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Magnetization hysteresis loops and the ac susceptibfityy’ +ix” of a superconducting thin disk are
calculated in the critical-state model assuming a field-dependent critical current dkiiBiYy The results are
obtained by solving numerically the set of coupled integral equations for the flux and current distributions
[Phys. Rev. B50, 13 112(1999] for a disk placed in a perpendicular applied figlg. From the magnetization
curves the range of fields where the vertical width of the 1adp(B,) relates directly td.(B,) is determined.
The susceptibility is analyzed in the limits of small and large ac-field amplitBggs and also as a parametric
relation x”(x'). Comparing our results with experimental data ¢ x') shows that by taking thB depen-
dence ofJ. into account the agreement improves dramatically, in particular at $wdlilarge field ampli-
tudes. We show that the asymptotic behavior for laig, changes frony’ =B, .3 andx"«B_,} for the Bean
model, toy’ <B3 andy”«B?2 for J, decreasing withB| as|B| ! or faster. For smalB,,, the behavior can
always be described by an effective Bean model with a renormalizetlVe also find that in thg”(x") plot
the peak ofy” increases in magnitude and shifts towagds=0 whenJ. decreases withB|. This allows an
easy experimental discrimination between a Bean model behavior, ond {8, and one where flux creep
is an ingredient.

[. INTRODUCTION plex ac susceptibility. Results for several commonly used
j<(B) dependences are presented.

The critical state mode{CSM) is widely accepted as a The paper is organized as follows. In Sec. Il we give a
powerful tool in the analysis of magnetic properties of short description of the exact solution for the disk problem.
type-Il superconductors. In the parallel geometry, i.e., forln Sec. Ill, magnetization hysteresis loops are calculated and
long samples such as slabs and cylinders placed in a parallgle relation between the width of the loop apdis dis-
magnetic field, an extensive amount of theoretical work hagussed. The results for the complex ac susceptibility are pre-
already been carried out. Exact results for flux density prosented in Sec. IV and analyzed with emphasis on the
files, magnetization;* ac susceptibility,® etc., have been asymptotic behavior at small and large field amplitudes. Fi-
obtained for a number of different field-dependent criticalnally, Sec. V gives the conclusions.
current densities. During the last years even more attention

has been paid to th_e CSM analysis in the p_erpendicular ge- Il EXACT SOLUTION
ometry, i.e., for thin samples in perpendicular magnetic
fields. Assuming a constant critical currétiie Bean mode) Consider a thin superconducting disk of radiRsand

explicit analytical results have been obtained for a long thirthicknessd, whered<R. We assume either thdt=\, where
strip”® and a thin circular disR-*?From experiments, how- \ is the London penetration depth, or,di \, that A2/d
ever, it is well known that also in such samples the critical<R. In the latter case the quantitf/d plays a role of two-
current densityj . usually depends strongly on the local flux dimensional penetration depthWe put the origin of the
density B. Due to the lack of a proper theory, this depen-coordinates at the disk center and direct thaxis perpen-
dence often hinders a precise interpretation of the measuraticularly to the disk plane. The external magnetic fiBlgis
quantities->~17 applied along the axis, and thez component of the field in
In the perpendicular geometry, the ac susceptibility bethe planez=0 is denoted a$3. The current flows in the
yond the Bean model has been calculated only by carryingzimuthal direction, with a sheet current denotedJés)
out flux creep simulatiot&*°assuming a power-law current- = [92 i(r z)dz, wherej is the current density.
voltage relation with a large exponent. However, quite re-
cently an exact analytical approach was developed for the
CSM analysis of a long thin stdf and thin circular disk!
In both cases a set of coupled integral equations was derived We begin with a situation where the external fiélg is
for the flux and current distributions. In the present paper weapplied to a zero-field-cooled disk. The disk then consists of
solve these equations numerically for the thin disk case, andn inner flux-free regiont<a , and of an outer regiora
calculate magnetization hysteresis loops as well as the com<r=<R, penetrated by magnetic flux.

A. Increasing field
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FIG. 1. Flux density profile as the applied field descends from a

maximum valueB,,, .

In the CSM with a general (B) the current and flux
density distributions in a disk are given by the following
coupled equation%*

2r , a®—r2 JJB(r")]
J(r)= —?Ldr Vi 2_ a2 (r2_2° :
—=JJ[B(r)], a<r<R,

(1)

B(r)=5a+g—ifRF(r,r')J(r')dr', @)
0
R d

- e €

Here  F(r,r")=K(K)/(r+r")—E(K)/(r—r"), where

k(r,r'y=2+rr’/(r+r"), while K andE are complete elliptic
integrals. In the case of constaht, these equations reduce
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a —r2 J(r")
()= f 2pr2_p2 r=a (6)

Ju(r), a<r<R,

B(r)=B, Bam+gOJRF(r,r').~J(r')dr’. @)
B By — 10 [ 20 ®)

a am— m

where we defined

Jo(N)=Je[Bm(r) +B(r)]+I[Bm(r)]. 9

Again, setting J.=const, these equations reproduce the
Bean-model result®!! If the field is decreased below

B.m the memory of the state &, is completely erased,
and the solution becomes equivalent to the virgin penetration
case. If the differenc8,,,— B, is large enough then one can
again use Eq), only with the opposite sign in front of the
integral.

Given theJ;(B) dependence, a complete description of
any magnetic state is now found by solving the equations
numerically. An efficient iteration procedure is described in
Ref. 21.

IIl. MAGNETIZATION

The magnetization of a disk is defined as the magnetic
moment[§r2J(r)dr per unit volume. Due to symmetry
the magnetization is directed along thkeaxis. In a fully
penetrated state described by the Bean model with critical

to the exact Bean-model formulas derived in Refs. 10 angurrent Joo, the magnetization equalsl,=JoR/3d. It is

11.

convenient to usé, for normalization, i.e.,

Note that the calculation can be significantly simplified at

large external field whera—0, and the critical statd(r)
=J,[B(r)] is established throughout the disk. The distribu-
tion B(r) is then determined by the single equation

R
B =B~ 2 [ ‘F(r.radBa AT, @
following from Eq. (2).

B. Subsequent field descent

RJ(r)
Jeo

M_
Mo

= 2
e redr. (10
The magnetization can be calculated using the current pro-
files obtained by the procedure described in the previous
section. Shown in Fig. 2 are magnetization hysteresis loops
calculated for thel,(B) dependences:

JC:JCO/(1+ |B|/Bo)

(Kim model), (11

Je.=Jexp —|B|/Bg) (exponential model (12

If B, is reduced, after being first raised to some maximum

value B,,,,, the flux density will decrease in the outer part,

A striking manifestation of thé8 dependence is a peak

asr=<R, and remain trapped in the inner part, see Fig. loccuring at smallB,. The calculations show that for any
We denote the flux front position, the current density and thehoice of the parameteB,, the peak is always located at

field distribution at the maximum field as,,, J,(r) and
Bm(r), respectively. Evidentlyd(r), Bny(r), anda,, satisfy
Egs.(1)—(3).

negative B on the descending branch of the major loop.
Such a peak position at negatig is a typical feature also
in the parallel geometr-® However, it contrasts the case of

Let the field and current distributions during field descenta thin strip in perpendicular field, where it was shown

be written as

B(r)=B,,(r)+B(r), J(r)=J,(r)+J(r).

The relation betweeB(r) andJ(r) then read%

©)

analytically’® that for anyJ.(B) dependence the peak is lo-
catedexactlyat B,=0.

In the Bean model, there is a simple relation between the
critical current and the widtA M of the major magnetization
loop
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FIG. 3. The critical current inferred from the widthM of the
major magnetization loop using E€L3). For comparison the plot
also shows the actudl(B) used in the calculation: the exponential
model with By=B,. (lower curve$ and B,=3B_ (upper curves
The agreement is excellent for fields larger th&n

using Eqg.(13), together with the actual.(B). One can see
that at fields larger than the characteristic field

BCEIU’OJCO/Z! (14)

there is essentially no distinction between the two curves.
We find that this holds independently &, and also for
otherJ.(B) models. Therefore, also for the present geometry
the B dependence ofl, can be inferred directly from
AM(B,), except in the low-field region. Here the correct
J.(B) can be obtained only by a global fit of the magnetiza-
tion curve.

The Bean-model virgin magnetization for a thin disk can
be expanded iB, as'*®

2

1=3

Bc

1(5a

—poM=xoBa , (15
where yo=8R/37d is the Meissner state susceptibility. Our
numerical calculations show that the same expansion also
holds for B-dependentl., only with an effective valueBE"ff
satisfying

(16)

B"/B.~1— ayB/By.

FIG. 2. Magnetization hysteresis loops for a thin disk for the We find that if Bo/B.=0.5 the parametex=0.50 for the

Bean model J.=const), the Kim model, Eq.11), and the expo-
nential model, Eq(12), the last two both wittB,=3B.. The pa-

rametersB, and M are defined in the text.

3d
JC:ﬁAM'

The same expression is often used to deterndjneom ex-
perimentalAM data even when the width of the observed
loop is not constant. As discussed in Refs. 1-3 the applica-
bility range of such a procedure is limited. In the parallel
geometry a simple proportionality only applies #y larger

13

exponential model, and=0.43 for the Kim model. In the
parallel geometry the low-field expansion has an additional
B2 term which is not affected by thé.(B) dependenc@.
Thus, the deviation from the Meissner response at sBall

is there insensitive td.(B). This result contrasts the case of
perpendicular geometry where due to demagnetization ef-
fects, aB dependence af. affects the flux behavior even in
the limit of low fields, see discussion in Ref. 21.

IV. COMPLEX ac SUSCEPTIBILITY

A. Basic expressions

than the full penetration field. For the thin disk case the field The hysteretic dependence of the magnetizaltbas the
range wherd .« AM can be estimated from our calculations. applied fieldB, is cycled leads to ac losses. The energy
Figure 3 showsl.(B) inferred from the magnetization loop dissipation per cycle oB, is
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dM(t)
W= | - By(t)—g—dt (17)

cycle

per unit volume. According to the critical state moddl(t)
follows B,(t) adiabatically, i.e.M (t)=M[B,(t)]. Thus, the
losses are given by the area of the magnetization hysteresis
loop, $M dB, .

It is conventional to express the ac response through the
imaginary and real parts of the so-called nonlinear magnetic
susceptibility!® If the applied field is oscillated harmonically
with amplitudeB,,, i.e.,B,(t) =B,y Ccoswt, the magnetiza- .
tion is also oscillating with the same period. The complex = 4,
susceptibility is then defined by the coefficients of the Fou- ™=
rier series of the in general anharmoMct), where the real
and imaginary parts are given by

(=]

=2
S~

=

ek JZMM t t)dt
n=re |, (Heognwt)dt,

FIG. 4. Real(bottom) and imaginarytop) parts of the nonlinear
susceptibility for a thin disk as functions of the amplitulg,, of
M (t)sin(net)dt, the applied ac field. Calculations are based on E4®). and (19)
0 with J.(B) given by the exponential model, E¢l2), with B,
=3B, (curve ) andBy=B_ (curve 2. For comparison the results
for the Bean model are also showaashed ling

y Mow 27lw
" 7Bam

respectively.
The dissipated energyy, is determined by the response ] .
x4 at the fundamental frequency, namely, B. Low-field behavior

At small field amplitudes the Bean model gives the exact

expressions'°

n " MOW ZMO Bam
X =X1= 2 = 2 M(Ba)dBa (18) ’ _ 2
782 wBZ ) B, X'Ixo=— 1+ 15(B,n/B)%/32, 20
Below we shall also analyze the real part of the susceptibility X"Ix0=(Bam/Bc)?/ . (21)

at the fundamental frequency,’=y;, which can be ex-
pressed as

/ 2o fBam M(Ba)BadB, (19)

= 2 2 2
7TBam ~Bam \/Bam_Ba

The x"(Bam) andy’ (B, are calculated from these expres-
sions usingM (B,) obtained by the previously described pro-
cedure withB,,,, covering a wide range of amplitudes. For

convenience, we normalize the susceptibilities to the Meiss*®

ner state valugo=8R/37d.*!
As seen from Fig. 4, the respongé shows a maximum
as a function of the field amplitude. Such a maximum is in

Shown in Fig. 5 are our numerical results fgf for the
exponential model. From the log-log plot it is clear that the
guadratic dependence &3, retains as in Eq21) only with

a modified coefficient. Moreover, we find that algbcan be
described by the Bean model expression &§) with the
sameeffective B.. The effectiveB, fits the expression

BM/B,=1— aB,/By, (22)

when By/B.=1 with «=0.42 for the exponential model,
and «=0.36 for the Kim model. Interestingly, the same ef-

fact a common feature in all geometries. For the Bean model
for a long cylinder the peak is known to occur whBg,, is
equal to the full penetration field. In the perpendicular geom-
etry the interpretation of the peak position is not so simple.
Even in the Bean model for a thin disk only numerical results
are availabl&- the peak value equajg),.,=0.24 and occurs

at an amplitude oB,,,=1.9, corresponding to the pen-
etration 1-a,,/R=72%. We find that thé3-dependence of

J. leads to a slight increase both &), and in the peak
magnitude. For example, the numerical results for the Kim

0.1

xu / xo

0.01 4

0.1

B../B,

model with B.=B; give xm=0.29 and *-a,,/R=70%.
The difference between variods(B) models becomes more

FIG. 5. Imaginary part of the susceptibility for the exponential
model withB,/B.=3 (curve 1 and withBy/B.=1 (curve 3. At

distinct if one analyses the asymptotic behavior at small antbw fields both curves as well as the dashed curve presenting the

large field amplitudes, as shown below.

: 7 2
Bean model result follow the same quadratic lgfixBg,,.
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fective description was found for the flux penetration depth J 0 100 1000

a,”! whereas it deviates from the description of the virgin B,./B,
magnetization, Eq(16).

FIG. 7. High-field behavior of the real part of the susceptibility,
o ) x', for the Bean mode{curve ) and for differentJ.(B) depen-
C. High-field behavior dencesy).=Jco /[ 1+ (|B|/3B,) V2] (curve 2; Kim model (curve 3
The high-field behavior of the dissipated energyis  and exponential modéturve 4, both withB, =3B .

shown in Fig. 6 for a variety ofl.(B) dependences. We
choose to ploW rather thany” because the difference be-
tween the asymptotic behavior in the various models be- Mfﬁ\/(Ba)“f dr r2{Je[BatBi(r)]—Jc[Ba=Bi(r)1},
comes more evident. One sees from the figure that for large
B.m the Bean model yield#&/=B,,,,. The exponential model whereB; is the field created by the current. Expanding this
shows saturation, whereas one finds after a closer inspecti@xpression one ha = J:(B,) fdr r?B;(r). Then using
that the Kim model leads to a logarithmic increase. Thes¢he further simplification thafdr r?B;(r)=J.(B,), one ob-
behaviors can be understood by considering the fact that fdains
large amplitudes the disk is fully penetrated @@ )~B,.

Therefore, M(B,)*J:(B,), and one obtains W 1 [ J(BJL(B,)B,
o [BamJ (B)dB. X — | —————"dB,.
The high-field behavior of the real part of the susceptibil- BZ,J0 B2, B2
ity x' for differentJ.(B) is shown in Fig. 7. For the Bean ] < ) )
model we find asymptotically that y'/xo=  1aking J¢(B)=(Bo/B)* at largeB, we arrive at the esti-

—1.33@,,,/B.) "2 (dotted ling, which is in agreement Mates, x;%(B./Bam)*(Bo/Bam)®® for small s, and yj
with Eq. (32) in Ref. 11. For theB-dependend,’s we also ~ *(Bc/Bam)®(Bo/Bc)* for larges. Finally, consider the re-
find power-law behavior, although with different exponents.gion lll, whereB,,,— B, is of the order ofu,J.(Bg). Since
For both the Kim and exponential model the asymptotic bethe initial slope of the return branch does not depend on
havior is described by’ =B;2. However, also intermediate Bam. We have thaM(B,)*B,m—B, . It then follows that,
values for the exponent are possible, e.g., Jorde/[1 Xt ™ (Bc/Bam) *4(Bo/Bam) > As the asymptotic behavior

+(|B|/3B,)Y?] the numerical results suggest that’ at largeB,, is determined by the slowest decaying term, we
/4

«B 9 arrive at the following result:
am *

In order to understand this power-law behavior let us re-
write Eq.(19) as

, 2 Bam oM rel(Ba)Ba dBy : M*
X'=— —, (23 :
mB2,, Jo VBZ,,.— B3 s : .

whereM =M, +M is the reversible magnetization. The ;

integrand has different estimates in the regions I, I, and IlI | t
indicated in Fig. 8. Therefore we divide the interval of inte- i

gration correspondinglyy’ = x| + x|, + xy; - In region I,M o, :
does not depend 0B, thUSaX(“B;ni at largeBspy. In FIG. 8. Division of a magnetization loop into three regions
region Il (B,>B;) we use that treated differently when estimating’ at largeB,,.

(or]
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FIG. 9. Parametric plot of the complex susceptibility for a thin
e

disk using the three sets of curves presented in Fig. 4. The dott
line shows the Bean model asymptotic behavior, E2p). A B
dependence o, substantially distorts the plot, although not the
slope aty’— —1.

B;n:i(us)/z, s<1,

X' (24)

B.S, s=1.
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CSM with J (B)

0.3 H .-
Flux creep .-

-
-

: RN
Bean model > _ -,
: N

0.2 -

X"/XO

0.1

./ low fields
low T

-0.38!
—
-0.5

X/ %o

0.0 1~

FIG. 10. The behavior of”(x’) for various models. The Bean
r%odel predicts a peak located w},,=—0.38. AB dependence in
J. shifts the peak to the right and changes the behavigy’ at0
(our resultg, while flux creep shifts it to the left and changes the
behavior aty’— —1 (Ref. 19.

This result holds forany J.(B). It also follows from the
previous analysis showing that at low fields bgthand y”
are modified byl.(B) in the same way. The universal slope

These power laws fully agree with our numerical calcula-91ven by E.(25) allows one to examine if experimental data

tions shown in Fig. 7. The expressiod4) gives the exact
values for the exponent found for the Bean modetQ),
the Kim (s=1) and exponentialg=«~) models and even for
the J.(B) with s=1/2. Note however, that this asymptotic

are described by the critical state model with@utpriori

knowledge of the actual.(B) dependence for the sample.
The presentegt”(x’) plots for a disk in a perpendicular

field should be compared to similar plots for the long

behavior is sometimes established only at rather low value§2mPles in a parallel field studied systematically in Ref. 5.

of |x'|, see curve 4 in Fig. 7. Therefore one should be ver
careful in interpretation of corresponding experimental log-

log plots.

It should be specially emphasized that the presente&
analysis for the high-field asymptotic behavior is not re-

stricted to a thin disk. In fact, we expect the reg@l) to be
valid in any geometryThis result is also in agreement with

yAs expected, the Bean-model curve for a thin disk shown by

the dashed line in our Fig. 9 appears quite different from the
Bean-model curves for long samples shown in Figs),7
igs. Ab) of Ref. 5. Meanwhile, further analysis of these
figures shows that the account oBadependent]. always
leads to very similar distortions of thg'(x’) plots. Namely,

in all geometries they” peak increases in magnitude and

numerical calculations for long samples described by thehifts towardsy’=0. Note that such a behavior is found

Kim and the exponential modgl.

D. Plots of x” versus x’

In contrast to graphs of as a function of the field am-
plitude or temperature, a plot of’ versusy’ contains only

when the characteristic field, of the J.(B)-dependence is
larger or of the order oB.. For Bo<<B, this behavior may
change qualitatively. In particular, in the parallel geometry,
the peak positiony,,.., becomes a nonmonotonous function
of Bo.> However, the case d,<B; is not very realistic for
a thin disk sinceB. is proportional to the sample thickness

dimensionless quantities, and is therefore very useful fowhile By is usually taken as geometry independent.

analyzing experimental dat&°In practice, such a paramet-

It is interesting to compare owy”(x') plots to the ones

ric plot x”"(x’) can be obtained by scans either over theobtained by calculations based on a nonlinear current-voltage
magnetic field amplitude or over the temperature. Figure ®urve j<E*, n<c. Shown in Fig. 10 together with the

presents the(”(x’) plot of the data shown in Fig. 4. We
observe that 8 dependence ai, gives a significant distor-

CSM results is g¢"(x') curve (dotted ling drawn in accor-
dance to typical graphs presented in Refs. 18,19. Compared

tion of the graph. Compared to the Bean model one find$o the Bean model curve, the maximum gf increases in

that: (i) the maximum is shifted to higher values gf, (ii) it

occurs at smaller values of y’, and(iii) in the limit of large

Bam (or high temperaturgsy” falls to zero more abruptly.
Meanwhile, at smallB,,,, as y'——1, the slope of

magnitude and shifts towardg = — 1. Moreover, the slope

at y'— —1 becomes steeper. The last two features are in a
strong contrast to the effect of havingBadependent, in

the CSM. Consequently, an analysis of thg x') plot al-

X"(x') curve remains the same as in the Bean modellows one to discriminate between a strict CSM behavior and

namely,

at y'——1. (25)

one where flux creep is an ingredient.

Finally, we compare in Fig. 11 our theoretical results to
available experimental data on the susceptibility of YBaCuO
films.2*1%24The shown data were obtained by reading se-
lected points in the graphs found in the literature. It is evi-
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esis loops as well as the susceptibiligs x' +ix”. The re-
sults, which were obtained for several commonly used
decreasing withB|, allowed us to determine the range of
fields where the vertical width of the major magnetization
loop, AM(B,), is directly related tal.(B,).

We have shown that at small fields the virgin magnetiza-
tion and complex susceptibility have the same dependence
on B, as for the Bean model, although with different coeffi-
cients. For large ac amplitudeés, ,, the behavior of the ac
susceptibility changes fromy’ =B, 3% and x"«B_, for the
Bean model, toy’ < B2 andy”=B,,2 for J, decreasing with
|B| as|B| ! or faster. We could show numerically, and also

xn/xo

00 -1fo " o8 o6 04 w02 00 presented an argument, that when asymptotically
' ' it ' ' ~|B|7%,s<1, one hasy'«B,3"9"2. The results for the

high-field behavior of the susceptibility are expected to be
FIG. 11. Experimental susceptibility data from Ref. @@pen  valid for superconductors afny geometry
circles and Ref. 15solid circles (Ref. 24 together with the CSM A most convenient test for critical-state models is pro-
predictions for a thin disk: the Bean modelashed curyeand the  vided by an analysis of thg”(x’) plot. We conclude that
Kim model with Bo= 3B, (full line). The Kim model gives a better the asymptotic behavior at' — — 1 is universal for the CSM
agreement with experiment over the whole range. with any J.(B). On the other hand, flux creep can affect this
behavior. The peak iry” at y’=—0.38 predicted by the
dent that the poor fit by the Bean modelashed curveis ~ Bean model was found to be shifted towart=0 due to the

greatly improved by the curvéfull line) calculated for a B dependence id., and towardy’=—1 because of flux
B-dependend.. Whereas the agreement is better throughoutreep.
the x"(x") plot, it is especially evident at smaly’| (large Note added in proofWe have recently carried out inde-

field amplitudey where thel (B) dependence plays a major pendent numerical simulations to verify the conclusion about
role. There is still a discrepancy in the low-field region, the influence of the creep on thé(x’) peak position. We
where all experimental points do not follow the universalhave found that the above conclusion is valid if the simula-
CSM slope given by Eq25). The deviation can be caused tions are based on the nonlindz(j) curve,Ex(j/j.)", asin

by a flux creep leading to a steeper sIop&’ This sugges- Refs. 18 and 19. However, simulations based on the classical
tion can be checked experimentally by analyzig§(x')  flux diffusion approach wher&=xB(j/j.)" show that the

plots obtained at different temperatures. peak position is determined only by the(B) dependence
and is practically insensitive to the creep. The shift of the
V. CONCLUSION peak due toJ.(B) dependence has also been observed in

o o ) Ref. 19 from numerical simulations.
Magnetization and ac susceptibility of a thin supercon-

ducting disk placed in a perpendicular magnetic field were
analyzed in the framework of the critical state model where
J; depends on the local flux density. We solved numerically The financial support from the Research Council of Nor-
the set of coupled integral equations for the flux and currenway (NFR), and from NATO via NFR is gratefully acknowl-
distributions, and from that calculated magnetization hysteredged.
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