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Quasiparticle localization in superconductors with spin-orbit scattering
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We develop a theory of quasiparticle localization in superconductors in situations without spin rotation
invariance. We discuss the existence and properties of superconducting phases with localized/delocalized
guasiparticle excitations in such systems in various dimensionalities. Implications for a variety of experimental
systems, and to the properties of random Ising models in two dimensions, are briefly discussed.

. INTRODUCTION 7, and we will consider each separatefin the notation of
Ref. 6, these correspond to class DIIl and class D, respec-
A powerful probe of the properties of a superconductor istively).
obtained by studying the low-temperature dynamics of the While the superconductor is our primary motivation, we
quasiparticles. In this context, we propoSéuat all ground-  note also that Majorana fermions arise in other contexts as
state phases of disordered superconductors can be charactgell. A well-known example is the two-dimensional Ising
ized, at zero temperature, by their quasiparticle transpofihodel. There have been several stutlifsthe properties of
properties. The two general possibilities are that the quaskhe two-dimensional Ising model in the presence of random-
particle excitations may be delocalized, analogous to a metahess in the bond strengths, though there are still several
or be localized analogous to an insulator. Previous papers poorly understood issues. The implications of this work for

have developed a theory of localization of quasiparticles ifnat problem will be considered briefly towards the end of
superconductors in situations with spin rotation Invariancen o paper.

In this p?jpe_zrrr,]_we corr115|der thf c_as? Wher_e the_ Spllnt IS Ot \ve first show the existence, in two dimensions, of stable
conserved. This may happen, for INStance, in a SNgiet SUPEla,qq)ic ang “insulating” phases inside the supercon-
conductor in the presence of spin-orbit scattering. Another . . : . X .
. . . ductor with delocalized and localized quasiparticle excita-
example is provided by a triplet superconductor where th ions, respectively. The stability of the “metallic” phase in
guasiparticles can exchange spin with the condensate, a § d pe %’ read by luded to i Ig f AW
hence do not have conserved spin. Indeed, a number of s YO dimensions has aiready been aliuded 1o in Ret. 4. Vve

perconducting systems, such as, for instance, the heavy fegmphasize that both phases are superconducting—they are

mion superconductors, are both strongly disordered and hayiStinguished by the nature of thermal transport due to the
strong spin-orbit scatteringand perhaps even triplet pair- quasiparticles. These two phases are separated by a phase
ing). Thus, in order to understand the possibility of quasipariransition which is a “metal-insulator” transition inside a
ticle localization in such systems, it is necessary to develop &uperconductor. In Ref. 1, we discussed possible experimen-
theory that includes spin-orbit scattering in an essential Wayt_al realizations of such phase transitions. The universal criti-
Besides, by analogy with what happens in normal metalsgal properties of this transition depend, of course, on whether
spin-orbit scattering is expected to have profound effects otime reversal is a good symmetry or not. Tnoninvariant
localization phenomena. systems, the insulating phases may be further characterized
Because the quasiparticle charge density is also not corin terms of their values of the Hall thermal conductance. The
served in a superconductor, the only conserved quantity cattimensionless ratio I%,,/7°k3T is quantized in units of
ried by the quasiparticle@t low energiepis the energy den-  1/2 Phases with different values of this quantized Hall ther-
sity itself. In the presence of impurity scattering, the ma| conductance are topologically distinct, and are separated

guasiparticle charge and spin densities in such a SUPErcORy phase transitions. In Fig. 1, we show a schematic phase
ductor do not diffuse, as they are not conserved. Energy difdiagram. Note that, in the case with /9 apart from the

f_uspn IS p055|b_le, though. The correspo_nc_jmg transport quUany e insulator” transition, there are also transitions be-
tity is the quasiparticle thermal conductivity.

From a theoretical point of view, quasiparticles in a su-
perconductor with nonconserved spin are more appropriately
thought of as realMajorana fermions. Thus the problem we
consider here is one of localization of Majorana fermions.
While localization issues of complefconventional fermi-
ons have been explored in considerable detail, surprisingly,
there has been very little theoretical work on corresponding
issues for Majorana fermions. As we argue, the supercon-
ductor with nonconserved spin provides a natural experimen-
tal realization of such a system. We examine the possible
phasegas characterized by quasiparticle transpartd the FIG. 1. Schematic zero-temperature phase diagram for the two-
associated phase transitions. It is of interest to distinguisdimensional superconductor in the absence of both spin rotation and
between situations with and without time-reversal symmetrytime-reversal invariances.
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tween the “metal” and the “quantum Hall” phase, and from
the insulator withx,,/T=0 to the “quantum Hall” phase.
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Here a,b=1,2 and 7 is a Pauli matrix inab space. The
time-reversal invariance condition E@) combined with Eq.

Further, there is a multicritical point, where all three phasegg) implies

come together. In three-dimensional systems, “metallic”
and “insulating” phases are again possible with the transi-

()

oyT,H*oy7,=H.

tion between the two being in a universality class for local- ) ) )
ization. In the rest of the paper, we will substantiate these We note in passing that for a superconductor of smn
claims, and analyze the properties of each phase in furthé@fized fermions(appropriate, say, in tha—1 phase of su-

detail.

II. MODELS AND GENERAL FORMALISM

perfluid 3—He) in the absence of time-reversal invariance,
the general Hamiltonian can still be written in the fofrh
= n"H», with H an antisymmetric and pure imaginary ma-
trix in position (i,]) and “particle-hole” (ab) space. But for

Consider a general lattice Hamiltonian for the quasiparti-spimess quasiparticles the condition for time-reversal invari-

cles in a superconductor with strong spin-orbit scattering:

H=2 tiPcl cip+ APel ol s+ Hee. (1)
1]

Herei,j refer to the sites of a lattice, andg are spin indi-
ces. We assume thaind A are both short ranged in space.

We will focus on two cases—with and without time-
reversal symmetry7 ). If present, time reversal is imposed
through an antiunitary “time-reversal” operatdf which
transforms thec operators as

1

Note that7o* 71

CiT Cil

=jio,C.
Lo

o (with o a vector of Pauli matrices

)

CiJ,

ance is different, leading to different symmetries. Specifi-
cally, with time-reversal invariance the lattice Hamiltonian
depends on &al symmetric hopping matrix;; , and areal
antisymmetric gap matrixA;;. In this case, when reex-
pressed in terms of Majorana fermions, the Hamiltonian be-
comes H=75'Hn with H=tr,+iA7,. This Hamiltonian
matrix can equivalently be expressed Hs=iA7"+c.c.,
with T+=7'X+i7'y and A=t+A an arbitrary real matrix.
This “off-diagonal” form is very different than the two
cases with spinful electrons, and in fact belongs to a different
symmetry class—a class studied by Gade and WeYner.
Henceforth we focus exclusively on the spinful case.

We are interested in understanding the nature of energy
transport(in both spinful cases, with and withod) by the
excitations described by the Hamiltonian. For this purpose, it
is actually convenient to adopt the following trick. We con-

so that the electron spin is odd under time reversal. Wittsider two identical copies of the system. To describe the two

time-reversal invariance present we require that
THT =H. 3

Note that{ has no special symmetriésther than possi-

copies, we introduce two Majorana fieldsand { and con-
sider

H=n"Hn+{THC. ®
It is now possible to combine thg and({ fields into a single

bly 7). In particular, neither the charge nor spin is conservedeomplex fermiont:

It is convenient then to work with Majorana fermions
M M2ie defined through

1 .
Ciazﬁ(”ila+|7]i2a)' (4)
The Hamiltonian when expressed in terms of #hermions
takes the form

H=7n"Hn, (5)

With 7= 7ja (a,b=1,2) andH=H3>*# is a matrix in
(ij),(aB),ab space. By definition,H is Hermitian and
moreoverH = —H, so thatH is pure imaginary. Thus the

f=%(v7+i§), 9
f*=i( —i{) (10)
2T
Then, we have
H=fTHf. (11)

Note that the number of particles is conserved. It is then
possible to consider transport of this consenfetumber
density. This may be quantified by a conductiwty. As the

problem of quasiparticle localization in a superconductorHamiltonian? describes noninteractirfgparticles, the ther-
with spin-orbit scattering is, in essence, one of localization ofnal conductivityx; of the f particles is related tar; by a

Majorana fermions. In particular, in the case where e¥én
not a good symmetry, the Hamiltonian E¢) is the most

general one describing noninteracting Majorana fermions in

a disordered system.

Weiedemann-Franz latas T—0):

K¢ . 772kB
To; 3

(12

Time-reversal symmetry is easily imposed on the Majo-

rana Hamiltonian Eq5). Under the action of the antiunitary
operator?, it is readily seen that

TNiaa=1(0y) ap(T2) abMibg - (6)

Since the Hamiltoniafk represents just two identical copies
of the original system described Wy, it is clear that the
thermal conductivity ) of the » particles is exactly half that
of thef particles:
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K conductivity on the scale of the mean free paffhe density
K=>" (13 of quasiparticle states at the Fermi energy is given by
Combining this with Eq(12), we see that calculation afis Po
reduced to calculation of;. Similarly, all the thermody- P= R<Tr(O+OT)>- (19)
namic properties of{ may be obtained by halving the cor-
responding property calculated wit. Consider a renormalization-group transformation where
It is convenient to define theEGreen’s function short distance fluctuations are integrated out, and the coordi-

nate x is rescaled ax—x’'=xe"'. The leading quantum

interference corrections to diffusion can now be obtained
from the known perturbatives function of this field theory
in the replica limit. The result, in two dimensions, is

1
Gﬁb’“B(E)=<iaa|m|ij>' (14)

wheree is a positive infinitesimal ané is the energymea-

sured from the Fermi energyThe conditionH* = —H im- dg 92
mediately implies that —_—=— (20
dl 4
G*(E)=-G(—-B), (15

o _ Note thatg decreases dsis increased. Thus the perturba-
where we have suppressed all the indicessoin particular,  tion theory(in powers ofg) gets better at large length scales.

for states at the Fermi energy, we have For a system of sizk, at zero temperature, we may integrate
. . |*~
G*(E=0)=—G(E=0), (16) the flow equation up to a scalé given byl.e'" ~L to get
so thatG(E=0) is pure imaginary. This Green’s function _ Jdo
can be conveniently expressed, as usual, as a functional in- 9(L)= 1+ (goldm)In(L/ly) " (22)

tegral over Grasmann variablég, ,fia, With the action ) .
wheregy is the bare value of.. For largeL, this therefore

S=if(H—ie)f. (17)  gives
The symmetry Eq(16) implies that this same generating T
functional can be used to calculate transport quantities. g(L)~ (L) (22
e
. SYSTEMS WITH TIME-REVERSAL SYMMETRY Thusg(L) goes to zero logarithmically with the system size.
. , As o is inversely proportional t@, it follows that o di-
The discussion has so far been completely general. Wgqgesiogarithmically with the system size. At finite tem-
now specialize to the case withsymmetry. perature, in an infinite system, it is natural to expect that the
. quantum interference effects will be cut off at a finite
A. Metallic phase dephasing length scale,~T P due to interaction effects

We first consider the situation in which the disorder isNot included in the model. We therefore have
weak. We assume that there is a finite, nonzero mean free
pathl, set by the impurity strength in such a manner that the o ~|n(3) (23)
f-particle motion is diffusive on larger scalét terms of the f T
original physical system, this corresponds to diffusion of en- . .
ergy) We are interested in describing the effects of quantumat the Iowes'.[ 'Femperatures. A§ t.h|s also determines the ther-
interference on this diffusive motion. We assume also that, ira! conductivityx(T) of the original system, we have
the absence of quantum interference effects, the density of
states at the Fermi energy of this diffusive system is finite 5~In
and nonzero. In that case, it is possible to follow standard T
techniques to derive a replica nonlinear sigma model field
theory to describe the physics at length scales large com- The considerations above establish the existence of a me-
pared to the mean free patb As the procedure is suffi- tallic phase with delocalized qUﬁSipartiCle excitations in two

ciently well known, we merely state the results. The fielddimensions in the model Hamiltonian Ed) describing the
theory is described by the action superconductor in the presence of time-reversal invariance,

but no spin rotation invariance. In striking contrast to normal
a1 T T metals, quantum interference effects also lead to singular
S:f d XETV[(VO) (VO)]-€eTr(O+0"), (18  corrections to the density of states in a superconddchor.

our previous work we demonstrated this in the spin rotation
whereO(x) € O(2n) is a 2nX 2n orthogonal matrix-valued invariant cases. We now show that the density of states is
field with n the number of replicas. Whes=0 the action has  enhancedn the situation considered in this paper. In particu-
a globalO(2n) X O(2n) symmetry,0—AOB with AandB lar, we show that in two dimensions it actuatijvergesin
orthogonal matrices, which is broken down to the diagonathe thermodynamic limit.
0(2n) (AT=B) by the e term. The coupling constarj is To see this, consider the action H48) at finite e. The
inversely proportional to the bafeconductivitya? (i.e., the  density of states is obtained from

1
?) . (24
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&}'
: (29

e=0

po  4n

where F is the free-energy density defined through

exp(—L9F) = f DO exp —S). (26)

The flow of € under the renormalization groyRG) may be
obtained straightforwardly. To leading ordergrhe result is

de g
= 2+ 3 € (27
This is readily integrated to give
1 [
e(l)=e(0)ex;{2l+gfog(l’)dl’). (28
The free-energy density scales according to
F(g(0),e(0))=e"?F(g(l),e(1)), (29)
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The divergence of the density of states has obvious con-
sequences for the low-temperature thermodynamic properties
of this phase. For instance, the specific heat behaves as

1
C(T) InT. (35
In three-dimensional systems, the stability of the metallic
phase can be established by simple power-counting argu-
ments. Quantum interference effects are then irrelevant at
long length scales. The thermal conductivity then goes to
zero linearly with the temperature at low

K

%—wonst. (36)

The density of states at the Fermi energy is finite, and non-
zero. However, quantum interference effects do lead to a
singular [E| cusp in the density of states as a function of

the energy(see Ref. 1 for an analogous discussion in the

where we have specialized to two dimensions. For a Systerﬁuperconductor with conserved spso that

of sizeL, run the RG until a scalg such that ee'*wL. The
density of states is then

e 2" 9F(g(1*),e(1*))
P(L)== 74 9€(0)
1 aF(g(1*),e(1*)
=— dl’g(l’ .
exp( J o )) 2e(1*)
(30)

p(E)—p(E=0)~—\E[. (37)

Note that the density of states increases with decreasing en-
ergy as also happens th=2.

B. Insulating phase

For strong disorder, it is possible to have a phase with
localized quasiparticle excitations in any finite dimension. In
the terminology of Ref. 1, this is a superconducting “thermal

After scaling out tol* the mean free path is comparable to insulator.” In this phase, the ratie/T goes to zero with the

the system size, so that(1/4n)[dF(g(1*),e(1*))/ de(1*)]
—const. Therefore

p(L)~ exp( f dl'g(l’ )) (31
For largel, g(l)~4mx/1. Thus we have
L
p(L)~ \/Inl—. (32

Thus the density of states at the Fermi energy diverges. T
behavior of the density of states as a function of energy in a

infinite system may also be found similarlfor simply
guessed from the equation abpve be

1

(33

temperature. The density of quasiparticle states also goes to
zero at the Fermi energy. To see this, consider the lattice
Hamiltonian Eq.(11) in the extreme limit where thé par-
ticles are localized to a single site. The Hamiltonian for a
single site is constrained to be of the fok=ao,7,+br,

with a,b real. This has two eigenvalues given by
+\/a?+b?. Consider now the case where the distribution of
a,b has finite, nonzero weight at=b=0. Then, the density

of statesp(E) averaged over the disorder vanishesEs If

the distribution has vanishing weightatb=0, thenp(E)
h\éanlshes faster than linearly. Including hopping between the
gites should not change this result so long as we are in the
localized phase(As with the superconductors with con-
served spin, having a finite density of states requires a di-
verging weight a=b=0 which is presumably unphysical,
and nongenerig.We thus conclude that the density of qua-
siparticle states vanishes, at least as fagEasn the local-

ized phase.

The Einstein relation can now be used to infer that the

heat diffusion constanD also diverges on approaching the

Fermi energy as

1

(34)

IV. TIME-REVERSAL BROKEN SYSTEMS

We now move on to systems without time-reversal sym-
metry. As mentioned eatrlier, this corresponds to studying the
general localization properties of a noninteracting disordered
system of Majorana fermions. It is therefore appropriate to

Thus the metallic phase has an infinite heat diffusion coneall the phase with extended states a “Majorana metal,” and

stant at zero temperature in two dimensions.

the phase with localized states a “Majorana insulator.”
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A. Majorana metal

L
To address issues such as the stability and properties of P (L)NInE' (44)

the Majorana metal, it is useful to think in terms of a replica ) ) o
sigma model field theory which permits a systematic study of\S @ function of energy in an infinite system, we have
guantum interference corrections to diffusive energy trans-

port. This is readily done using standard techniques. The p(E)~In1 (45)
result is E
1 This leads, for instance, to a specific heat which depends on
SIJ deETr(ﬁQ)Z— €Tr(ayQ), (38)  temperature as
whereQ=VToyV is a 2nX2n matrix, V is anO(2n) matrix C(T) 1
andn is again the replica index. Whe#=0, the action is T Nlnf' (46)

invariant under the grou®(2n), Q—W'QW, with W an
orthogonal matrix. With nonzere, invariance of the action Since «,,/T and the density of states diverge in the same
requiresW=exp(G) with G pure imaginary and antisym- manner with energy, determining the behavior of the thermal
metric of the formW=So,+iA. HereSis ann by nreal  diffusion coefficient would require going to second order in
symmetric matrix and? is n by n real antisymmetric. Since the perturbative RG. The diffusion coefficient could then
S+iA is n by n Hermitian, the group has evidently been also diverge, but not more rapidly than double logarithmi-
broken down toU(n) by the e term. ThusS describes a cally with energy.
nonlinear sigma model on the manifo@(2n)/U(n). The In three dimensions, the behavior of the superconducting
coupling constany is again inversely proportional to the metal phase is qualitatively the same irrespective of whether
(longitudina) f-particle conductance. The density of states oftime-reversal symmetry is present or not. Therefore the dis-
the quasiparticles may be obtained from cussion in the previous section of the three-dimensional case
applies here as well.
1
P 2n<Tr(O—yQ)>' 39 B. Majorana insulator
Actually, on symmetry grounds, there is a topological At Strong disorder, in any dimension, it is possible to find
term allowed in the action. This follows from the observationPhases where the quasiparticle excitations are localized. The
thatTT,[ O(2n)/U(n)]=Z is nontrivial. This will be impor- (Iong|tud.|nab quaS|part|cIe heat cqnductlvnyexx goes to
tant to understand the behavior of the thermal Hall conducZ€ rapidly with the temperature, in such a phase. We will

tivity later. cal! this the Majoran_a insulator,_as this corresponds to a lo-
The perturbative RG flows of the couplinggnde in two callzed_phase_of Majorana fermions. The density of states of
dimensions in the replica limit are the Majorana insulator may be found by an argument analo-
gous to the one in Sec. Il B. In brief, we consider a single
dg 9° site Hamiltonian for two Majorana speciéorresponding to
a - sn (400 a single spinless complex fermipwhich is constrained to

be of the formH =ar, with a real and random. If the distri-

de 9 bution ofa has a finite, nonzero weight at=0, then there is
=2+ e (41) a finite density of states at zero energy. We again expect this
di 8m to hold throughout the localized phase, so that the density of

We may use these to extract the physical properties of th&tates at the Fermi energy can be nonzero. Note that, like in
Majorana metal phase in exactly the same manner as in tif& conventional insulator in nonsuperconducting systems, a
previous section. We therefore simply state the results. Fird{ensity of states that vanishes at the Fermi energy is also
note that thémargina) irrelevance of the coupling implies ~ Possible.

the stability of the Majorana metal ith=2. As the tempera-

ture goes to zero, thigongitudina) thermal conductivityi,, C. Majorana quantum Hall phase

in a finite system of sizé behaves as In the absence of time-reversal symmetry, there is poten-

tially another transport property which can be used to distin-
Kyx L . . O
X In ) (42) guish zero-temperature phases: the thermal Hall conductivity

T Kyy- In particular, in the Majorana insulator in two dimen-

In an infinite system at finitd, where the quantum interfer- Sions, the ratiox,, /T approaches quantized values as the

ence is cut off by dephasing due to interaction effects, Wéempe_rature goes to zero. Phases with differen_t value_s of the
have quantized thermal Hall conductance aopologically dis-

tinct and are separated by phase transitions. In recent work
with X. G. Wen!® we studied the physics of this quantum
: (43)  Hall system in some detail.
From the point of view of the replica nonlinear sigma
Similarly, the density of states at the Fermi energy now di-model field theory discussed earlier in this section, the exis-
verges logarithmically with the system size: tence of insulating phases with quantized thermal Hall con-

le

—~In T

Kyx 1
T
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SC- THERMAL METAL SC-THERMAL INSULATOR and ky,/T=3 (in units of m?k3/3h). Note that there are

K‘/’T three distinct phase transitions, and a multicritical point in
this phase diagram. First consider the Majorana metal-
FIG. 2. Schematic zero-temperature phase diagram for the thredasulator transition. Bothk,,/T and p, are infinite in the
dimensional superconductor in the presence of spin-orbit scatterindVlajorana metal. In the Majorana insulatot,,/T is zero
while po may be nonzero. As in th& invariant case, con-
ductance can be attributed to the presence of a topologic&kentional scaling arguments imply a finite value fgx /T at
term in the action. This takes the form the transition point. For the density of states, it is natural to
guess that it is finite at the transition, though again it is hard
0 to rule out other possibilities.
Stop:f de@Tr(anQ&yQ)' (47) Now considerr'zhe transition from the Majorana metal to
the quantum Hall phase. This transition is in the same uni-
The quantity multiplyingé is equal toiXinteger for any  versality class as the transition from the Majorana metal to
given configuration of th€ field. Thus the partition function the insulator with,,= 0. The quantum Hall phase is a Ma-
is periodic unde— 6+ 27m for any integem. Physically,  jorana insulator withx,,/T=3%. The distinction between
jUSt as in the Pruisken field theory for the conventional inte-these two insu|ating phases is due to the presen({heﬁ)
ger quantum Hall transitiong is proportional to thebare  current carrying edge states—these are expected to be unim-
value of thef-particle Hall conductivityo,, . As shown in  portant in determining the properties of the transition to the
Ref. 10, this is in turn proportional to the ratio of the thermalmetal. Below, we will provide a more formal argument in

Hall conductivity to the temperature. support of this claim.
Finally, consider the transition between the insulator with
V. PHASE DIAGRAM AND TRANSITIONS kyxy=0 and the one with,, /T= 3. A theory for this transi-

. ) tion is obtained by considering a particular realization of the

We now discuss thezero-temperatujephase diagram o phases. Consider a system of spinless fermions paired
and phase transitions for the dirty superconductor with nonintg a px+ip, superconducting state in two dimensions. In
conserved spin. Again, we consider the cases with and withgef, 10, it was shown that such a superconductor has a quan-
out 7 separately. tized thermal Hall conductivityk,,/T=3 if the chemical
potential is positivéthe “BCS” limit ), and hasc,, =0 if the
chemical potential is negativé€molecular” limit). Thus, as

As argued in the previous section, metallic and insulatinghe chemical potential is varied through zero, there is a tran-
phases are possible in both=2 andd=3. A schematic sition from the Majorana quantum hall phase to the Majorana
phase diagram as a function of the bare thermal conductivitihsulator. Reference 10 also examined the theory for this
is as shown below in Fig. 2. transition, and argued that, at least at weak disorder, it is

The critical points separating the two phases are in unicorrectly described by a theory of relativistic Majorana fer-
versality classes for Anderson localization. There are somgnions with random mass. It is well known that the random
interesting differences between the scaling properties of thehass is irrelevant at the pure free Majorana fixed pbint.
two- and three-dimensional systems. In three dimensions, thehus the critical theory is knowexactlyin this case. If we
ratio «/T, the thermal diffusion coefficied?, and the density make the important assumption that there is a unique fixed
of statesp, at the Fermi energy are finite constants in thepoint describing the Majorana insulator-quantum Hall transi-
metal and are zero in the insulator. It is therefore natural taion, then the arguments above identify it with the free rela-
expect that these will go to zero continuouslyith some tivistic Majorana fixed point. There is, however, some reason
universal critical exponeptas the transition is approached to question this assumption—see Sec. VI.
from the metallic side. In two dimensions, however, in the Some more insight into the phase diagram and the transi-
metal, these quantities are all infinite in the limit of zerotions comes from considering the properties of the replica
temperature and infinite system siZ&hey are zero in the nonlinear sigma model field theory describing the quasipar-
insulator) Exactly at the transition point, conventional scal- ticles in the two-dimensional superconductor with spin-orbit
ing arguments imply a constant value fok/T. The behav-  scattering, and n@. This is described by the action EG9)
ior of the density of states and diffusion coefficient is moresupplemented with the topological term Eg7). The small
unclear. It is perhaps natural to suggest that these will be g regime is described by the perturbative calculations of the
constant, though we certainly cannot rule out other possibiliprevious section. Note that the presence of the topological
ties. term does not affect those results. Indeed, the parangeter
plays no role in perturbation theory, and does not renormal-
ize. Thus there is a line of fixed points in tiggd plane at

We first consider the three-dimensional case. The phasg=0 with 6 arbitrary. As the value of is proportional to the
diagram is similar to that above for the time-reversal invari-value of «,, /T, this ratio varies continuously in the Majo-
ant system. However, as the density of states may be nonzerana metal.
in the insulator, we expect that it generically is nonzero at Now consider the behavior of the sigma model at lagge
the transition point as well. It is natural to expect that, in this limit, the physics is cap-

The two-dimensional case has a richer phase diagram duared by a strong-coupling expansion, and that the resulting
to the possibility of quantum Hall phases. For simplicity, we phase corresponds, physically, to a localized ph@s®.con-
show, in Fig. 1, only the two insulating phases witfy,=0 ceptual purposes, it may be convenient to think in terms of a

A. Time-reversal invariant systems

B. Time-reversal noninvariant systems
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i FIG. 4. Phase diagram of the two-dimensional Ising model with
i random bond strengthg. is the concentration of negative bonds,

0=0 0=m 0=21 andT is the temperature. The poiNtis the Nishimori multicritical
point. SG refers to the spin-glass phase which is believed to exist
FIG. 3. Phase diagram of the sigma model field theory describonly at zero temperature.
ing the two-dimensional superconductor with no spin rotation or
time-reversal invariances. tation nor time-reversal invariance.

It is therefore natural to try to identify various phases of
lattice regularized version of the field theorirst consider the Ising model with correspondingl €0) phases in the
6=0. The corresponding localized phase gs=0. Simi-  two-dimensional superconductor with no spin rotation or
larly, the insulator withg=27 hask,/T=3. Just as in other time-reversal invariance. First consider the pure Ising model.
sigma model field theories with topological terms, the layge Both the high- and low-temperature phases correspond to
phase for & ¢< is expected to be continuously connectedgapped phases in terms of the Majorana fermions. Thus these
to the largeg phase at=0, i.e., it is an insulator withc,, correspond to insulating phases of the Majorana fermions.
=0. Similarly the largeg phase withm< <27 is expected Disorder in the Ising model, obtained by making some of the
to be continuously connected to the largephase with bonds random, would tend to fill up the gap. However, if the
6=2, i.e., an insulator withx,,/T=2%. The transition be- disorder is weak, the resulting low-energy states will be
tween the two localized phases occurgdatr. The smallg ~ strongly localized. Thus, at weak disorder, both the high- and
metallic phase is separated from these localized phases @w-temperature phases of the Ising model correspond to lo-
large g by a phase boundary. The symmetiy»27— 6 im- calized phases of the Majorana fermions. How then do we
plies that this phase boundary be symmetric aboutdther  distinguish between the two? The distinction is topological,
line (see Fig. 3. with the quantized value of the thermal Hall conductance

In the field theory, the transitions between the sngall differing by 1/2 between the two phases. Strong support for
metal and the largg insulator at¢=0,27 are in the same this suggestion is obtained by examining the properties of the
universality class as the physics is invariant unélerd+27.  system near the transition between the two phases. In the
What about the transition from the metal to the insulator afure Ising model, the critical point is described by a massless
other values o#? We suggest that, fai=, these are in the relativistic Majorana theory. Moving off criticality intro-
same universality class as the transitiondat0. This then duces a mass for the fermions with the sign of the mass
implies thatx,, is continuous across the metal-insulator tran-distinguishing the two phases. The result that the dimension-
sition. Finally, the point where the metal-insulator phasel€SSkyy jumps by 1/2 at the transition can now be established
boundary crosses thé= line in the phase diagram of the by direct calculation. The critical theory is identical to the
field theory corresponds to the multicritical point where theone describing the transition, at weak disorder, in fhe

metal and the two insulating phases come together. +ipy superconductor of spinless fermions between the BCS
and molecular limits. We thus identify the Ising transition at
V1. RANDOM BOND ISING MODEL IN d=2 weak disorder with the thermal quantum Hall transition.

Now consider introducing stron@pond randomness into

In this section, we briefly discuss the possible implica-the Ising model. If all the bonds are still positive, the transi-
tions of this paper to the finite temperature properties of clastion is believed to be always controlled by the pure Ising
sical random bond Ising models in two dimensions. It is wellfixed point. The situation is more interesting if some of the
known' that this system admits a description in terms ofbonds are made negative. As the concentration of negative
noninteracting disordered Majorana fermions. Specificallybonds is increased, there is a multicritical poitite Nishi-
the partition function for the Ising model can be written as amori point, see Fig. ¥ (Ref. 12 on the phase boundary,
functional integral over Majorana fields that live in two di- beyond which the transition is no longer controlled by the
mensions. This, in turn, may be reinterpreted as a generatingure Ising fixed point. The properties of this multicritical
function for the wave functions of a quadratic quantumpoint have been the focus of a number of investigatibns
Hamiltonian of Majorana fermions in two spatial dimen- over the last many years. Despite this, there is no detailed
sions. This Majorana Hamiltonian has no specialunderstanding of the theory of this point, or of the properties
symmetries—the system is therefore in the universality clasat the phase boundary at lower temperatures. What does the
of the two-dimensional superconductor with neither spin ro-Nishimori point correspond to in the language of the Majo-
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rana fermions? There appear to be two distinct VIl. DISCUSSION
possibilities—we will discuss evidence supporting either be-
low. In this paper, we have discussed the physics of localiza-

(i) For the problem of localization of Majorana fermions tion of quasiparticles in a superconductor in situations where
in two dimensions, the assumption that there is a uniquéhe quasiparticle spin is not a good quantum number. Our
fixed point controlling the thermal quantum Hall transition discussion was entirely based on models of noninteracting
leads to its identification with the free relativistic Majorana quasiparticles—including the effects of interactions is an im-
theory. This assumption, which is perhaps natural in the ferportant and interesting issue which we leave for future work.
mion language, then points to the identification of the Nishi-Even within the noninteracting theory, we have found a
mori point with the multicritical point separating the Majo- rather rich phase diagram, and a number of as yet unexplored
rana metal, insulator, and the quantum Hall phase. If truephase transitions. Several experimental systems to which this
then it is natural to expect that the ferromagnetic phase trarwork is of relevance can be imagined—here we briefly men-
sition in the Ising model at low temperatures below thetion a few.

Nishimori point is actually the Majorana insulator-metal (i) A particularly attractive prospect for probing the phys-
transition. Some evidence in support of this is provided byics discussed here is in a type-Il superconductor in a strong
the numerical results of Ref. 14 which found no signs ofmagnetic field in the presence of spin-orbit scattering impu-
localization of the fermions in the nonferromagnetic phase afjties. At low fields, the system will be in the superconduct-
low temperature close to the phase boundary. On the othghy «jnsylator phase.” With increasing field, under condi-
hand, note that the paramagnetic phase at high temperatyig,q jiscussed in Ref. 1, there will be a transiti@h zero

and weak disorder corresponds to a localized phase. If thfémperatur}eto a superconducting “metal” phase. This tran-

scenario outlined abqve Is correct, then we are .'?d to mf.erition can be probed, for instance, by measurements of the
the existence of a finite temperature phase transition outsmfe N 1
w-temperature quasiparticle heat conductivity.

the ferromagnetic phase in the Ising model associated with 8 (i) A b ¢ i imeifsh d
delocalization of the Majorana fermions. It is unclear what i) number of recent experimentshave measure

this transition means in the Ising language, and even Whethéqw-tempergture heat transport by the quasiparticles in the
it happens at all. A natural candidate would have been heavy fermion superconductors. We note that as these sys-

transition to a spin-glass phase at low temperature—€mMs typically have strong _spin-orbit scattering, the results of
however, there is strong numerical evidence for the absendéis paper are of potential importance. Some of the heat con-
of spin-glass order at finite temperature in two-dimensionafuctivity measurements have been motivated by the possibil-
Ising systems. It seems possible that a delocalineetallio ity of identifying the correct pairing symmetry in these su-
phase of Majorana fermions would correspond to a phase igerconductors. Such identification could be seriously
which both the Ising spin and the dual Ising disorder paramhampered by the localization issues discussed here. In par-
eter are simultaneously zero. ticular, if the disorder is strong enough to localize the quasi-
(ii) A different scenario is obtained by dropping the as-patrticles, it is hard to infer whether the pure system has a gap
sumption that there is a unique fixed point controlling theto quasiparticle excitations or not from heat transport mea-
thermal quantum Hall transition. Instead, for the Ising modelsurements alone.
we assume that the only finite temperature phase transition is (jii) The properties of superfluide— 3 in porous media
associated with the destruction of the ferromagnetic order. Ihave been the subject of some experimental studilsthis
the concentration of negative bonds is large enough to desontext, it is interesting to ask if the fermionite— 3 qua-
stroy the ferromagnetism at zero temperature, we assumgnarticles in the superfluid are localized or delocalized at
that the resultant state is a spin glass. Thes_e assumptions aig temperature. This may, perhaps, again be probed by
perhaps reasonable expectations for the Ising model. TheRga transport experiments. It is also interesting to consider
the finite temperature ferromagnetic and paramagnetig, properties of superfluitie—3 on a disordered two-

phgses are, iq thg fermion Ianguage both localized phas%ﬁmensional substrate. In th& phase, at weak disorder, a
which are distinguished by their thermal Hall conductance,[hermal quantum Hall effetd is prediéted. With increasir,Ig

The existence of the Nishimori point then implies the exis-disorder it is possibléthough not necessarghat there is a
tence of a multicritical poinat strong disorderin the phase ero—terr,l eratFLJJre hase tr%nsition where the quantization of
boundary between these two localized phases. Then, t P P o q

e thermal Hall conductivity is destroydmbforethe super-

thermal quantum Hall transition will be controlled by the fluidity is destroved. If this haopens. this would be an experi-
free relativistic massless Majorana theory at weak OlisorOIerrhentg\/I realizatign o.f the therrﬁgl u:';mtum Hall transitionpdis-
but by a different fixed point at strong disorder. The spin- q

glass phase in the Ising model presumably corresponds to tr?euT:SiEg"m tt?}?a preer\]/g:f Sf)%tfgqr;' of localization of Maiorana
Majorana metal. However, it may seem a bit puzzling, in this Y, 9 p J

scenario, why the Majorana metal which is a stable phase f]ermlons arises in other contexts as well—a specific example

. . . . : . . Qoein the random bond Ising model in two dimensions as
disordered Majorana fermions in two dimensions is only re- g g

alized in a set of measure zefa line atT=0) in the Ising discussed briefly in Sec. VI. Progress in the localization
phase diagram. problem may therefore provide a route to further our under-

Which one of these two scenarios is actually realized an&tand'm‘:J of the random bond Ising model.
the resultant consequences both for the Ising model and the We thank I. A. Gruzberg and Martin Zirnbauer for useful
Majorana localization problem, we leave as an intriguingdiscussions. This research was supported by NSF Grant Nos.
open question. DMR-97-04005, DMR95-28578, and PHY94-07194.
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