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Quasiparticle localization in superconductors with spin-orbit scattering

T. Senthil and Matthew P. A. Fisher
Institute for Theoretical Physics, University of California, Santa Barbara, California 93106-4030

~Received 21 June 1999!

We develop a theory of quasiparticle localization in superconductors in situations without spin rotation
invariance. We discuss the existence and properties of superconducting phases with localized/delocalized
quasiparticle excitations in such systems in various dimensionalities. Implications for a variety of experimental
systems, and to the properties of random Ising models in two dimensions, are briefly discussed.
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I. INTRODUCTION

A powerful probe of the properties of a superconducto
obtained by studying the low-temperature dynamics of
quasiparticles. In this context, we proposed1 that all ground-
state phases of disordered superconductors can be char
ized, at zero temperature, by their quasiparticle trans
properties. The two general possibilities are that the qu
particle excitations may be delocalized, analogous to a m
or be localized analogous to an insulator. Previous paper2–5

have developed a theory of localization of quasiparticles
superconductors in situations with spin rotation invarian
In this paper, we consider the case where the spin is
conserved. This may happen, for instance, in a singlet su
conductor in the presence of spin-orbit scattering. Anot
example is provided by a triplet superconductor where
quasiparticles can exchange spin with the condensate,
hence do not have conserved spin. Indeed, a number o
perconducting systems, such as, for instance, the heavy
mion superconductors, are both strongly disordered and h
strong spin-orbit scattering~and perhaps even triplet pai
ing!. Thus, in order to understand the possibility of quasip
ticle localization in such systems, it is necessary to develo
theory that includes spin-orbit scattering in an essential w
Besides, by analogy with what happens in normal met
spin-orbit scattering is expected to have profound effects
localization phenomena.

Because the quasiparticle charge density is also not
served in a superconductor, the only conserved quantity
ried by the quasiparticles~at low energies! is the energy den-
sity itself. In the presence of impurity scattering, t
quasiparticle charge and spin densities in such a super
ductor do not diffuse, as they are not conserved. Energy
fusion is possible, though. The corresponding transport qu
tity is the quasiparticle thermal conductivity.

From a theoretical point of view, quasiparticles in a s
perconductor with nonconserved spin are more appropria
thought of as real~Majorana! fermions. Thus the problem w
consider here is one of localization of Majorana fermio
While localization issues of complex~conventional! fermi-
ons have been explored in considerable detail, surprisin
there has been very little theoretical work on correspond
issues for Majorana fermions. As we argue, the superc
ductor with nonconserved spin provides a natural experim
tal realization of such a system. We examine the poss
phases~as characterized by quasiparticle transport! and the
associated phase transitions. It is of interest to distingu
between situations with and without time-reversal symme
PRB 610163-1829/2000/61~14!/9690~9!/$15.00
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T, and we will consider each separately.~In the notation of
Ref. 6, these correspond to class DIII and class D, resp
tively!.

While the superconductor is our primary motivation, w
note also that Majorana fermions arise in other contexts
well. A well-known example is the two-dimensional Isin
model. There have been several studies7 of the properties of
the two-dimensional Ising model in the presence of rando
ness in the bond strengths, though there are still sev
poorly understood issues. The implications of this work
that problem will be considered briefly towards the end
the paper.

We first show the existence, in two dimensions, of sta
‘‘metallic’’ and ‘‘insulating’’ phases inside the supercon
ductor with delocalized and localized quasiparticle exci
tions, respectively. The stability of the ‘‘metallic’’ phase i
two dimensions has already been alluded to in Ref. 4.
emphasize that both phases are superconducting—they
distinguished by the nature of thermal transport due to
quasiparticles. These two phases are separated by a p
transition which is a ‘‘metal-insulator’’ transition inside
superconductor. In Ref. 1, we discussed possible experim
tal realizations of such phase transitions. The universal c
cal properties of this transition depend, of course, on whe
time reversal is a good symmetry or not. InT-noninvariant
systems, the insulating phases may be further character
in terms of their values of the Hall thermal conductance. T
dimensionless ratio 3hkxy /p2kB

2T is quantized in units of
1/2. Phases with different values of this quantized Hall th
mal conductance are topologically distinct, and are separ
by phase transitions. In Fig. 1, we show a schematic ph
diagram. Note that, in the case with noT, apart from the
‘‘metal-insulator’’ transition, there are also transitions b

FIG. 1. Schematic zero-temperature phase diagram for the
dimensional superconductor in the absence of both spin rotation
time-reversal invariances.
9690 ©2000 The American Physical Society
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PRB 61 9691QUASIPARTICLE LOCALIZATION IN . . .
tween the ‘‘metal’’ and the ‘‘quantum Hall’’ phase, and from
the insulator withkxy /T50 to the ‘‘quantum Hall’’ phase.
Further, there is a multicritical point, where all three pha
come together. In three-dimensional systems, ‘‘metall
and ‘‘insulating’’ phases are again possible with the tran
tion between the two being in a universality class for loc
ization. In the rest of the paper, we will substantiate th
claims, and analyze the properties of each phase in fur
detail.

II. MODELS AND GENERAL FORMALISM

Consider a general lattice Hamiltonian for the quasipa
cles in a superconductor with strong spin-orbit scattering

H5(
i j

t i j
abcia

† cj b1D i j
abcia

† cj b
† 1H.c. ~1!

Here i , j refer to the sites of a lattice, anda,b are spin indi-
ces. We assume thatt andD are both short ranged in spac

We will focus on two cases—with and without time
reversal symmetry~T !. If present, time reversal is impose
through an antiunitary ‘‘time-reversal’’ operatorT which
transforms thec operators as

TFci↑
ci↓

G5F ci↓
2ci↑

G5 isyc. ~2!

Note thatTs* T 2152s ~with s a vector of Pauli matrices!
so that the electron spin is odd under time reversal. W
time-reversal invariance present we require that

THT 215H. ~3!

Note thatH has no special symmetries~other than possi-
bly T!. In particular, neither the charge nor spin is conserv
It is convenient then to work with Majorana fermion
h1ia ,h2ia defined through

cia5
1

A2
~h i1a1 ih i2a!. ~4!

The Hamiltonian when expressed in terms of theh fermions
takes the form

H5hTHh, ~5!

with h5h iaa, (a,b51,2) and H5Hi j
ab,a,b is a matrix in

( i j ),(ab),ab space. By definition,H is Hermitian and
moreoverHT52H, so thatH is pure imaginary. Thus the
problem of quasiparticle localization in a superconduc
with spin-orbit scattering is, in essence, one of localization
Majorana fermions. In particular, in the case where evenT is
not a good symmetry, the Hamiltonian Eq.~5! is the most
general one describing noninteracting Majorana fermion
a disordered system.

Time-reversal symmetry is easily imposed on the Ma
rana Hamiltonian Eq.~5!. Under the action of the antiunitar
operatorT, it is readily seen that

Th iaa5 i ~sy!ab~tz!abh ibb . ~6!
s
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Here a,b51,2 andtW is a Pauli matrix inab space. The
time-reversal invariance condition Eq.~3! combined with Eq.
~6! implies

sytzH* sytz5H. ~7!

We note in passing that for a superconductor of spinpo-
larized fermions~appropriate, say, in theA21 phase of su-
perfluid 32He) in the absence of time-reversal invarianc
the general Hamiltonian can still be written in the formH
5hTHh, with H an antisymmetric and pure imaginary m
trix in position (i , j ) and ‘‘particle-hole’’ (ab) space. But for
spinless quasiparticles the condition for time-reversal inv
ance is different, leading to different symmetries. Spec
cally, with time-reversal invariance the lattice Hamiltonia
depends on areal symmetric hopping matrix,t i j , and areal
antisymmetric gap matrix,D i j . In this case, when reex
pressed in terms of Majorana fermions, the Hamiltonian
comes H5hTHh with H5tty1 iDtx . This Hamiltonian
matrix can equivalently be expressed asH5 iAt11c.c.,
with t15tx1 i ty and A5t1D an arbitrary real matrix.
This ‘‘off-diagonal’’ form is very different than the two
cases with spinful electrons, and in fact belongs to a differ
symmetry class—a class studied by Gade and Wegn8

Henceforth we focus exclusively on the spinful case.
We are interested in understanding the nature of ene

transport~in both spinful cases, with and withoutT) by the
excitations described by the Hamiltonian. For this purpose
is actually convenient to adopt the following trick. We co
sider two identical copies of the system. To describe the
copies, we introduce two Majorana fieldsh and z and con-
sider

H̃5hTHh1zTHz. ~8!

It is now possible to combine theh andz fields into a single
complex fermionf:

f 5
1

A2
~h1 i z!, ~9!

f †5
1

A2
~h2 i z!. ~10!

Then, we have

H̃5 f †H f . ~11!

Note that the number off particles is conserved. It is the
possible to consider transport of this conservedf-number
density. This may be quantified by a conductivitys f . As the
HamiltonianH̃ describes noninteractingf particles, the ther-
mal conductivityk f of the f particles is related tos f by a
Weiedemann-Franz law~asT→0):

k f

Ts f
5

p2kB

3
. ~12!

Since the HamiltonianH̃ represents just two identical copie
of the original system described byH, it is clear that the
thermal conductivity~k! of theh particles is exactly half tha
of the f particles:
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9692 PRB 61T. SENTHIL AND MATTHEW P. A. FISHER
k5
k f

2
. ~13!

Combining this with Eq.~12!, we see that calculation ofk is
reduced to calculation ofs f . Similarly, all the thermody-
namic properties ofH may be obtained by halving the co
responding property calculated withH̃.

It is convenient to define thef-Green’s function

Gi j
ab,ab~E!5^ iaau

1

E2H1 i e
u jbb&, ~14!

wheree is a positive infinitesimal andE is the energy~mea-
sured from the Fermi energy!. The conditionH* 52H im-
mediately implies that

G* ~E!52G~2E!, ~15!

where we have suppressed all the indices onG. In particular,
for states at the Fermi energy, we have

G* ~E50!52G~E50!, ~16!

so thatG(E50) is pure imaginary. This Green’s functio
can be conveniently expressed, as usual, as a functiona
tegral over Grasmann variablesf iaa , f̄ iaa with the action

S5 i f̄ ~H2 i e! f . ~17!

The symmetry Eq.~16! implies that this same generatin
functional can be used to calculate transport quantities.3

III. SYSTEMS WITH TIME-REVERSAL SYMMETRY

The discussion has so far been completely general.
now specialize to the case withT symmetry.

A. Metallic phase

We first consider the situation in which the disorder
weak. We assume that there is a finite, nonzero mean
pathl e set by the impurity strength in such a manner that
f-particle motion is diffusive on larger scales.~In terms of the
original physical system, this corresponds to diffusion of e
ergy.! We are interested in describing the effects of quant
interference on this diffusive motion. We assume also tha
the absence of quantum interference effects, the densit
states at the Fermi energy of this diffusive system is fin
and nonzero. In that case, it is possible to follow stand
techniques to derive a replica nonlinear sigma model fi
theory to describe the physics at length scales large c
pared to the mean free pathl e . As the procedure is suffi
ciently well known, we merely state the results. The fie
theory is described by the action

S5E ddx
1

2g
Tr@~¹O!T~¹O!#2e Tr~O1OT!, ~18!

whereO(x)PO(2n) is a 2n32n orthogonal matrix-valued
field with n the number of replicas. Whene50 the action has
a globalO(2n)3O(2n) symmetry,O→AOB with A andB
orthogonal matrices, which is broken down to the diago
O(2n) (AT5B) by the e term. The coupling constantg is
inversely proportional to the baref conductivitys f

0 ~i.e., the
in-

e

ee
e

-

in
of
e
d
d
-

l

conductivity on the scale of the mean free path!. The density
of quasiparticle states at the Fermi energy is given by

r5
r0

4n
^Tr~O1OT!&. ~19!

Consider a renormalization-group transformation wh
short distance fluctuations are integrated out, and the coo
nate x is rescaled asx→x85xe2 l . The leading quantum
interference corrections to diffusion can now be obtain
from the known9 perturbativeb function of this field theory
in the replica limit. The result, in two dimensions, is

dg

dl
52

g2

4p
. ~20!

Note thatg decreases asl is increased. Thus the perturba
tion theory~in powers ofg! gets better at large length scale
For a system of sizeL, at zero temperature, we may integra
the flow equation up to a scalel * given by l ee

l* ;L to get

g~L !5
g0

11~g0/4p!ln~L/ l e!
, ~21!

whereg0 is the bare value ofg. For largeL, this therefore
gives

g~L !'
4p

ln~L/ l e!
. ~22!

Thusg(L) goes to zero logarithmically with the system siz
As s f is inversely proportional tog, it follows that s f di-
vergeslogarithmically with the system size. At finite tem
perature, in an infinite system, it is natural to expect that
quantum interference effects will be cut off at a fini
dephasing length scaleLf;T2p due to interaction effects
not included in the model. We therefore have

s f; lnS 1

TD ~23!

at the lowest temperatures. As this also determines the t
mal conductivityk(T) of the original system, we have

k

T
; lnS 1

TD . ~24!

The considerations above establish the existence of a
tallic phase with delocalized quasiparticle excitations in t
dimensions in the model Hamiltonian Eq.~1! describing the
superconductor in the presence of time-reversal invarian
but no spin rotation invariance. In striking contrast to norm
metals, quantum interference effects also lead to sing
corrections to the density of states in a superconductor.3 In
our previous work,3 we demonstrated this in the spin rotatio
invariant cases. We now show that the density of state
enhancedin the situation considered in this paper. In partic
lar, we show that in two dimensions it actuallydivergesin
the thermodynamic limit.

To see this, consider the action Eq.~18! at finite e. The
density of states is obtained from
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r

r0
52

1

4n F]F
]e G

e50

, ~25!

whereF is the free-energy density defined through

exp~2LdF!5E DO exp~2S!. ~26!

The flow of e under the renormalization group~RG! may be
obtained straightforwardly. To leading order ing the result is

de

dl
5S 21

g

8p D e. ~27!

This is readily integrated to give

e~ l !5e~0!expS 2l 1
1

8pE0

l

g~ l 8!dl8D . ~28!

The free-energy density scales according to

F„g~0!,e~0!…5e22lF„g~ l !,e~ l !…, ~29!

where we have specialized to two dimensions. For a sys
of sizeL, run the RG until a scalel * such thatl ee

l* 'L. The
density of states is then

r~L !52
e22l*

4n

]F„g~ l * !,e~ l * !…

]e~0!

52expS 1

8pE0

l*
dl8g~ l 8! D 1

4n

]F„g~ l * !,e~ l * !…

]e~ l * !
.

~30!

After scaling out tol * the mean free path is comparable
the system size, so that2(1/4n)@]F„g( l * ),e( l * )…/]e( l * )#
→const. Therefore

r~L !;expS 1

8pE0

l*
dl8g~ l 8! D . ~31!

For largel, g( l )'4p/ l . Thus we have

r~L !;Aln
L

l e
. ~32!

Thus the density of states at the Fermi energy diverges.
behavior of the density of states as a function of energy in
infinite system may also be found similarly~or simply
guessed from the equation above! to be

r~E!;Aln
1

E
. ~33!

The Einstein relation can now be used to infer that
heat diffusion constantD also diverges on approaching th
Fermi energy as

D~E!;Aln
1

E
. ~34!

Thus the metallic phase has an infinite heat diffusion c
stant at zero temperature in two dimensions.
m

he
n

e

-

The divergence of the density of states has obvious c
sequences for the low-temperature thermodynamic prope
of this phase. For instance, the specific heat behaves as

C~T!;TAln
1

T
. ~35!

In three-dimensional systems, the stability of the meta
phase can be established by simple power-counting a
ments. Quantum interference effects are then irrelevan
long length scales. The thermal conductivity then goes
zero linearly with the temperature at lowT:

k3D

T
→const. ~36!

The density of states at the Fermi energy is finite, and n
zero. However, quantum interference effects do lead t
singularAuEu cusp in the density of states as a function
the energy~see Ref. 1 for an analogous discussion in t
superconductor with conserved spin! so that

r~E!2r~E50!;2AuEu. ~37!

Note that the density of states increases with decreasing
ergy as also happens ind52.

B. Insulating phase

For strong disorder, it is possible to have a phase w
localized quasiparticle excitations in any finite dimension.
the terminology of Ref. 1, this is a superconducting ‘‘therm
insulator.’’ In this phase, the ratiok/T goes to zero with the
temperature. The density of quasiparticle states also goe
zero at the Fermi energy. To see this, consider the lat
Hamiltonian Eq.~11! in the extreme limit where thef par-
ticles are localized to a single site. The Hamiltonian for
single site is constrained to be of the formH5asytx1bty
with a,b real. This has two eigenvalues given b
6Aa21b2. Consider now the case where the distribution
a,b has finite, nonzero weight ata5b50. Then, the density
of statesr(E) averaged over the disorder vanishes asuEu. If
the distribution has vanishing weight ata5b50, thenr(E)
vanishes faster than linearly. Including hopping between
sites should not change this result so long as we are in
localized phase.~As with the superconductors with con
served spin, having a finite density of states requires a
verging weight ata5b50 which is presumably unphysica
and nongeneric.! We thus conclude that the density of qu
siparticle states vanishes, at least as fast asuEu in the local-
ized phase.

IV. TIME-REVERSAL BROKEN SYSTEMS

We now move on to systems without time-reversal sy
metry. As mentioned earlier, this corresponds to studying
general localization properties of a noninteracting disorde
system of Majorana fermions. It is therefore appropriate
call the phase with extended states a ‘‘Majorana metal,’’ a
the phase with localized states a ‘‘Majorana insulator.’’
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A. Majorana metal

To address issues such as the stability and propertie
the Majorana metal, it is useful to think in terms of a repli
sigma model field theory which permits a systematic study
quantum interference corrections to diffusive energy tra
port. This is readily done using standard techniques.
result is

S5E d2x
1

2g
Tr~]Q!22e Tr~syQ!, ~38!

whereQ5VTsyV is a 2n32n matrix,V is anO(2n) matrix
and n is again the replica index. Whene50, the action is
invariant under the groupO(2n), Q→WTQW, with W an
orthogonal matrix. With nonzeroe, invariance of the action
requiresW5exp(iG) with G pure imaginary and antisym
metric of the form,W5Ssy1 iA. HereS is an n by n real
symmetric matrix andA is n by n real antisymmetric. Since
S1 iA is n by n Hermitian, the group has evidently bee
broken down toU(n) by the e term. ThusS describes a
nonlinear sigma model on the manifoldO(2n)/U(n). The
coupling constantg is again inversely proportional to th
~longitudinal! f-particle conductance. The density of states
the quasiparticles may be obtained from

r5
1

2n
^Tr~syQ!&. ~39!

Actually, on symmetry grounds, there is a topologic
term allowed in the action. This follows from the observati
that P2@O(2n)/U(n)#5Z is nontrivial. This will be impor-
tant to understand the behavior of the thermal Hall cond
tivity later.

The perturbative RG flows of the couplingsg ande in two
dimensions in the replica limit are

dg

dl
52

g2

8p
, ~40!

de

dl
5S 21

g

8p D e. ~41!

We may use these to extract the physical properties of
Majorana metal phase in exactly the same manner as in
previous section. We therefore simply state the results. F
note that the~marginal! irrelevance of the couplingg implies
the stability of the Majorana metal ind52. As the tempera-
ture goes to zero, the~longitudinal! thermal conductivitykxx
in a finite system of sizeL behaves as

kxx

T
; lnS L

l e
D . ~42!

In an infinite system at finiteT, where the quantum interfer
ence is cut off by dephasing due to interaction effects,
have

kxx

T
; lnS 1

TD . ~43!

Similarly, the density of states at the Fermi energy now
verges logarithmically with the system size:
of

f
-
e

f

l

-

e
he
st

e

i-

r~L !; ln
L

l e
. ~44!

As a function of energy in an infinite system, we have

r~E!; ln
1

E
. ~45!

This leads, for instance, to a specific heat which depends
temperature as

C~T!

T
; ln

1

T
. ~46!

Since kxx /T and the density of states diverge in the sa
manner with energy, determining the behavior of the therm
diffusion coefficient would require going to second order
the perturbative RG. The diffusion coefficient could th
also diverge, but not more rapidly than double logarithm
cally with energy.

In three dimensions, the behavior of the superconduc
metal phase is qualitatively the same irrespective of whe
time-reversal symmetry is present or not. Therefore the
cussion in the previous section of the three-dimensional c
applies here as well.

B. Majorana insulator

At strong disorder, in any dimension, it is possible to fi
phases where the quasiparticle excitations are localized.
~longitudinal! quasiparticle heat conductivitykxx goes to
zero rapidly with the temperature, in such a phase. We
call this the Majorana insulator, as this corresponds to a
calized phase of Majorana fermions. The density of state
the Majorana insulator may be found by an argument an
gous to the one in Sec. III B. In brief, we consider a sing
site Hamiltonian for two Majorana species~corresponding to
a single spinless complex fermion! which is constrained to
be of the formH5aty with a real and random. If the distri-
bution ofa has a finite, nonzero weight ata50, then there is
a finite density of states at zero energy. We again expect
to hold throughout the localized phase, so that the densit
states at the Fermi energy can be nonzero. Note that, lik
a conventional insulator in nonsuperconducting system
density of states that vanishes at the Fermi energy is
possible.

C. Majorana quantum Hall phase

In the absence of time-reversal symmetry, there is pot
tially another transport property which can be used to dis
guish zero-temperature phases: the thermal Hall conduct
kxy . In particular, in the Majorana insulator in two dimen
sions, the ratiokxy /T approaches quantized values as t
temperature goes to zero. Phases with different values o
quantized thermal Hall conductance aretopologically dis-
tinct and are separated by phase transitions. In recent w
with X. G. Wen,10 we studied the physics of this quantu
Hall system in some detail.

From the point of view of the replica nonlinear sigm
model field theory discussed earlier in this section, the e
tence of insulating phases with quantized thermal Hall c
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ductance can be attributed to the presence of a topolog
term in the action. This takes the form

Stop5E d2x
u

16p
Tr~Q]xQ]yQ!. ~47!

The quantity multiplyingu is equal to i 3 integer for any
given configuration of theQ field. Thus the partition function
is periodic underu→u12pm for any integerm. Physically,
just as in the Pruisken field theory for the conventional in
ger quantum Hall transition,u is proportional to the~bare!
value of thef-particle Hall conductivitysxy

f . As shown in
Ref. 10, this is in turn proportional to the ratio of the therm
Hall conductivity to the temperature.

V. PHASE DIAGRAM AND TRANSITIONS

We now discuss the~zero-temperature! phase diagram
and phase transitions for the dirty superconductor with n
conserved spin. Again, we consider the cases with and w
out T separately.

A. Time-reversal invariant systems

As argued in the previous section, metallic and insulat
phases are possible in bothd52 and d53. A schematic
phase diagram as a function of the bare thermal conduct
is as shown below in Fig. 2.

The critical points separating the two phases are in u
versality classes for Anderson localization. There are so
interesting differences between the scaling properties of
two- and three-dimensional systems. In three dimensions
ratiok/T, the thermal diffusion coefficientD, and the density
of statesr0 at the Fermi energy are finite constants in t
metal and are zero in the insulator. It is therefore natura
expect that these will go to zero continuously~with some
universal critical exponent! as the transition is approache
from the metallic side. In two dimensions, however, in t
metal, these quantities are all infinite in the limit of ze
temperature and infinite system size.~They are zero in the
insulator.! Exactly at the transition point, conventional sca
ing arguments11 imply a constant value fork/T. The behav-
ior of the density of states and diffusion coefficient is mo
unclear. It is perhaps natural to suggest that these will b
constant, though we certainly cannot rule out other possib
ties.

B. Time-reversal noninvariant systems

We first consider the three-dimensional case. The ph
diagram is similar to that above for the time-reversal inva
ant system. However, as the density of states may be non
in the insulator, we expect that it generically is nonzero
the transition point as well.

The two-dimensional case has a richer phase diagram
to the possibility of quantum Hall phases. For simplicity, w
show, in Fig. 1, only the two insulating phases withkxy50

FIG. 2. Schematic zero-temperature phase diagram for the th
dimensional superconductor in the presence of spin-orbit scatte
al
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and kxy /T5 1
2 ~in units of p2kB

2/3h). Note that there are
three distinct phase transitions, and a multicritical point
this phase diagram. First consider the Majorana me
insulator transition. Bothkxx /T and r0 are infinite in the
Majorana metal. In the Majorana insulator,kxx /T is zero
while r0 may be nonzero. As in theT invariant case, con-
ventional scaling arguments imply a finite value forkxx /T at
the transition point. For the density of states, it is natura
guess that it is finite at the transition, though again it is h
to rule out other possibilities.

Now consider the transition from the Majorana metal
the quantum Hall phase. This transition is in the same u
versality class as the transition from the Majorana meta
the insulator withkxy50. The quantum Hall phase is a Ma
jorana insulator withkxy /T5 1

2 . The distinction between
these two insulating phases is due to the presence of~heat!
current carrying edge states—these are expected to be u
portant in determining the properties of the transition to
metal. Below, we will provide a more formal argument
support of this claim.

Finally, consider the transition between the insulator w
kxy50 and the one withkxy /T5 1

2 . A theory for this transi-
tion is obtained by considering a particular realization of t
two phases. Consider a system of spinless fermions pa
into a px1 ipy superconducting state in two dimensions.
Ref. 10, it was shown that such a superconductor has a q
tized thermal Hall conductivitykxy /T5 1

2 if the chemical
potential is positive~the ‘‘BCS’’ limit !, and haskxy50 if the
chemical potential is negative~‘‘molecular’’ limit !. Thus, as
the chemical potential is varied through zero, there is a tr
sition from the Majorana quantum hall phase to the Majora
insulator. Reference 10 also examined the theory for
transition, and argued that, at least at weak disorder, i
correctly described by a theory of relativistic Majorana fe
mions with random mass. It is well known that the rando
mass is irrelevant at the pure free Majorana fixed poin7

Thus the critical theory is knownexactlyin this case. If we
make the important assumption that there is a unique fi
point describing the Majorana insulator-quantum Hall tran
tion, then the arguments above identify it with the free re
tivistic Majorana fixed point. There is, however, some reas
to question this assumption—see Sec. VI.

Some more insight into the phase diagram and the tra
tions comes from considering the properties of the rep
nonlinear sigma model field theory describing the quasip
ticles in the two-dimensional superconductor with spin-or
scattering, and noT. This is described by the action Eq.~38!
supplemented with the topological term Eq.~47!. The small
g regime is described by the perturbative calculations of
previous section. Note that the presence of the topolog
term does not affect those results. Indeed, the parametu
plays no role in perturbation theory, and does not renorm
ize. Thus there is a line of fixed points in theg,u plane at
g50 with u arbitrary. As the value ofu is proportional to the
value of kxy /T, this ratio varies continuously in the Majo
rana metal.

Now consider the behavior of the sigma model at largeg.
It is natural to expect that, in this limit, the physics is ca
tured by a strong-coupling expansion, and that the resul
phase corresponds, physically, to a localized phase.~For con-
ceptual purposes, it may be convenient to think in terms o

e-
g.
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lattice regularized version of the field theory.! First consider
u50. The corresponding localized phase haskxy50. Simi-
larly, the insulator withu52p haskxy /T5 1

2 . Just as in other
sigma model field theories with topological terms, the largg
phase for 0<u,p is expected to be continuously connect
to the largeg phase atu50, i.e., it is an insulator withkxy
50. Similarly the largeg phase withp,u<2p is expected
to be continuously connected to the largeg phase with
u52p, i.e., an insulator withkxy /T5 1

2 . The transition be-
tween the two localized phases occurs atu5p. The smallg
metallic phase is separated from these localized phase
large g by a phase boundary. The symmetryu→2p2u im-
plies that this phase boundary be symmetric about theu5p
line ~see Fig. 3!.

In the field theory, the transitions between the smalg
metal and the largeg insulator atu50,2p are in the same
universality class as the physics is invariant underu→u12p.
What about the transition from the metal to the insulator
other values ofu? We suggest that, foruÞp, these are in the
same universality class as the transition atu50. This then
implies thatkxy is continuous across the metal-insulator tra
sition. Finally, the point where the metal-insulator pha
boundary crosses theu5p line in the phase diagram of th
field theory corresponds to the multicritical point where t
metal and the two insulating phases come together.

VI. RANDOM BOND ISING MODEL IN dÄ2

In this section, we briefly discuss the possible implic
tions of this paper to the finite temperature properties of c
sical random bond Ising models in two dimensions. It is w
known7 that this system admits a description in terms
noninteracting disordered Majorana fermions. Specifica
the partition function for the Ising model can be written as
functional integral over Majorana fields that live in two d
mensions. This, in turn, may be reinterpreted as a genera
function for the wave functions of a quadratic quantu
Hamiltonian of Majorana fermions in two spatial dime
sions. This Majorana Hamiltonian has no spec
symmetries—the system is therefore in the universality c
of the two-dimensional superconductor with neither spin

FIG. 3. Phase diagram of the sigma model field theory desc
ing the two-dimensional superconductor with no spin rotation
time-reversal invariances.
at
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e

-
s-
ll
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ng
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s
-

tation nor time-reversal invariance.
It is therefore natural to try to identify various phases

the Ising model with corresponding (T50) phases in the
two-dimensional superconductor with no spin rotation
time-reversal invariance. First consider the pure Ising mo
Both the high- and low-temperature phases correspond
gapped phases in terms of the Majorana fermions. Thus th
correspond to insulating phases of the Majorana fermio
Disorder in the Ising model, obtained by making some of
bonds random, would tend to fill up the gap. However, if t
disorder is weak, the resulting low-energy states will
strongly localized. Thus, at weak disorder, both the high- a
low-temperature phases of the Ising model correspond to
calized phases of the Majorana fermions. How then do
distinguish between the two? The distinction is topologic
with the quantized value of the thermal Hall conductan
differing by 1/2 between the two phases. Strong support
this suggestion is obtained by examining the properties of
system near the transition between the two phases. In
pure Ising model, the critical point is described by a massl
relativistic Majorana theory. Moving off criticality intro-
duces a mass for the fermions with the sign of the m
distinguishing the two phases. The result that the dimens
lesskxy jumps by 1/2 at the transition can now be establish
by direct calculation. The critical theory is identical to th
one describing the transition, at weak disorder, in thepx
1 ipy superconductor of spinless fermions between the B
and molecular limits. We thus identify the Ising transition
weak disorder with the thermal quantum Hall transition.

Now consider introducing strong~bond! randomness into
the Ising model. If all the bonds are still positive, the tran
tion is believed to be always controlled by the pure Isi
fixed point. The situation is more interesting if some of t
bonds are made negative. As the concentration of nega
bonds is increased, there is a multicritical point~the Nishi-
mori point, see Fig. 4! ~Ref. 12! on the phase boundary
beyond which the transition is no longer controlled by t
pure Ising fixed point. The properties of this multicritic
point have been the focus of a number of investigation13

over the last many years. Despite this, there is no deta
understanding of the theory of this point, or of the propert
at the phase boundary at lower temperatures. What does
Nishimori point correspond to in the language of the Ma

-
r

FIG. 4. Phase diagram of the two-dimensional Ising model w
random bond strengths.p is the concentration of negative bond
andT is the temperature. The pointN is the Nishimori multicritical
point. SG refers to the spin-glass phase which is believed to e
only at zero temperature.
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rana fermions? There appear to be two disti
possibilities—we will discuss evidence supporting either
low.

~i! For the problem of localization of Majorana fermion
in two dimensions, the assumption that there is a uni
fixed point controlling the thermal quantum Hall transitio
leads to its identification with the free relativistic Majoran
theory. This assumption, which is perhaps natural in the
mion language, then points to the identification of the Nis
mori point with the multicritical point separating the Majo
rana metal, insulator, and the quantum Hall phase. If tr
then it is natural to expect that the ferromagnetic phase t
sition in the Ising model at low temperatures below t
Nishimori point is actually the Majorana insulator-met
transition. Some evidence in support of this is provided
the numerical results of Ref. 14 which found no signs
localization of the fermions in the nonferromagnetic phase
low temperature close to the phase boundary. On the o
hand, note that the paramagnetic phase at high temper
and weak disorder corresponds to a localized phase. If
scenario outlined above is correct, then we are led to in
the existence of a finite temperature phase transition out
the ferromagnetic phase in the Ising model associated w
delocalization of the Majorana fermions. It is unclear wh
this transition means in the Ising language, and even whe
it happens at all. A natural candidate would have bee
transition to a spin-glass phase at low temperatur
however, there is strong numerical evidence for the abse
of spin-glass order at finite temperature in two-dimensio
Ising systems. It seems possible that a delocalized~metallic!
phase of Majorana fermions would correspond to a phas
which both the Ising spin and the dual Ising disorder para
eter are simultaneously zero.

~ii ! A different scenario is obtained by dropping the a
sumption that there is a unique fixed point controlling t
thermal quantum Hall transition. Instead, for the Ising mod
we assume that the only finite temperature phase transitio
associated with the destruction of the ferromagnetic orde
the concentration of negative bonds is large enough to
stroy the ferromagnetism at zero temperature, we ass
that the resultant state is a spin glass. These assumption
perhaps reasonable expectations for the Ising model. T
the finite temperature ferromagnetic and paramagn
phases are, in the fermion language both localized ph
which are distinguished by their thermal Hall conductan
The existence of the Nishimori point then implies the ex
tence of a multicritical point~at strong disorder! in the phase
boundary between these two localized phases. Then,
thermal quantum Hall transition will be controlled by th
free relativistic massless Majorana theory at weak disor
but by a different fixed point at strong disorder. The sp
glass phase in the Ising model presumably corresponds to
Majorana metal. However, it may seem a bit puzzling, in t
scenario, why the Majorana metal which is a stable phas
disordered Majorana fermions in two dimensions is only
alized in a set of measure zero~a line atT50) in the Ising
phase diagram.

Which one of these two scenarios is actually realized
the resultant consequences both for the Ising model and
Majorana localization problem, we leave as an intrigui
open question.
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VII. DISCUSSION

In this paper, we have discussed the physics of local
tion of quasiparticles in a superconductor in situations wh
the quasiparticle spin is not a good quantum number. O
discussion was entirely based on models of noninterac
quasiparticles—including the effects of interactions is an i
portant and interesting issue which we leave for future wo
Even within the noninteracting theory, we have found
rather rich phase diagram, and a number of as yet unexpl
phase transitions. Several experimental systems to which
work is of relevance can be imagined—here we briefly m
tion a few.

~i! A particularly attractive prospect for probing the phy
ics discussed here is in a type-II superconductor in a str
magnetic field in the presence of spin-orbit scattering im
rities. At low fields, the system will be in the supercondu
ing ‘‘insulator phase.’’ With increasing field, under cond
tions discussed in Ref. 1, there will be a transition~at zero
temperature! to a superconducting ‘‘metal’’ phase. This tran
sition can be probed, for instance, by measurements of
low-temperature quasiparticle heat conductivity.1

~ii ! A number of recent experiments15 have measured
low-temperature heat transport by the quasiparticles in
heavy fermion superconductors. We note that as these
tems typically have strong spin-orbit scattering, the results
this paper are of potential importance. Some of the heat c
ductivity measurements have been motivated by the poss
ity of identifying the correct pairing symmetry in these s
perconductors. Such identification could be seriou
hampered by the localization issues discussed here. In
ticular, if the disorder is strong enough to localize the qua
particles, it is hard to infer whether the pure system has a
to quasiparticle excitations or not from heat transport m
surements alone.

~iii ! The properties of superfluidHe23 in porous media
have been the subject of some experimental studies.16 In this
context, it is interesting to ask if the fermionicHe23 qua-
siparticles in the superfluid are localized or delocalized
zero temperature. This may, perhaps, again be probed
heat transport experiments. It is also interesting to cons
the properties of superfluidHe23 on a disordered two-
dimensional substrate. In theA phase, at weak disorder,
thermal quantum Hall effect10 is predicted. With increasing
disorder, it is possible~though not necessary! that there is a
zero-temperature phase transition where the quantizatio
the thermal Hall conductivity is destroyedbeforethe super-
fluidity is destroyed. If this happens, this would be an expe
mental realization of the thermal quantum Hall transition d
cussed in the previous section.10

Finally, the general problem of localization of Majoran
fermions arises in other contexts as well—a specific exam
being the random bond Ising model in two dimensions
discussed briefly in Sec. VI. Progress in the localizat
problem may therefore provide a route to further our und
standing of the random bond Ising model.

We thank I. A. Gruzberg and Martin Zirnbauer for usef
discussions. This research was supported by NSF Grant
DMR-97-04005, DMR95-28578, and PHY94-07194.
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