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Vortex states in superconducting rings

B. J. Baelus, F. M. Peetefsand V. A. Schweigeft
Departement Natuurkunde, Universiteit Antwerpen, Universiteitsplein 1, B-2610 Antwerpen, Belgium
(Received 4 October 1999

The superconducting state of a thin superconducting disk with a hole is studied within the nonlinear
Ginzburg-Landau theory in which the demagnetization effect is accurately taken into account. We find that the
flux through the hole is not quantized, the superconducting state is stabilized with increasing size of the hole
for fixed radius of the disk, and a transition to a multivortex state is found if the disk is sufficiently large.
Breaking the circular symmetry through a non-central-location of the hole in the disk favors the multivortex
state.

[. INTRODUCTION depends on the dimensions of the system. Arutunyan and
Zharkov** found that the flux through the effective area
Thanks to recent progress in microfabrication and mea(p*)? is equal tomé,, where the effective radiug* is
surement techniques, it is possible to study the properties gfpproximately equal to the geometric mean square of the
superconducting samples with sizes comparable to the peiner radiusR; and the outer radiug, of the cylinder; i.e.,
etration depth\ and the coherence length The properties p* =(R; R,) Y2 Recently, Fomiret al*® studied square loops
of these mesoscopic systems are considerably influenced Iwjith leads attached to it and found inhomogeneous Cooper-
confinement effects. Therefore, the vortex state will dependpair distributions in the loop with enhancements near the
on the size and the geometry of the sample. corners of the square loop. Bruyndoneiall® investigated
In the present paper, we study the properties and the voinfinitely thin loops of finite width. In this case, the magnetic
tex states of superconducting thin disks with a hole. In thdield induced by the supercurrents can be neglected and the
past, two limiting cases were studied: the thin-wire loop andotal magnetic field equals the external applied magnetic
the disk without a hole. In 1962 Little and Parks studied afield. Furthermore, they used the linearized GL equation,
thin-wire loop in an axial magnetic fiefdThe T.—H phase  which is only valid near the superconductor/normal bound-
diagram showed a periodic component. Each time a fluary where the density of the superconducting condensate
quantumey=hc/2e penetrates the systerfio(H) exhibits ||? is small. Only the giant vortex state with a definite
an oscillation. Berger and Rubinstéistudied nonuniform angular momentunh was studied and they concentrated on
mesoscopic superconducting loops using the nonlineahe two-(2D) to three-dimensional3D) crossover. Berger
Ginzburg-LandauGL) theory. They assumed that the in- and Rubinsteitl also studied infinitely thin loops of finite
duced magnetic field can be neglected for samples with sufwidth with broken axial symmetry and they also neglected
ficiently small thickness. In the limit of thin loops, the tran- the induced field.
sition between states with different angular momentum It is well known that for type-Il > 1/y/2) superconduct-
(also called vorticity occurs when the enclosed flug  ors the triangular Abrikosov vortex lattice is energetically
equals [ +1/2)¢,.2 The superconducting disk was studied favored in the rangél ,;<H<H,. Since the effective Lon-
by Schweigeret al*~7 (see also Ref.)8by solving the two  don penetration deptth =\?/d increases considerably in
GL equations self-consistently. Although the GL equationsthin samples and fod<<A one would expect the appearance
were derived to describe superconductivity near the criticabf the Abrikosov multivortex state even in thin rings made
point, this theory turns out to be valid over a much broademith a material withx<1/,/2. Similar as for the case of a
range of magnetic field and temperat(feThey found that thin disk® we expect that the structure of a finite number of
the finite thickness of the disk influences the magnetic fieldsortices should differ from a simple triangular arrangement
profile, i.e., the magnetic pressure, and this changes the size the case of a thin ring and we expect that they will re-
of the Meissner effect, which is different from the well- semble the configurations found for Coulomb clusters, which
studied cylinder geometri¢S.The reverse problem, i.e., the are confined into a rindf
antidot, was studied by Bezryadet all!* They obtained a In the present paper we consider circular flat disks of
phase diagram of a thin superconducting film with a circulamonzero width with a circular hole in it, which is not neces-
hole in an axial magnetic field by solving numerically the sary in the center of the disk. The superconducting properties
nonlinear GL equations in the limit of a thin film. Here we are also studied deep inside the superconducting state where:
generalize the results of Ref. 5 to a thin circular supercont) nonlinear effects are important, i.¢y| is not necessarily
ducting disk containing a circular hole. small, and the nonlinear GL equations have to be solved, ii
The intermediate case of finite width loops was studiedhe total magnetic field is not homogeneous, i.e., it is spatial
previously by Barde€® within the London theory. He varying due to the Meissner effect and the flux quantization
showed that in tubes of very small diameter and with wallcondition, which may enhance or diminish the magnetic field
thickness of the order of the penetration depth the fluxhrough the hole as compared to the applied magnetic field,
through the tube is quantized in units oy, wherev<<l and iii) due to nonlinear effects the circular symmetric giant
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(—iVp—A)W|i_g =0, (4b)

andA= %Hopé¢ far away from the superconductor. Here the
distance is measured in units of the coherence leéigthe
vector potential incA/2e¢, and the magnetic field it
=chil2eé?= k\2H,. The ring is placed in the planey),

FIG. 1. The configuration: a superconducting disk with radiusthe external magnetic field is directed along thaxis, and
R, and thicknessd with a hole inside with radiug};, which is  the indices 2D, 3D refer to two- and three-dimensional op-
placed a distancea away from the center. erators, respectively.

The giant vortex state in a circular configuration is char-

vortex states are not necessarily the lowest energy states angdterized by the total angular momentum through ¥
the magnetic field can penetrate the superconductor through y(p)exp(L ¢), wherep and ¢ are the cylindrical coordi-
single vortices creating a multivortex state. natesL is the winding number and gives the vorticity of the

The paper is organized as follows: In Sec. Il we presensystem. An arbitrary superconducting state is generally a
the theoretical model. In Sec. lll we consider a small supermixture of different angular harmonids due to the nonlin-
conducting disk with a hole in the center. In this case we fincearity of the GL equations. Nevertheless, we can introduce
that only the giant vortex state appears. We study the influan analog to the total angular momentlunwhich is still a
ence of the radius of the hole on the superconducting statgood quantum number and which is, in fact, nothing else
For such a small system the relation between the local maghan the number of vortices in the system.
netic field, the current density, and the Cooper-pair density is To solve the system of Eq$l) and (2), we generalized
investigated and the quantization of the flux through the holehe approach of Ref. 4 for disks to our fat ring configuration.
is investigated. Next, in Sec. IV, we consider the case of ave apply a finite-difference representation of the order pa-
larger superconducting disk with a hole in the center. Forameter and the vector potential on a uniform Cartesian
increasing magnetic field, we find re-entrant behavior; i.e.space grid X,y), with typically 128 grid points over a dis-
transition from the giant vortex state to the multivortex statetance R, (i.e., the diameter of the ringand use the link
and back to the giant vortex state before superconductivity igariable approach’ and an iteration procedure based on the
destroyed. Finally, in Sec. V, we investigate the influence ofGauss-Seidel technique to finl. The vector potential is
the position of the hole on the vortex configuration; i.e., whatobtained with the fast Fourier transform technique where we
happens if we break the axial symmetry? Our results argetg‘x‘=R5’|y|=RS:HO(X,_y)/Z at the boundary of a larger

summarized in Sec. VI. space gridtypically Re=4R.).
To find the different vortex configurations, which include
Il. THEORETICAL FORMALISM the metastable states, we search for the steady-state solutions
In the present paper, we consider superconducting disk&f Eds. (1) and(2) starting from different randomly gener-
with radiusR, and thickness with a hole inside with radius ated |n|t_|al _cond|t|0ns. Then we mcreas_e/decrease slowly the
R;, which is placed a distan@away from the center of the magnetic field and_ recalculate each tlmg the_ exgct vortex
disk (Fig. 1). These superconducting “rings” are immersed structure. We do this for each vortex conﬁgura_ltlon in a mag-
in an insulating medium with a perpendicular uniform mag-netic field range where the number of vortices stays the
netic fieldH,. To solve this problem we follow the numeri- S@me. By comparing the dimensionless Gibbs free energies
cal approach of Schweigert and PeefeFor thin disks @ ©f the different vortex configurations
<¢,\) they found that it is allowed to average the GL equa-
tions over the disk thickness. Using dimensionless variables F=V’1J [2(A—Ag)- j2q— | ¥|*1dr, (5)
and the London gaugeivA=0 for the vector potentiah, v
we write the system of GL equations in the following form where integration is performed over the sample volwhe
. R andﬂo is the vector potential of the uniform magnetic field,
(—iVp—AP¥=W(1-|¥|?, (1) we find the ground state. The dimensionless magnetization,
which is a direct measure of the expelled magnetic field from

. d - the sample, is defined as
—A3pA=—68(2)j2p, 2
« _(H)~Hq ©
where 4o
1 whereH, is the applied magnetic fieldH) is the magnetic
j*ZD:?(q;*V*ZD\p_\pV*;DqI)_|\p|2,& (3) field averaged over the sample or detector surface &rea
i
is the density of superconducting current. The superconduct- !Il- SMALL RINGS: THE GIANT VORTEX STATE
ing wave function satisfies the following boundary condi-  First we discuss a small superconducting ring. Although
tions the system is circular symmetric in general, we are not al-
- S lowed to assume thatf(ﬁ)zF(p)e“ because of the non-
(_Isz_A)\Ph:Ri_O’ (48 Jinear term in the GL equationd) and(2). Nevertheless, we
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FIG. 2. The ground-state free energy as a function of the applied
magnetic fieldH, of a superconducting disk with radilg, = 2.0¢,
thicknessd=0.00%, and k=0.28 for a hole in the center with
radiusR;/£=0.0, 0.5, 1.0, and 1.5, respectively. The thin dotted
curve gives the free energy of a thicker ring with thickneks
=0.1¢ andR;=1.0¢. The free energy is in units GfO:H§V/87T.

found that for sufficiently small rings the confinement effects

are dominant and this imposes a circular symmetry on the 0 — 2 ' ' 4 — 6 — 8
superconducting condensate. If we can assume axial symme- H /H
try, the dimensions of the GL equations will be reduced and 0 ez

thus the accuracy and the computation time will be im- FIG. 3. The magnetization as a function of the applied magnetic

proved._ Ther?for_e we will L!SG th,is methOd for small rings'field H, for a superconducting disk with raditg = 2.0¢ and thick-
For a disk, this kind of solution with fixetl has been called pe55q=0.00% and k=0.28 for a hole in the center with radius

2D solutionby Deoet al.” in contrast to the8D solutionof R /¢€=0.5(a) andR;/¢=1.5 (b). Curve(i) is the calculated mag-
the general problem. netization if we average the magnetic field over the superconduct-
The ground-state free energyof a superconducting disk ing volume; curve(ii) after averaging the field over the area with
with radiusR,=2.0¢ and thicknessl=0.00% and GL pa- radiusR,, i.e., superconductor and hole; cury@éi) and (iv) after
rameterk=0.28 is shown in Fig. 2 for a hole in the center averaging the magnetic field over a square region with widths equal
with radiusR;/£=0.0, 0.5, 1.0, and 1.5, respectively. The to 2R, and (2+1/2)R,, respectively.
situation withR;=0 corresponds to the situation of a super-
conducting disk without a hole, which was already studied inmeasuring the Hall resistance, one obtains the average mag-
Ref. 5. With increasing hole radiuR;, we find that the netic field, and, consequently, the magnetic field expelled
superconducting/normal transitigthis is the magnetic field from the Hall crosgEq. (6)], which is a measure for the
where the free energy equals zershifts appreciably to magnetization of the superconducfoAs in the case of a
higher magnetic fields and more transitions between differerguperconducting disk the field distribution in the case of
L states are possible before superconductivity disappeartin superconducting rings is extremely nonuniform inside as
Furthermore, the thin dotted curve gives the free energy for avell as outside the sample and, therefore, the detector size
thicker ring with thicknessi=0.1¢ and R;=1.0¢. In com-  Will have an effect on the measured magnetization. To un-
parison with the previous results fde=0.00%, the free en-  derstand this effect of the detector, we calculate the magne-
ergy becomes more negative, but the transitions between ttigation for a superconducting ring with outer radigg
different L states occur almost at the same magnetic fields=2.0¢, thicknessd=0.00%, and two values of the inner
Thus increasing the thickness of the ring increases supercoradius Rj=0.5¢ and R;=1.5¢ by averaging the magnetic
ductivity, which is a consequence of the smaller penetratioffield [see Eq.(6)] over several detector siz& The results
of the magnetic field into the superconductor. are shown in Figs. @) and 3b) as a function of the applied
Experimentally, using magnetization measurements oneiagnetic field forR;=0.5¢ andR;=1.5¢, respectively. The
can investigate the effect of the geometry and the size of theolid curve[curve(i)] shows the calculated magnetization if
sample on the superconducting state. One of the main advame average the magnetic field over the superconducting vol-
tages of these measurements, in comparison with resistivityme, and curveii) is the magnetization after averaging the
measurements, is that they are noninvasive and no condutield over a circular area with radil,, i.e., superconductor
tion probes are needed, which may distort the superconducénd hole. Notice that in the Meissner regime, il¢g/H,
ing state. To investigate the magnetization of a single super<0.7, whereL =0, the magnetization of superconducter
conducting disk Geirret al?® used submicron Hall probes. hole is larger than the one of the superconductor alone,
The Hall cross acts like a magnetometer, where in the balliswhich is due to flux expulsion from the hole. Foe1 the
tic regime the Hall voltage is determined by the averageeverse is true because now flux is trapped in the hole. Ex-
magnetic field through the Hall cross regitnHence, by perimentally, one usually averages the magnetic field over a
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FIG. 5. The same as Fig. 4 but now for varying thickndssf
FIG. 4. Phase diagram: the relation between the hole raglius the ring for fixedR,=2.0¢, R;=0.5¢, and x=0.28.
and the magnetic fieldd, at which giant vortex transitionls— L ) ) )
+1 takes place for a superconducting disk with radiys=2.0¢ ~ Meissner state disappears at smakty. The hole in the
and thicknessi=0.00% and forx=0.28. The solid curves indicate Center of the disk allows for a larger penetration of the mag-
where the ground state of the free energy changes froni.atate ~ Netic field, which favors thé. =1 state. This is the reason
to another one and the thick solid curve gives the superconducting?hy the L=0—L=1 transition moves to a lower external
normal transition. field while theL=1—L=2 transition initially occurs for
largerH, with increasingR; . When the hole size becomes of
square Hall cross region. Therefore, we calculated the maghe order of the width of one vortex tHe=1—L=2 tran-
netization by averaging the magnetic field over a square resition starts to move to lower fields and the=2 state be-
gion [curve (iii )] with width equal to R, i.e., the diameter comes more favorable.
of the ring. Curve(iv) shows the magnetization if the sides  The effect of the thickness of the ring on the phase dia-
of the square detector are equal toH{2/2)R,. Increasing gram is investigated in Fig. 5. The thin solid curves indicate
the size of the detector, decreases the observed magnetiz@here the ground state of the free energy changes fronb.one
tion because the magnetic field is averaged over a largestate to another one, while the thick curve gives the
region, which bringgH) closer to the applied fielt . superconducting/normal transition. Notice that the transition
Having the free energies of the different giant vortex con-from the L=0 to theL=1 state and the superconducting/
figurations for several values of the hole radius varying fromnormal transition depends weakly on the thickness of the
R;=0.0¢ to Rj=1.8¢, we construct an equilibrium vortex ring. For increasing thicknesh theL =2 state becomes less
phase diagram. Figure 4 shows this phase diagram for a stavorable and disappears fde0.7¢. In this case, there is a
perconducting disk with radiusR,=2.0¢, thicknessd transition from theL=1 state directly to the normal state.
=0.00%, and fork=0.28. The solid curves indicate where Increasingd stabilizes the differerit states up to larger mag-
the ground state of the free energy changes fromlostate netic fields. This is due to the increased expulsion of the
to another and the thick solid curve gives theapplied field from the superconducting rifig.
superconducting/normal transition. The latter exhibits a In the next step, we investigate three very important and
small oscillatory behavior, which is a consequence of thenutually dependent quantities: the local magnetic fidld
Little-Parks effect. Notice that the superconducting/normathe Cooper-pair density¥|2, and the current densiy We
transition is moving to larger fields with increasing hole ra-will discuss these quantities as a function of the radial posi-
dius R; and more and more flux can be trapped. In the limittion p. For this study we distinguish two situations, i.B;,
Ri—R,, the critical magnetic field is infinite and there are <R, andR;<R, . In the first case the sample behaves more
an infinite number ofL states possible, which is a conse- like a superconducting disk, and in the second case like a
quence of the enhancement of surface conductivity for verguperconducting loop.
small sample$?? Because of the finite grid, we were not  First, we consider a superconducting disk with radRys
able to obtain accurate results flef~R,. The dashed lines =2.0¢ and thicknessd=0.1¢ with a hole with radiusR;
connect our results for hole radii&g=1.8¢ with the results  =0.5¢ in the center. The free energy and the magnetization
for R—R,,* where the transitions between the differént (after averaging over the superconduettiole) for such a
states occur when the enclosed flux ¢s=(L+ 1/2)¢y, ring are shown in Fig. 6. The dashed curves give the free
where ¢o=ch/2e is the elementary flux quantum. Notice energy and the magnetization for the differénstates, and
that for rings of nonzero width, i.eR;#R,, theL—L+1  the solid curve is the result for the ground state. Figs) 7
transition occurs at higher magnetic field than predicted fromand 7b) show the local magnetic field, Figs. 7c) and 7d)
the condition ¢=(L+ 1/2)¢,. The discrepancy increases the Cooper-pair density¥|?, and Figs. %) and 7f) the
with increasing width of the ring and with increasing  current density as function of the radial positiop for such
Starting fromR;=0 we find that with increasind?; the  aring at thel states and magnetic fields as indicated by the
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=2.0¢ and thicknesgl=0.1¢ with a hole with radiusR;=0.5¢ in '0_5 10 5 50

the center £=0.28) for the different states(dashed curvesand plE
for the ground statésolid curve$. The open circles are afl) L

=0, Ho/H=0.745; (2) L=0, Ho/H=0.995; (3) L=1, FIG. 7. The local magnetic field (a,b), the Cooper-pair density
Ho/H=0.745; (4) L=1, Ho/H=0.995; (5) L=1, Ho/Hce, | ¥|? (c,d) and the current densiiy(e,f) for the situations indicated
=1.7825; (6) L=1, Hy/H;=2.0325; and(7) L=2, Hqy/H; by the open circles in Fig. 6 as a function of the radial positidar
=2.0325. a superconducting disk with radiuR,=2.0¢ and thicknessd

=0.1¢£ with a hole with radiuR;=0.5¢ in the center £=0.28).
open circles in Figs. @ and @b). % % € )

For low magnetic field, the system is in the=0 state, the magnetic field near the inner boundary than near the
i.e., the Meissner state, and the flux trapped in the hole isuter boundarysee curve 3 in Fig. (8)]. The sign of the
considerably suppressed. Hence, the local magnetic field irsurrent near the inner boundary becomes positilie cur-
side the hole is lower than the external applied magnetic fieldent direction reversesbut the sign of the current near the
as is shown in Fig. (& by curves 1 and 2. Please notice thatouter boundary does not change. This can be explained as
the plotted magnetic field is scaled by the applied fi¢jdIn  follows: Near the inner boundaryp&1.0¢) the magnetic
the L=0 state the superconductor expels the magnetic fieléield is compressed into the halparamagnetic effegtwhile
by inducing a supercurrent, which tries to compensate th@ear the outer boundary£2.0¢) the magnetic field is ex-
applied magnetic field in the superconductor and inside th@elled to the insulating environmeritiamagnetic effegt
hole. This is called the diamagnetic Meissner effect. As longThe sign reversal gfoccurs ap=p* and later we will show
asL equals zero, the induced current has only to compensathat the flux through the circular area with radip® is ex-
the magnetic field at the outside of the ring and, thereforeactly quantized. At th& =0 to theL =1 transition the maxi-
the current flows in the whole superconducting material inmum in the Cooper-pair densifgompare curves 1 and 3 in
the same direction and the size increases with increasingig. 7(c)] shifts fromp=R; to p=R,. Further increasing the
field. This is clearly shown in Fig. (@) by curves 1 and 2 external field increases the Cooper-pair density near the inner
where the current densitybecomes more negative for in- boundary initially [compare curves 3 and 4 in Fig(cJ],
creasingH,/H.,. Notice also that the current density is more because the flux in the hole has to be compressed less. The
negative at the outside than at the inside of the supercondugpeint p*, wherej =0, shifts towards the inner boundary of
ing ring, which leads to a stronger depression of the Cooperthe ring. Further increasing the external magnetic field, the
pair density at the outer edge as compared to the inner edggooper-pair density starts to decre@see curves 5 and 6 in
of the ring[see curves 1 and 2 in Fig(cj]. Fig. 7(d)] and attains its maximum near the inner boundary.

At Hy/H.»,=0.745, the ground state changes from the The current near the inner boundary becomes less positive
=0 to theL=1 state[see Fig. 6a)]. Suddenly more flux [see curves 5 and 6 in Fig(f7], i.e., less shielding of the
becomes trapped in the hdleompare curve 1 with curve 3 external magnetic field inside the hdkee curves 5 and 6 in
in Fig. 7(@)], the local magnetic field inside the hole in- Fig. 7(b)], and near the outer boundgrpecomes less nega-
creases and becomes larger than the external magnetic figile, which shields the magnetic field from the
Ho. In theL=1 state, there is a sharp peak in the magneticsuperconducter hole. Thus at the outer edge the local mag-
field at the inner boundary because of demagnetization efaetic field has a local maximum, which decreases with ap-
fects. Consequently, more current is needed to compensapdied magnetic fieldH .
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FIG. 9. The local magnetic fieldl (a,b and the current density
FIG. 8. The free energga) and the magnetization after averag- i (¢.d for the situations indicated by the open circles in Fig. 8 as a

ing over the superconductehole (b) as a function of the applied function of the radial positiorp for a superconducting disk with

magnetic field for a superconducting disk with outer radRys  radiusR,=2.0§ and thicknessi=0.1£ with a hole with radiusR;

=2.0¢ and thicknessl=0.1¢ with a hole with radiusR;=1.8¢ in ~ =1.8 in the center £=0.28).

the center £=0.28) for the differenL states(dashed curvesand

for the ground statésolid curves. The open circles are afl) L mpagnetic field is expelled from the superconductor and the
=0, Ho/H=0.27; (2) L=0, E°/H°2.:0'395_; ® L=1, " hole to the outside of the system, i.e., diamagnetic Meissner
Ij%/ggé_z(g)'zl_?; (14)HL /:Hll ﬁé’Q;_czfg'?gf‘f(g) |_|r“%| T%/sHZCZ effect. The current flows in the whole superconducting ma-
R =1, Ho/Hcz=0.82; and(7) L=2, Ho/Hc,=0.82. terial in the same directiofcurves 1 and 2 in Fig.(®] and
the size increases with increasing external fléjd[curves 1

At Hg/H,~2.0325, the ground state changes from theand 2 in Fig. 9)]. At Hy/H ,=0.27, the ground state
L=1 state to thd.=2 state and extra flux is trapped in the changes from th& =0 state to the.=1 state and suddenly
hole. The changes in the magnetic field distribution, themore flux is trapped in the hole. The local magnetic field
Cooper-pair density and the current density are analogous f@side the hole becomes larger than the external figjéind
the changes at the first transition. For example, the magnetiere is a sharp peak near the inner boundlemyves 3 and 4
field inside the hole increases compared to the external magn Fig. 9(a)]. In contrast to the situation fd®; <R, , there is
netic field [curve 7 in Fig. Tb)], the radiusp® increases no peak near the outer boundary, which means that the mag-
substantiallyfcurve 7 in Fig. 7f)] and the maximum in the netic field is only expelled to the hole, i.e., paramagnetic
Cooper-pair density shifts to the outer boundpayrve 7 in Meissner effect. The induced current flows in the reverse
Fig. 7(d)]. direction in the whole superconducf@urves 3 and 4 in Fig.

For Ri<R, andL>0, the superconducting state consists9(c)]. For increasing external magnetic field, the magnetic
of a combination of the paramagnetic and the diamagnetifield inside the hole, the height of the demagnetization peak,
Meissner state, like for a disk. F&=<R, we expect that the and hence the size of the current decrdase curves 3 and
sample behaves like a loop and, hence, the superconductidgin Figs. 9a) and 9c)]. Further increasing the field, the
state is a pure paramagnetic Meissner state or a pure diamagliperconducting state transforms into a diamagnetic Meiss-
netic Meissner state. ner state. The magnetic field is now expelled to the outside

We consider a superconducting disk with radiBg  of the sampldcurves 5 and 6 in Fig.(®)] and the direction
=2.0¢ and thicknessd=0.1¢ with a hole with radiusR; of the current is the same everywhere in the ringrves 5
=1.8¢ in the center. The free energy and the magnetizatioand 6 in Fig. @d)]. At Hy,/H.,=0.82, the ground state
(after averaging over the supercondusettiole) for such a changes from thé =1 state to the. =2 state. The changes
ring are shown in Fig. 8. The dashed curves give the freén the magnetic field distributiohsee curve 7 in Fig. ®)]
energy and the magnetization for the differénstates, and and the current densitysee curve 7 in Fig. @)] are analo-
the solid curve is the result for the ground state. Figues 9 gous to the changes at the first transition. The diamagnetic
and 9b) show the local magnetic field, and Figs. &) and  state transforms into a paramagnetic state.
9(d) the current density as function of the radial positiop For a narrow ring with finite width, the superconductor is
for such aring at thé states and magnetic fields as indicatedin the paramagnetic or the diamagnetic Meissner state, like
by the open circles in Figs.(8 and 8b). The Cooper-pair for a superconducting loop. Contrary to this infinitely narrow
density has almost no structure and is practically constaning case, for narrow finite width rings the superconducting
over the ring and will, therefore, not be shown. state can also consist of a combination of these two states,

For L=0, the situation is the same as lBy<R,. The i.e., the direction of the supercurrent in the inner part of the
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FIG. 10. The flux through(a) the hole and (b) the FIG. 11. The current densit@) and the flux(b) as a function of

superconducter the hole as a function of the applied magnetic field the radial positiorp for a superconducting ring witR,=2.0¢, R
H, for a superconducting disk with radilg,=2.0¢ and thickness =1.06, d=0.1£, and «=0.28 for L=1 (solid curve$, L=2
d=0.1¢ with a hole in the center with radit® = 1.0¢. The dashed (dashed curvgsandL =3 (dotted curvesat an applied magnetic
curves show the flux for the differeit states, the solid curve for field Hy/H:>=1.6075.

the ground state. The thin solid line is the flux in the absence of

superconductivity. 4 927 ®
§ TK EJ+A

ring is opposite to the outer part.

Now we will investigate the flux quantization in the fat
ring. Figure 10 shows the flux through the hdi® and
through the superconductehole (b) as function of the ap- . .. ..
plied magnetic fieldH, for a superconducting disk with ra- ¢=J HUS:J rotA-dS= fﬁ A-dl. (8)
diusR,=2.0¢ and thicknessl=0.1¢ with a hole in the cen- ¢
ter with radiusR;=1.0¢. The dashed curves show the flux If the contourC is chosen in such a way that the currgnt
for the differentl states, the solid curve for the ground state,=js=0 on this contour, then the flux through the surface
and the thin solid line is the flux through the hole if the area bounded by this contour is quantized
sample is in the normal state. It is apparent that the flux
through the hole(or through the superconducting ring o= ?ﬁ A.di= L ¢o. 9)
+hole) is not quantized[see Fig. 1()]. At Hy/H. c
=0.4575 suddenly more flux enters the hole and the ground
state changes from tHe=0 state to thd.=1 state. At this
transition also the flux inc_:rease through _the hole is not equ nd in Fig. 11b) the flux through a circular area with radius
to one flux quantun,. It is ge_nera_lly belle\{ed that the flux p for a superconducting disk with radig,=2.0¢ and thick-
through a superconducting ring is quantized. But as WaRessd=0.1¢ with a hole in the center with raditR = 1.0¢
shown in Ref. 23 this is even no longer true for hollow j, the presence of an external magnetic figtd/He,
cylinders when the penetration length is larger than the thick— 1 6075 for the case of three different giant vortex states:
ness of the cylinder wall. The present result is a generalizg.e | =1,2,3. In theL=1 state, the current density equals
tion of this observation to mesoscopic ring structures. Notgero at a distancg*/£~1.16 from the center and the flux
that for the case of Fig. 10 the penetration length\i§  through an area with this radius is exactly equal to one flux
=0.28 and the effective penetration length£=0.78 is quantum ¢,. For L=2 and L=3, the current density
comparable to the width of the rind(—R;)/¢=1.0. j equals zero ap*/£~1.56 and 1.91, respectively, and the

For L>0, the superconducting current equals zero at dlux through the area with this radiys is exactly equal to
certain “effective” radial positionp=p*. It is the flux 2¢q and 3¢p,, respectively. We find thai* depends on the
through the circular area with radiyg , which is quantized external applied magnetic field and on the valud_pton-
and not necessarily the flux through the hole of our disktrary to the results of Arutunyan and Zharkb¥;*who found
Following Ref. 13 we integrate the supercurrgnover a  that the effective radiup* is approximately equal to the
closed contourC lying entirely inside the superconducting geometric mean square of the inner radiysand the outer
material, which embraces the opening, one finds radiusR, of the cylinder; i.e.p* = (R;R,)"? which for the

dT=L . @)

Starting from the definition of flux and using Stokes’ theo-
rem, the flux can be written as

To demonstrate that this is indeed true we show in Fig.
1(a) the current density as a function of the radial posifon
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FIG. 12. The dependence of the effective radifisas function
of the applied magnetic field for a superconducting disk with radius
R,=2.0¢ and thicknessd=0.1¢ with a hole in the center with
radiusR;=1.0¢ (a), andR;=1.5¢ (b). The dashed curves shgw FIG. 13. (a) The flux through the hole of the ring as function of
for the differentl states and the solid curve is for the ground state.the applied magnetic field. The thin dashed line is the applied flux.
(b) The current at the inner sidsolid curve and at the outer side

(dashed curveof the ring, and(c) the free energy of the ground
state as function of the applied magnetic field.

5
H/H.,

case of Fig. 1@) would give p* =1.41£. The results of
Refs. 13 and 14 were obtained within the London limit. The
dependence gi* as function of the applied magnetic field is
shown in Fig. 12a). The dashed curves give the of the  over which both directions of current occur in the ring be-
different L states. For increasing magnetic field and fiked Ccomes very narrow. This is illustrated in Fig. 13 for a ring
the value ofp* decreases, i.e., the “critical” radius moves With outer radiusR,=2.0§ and inner radius};=1.8,. We
towards the inner boundary. The solid curve gigésfor the ~ plot in Fig. 13a) the flux through the hole, which becomes
ground state. At thé —L+1 transitions,p* jumps over a Very close to the external flux, i.e., the flux without any
considerable distance towards the outside of the supercoguperconductor. In Fig. 1B) the value of the current at the
ducting ring, the size of the jumps decreases with increasinfiner and the outer side of the ring is shown, which illus-
L. The dotted lines in the figure give the two boundaries ofirates nicely that over large ranges of the magnetic field the
the superconducting ring: the outer bound&y=2.0¢ and ~ current in thg ring flows. in one direction. The 'free energy
the inner boundarR, = 1.0¢. Remark that in Fig. 12 there is Pecomes minimurfisee Fig. 18&)] at a magnetic field where
no p* given for theL=0 state, because only the external the current in the rings flows in both directions.

magnetic field has to be compensated so that the current has
the same sign everywhere inside the ring and there exists no
p*. In Fig. 12b) we repeated this calculation for a hole with
radiusR;=1.5¢, where superconductivity remains to higher
magnetic fields and many moke—L + 1 transitions are pos-

IV. LARGE RINGS: THE MULTIVORTEX STATE

Until now, we considered only small rings. In such rings,
the confinement effect dominates and we found that only the
sible. The result of Refs. 13 and 14 gives in this ca8e giant vortex states are stable and possible multivortex states
=1.73%. Remark that the results for the=1 and theL =2 have always larger energies if they exist. Now we will con-
states are not connected. The reason is that just before tiséder larger superconducting disks in which multivortex
L=1—L=2 transition the critical current for the=1 state  states can nucleate for certain magnetic fields. As an example
is strictly positive in the whole ring and henge is not we take a fat ring with outer radiuR,=4.0¢, thicknessd
defined. Notice that the results in Figs.(&2and 12b) os- =0.00%, «=0.28 and for different values of the inner ra-
cillate around the average valyg =\R;R, as given by dius. Figure 148 shows the free energy for such a ring with
Refs. 13 and 14. inner radiusR; = 0.4¢ as a function of the applied magnetic

For even narrower rings the current in the ring is mostlyfield Hy. The different giant vortex states are given by the
diamagnetic or paramagnetic and the region in magnetic fielthin solid curves and the multivortex state by the thick solid
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FIG. 15. The flux¢ through a circular area of radiys for
different values of the applied magnetic field,. Curves 1, 2, 3,
and 4 give the results fofd,/H:,=0.72 (1), 0.795(2), 0.87 (3)
(i.e., multivortex states and 0.945(4) (i.e., giant vortex staje
respectively. The inset shows the flux through the hole with radius
R;=0.4¢ and through the superconductdnole as a function of the
applied magnetic field for a fixed value of the winding number, i.e.,
) ) . L=4. The solid circles indicate the magnetic fields considered in
~ FIG. 14.(a) The free energy as function of the applied magneticypo main figure and the open circles indicate the transition from
field for a superconducting ring witlR,=2.0¢, R;=0.4¢, d multivortex to giant vortex state.
=0.00%, andx=0.28. The different giant vortex states are shown

by the thin solid curves and the multivortex states by the thick solid
curves.(b) The magnetization for the same sample after averaging=0.4¢ and through the superconductonole as a function
over the superconducting ring only. The differénstates are given  of the applied magnetic field for a fixed value of the winding
by the dashed curves, the ground state by the thin solid curves, anfimber, i.e.L=4. The solid circles indicate the magnetic
the multivortex states by the thick solid curves. The transitions fronfie|ds considered in the main figure and the open circle indi-
multivortex state to giant vortex state are indicated by the opertates the position of the transition from multivortex state to
circles. giant vortex state. The slope of the curves increases slightly
at the applied magnetic field, where there is a transition from
curves. The open circles indicate the transitions from thdéhe multivortex state to the giant vortex state. This agrees
multivortex state to the giant vortex state. In this ring, mul-With the result for a diskthat the giant-multivortex transi-
tivortex states exist with winding number=3 up to 7. For  tion is a second-order phase transition.
L=3,4,5, multivortices occur both as metastable states as The Cooper-pair densitjy|* for the previous four con-
well as in the ground state, while far=6,7 they are only figurations is shown in Fig. 16. The darker the region, the
found in the metastable state. Notice there is no discontinuitjarger the density and thus vortices are given by white re-
in the free energy at the transitions from the multivortex statedions. At the magnetic fieltly/H ,=0.72[Fig. 16a)] we
to the giant vortex state for fixed winding numHerFigure ~ see clearly three multivortices. With increasing magnetic
14(b) shows the magnetizatiod for this ring as a function field, these multivortices start to overlap and move to the
of H, after averaging the fielt over the superconducting center[Figs. 1Gb) and 1&c)] and finally they combine to
ring (without the holg. The dashed curves give the results ©N€ giant vortex in the centéFig. 16d)]. Please notice that
for the differentL states, the thin solid curve for the ground & theory based on the London limit will not be able to give
state, the thick solid curves for the multivortex states, and théuch a complicated behavior, because in such a theory vor-
open circles indicate the transition from the multivortex statelices are rather pointlike objects.
to the giant vortex states. Notice that the latter transitions are The free energies of the different vortex configurations
mmmmﬂwmamnom%mmmmmsmmem%mmummmvwmcdwb&dbmﬁhvaﬂmsdﬂwhdemmw;wmw
Now, we investigate the flu through the hole for the We varied fromR;=0 to R;=3.6{. From these results we
L=4 multivortex and giant vortex state for the case of theconstructed an equilibrium vortex phase diagram. First, we
above ring. Figure 15 shows the fluk through a circular ~assumed axial symmetry, where only giant vortex states oc-
area of radiugp for different values of the applied magnetic cur and the order parameter is given'Byp) =F(p)e'-?. In
field Hy. Curves 1, 2, 3, and 4 are the results Fg/H,, the phase diagraniFig. 17) the solid curves separate the
=0.72, 0.795, 0.87i.e., multivortex statés and 0.945(.e., regions with different number of vorticédifferentL states$.
giant vortex statg respectively. There is no qualitative dif- In the limit R;— 0 we find the previous results of Ref. 6 for
ference between the 4 curves, i.e., no qualitative difference superconducting disk. The radius of the giant voRexn
between the multivortex states and the giant vortex state. Ithe center of the disk increases with increadindpecause it
the inset, we show the flux through the hole with radRys has to accommodate more flux, i.&, /&~ L/(Hg/H).

0.0 0.5 1.0 1.5 2.0

H/H_,
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The above rough estimate gives /£~2.16, which is very
close toR;/¢~2.0. Further increasing, , the hole becomes

so large that more and more flux is trapped inside the hole,
and consequently a smaller field is needed to inducelthe
—L+1 transition. Because of finite grid size, we were lim-
ited to Rj=<3.6¢. The results we find foR;=3.6¢ are ex-
trapolated top= (L + 1/2)¢, for R;=R,. The thick curve in

Fig. 17 gives the superconducting/normal transition. For low
values ofR;, this critical magnetic field is independent of
R;, because the hole is smaller than the giant vortex state in
the center and hence the hole does not influence the super-
conducting properties near the superconducting/normal tran-
sition. ForR;=2.0¢, this field starts to increase drastically.
Therefore, more and morke states appear. In the limR,
—R,, the critical magnetic field is infinite and there are an
infinite number ofL states possible, which is a consequence
of the enhancement of surface superconductivity for very
small superconducting sampl&s.

] Next, we consider the general situation where the order
0 2 4 parameter is allowed to be a mixture of different giant vortex
X/& states and thus we no longer assume axial symmetry of the

superconducting wave function. We found that the transi-
FIG. 16. The Cooper-pair density corresponding to the four situtjons between the differemt states are not influenced by this
ations of Fig. 15H0/H¢,=0.72(a); Ho/H,=0.795(b); Ho/He,  generalization, but that for certain magnetic fields the ground
=0.87(c); andH, /Hc,=0.945(d). Dark regions indicate high den- state is given by the multivortex state instead of the giant
sity, light regions low densi_ty. The thick circles indicate the inner,qrtex state. In Fig. 17 the shaded regions correspond to the
and the outer edge of the ring. multivortex states and the dashed curves are the boundaries
) ) ) ) . between the multivortex and the giant vortex states. [For
Hence, if we make a little hole in the center of the disk, thlSIl’ the single vortex state and the giant vortex state are
will not influence theL—L+1 transitions as long a&; jgentical. In the limitR,—0, the previous results of Ref. 6
<R, as is apparent from Fig. 17. For sufficient large holegyr 5 superconducting disk are recovered. For increasing hole
radiusR;, the hole starts to influence the giant vortex CON-radiusR, , theL =2 multivortex state disappears as a ground
figuration and the magnetic field needed to induce lthe iqte forR,>0.15. If R, is further increased, the ground
—L+1 transition increases. For example, the transition fieldi5te for =5 up toL =9 changes from giant vortex state to
from theL =7 state to the. =8 state reaches its maximum jtivortex state and again to giant vortex state. For ex-
for a hole radiusRj~2.0¢, which occurs forHo/Hee~1.5.  gmple, forR,=2.0¢ the multivortex state exists only in the
L =9 state. Notice that for smdR; the region of multivortex
¢/¢0 states increases and consequently the hole in the center of the
c 2 4 6 8 10 12 14 16 18 disk stabilizes the multivortex states, at least for 2. For

b4 2

4.0 —— KU B UL A BN LI BRI IO LN BN AN . . . )

T T O O N N largeR;, i.e., narrow rings, the giant vortex state is the en-
35¢ ergetic favorable one because confinement effects start to
sof | \7\V\ dominate, which impose the circular symmetry ¢n For
5.5 | Superconducting fixed hole radiuRj=<2.0¢ and increasing magnetic field we

F state find always at least one transition from giant vortex state to
&’_‘_ 20k multivortex state and back to giant vortex staéte-entrant
o [ behavioj. Remark that the ground state foe10 is in the
1'5;' giant vortex state irrespective of the value of the magnetic
1.0 F / field. Near the superconducting/normal transition the super-

; conducting ring is in the giant vortex state because now su-
05F L .

E Lo perconductivity exists only near the edge of the sample and
O = = consequently the superconducting state will have the same

0.0 0.5 1.0 . . ) o
H /H symmetry as the outer edge of the ring and thus it will be
0 2 circular symmetric.

FIG. 17. Equilibrium vortex phase diagram for a superconduct- Fipally, for L_>3 Fhe multivortex stat_e not negessarily
ing disk with radiusR,=4.0¢, thicknessd=0.00% with a hole consists ofL vortices in the superconducting material. Often

with radiusR; in the center. The solid curves show the transitionstheY consist of a combination of a big vortex trapped in the
between the different. states, the thick solid curve shows the hole and some multivortices in the superconducting material.
superconducting/normal transition and the dotted lines connect th&his is clearly shown in Fig. 18, where a contour plot of the
results for R,=3.6¢ with the results in the limitR;—R,. The local magnetic field is given for a superconducting disk with
shaded regions indicate the multivortex states and the dashed curveadiusR,=4.0¢ and thicknessl=0.00% with a hole in the
separate the multivortex states from the giant vortex states. center with radiusR;=0.6¢ [Fig. 18a)] and R;=1.0¢ [Fig.
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FIG. 19. The phase of the order parameter calculated on a
circle r—CeX as a function of the anglg for a superconducting
ring with R,=4.0¢, d=0.00%, and x=0.28; (8 R;=0.6¢,
Hy/H=0.895,L=4, andC=3.9% (solid curve and C=0.7¢
(dashed curve (b) Rj=1.0¢, Hy/H,=1.145, L=6, and C
=3.95¢ (solid curve andC=1.2¢ (dashed curve

L=2. Fig. 19b) shows the phase of the order parameter
FIG. 18. Contour plot of the local magnetic field for a supercon-for C=3.95¢ (solid curve and 1.Z (dashed curve where
ducting disk with radiusR,=4.0¢ and thicknessd=0.00% (« the phase differences arep=6Xx27 and 2X 2, respec-
=0.28) with a hole in the center witlia) radius Rj=0.6§ at  tively. Notice that the flux¢ through the hole equalg
Ho/H,=0.895 for L=4; and (b) radius Ri=1.0¢ at Ho/Hc,  ~(0.19¢, for the case of Fig. 18) and ¢~0.36¢, for the

=1.145 forL=6. The dashed thick circle is the outer radius, the cg35e of Fig. 16b) and is thus not equal to a multiple of the
small solid thick circle the inner radius. Low magnetic fields areg, quantumey.

given by light regions and dark regions indicate higher magnetic
fields.
V. NONSYMMETRIC GEOMETRY

18(b)]. As usual we took«=0.28. The dashed thick circle is  go far, we investigated the influence of the size of the
the outer radius, while the small solid black circle is thenole on the vortex configuration for superconducting rings of
inner radius of the ring. Low magnetic fields are given by giferent sizes. We found that for small rings, only the axi-
light regions and darker regions indicate higher magnetiGyly symmetrical situation occurs, i.e., the giant vortex states.
fields. In this way, multivortices in the superconducting areaor |arge rings the multivortex state can be stabilized for
are dark spots. In Fig. 18 the local magnetic field is shown certain values of the magnetic field. In the next step, we
for an applied magnetic fielto/Hc,=0.895. Although the  pyrposely break the axial symmetry by moving the hole
winding number isL=4, there are only 3 vortices in the away from the center of the superconducting disk over a
superconducting material and one vortex appears in the holgstancea.

in the center of the disk. This is clearly shown in Fig()9 As an example, we consider a superconducting disk with
where the phase of the order parameter is shown along radius R,=2.0¢ and thicknessi=0.00% with a hole with
different circular loops — C€'X inside the superconductor. radius R;=0.5¢ moved over a distanc&a=0.6¢ in the
The solid curve gives the phase near the outer edge of thedirection. Figure 20 shows the free energy and magnetiza-
ring (C=3.9%¢) and the dashed curve near the inner edge ofion (defined as the field expelled from the superconducting
the ring (C=0.7¢). When encircling the ring, the phase dif- ring without the holg as function of the magnetic field. The
ferenceA ¢ in the first case is 4 times 2 while in the solid curve indicates the ground state, while the dashed
second case it idp=1X27. The phase difference is al- curves indicate the metastable states for increasing and de-
ways given byA ¢ =L X 24, with L the winding number. In  creasing field. The vertically dotted lines separate the regions
Fig. 18b) a contour plot of the local magnetic field is shown with different winding numbelL. Notice that hysteresis is
for a ring with R;=1.0¢, which leads toL=6 atHy,/H., only found for the first transition from the=0 to theL
=1.145. Only 4 vortices are in the superconducting materiaF1 state and not for the higher transitions which are con-
and one giant vortex in the centgrartially in the hole¢ with  tinuous. At the transition from the=1 state to theL=2
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are stabilized. Remember that for the corresponding symmet-
FIG. 20. The free energfa) and magnetization after averaging ric system, i.e.a=0, only giant vortex states were found.
over the superconducting ring onlp) as function of the applied Having the magnetic fields for the differeht—L +1
magnetic field for a superconducting disk with radRys=2.0 and  transitions for superconducting rings with different positions
thicknessd=0.00% with a hole with radiusk; = 0.5¢ moved over a

of the hole, i.e., different values af, we constructed the
distancea=0.6¢ in the x-direction. The solid curve indicates the phase diagram shown in Fig. 21. The thin curveslid

ground state, the dashed curve the results for increasing and dgyryes when the magnetization is discontinuous and dashed
creasing field. The vertically dotted lines separate the regions with ;ves when the magnetization is continuoirglicate the
different vorticity L. The insets show the Cooper-pair density at maqnetic field at which the transition from thestate to the
magnetic fieldHo/Hc,=0.145, 1.02, 2.145, and 2.52, where the | .9 giate occurs, while the thick solid curve gives the
ground state is given by a state with=0,1,2,3, respectively. High superconducting/normal transition

Cooper-pair density is given by dark regions, while light regions In order to show that the stabilization of the multivortex
indicate low Cooper-pair density.

state due to an off-center hole is not peculiar Ry=2.0¢,
state and further to the=3 state, the free energy and the we repeated the previous calculation for a larger supercon-

magnetization vary smoothlysee Figs. 2@&) and 2@b)]. In  ducting disk with radiugk,=5.0¢ and thicknessl=0.00%

the insets of Fig. 2@), we show the Cooper-pair density for containing a hole with radiu®;=2.0¢. In Fig. 22a) the
such a sample at magnetic figtth/H,=0.145, 1.02, 2.145, Cooper-pair density is shown for such a system with the hole
and 2.52, respectively, where the ground state is given by & the center, while in Fig. 2B) the hole is moved away
state withL=0,1,2,3, respectively. High Cooper-pair density form the center over a distan@e=1.0¢ in the negativey

is given by dark regions, while light regions indicate low direction. The externally applied magnetic field is the same
Cooper-pair density. FoH,/H.,=0.145, we find a high in both cases{,/H.,=0.77, which gives a winding number
Cooper-pair density in the entire superconducting ring. Theré =4 andL =5 for the ground state of the symmetric and the

is almost no flux trapped in the circular area with radiusnonsymmetric geometry, respectively. The assignment of the
smaller tharR, . After the first transition aHq/H.,~0.75,

winding number can be easily checked from FigsicR2nd
suddenly more flux is trapped in the hole which substantially22(d), which show contour plots of the corresponding phase

lowers the Cooper-pair density in the superconductor. Noticef the superconducting wavefunction. If the hole is at the
that the trapped flux tries to restore the circular symmetry ircenter of the disk, the ground state is a giant vortex state
the Cooper-pair density and that the density of the supercorMoving the center of the hole to the positiox/§€,y/¢)

ducting condensate is largest in the narrowest region of the=(0,—1), two vortices appear in the superconducting mate-
superconductor. The next inset shows the Cooper-pair demial while the hole contains three vortices. Notice that in this

sity of the L=2 state, where an additional vortex appears.case, although the magnetic field is kept the same and the
Some flux is passing through the hglee., winding number

amount of superconducting material is not altered, changing
is one around the hole while one flux line is passing the symmetry of the system alters the winding number.
through the superconducting ring and a local voftée nor-
mal region with zero Cooper-pair densitig created. In the VI. CONCLUSION
L=3 state superconductivity is destroyed in part of the
sample, which contains flux with winding number 2 and

In conclusion, we studied the superconducting state of
the rest of the flux passes through the hole. Hence, by breakhin superconducting disks with a hole. The effect of the size

ing the circular symmetry of the system, multivortex statesand the position of the hole on the vortex configuration was
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FIG. 23. The flux increasa ¢=7R2AH needed to induce the
L—L+1 transition for a superconducting ring witR,=4.0¢ for
different values of the inner radiuR;. The interconnecting lines
are a guide to the eye.

64202 4664-2024°¢6 to define an effective ring size* such that inside this ring
x/& x/& the flux is exactly quantized. The value Bf<p* <R, de-
pends onL and is an oscillating function of the magnetic
FIG. 22. The Cooper-pair density for a superconducting diskfield. For narrow rings it is only possible to define such*a
with radius R,=5.0¢ and thicknessd=0.00% with a hole with jn narrow ranges of the magnetic field and the flux through
radius R;=2.0¢ (a) in the center, andb) moved away from the the hole is very close to the applied flux. The magnetic fields
center over a distanca=1.0¢ in the negativey direction. The  from the screening currents are too small to substantially

applied magnetic field is the same in both casé§/H,=0.77.  mqgify the flux inside the ring. On the other hand, the mag-
High Cooper-pair density is given by dark regions, low Cooper-palrnetiC field incrementAH or the flux increaseA
density by light regions. The corresponding contour plot of the

, T =mR2AH to induce theL—L+1 transition is only quan-
hase of th duct funct dd. "o ; e g .
phase of the superconducting wave function is give(cirand (d) tized for narrow rings. This is illustrated in Fig. 23 in case of

R,=4.0¢ for different values of the inner radius. Notice that
investigated. For small superconducting disks with a hole irgr R<R, we find thatA ¢ is an oscillating function of.. It
the center, only giant vortex states exist and for increasings sypstantially larger thag, for smallL, it is smaller than
hole radiusR; more and mord. states occur before the su- 4 for intermediatel and it approaches, from above for
perconductor becomes normal. For larger superconductingrge |. We found earlier that foR.~R, the flux through

_disks With_ a hole in_the_ center, we found m_ulti\_/ortex statesp* _ m is quantized in¢, and therefore we expect
in a certain magnetic field range. For certain fixed hole ra g — 7(p*)2AH = ¢,. Our definition ofA ¢, considers the

dius, and for increasing magnetic field, the giant vortex statey through the superconducting rindiole which for the
changes into a multivortex state and back into the giant VOlgonditionA ¢* = ¢ givesA ¢/ ¢o~6.67, 2.5, 1.54, and 1.11
tex state(re-entrant behavigibefore superconductivity is de- ¢, R /£=0.6, 1.6, 2.6, and 3.6 respéctivély. These results
stroyed. Near the superconducting/normal transition and fog,, R;/§=2.6,and’3.6 ,agree rat’her well with our numerical

a narrow superconducting ring.e., Ri~R,) we always results presented in Fig. 23; i.&\¢/ppy~1.5 and 1.1, re-

found the giant vortex state as the ground state irrespectiv, ectivelv. The results bresented in Eig. 23 agree qualita-
of the size, thickness, and width of the ring. The effect of th Sp y. b g- gree d

o ; . etively with the recent theoretical results of Bruyndoncx
position of the hole, i.e., decreasing the symmetry of th

€t al,'® who studied rings in a homogeneous magnetic field.
system, was also investigated. Moving the hole off-center: 1 ' g g g

can transform thé — L +1 transition into a continuous one,
2) the stability of metastable states is strongly reducedt, 3
favors the multivortex state even for small disks, andhe This work was supported by the Flemish Science Foun-
winding numberL can increase even at a fixed magneticdation(FWO-VI), IUAP-VI, and ESF-Vortex Matter. One of
field. us(B.J.B) was supported by BOFSFO (Antwerp). One of
The flux through the hole isot quantized. We were able us (F.M.P) acknowledges discussions with J. P. Lindelof.
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