee text The  out using either the meander or the resonant antenna/
structure is one of the possible schemes realizing the Cherenkowaveguide systems suggested above. Both the linear and the
flux flow oscillator (CFFO. annular geometry appear suitable for practical CFFO appli-
cations.

propose is to overlay the junction with a meander shaped Due to flgx qu'anti_zation the number of fluxons trapped in
stripline that crossegnd couplesto the junction at regu- 2" annular junction is constant, depending only on how the

larly spaced intersections. The wave generated in the stripsyStem was prepared. For the current biased annular Joseph-

line by a fluxon at a given intersection must travel a longS°" Junction the well known sine-Gordon equation can be
distance in the side arm of the meandand therefore is written
considerably delaygdefore it again meets the fluxon at the

next intersection. If the coupling between the junction and

the stripline is weak the propagating wave on the external
transmission line obeys a simple wave equation containing a
linear operatofsee below. =~ Yt Bt mot+ LX), @

The COUP'”_‘Q §cheme suggested above is an example G]“che transmission line is described by the equation
the general distributed system of Josephson junctions elec-

tromagnetically coupled to a wave guide. A distributed cou- .

pling scheme similar to that shown in Fig. 1 for a LJJ and the Dy=—vouxt Beu- 2
corresponding discrete electronic circuit model has bee
treated theoretically by Kurin and Yulfff. They show that
the fluxons bunch in the decelerating phase of the fiel

h,

Transmission
line

it a@i— eyt sin o+

27TNX)
|

rI1-|ereqo+ 2aNX/1, «, ng, { are, respectively, the phase dif-
d‘erence of the order parameter of the Josephson junction, the

propagating in the waveguide in a process that closely mimgamping coefficient of the junction, the bias current, and the
ics the way electrons bunch in the traveling-wave and backhoise current. We assume that the current density is constant

ward wave tubes. If the wave guide system is periddig. gnd 'ghat the dc bias current is supplied unifp_rmly along the
contains resonant sections and thus appears disp)emi\ss,e junction. All currents are normalized to the critical curreXit.
may, for simplicity, treat the system in the long wave limit IS the.numbgr of fluxons t.rellpped n thg]gnctlon, andndﬁ
assuming that its spatial period is much smaller than th re dimensionless coefficients dgspnbmg the coupling be-
wavelength of the excited wave in the waveguide. This ween the fluxon and the transmission line, see Refs. 19,20.

avoids the additional difficulties with finding the necess,ary'\l()tteh thgt_tﬁan a?nlular Ju?Ct'Ofn C‘?r? anIy behlocaII);]descdr!?fed
eigenfunctions and the dispersion relation. The general casBy € dinierential equation for the Josephson phase ditter-
where the slow wave also can be provided but where all th hee in the case When t_here IS magnetic flgx in the junction.
coefficients in the equations describing the system depend o € reason is that in this cagg changes with N when

the space coordinate can in principle be solved. This, howene follows a closed pass along the junction. So this variable

ever, leads to very long calculations is not differentiable in any point of the junction. Instead we

Recently Baryshewet al'7 proposed an alternative slow US€ i our equations the variable= ¢, —27Nx/| which is
wave structure consisting of &main) transmission line well defined in the system. The linear integrodifferential op-

(waveguide with periodically spaced resonant side armseratorD determines the dispersion properties of the external
each of which are end coupled to the side of the LJJ. Thavaveguide system which allows for the Cherenkov synchro-
delay of the excited wave in the side arms makes the returriSm. For example for the system shown on the Fig. 1 the
ing wave to appear slow to the fluxons while the excitedappearance d in the long wave approximation is the fol-
waves in all side arms interfere constructively and propagatéowing:
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€ hy (W, d; WtanwW/v) Before we discuss the technical aspects of the noise prob-

D(w,k)= —wze— VYA S v lem it is appropriate to formulate our final goal which is to
rra 2 v derive a self-consistent system of abridged equations that
oM hi+2n W, describe the Josephson system in terms of the fluxon move-

iy Tl hy+ 2\’ ) ment and the transmission line in terms of a slowly varying

complex amplitude of the radiated wave. The first step is to
in the -k representation, see Ref. 16. Hereintroduce thequasiparticle approactior the junction.
hi, hy, W, W;, W,, d, d; are geometrical parameters of  When the terms in Ed1) corresponding to damping, bias
the Josephson junction and the transmission line, see Fig. turrent and the backward action of the electrodynamic sys-
€, u1, € and u, are dielectric and magnetic constants of tem are small, the solitary wave solution to the nearly unper-
the Josephson junction and the transmission lnés Lon-  turbed sine-Gordon equation dynamically behaves as a qua-
don penetration depth for the superconducting electrades, siparticle which may be assigned an effective mass,
= Jeyuqleamahyl(hy+20)/(hy+2)) is the velocity of —momentum, kinetic energy, etc. In this quasiparticle approxi-
the light in the transmission line. It is seen thatat-0 the ~ Mation, and when the distance between successive fluxons is
expression(3) becomes the usual D’Alambert operator. But much larger than the fluxon length, the solution to Eb.
the impedance of the side outgrowths of the transmission liné1ay be presented as a sum of solitary solutions to the unper-
is a function of frequency and so they can work as inductordurbed sine-Gordon equation and a small nongrowing com-
as well as capacitors depending on the frequency. It is adPonente==1_, @5, +\. The solitary solution to Eq(1) is
counted by the term taa(W/v)/wWI/v in the expression for well known,

D.

Equations(1),(2) differ from the equations considered in Psn(X, 1) =TFsol X—Xp(1)]
Ref. 16 only by the noise currei{(x,t) introduced on the w—X 2%
right-hand side of Eq(1). Note here that in general we have —+darctanexp——on | - 2 (5)
to take into account also the thermal noise in the transmis- V1-X2 |

sion line. But this noise is weak in terms of its influence on
Josephson soliton dynami(]sot only because these fluctua- Let us consider the case when the direction of the fluxon
tions have small intensity but also because the coupling benagnetic field corresponds to a minus sign in front of the
tween the Josephson junction and the transmission line igrctan in Eq.(5). Following Ref. 12 one gets the following
supposed to be weakSo the thermal noise in the transmis- equation for the centexX;, of the nth fluxon:
sion line only leads to a small pedestal in the radiation spec-
trum but not to a real broadening of the radiation linewidth. o : o T .
Dimensionless variables are used throughout this paper, n" @%n= 1‘Xn(z”°‘ §J,m[g(x’t)_ ¥
with time measured in units of the maximum inverse Joseph-
son plasma frequency (@/) and length in units of the Jo- ,
sephson penetration IengéhJo. This igmplies that velocities +B¢“]fso[x_xn(t)]dx)‘ 6)
are in units of the Swihart velocityc(=\ ;w,). Subindexx
andt indicates spatial and temporal derivative, respectivelyWe have neglected the fluxon-fluxon interaction which is

A white Gaussian noise current is assumed correct when the distance between neighbor fluxons is much
greater than their size. This condition probably will be ful-
(L(x,1))=0, filled in the beginning of the Cherenkov generation process.

Later in the stationary resonant state the interaction with the
16kgTa wave leads to the situation where each fluxon is located near
({(xq,t1) E(Xo,t0)) = —g ity A Xy), a minimum of the electromagnetic wave, so that the fluxon-
0 4) fluxon distance does not decrease. Inclusion of the fluxon-
fluxon interaction requires numerical simulation.
whereT is the temperaturekg is Boltzmann's constant, and In the noise-free case without coupling to the transmission
E, is the rest energy of the fluxon. line (y=B=0,{=0) the fluxons move uniformly as a “di-
Equations (1) and (2) have to be supplemented with luted” chain with the normalized velocity/ (7o) deter-
proper boundary conditions. For the annular junction themined by the power balance condition
boundary conditions can be written as

aV, T
e(X)=@(x+1), P(X)=(x+I). W:Z%a

In our model the transmission line and the junction haveWhlch can be easely derived from either E@), or, with
the same length e.g., they are placed directly on top of each more calculations, d?;ectly from Ed1).

other. .Th's is not a m_ajor restriction, .bUI it helps not to Since the system is annular, the field in the stripline wave-
complicate the calculations unnecessarily. In the annular gegulde can be represented in the following form:
ometry (and even with a meanderlike transmission Jinae

could have used an angular parameiar x along the un- o
folded meanderto characterize position on both the junction (X, t)= E (e ki,
and the transmission line. m=0
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wherek,,=27m/| is the normalized wave vector of tmeth  stead ofD(w,k;). Taking into account thab(w,+il",k;)
mode with amplitudeb,,(t). The most effective excitation =0 after some simplification we have

will take place for the wave running with a phase velocity b

close to the fluxon velocity, in other words for the wave A it aiw tﬁ_J“’ . i 5t
which is in Cherenkov synchronism with the fluxons. The D(tk)a(verr=em dw 730(6 iT)a(o)e"do
condition of this synchronism i&/k=V, whereV, is the

normalized fluxon velocity at resonance. This resonance in- —eiwrtE _i a—a—il“a
teraction will be considered below subjected to thermal B dw at
noise. , . . . .
Let only one mode with wave numbédg close to the Ar\]ndfthen, finally, we obtain the abriged equation &gt) in
synchronism point be excited. This takes place when the dist— € form
tances between modesw=Vy(k,)27/l are much larger N
than the dissipation constaht a+Ta= 52 g it tiky Xy (10)
n=1
2
Vo(k)——>T, (7) o @(8D(w,kr) )1 a
o d @o|
wherel is the mode damping rate ang, is the group ve- ©
locity of the transmission line. and the quasiparticle equations for the fluxons, Ej),
Then the field in the electromagnetic system may be apwhere (x,t) =a(t)exp(w, t—ik; ) has to be substituted in
proximated by yx and iy .
These equations can be cast in a more suitable form. Let
Y(x,t)=a(t)-exp(iw t—ik,x)+c.c., us write the equation for the wave amplitude in réabt
_ compley variablesA and y. Writing out real and imaginary
a(t)y=A(t)exdix(t)]. (8)  parts of the Eq(10) we obtain
Here a(t), A(t), and x(t) are slowly varying functions of _ N
time on the time scale of &, . The resonance frequency A+ FA=62 siné,, (12
wo=w,+iI" of the mode is determined fronD(w, n=1
+il",k,)=0, where N
YA=—€>, cosb,, (13)
1 +o [+ X i n=1
D(w,k)= —Zf f D(t,x)e” "t kxdtdx
Amt) = J e where
is the Fourier image of the dispersion operaibrNote here, 0,=k, Xp— o, t— x(t)— /2. (14

that the complex amplitude has the characteristic time scale
of variation that equald " *=[Im(we)] !, whereI'<w, .
We also have assumed that the offset of the fluxon velocit
from the phase velocity of the electromagnetic wave

= w, /K, is so small that

Note here that the fluxons can be described by their phases. It
>i,s more convenient because this variable in particular char-
acterizes their interaction with the wave. The phase coordi-
nate 6, determines the fluxon location with respect to the
wave and may be used instead of the linear coordiXgte
|X vV |<(1—V2)/V The time derivative of the phasg(t) represents the devia-
n r r rs . .

tion of the frequency of the emitted wave from the resonance

meaning that we can neglect changes in the shape of tHeequencyw,. In the new variable®,, A, x the equation

fluxon. for the center of a fluxon takes the form
Applying the method of slowly varying amplitudes let us L o
proceed with the abridged equations for the complex ampli- (Ohtx)+a1(0,tx)=ar01(no— 1) — oAsinb,

tudea. Taking the Fourier transform of left and right parts of
Eqg. (2) where ¢ is a series of single soliton solutiof&qg. +ar (), (15
(5)] one can obtain the equation where the normalized resonance bias current, is deter-
mined byV,(#»,)=V,;

. N
~ . (Wox .
Dtk)a(elnt=——=2 3 e, - i o
n=1 O':Tk?\ 1_VT’ Ulzralkr\l_vr, al:l_vz.
where oo=k,(BV2— y)/cosh(m/2)k,/1—V?]. Now let us r(16)

write out the representation dff(t,kr) throughD(w,k;) , i
The random forcey;,(t) is a 5-correlated Gaussian process

D(t,k,)a(t)e' = fj D(w.k)a(w—w,)e“do. (9) (7:0(0)=0, (9in(ty) 7s(t2))=2D 8, (S(t1—to),

_\/2\3/21,2
Sincea(t) is a slow function of time it is possible to substi- D= 8kT(1 V)™ ks _

1
tute D(w, +iT,k,) + (dD/dw)(w— w,—iT) into Eq. (9) in- a:Eq 17
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We now have a system of equations for the real ampli- 1. 1 N
tude, Eq.(12), the phase of the wave, E@.3), and the phase FA’(t)+A’(t)=N Z sin 6,(1)], (20
coordinated,, Eq.(15), but unfortunately it is still too com- n=1
plicated to be solved analytically. In order to proceed we N
consider a special case which on one hand is quite realistic . z
but on the other hand allows for analytical solutions. X7 AN cog fn(t)],
When the fluctuations are small the following conditions

are fulfilled (A)> (A% —(A) <)'(>> /<)'(2>_<)'(>2. This Whereh=Ta;/0eN includes the effective mode damping
assumption gives the possibility to neglect the fluctuations ofat€I" and és=ho1 (70— 7,) is an effective “current” dif-

both the amplitude and the frequency in Etf) and substi- ference between the dc bias cqrrent an_d the normallzed cur-
tute (A) for A and(y) for x. All equations will be consid- rent at resonance. The Langevin equation, @), is com-

. : S letely analogous to the corresponding equation that
ered in the stationary limit when the steady-state values Ogescr?/bes thegdynamics of a singlepoverdgmpqed Josephson

the amplitude and the frequency have been reached. Thjlarlction
condition together with the previous one(y) '

s :
>(x")—(x)° allows us to neglect also theterm. In other ;| MEAN AMPLITUDE OF CHERENKOV RADIATION

words we neglect the influence of the fluctuations of the AND CURRENT-VOLTAGE CHARACTERISTIC
wave amplitude and the frequency on the dynamics of the

fluxon phase. The justification for this procedure will be In order to obtain the averages Af and y, namely their
given later when we have found the expressions for the speecnean and correlation functior(spectra, it is necessary to

(21)

tra of A and . know the corresponding averages of{ gjfit)] and cof,(t)]
In the stationary limit we can rewrite E@L5) as where the phasé,(t) is a stochastic variable governed by
the Langevin equation, Eq19). All fluxons have the same
. . : i statistical properties, i.e., the random procés@) does not
Ont a10,= a101( 10— 1¢) — a1(x) — o(A)sind, depend on the indem In this and the next section we denote
+ay (1), (18) 0,(t) = 0(t). The necessary averages of the phaseay be

obtained using the Fokker-Planck equati@PE for the

Equation(18) only depends on one variablé,, and can be probability densityW(6.t) corresponding to Eq19)
investigated analytically. After simplifications of Eqd.2), OW( .t 9G(6.1
(13), and(15) we actually have two linear equatio(?) and (6,9 =— (6.1

(13) with some random proces®oise on the right-hand at a9
sides @§=15?n On andELllcosan). The;e random processes a ([du(8) IW(6,1)
have complicated statistical properties that can be found =D% do W(6,t) |+ , (22

from Eq. (18).
Equation(18) gives us the statistics fdf, which certainly ~ whereG(6,t) is the probability current and(#6) is the po-

depends or{x) and(A). On the other hand, knowing the tential

statistics off,, we can find( x) and(A). So, we have a set of ) :

transcendental equations2)—(18) for (x) and(A). Solving u(6)=—[(A")cod 6)+ AnoJ/hD, An=&y=h(x) '(23)

this system numerically we will be able to find the mean

amplitude and the frequency deviation. Having done that wé&he initial and boundary conditions for E2) with the

can finally investigate the spectral characteristics of the expotential Eq.(23) are

cited wave. Below we will make the first step and investigate

the statistical properties of,,. W(8,0)=6(6—6y) and W(m,t)=W(—m,t). (24
Equation(18) is still rather complicated, but for many real )

cases we can assume th@> o(A). Indeed, the maximal 'The mean steady—s'tate amplitude a_nd the mean frequency

amplitude(A) is of the order of{A)~eN/T" (see Ref. 15 shift may be found using only the stationary solution to the

and this condition takes the form§F>oeN. This can be FPE (see below. In order to obtain the correlation functions

e . . it is necessary to know the nonstationary solution of the FPE,
satisfied in a wide range of parameters. Notice, that the la o /
o . : _ g.(22), but unfortunately this is not available. However, the
condition does not imply that the junction is overdamped. It

has been demonstrafédsee also Ref. 22that the condition problem of obtaining the nonstationary solution may be
25 (A implies that th d t'- derivati : avoided using the original approach presented in Sec. IV.
Ea (‘Ié) rzw;ir;%fieg?ecte?j second time derivative of in Here we introduce another simplification that will be used

; . . in the analysis of Eq(21). In this equation we have a quo-
Let us renormalize the amplitud®’ (t) so that the opti- y a2Y) d N

: N ’
mal amplitude, reached in the absence of noise, is equal R%{?i?;i:f mg r?;?;);n %rfoC(e;i?e§:pnr=ei/(i:§§san(tr)gs?rri]gtig\n((;?}.

unity; A’ (t)=A(t)I'/ eN. Finally we get the following equa- N — , R ,
tions for A’(t), x(t), and g,(t): > V(A% —(A)” we can presenh’ asA'=(A')+A¢, de-
; , n compose the denominator of E®@1) to the set, and neglect
the small fluctuations of the amplitud&; in comparison

.1 ' N ei with (A’). Accordingly, in the equation foy we will always
On=p[€a= 00 =(ADSIN ) 1+ 7n(1), (19 supposeA’ ~(A’). This procedure does not give additional
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limitations because we already have assumed that the ampl<A (&, )>

tude variation near its mean value is small. 1.0
When averaging Eq20) in the stationary caséA’)=0

we get 08
(A")=(sin(0)), (25)

0.6
utilizing =N_,(sin(6,))=N(sin(6,))=N(sin(6)).

The averagdsin 6)=[”_sinW(x,t)Jdx may be obtained
using the approach of reduced pha&&¥.If free (natura)
boundary conditions were used for the diffusion in the po-
tential Eq.(23) then the steady-state solution of the FPE will
be zero;W,(6) =W(0,)=0. Because of the periodicity of

0.4

0.2

the function sing) one can introduce periodic boundary con- 0.0 I""""'I""""'I""""'I"""";I
ditions, Eq.(24), and consider the process of diffusion within 10 05 0.0 05 1.0
the reduced interval< 7r,7) due to the fact that g,
© _ T . FIG. 2. Calculated dimensionless mean amplit¢dé) of the
f_msm(x)W(x,t)dx—n:z_w _Wsm(x-i- 2mn) radiation generated in an annular CFFO as function of bias current
for different values of the noise intensityD and fixed effective
XW(X+27n,t)dx mode damping ratel’=0.1. The zero on the horizontal axis is the
Cherenkov synchronism resonance current. All parameters are nor-
_ JW S W, (x,)dx, malized, see text.
-1

where(A’) should be substituted as a solution to E2j7).
The system of transcendental equations(Ed) and Eq.(28)
%an be solved numerically for any given value o= &,

where W, (x,t) is the reduced probability density. This re-
duced probability density will reach a nonzero steady-stat
distribution fort—oo. The steady-state reduced probability

densityW, (6,) =W, ,(8) may be obtained from Eq22), —h({x) and the mean value of the amplitude may be plotted

supposing that the time derivative is equal to zero, and inte@s_funpnon of¢y, the shifted normalized bias current. _V\{hen
oise is absent{=0) the formula for the amplitude &

grating the reminder parts twice. The two arbitrary constantd' ,
are determined from the periodic boundary condition, Eq.= VA7 (stable branchor A’ = y2A 7—1 (unstable brangh
(24), and from the normalization conditiofi”™ W, (¢)dx N this case the pointy=1 (Ap=1) corresponds to the

— 1. The reduced steadv-state probability den P upper limit of the stable regime of the Cherenkov radiation.
has the form ) y P ad SHte(6) This point also is the point of maximal amplitude.

Figure 2 shows plots of the normalized mean amplitude

X+2m (A') as function ofé, for different values of the noise inten-
efu(x)f e'®dy sity, hD. As demonstrated in Fig. 2 when the noise intensity
Wisi(6) = - ' (26)  increases, the region of bias current where the Cherenkov
oo [T radiation exists becomes smaller and the bias current corre-
e x sponding to the maximal amplitude decreases, moving to the

. o . . middle of the generation range. All curves in Fig. 2 are cal-
where the potentiali(x) is given in Eq.(23). Using the  cylated for a fixed value of the effective mode damping pa-
obtained reduced steady-state probability density one gefgmeterhI’=0.1.

(sin(6)) and substituting it into Eq(25) one can write the The current-voltage characteristitVC) may be easily
following transcendental equation for the mean steady-statgptained from the data calculated for the mean amplitude

amplitude: (A'). The normalized mean voltage drop {¥)=(X,)
where X,, is the coordinate of the center of the fluxon. Ex-

T X+2
sin(x)e‘“(x)f e"Mdydx pressingX,, from formula Eq.(14) and taking( 6,,) from Eq.
(A'y= T X 27) (19 one finds the foI.Iowing formula for the normalized
Jﬂ _U(X)JHZW u(y) ' mean voltage as function of the bias current:
e e'Ydydx
- X o, 1 o
whereu(x) [Eqg. (23)] is a function of(A’). (V)= k_r+ h_kr(gd_<A ). (29)
A similar procedure may be used to obtain the transcen-
dental equation f0(X> Figures 3 and 4 shows |VC$J(§d):<V(§d)>_a)r/kr,
calculated for different values of the noise intensity with
m —u(x) x+2m W gy hI'=0.01 andhI’=1, respectively. The horizontal “cur-
_ I fﬁ Wcos{x)e fx erayax rent” variable iséy=ho(7,— 5,) containing the difference
(x)=— > , (28)  between the normalized dc bias current and the current at
(A") j” e—u(x)f We“(y)dydx resonance. It is seen, that the hysteresis increases for smaller
- X values of the mode damping rale On the other hand, an
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-
—_
I
~

due to the fact thaf,(t) and 6,,(t), n#m, are uncorrelated.
Herery=1/T". In order to find the correlation functidfa[ 7]
one must know the correlation functionKg] 7]
=(sin oty Isin o(t, + 7)]), ti—e.

By definition K 7] is

o
(5]

Kad71= | sinto9Wisi o) [ sinco

o
o

><Wr(0,7', 00,0)d0d00 (31)

Here W, (6, 7;6,,0) is the reduced conditional probability
density which is simply the probability densit,(6,t) ob-
tained for a delta-shaped initial distribution E@4). To ob-
| | | | | I tain Kg;{ 7] we appl ipti
si pply the new approach for description of
. 02 000204 06 0B 10 gochastic processés:?
& First, let us define the correlation timg;, as

&
o
1N
~

FIG. 3. Current-voltage characteristic calculated for different %
values of the noise intensityD with fixed hI'=0.01. The zero on f [Kgid 71— Kgif e ]]dT
the horizontal axis is the Cherenkov synchronism resonance cur- 0
Ksir[o] - Ksir’[w]

rent. All parameters are normalized, see text.

increase of either the noise intensilyor h (e.g., decreasing |f the function Kg{7] evolves exponentially in time
the coupling coefficienisreduces the hysteresis. K 7]~e~ "7sn then the time scaley, in the factor of the
exponent coincides with the one defined by E2R).

In order to find this correlation time we first need to in-
troduce the mean timer,(6,) of evolution of (sin(6))
=my(t) =7, sin(O)W,(6,t)d6
The equation for the correlation function of the amplitude

(32

Tsin—

IV. CORRELATION FUNCTIONS AND SPECTRA
OF AMPLITUDE AND FREQUENCY
OF CHERENKOV RADIATION

may easily be obtained from E¢R0). Consider Eq(20) at o

time t,. Multiplying it by the same equation at time and fo [Msin(t) — Mgin(20) ]dt

averaging one gets the equation for the correlation function Tl 00) = (33
Kalty,t,] of the radiation. Because we are interested in the Mirn( 0) — Mgjn(°)

stationary correlation function which depends only on the_ . . .
differencet,—t, = 7 one finally gets the following equation ®This time scale depends on the coordinate of the delta-

for K o[ 7]: shaped initial distributiord,. It is seen that the correlation
ALTE time 7, on the basis of the definition81), (32), and(33),

dKA[ 7] 1 _ ) may be expressed vig,(6y)
TOT+KA[TF@[NKsir{THN(N—1)<Sln(0)> 1,
(30) fﬁ Sin( ao)wrst( 00) Tm( ‘90)[msin(o) - msin(oo)]dao
U5 T Ko 0~ Kol ] |
1.0 = (39
é : The time scaler,,,(#y) may be found using the approach
3 by Malakhov?®> We skip here some very long calculations
0.0 = and refer the interested reader to Ref. 27 where the time scale
] D =02 of evolution of average was obtained for another type of
3 boundary conditions. Here we present only the final expres-
3 sion for 7,(6p)
1.0 -] _
3 0y)= f ’ Cy—sin(x
E T 00) = Bl (0) T | gyl S
‘2-0_|||||||||||||||||||||||||||||| —U(X)Xu(y)dd ™ .
20 1o 00 1o Xe Hoe ydx+ _W[sm(x)—Cl]
&

FIG. 4. Current-voltage characteristic calculated for different
values of the noise intensitgD, with fixed hI'=1. Compare to
Fig. 2 and note the different scales. whereW,¢(v) is expressed by Eq26) and

X y
Xe—u(x)f_ e“(y)J_ Wrst(v)dvdydx], (39
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Ksin [*]
0.4

AN=0.2; hD=0.2
AE0.3; hD=0.2

0.3

An=0.3; hD=0.3

An=0.4; hD=0.2

0.2

/

0.1

0.0 IIIIIIIIII|IIIIIIIII|IIIIIIIIIIIIIIIIIII|
0.0 0.2 0.4 0.6 0.8 1.0

kD

0.0 2.0 4.0 6.0 8.0
T

FIG. 5. Comparison between the exponential approximation F!G- 6. The calculated varianc®)s,=Ksil 01— Ksid ], as
(dashed lingand results of computer simulatiggolid ling) of the ~ function of noise intensithD for three bias current values
correlation functiork | 7] for different values ohD andA 7. See ~ —0-5: 0.8, and 0.9. See text.
text.

time 7, is insensitive to variations ohD and 75,=hC,
w m whereC is a numeric coefficient ranging from about 0.8—1.5;
C1:f Si”(X)e_u(x)dX/ J e "Mdx. usuallyC~1.2.
i o Thus, Eq.(30) can be solved analytically with a solution
of the following form:

Substitutingr,(6y) Eg. (35) into Eq. (34) one finds the
correlation timerg,

(Ksir[o] - Ksir{w])

N(7sin— 7o)

Kal71={ Kel =1+

h T
TSin:hD(KSir{O]_ Ksir[oo]) ( f_wSimao)Wrst( 00)

X[ 7sin€™ 7/ 7sin— To€ 7/7-0] . (38
T X
X f [Ci— sin(x)]e‘”(X)J e'Mdydxdd,
o

[
° This is the correlation function of the amplitudd’

L T B =AI'/eN and to get the correlation function férthe right-
+ f _Sin(flo) Wrs( o) d o f _ [sinx)=Cyq] hand side of Eq(38) should be multiplied by Ne/T')2.
Now, knowing the correlation function of the amplitude,
- X y find the variance of the amplitu@,, which we
X U(X)f u(y)f we can p , ch
© _We _WW'S‘(U)dvdde ' (36 supposed to be smalA’)>(A’?)—(A’)2. By definition
we haveK o[0]=(A’2), K []=(A")2. Also by the defini-
where K {0]=/7_sif(X)W(X)dx Kglo]=(sinK))?,  tion Dy=(A’?)—(A’)? so the variance has the following
and (sin))=J7_sinX)W,s(x)dx In this formula we puth ~ form
both in the numerator and the denominator because later we
shall see that,~h. K. T01—K.
Once we know the time scale of the evolution of the cor- DA=( s 0~ Rarl=])
relation function we can present it in the form N

(39

Kl 71= (K { 0] — Kgf])e s+ Kg{], (37) It is seen that the variance of the amplitude is proportional to
the variance of sif,, Dgj,= K] 0]—Kg{ ] which de-
where 74, is given by Eq.(36). Our assumption about the creases with the noise intensityD (see Fig. 6 and is in-
exponential behavior of the correlation function is based orversely proportional to the number of fluxons emitting the
previous investigatiof&?” and is confirmed by computer wave. If we reduce the amplitud@’) in the potential, Eq.

simulations. (23), e.g., corresponding to a reduced coupling, we observe
The exponential approximation, E(7), and the results that the varianceDg;, increases and reaches 0.5 fok’)
of computer simulation of the correlation functidy;| 7] =0. Accordingly, the collective effect of the Cherenkov syn-

are shown in Fig. 5. First, it is seen, that the exponentiathronism of fluxons with the emitted wave improves the
approximation agrees well even in the limit where thenoise properties of the CFFO.

equivalent noise intensitigD is rather large compared with Finally, the spectrunB,(w)=[q “Ka[ 7]coswndr may

the barrier height that separates the stable states of the pbe obtained as the Fourier transformation of the correlation
tential Eq.(23). Second, and important, is that the correlationfunction K[ 7] and represents a sum of two Lorentzians
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A(t) and x(t) or x(t) are known.
In the general case when the fluctuationg\¢f) and y(t)
are correlated, the analysis is possible only when the fluctua-
+Ksin[°°]5(w)]. (40 tions of amplitude are small and the correlation function
Ka,[ 7] is of the order or less thaf,[ 7]. Here we are work-
) . ing in the limit of small amplitude fluctuations so using the
The generation frequency eqUEﬂEJ:onJF_(X) and we  approach of the previous section it can be shown that the
will consider fluctuations neaflq; v(t)=x—{x). The cor-  spectrumK,[ 7] is less thark o[ 7]. Following Malakho¥®
relation functionk,[ 7] and the spectrurB,[ w] may be ob- the spectrum of the emitted wawat) =A(t)cod wt+ x(t)]
tained in the same way as the corresponding characteristiconsists of a narrow, slightly asymmetric peak centered near
of the amplitude. From Eq21) one can get the radiation frequenc§), due to the frequency fluctuations
) and a small, but broad, asymmetric pedestal originating from
I' | "(Keod 0] —Keod @ ]) the amplitude fluctuations and the correlated amplitude-
(A N frequency fluctuations.
Let us analyze the spectral peak and its spectral width
where K o{0]=/"_cof(X)Wig(¥)dx Kcd*]=(cosk))?,  (linewidth of the emitted signal According to Malakhof? a
and(cosk))=J"._cosk)W,s(x)dx. The correlation timer.,;  detailed analysis of the spectral folii,({2) and the line-
has the following form: width AQ may be done only for stationary frequency fluc-
tuations having a normal distribution. This is fulfilled here.
_ h ™ In addition due to the central limit theorem the condition of
TCOS_hD(KCOJO]_ Keod®]) J_WCOS( 00)Wist(00) a Gaussian distribution of the frequency fluctuations is ful-
filled for a large number of fluxonsl, because the random

< (w)_{(Ksir[o]_ Ksir[oc])[ 2 2 the spectrum of this signal if the statistical characteristics of
A ()=

N(Tsr—70)  |(Utw?d) (U2t wd)

Kyl 7]= e o (41)

_ y . !
_ —u(x) ) process in Eq(21) is a sum of a large number of nearly
X LO[C2 cogx)Je” ™ Loe” Ydydxddy equal components. In this case the form of a spectral peak
W,(Q) is
+ f cog 6p) Wsi(60)d g f [cogx)—Ca] (A2 [+= T
-7 -7 WZ(Q):HJ ex —f (r— &K, [€]dé|cosQrdr.
% 0

X y
XU f e f wrst<v>dvdydx], (42 o

As usual[see Ref. 28 and Eq32)] the spectral width of
where C,=[" _cosk)e "Wdx/[™ e '®dx It is seen, that the frequency fluctuations is defined as
the noise properties of the frequency deviations are similar to

what is found for the amplitude K,[0] _1 Db,

Vo=—"2 = 5.00) =1/7¢os- (45)
r 2 K, [7]dr
0
D.=N —) (Keod 0] = Kgod 21,
(A7) Let us introduce the modulation index
i.e., the variance of the frequency decreases with decreasing 7S,(0)
noise intensityh D, mode damping rat€, and with increas- m= DVT(Z:os: v (46)
ing number of fluxonsN. The correlation timer.,s, also Yo
(S)'rrg'elfru;ci)t;sm’ has the formre,e=hC, whereC is of the For the particular case of an exponential correlation func-

tion for the frequency, Eq41l), one can find an exact ex-

The spectrum of the frequency deviations s given by pression for the shape of the spectral line for arbitrary values

T 2

(A")

2
(U7t w?)

(Kcos{o] - Kcoioo])
N 7eos

S(w)=

of m
]. W,(Q)= ﬁe”‘focexp[m(— voT— € "07)]cosQrdT
(43 z 27 Jo 0
Now, when we know the basic characteristics of the ampli- 2 ®
tude and the frequency of the CFFO, namely, their correla- = ﬂem (=m) 5 vo(MFA) .
tion functions and spectra, we can perform the final analysis 2m =0 M pf(m+n)2+ 02
of the oscillator linewidth using standard procedures.

(47)

For m<1 the expression foW,((}) is (see Ref. 28
V. RADIATION LINEWIDTH OF THE CFFO 2 3
(A) mvg
The theoretical methods for spectral analysis of oscillators W, ()= 27 [12m2+ Q22+ 027 (48)
are well establisheésee, e.g., Ref. 28In the most general Yo Yo
form the task may be formulated as follows; an oscillator hasn the opposite casm>1 the shape of the spectral line has
an outputz(t) =A(t)cogwt+ x(t)]. The aim is to determine a Doppler(or Gaussianform
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*

AZ 1 AQ
W,(Q)= Q e*92/(2Dy)_ 10.00 —
2 27D, 3
The spectral linewidtA Q) for arbitrarym may be written ]
as 1.00 =
e ™ ]
AQ=mmyyB(m), B(m)=— N 1 hD=0.1
E (—m) m 1
=0 A (m+N) 0.10 hD=0.005 wD=0.01
(49) ;
Form<1 7]
5 3 0.01 —
B(m)=1—m+0.5m“—0.416n°+ - - - (50 oo 02 04 06 08 o
and, therefore, An
AQ=mmyy, m<l1. (52 FIG. 7. Linewidth of the emitted radiatiohQ)* as function of
bias current for three values of the noise intenkiy. The zero on
Form>1 horizontal axis is shifted compared to Figs. 1fs8e Eq(23)]. All

parameters are normalized, see text.
B(m)=+27/mM(m),
the CFFO the linewidth contains the facta)* which is
1 1 1 smaller than unity and decreases to zero with decreasing
M(m)=1—0.266\/—_+0.084n—1+0.153—+ T noise intensity as demonstrated in Fig. 7 fd*=0.1, and
m mvm (52 D=107° D=10"% andD=05x10 . From the plot of
AQ*, Eq. (54), versus bias curremk 7, Eq. (23), one ob-
and the linewidth has the formQ = 27D M(m). Notice  serves an interesting phenomenon. The linewidth has a mini-
that (see Ref. 28for m<<0.1 one can use the expansion Eq.mum at a certain bias current which is slightly different from
(500 and for m>10 the expansion E¢52). For 0.I<m the value yielding the maximal amplitude of generation. In
<10 B(m) varies from approximately 0.9 fan=0.1 to 0.3 summary, because of resonant character of the wave-fluxon
for m=10. interaction, and substantiated by the estimations presented
The experimental parametérsshow that a small modu- above, the CFFO will have a significantly smaller linewidth
lation index,m< 1, is more realistic for practical CFFOs and than the usual FFO.
in this case the radiation linewidth, EG1), takes the form

7hCI'? VI. CONCLUSIONS

AQ* . .
N In the present paper the influence of thermal fluctuations

. on the Cherenkov radiation effect in a long annular Joseph-
) D cos me<l son junction with an overlaying transmission line has been
“) (A)2’ ’ investigated. It is shown that the emitted radiation is reduced
in the presence of noise. The physical explanation is that
(53)  without noise the maximal output power is obtained in the
where synchronous regime when the fluxons bunch in the strongest
“slowing” field of the electromagnetic wave. In this critical
AQ* = Dcos/<A,>21 (54) point of operation any additional increase of the bias current
. (e.g., also due to fluctuationwill destroy the state where the
and D gos= Kod 01— Keod 221 =(c0s)?)—(cos@))>. C is of  fiuxon is trapped by the wave. So, at the bias current which
the order of unity. Thus, the radiation linewidth is propor- corresponds to the maximal output power without noise the
tional to the damping coefficients of the wavE)(and the  synchronism between the fluxons and the wave is unstable
junction (ay), and is inversely proportional to the emitted \jth respect to fluctuations. This effect was considered
power (A)? and the wave numbek;. The variance within the framework of a rather simple but still realistic
Dcod hD) is a nonlinear function of the noise intensilyand ~ model based on an annular Cherenkov flux flow oscillator

AQ

2I'a,C R dD(w,k;)

CKAV1- 0K Jw

the parameten=T"«a,/ceN. (CFFO. ltis believed that this is valid also for a CFFO with
Taking «;=0.1,h=100,N=30, and hI'=0.01;0.1;1 linear geometry.
(the corresponding IVCs were shown in Figs. 3 andche Further it has been shown that the influence of the radi-

finds AQ=10'AQ*, AQ=10°AQ*, and AQ ated wave on the fluxon dynamics leads to several new and
=10 3AQ*, respectively. In Eq(49) and Egs.(51)—(53) interesting phenomenon. Both the mean amplitude of the
the linewidth,A(), is expressed in units of the maximal Jo- emitted radiation and its linewidth exhibits a resonant behav-
sephson plasma frequency. For the usual RRéf. 29 the ior as functions of junction bias current at a given noise
linewidth is 10 6— 108 times the oscillator frequency. For intensity. The found formulas for the radiation spectrum of
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the CFFO predict a smaller radiation linewidth and a highedosses start to play a crucial role at such high frequencies.
emitted power than the usual flux flow oscillat&FO). Similar to the FFO the CFFO can undoubtedly be phase

For low noise intensity and relatively week coupling be-locked to an external reference oscillator. This, however, still
tween the junction and the slow wave transmission line theieeds experimental verification. Finally, the CFFO concept

obtained theoretical results allow for an optimization of theappears very promising for oscillators fabricated with high-
main CFFO parameter@ower, tunability, and bandwidth T _ superconductors.

In the limit the obtained analytical results are believed to
enable practical design and realization of oscillators based on
Cherenkov radiation of Josephson fluxons. Numerical simu-
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