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The magnetic susceptibility* (t) and specific heaE(t) versus temperatureof the spinS=1/2 antiferro-
magnetic(AF) alternating-exchangel{ andJ,) Heisenberg chain are studied for the entire rangexs<1 of
the alternation parameter=J,/J, (J;, J,=0, J,<J,, t=kgT/J;, X*:XJllNgz,ué). For the uniform
chain (@=1), the high-accuracy* (t) andC(t) Bethe ansatz data of Kioper and Johnstonpublishedare
shown to agree very well at lotwvith the respective exact theoretical laviegarithmic correction predictions
of Lukyanov[Nucl. Phys. B522, 533(1998]. Accurate 10" 7) independent empirical fits to the respective
data are obtained ovéranges spanning 25 orders of magnitude, 1 ?°<t<5, which contain extrapola-
tions to the respective exact 0 limits. The infinite temperature entropy calculated using@(ty) fit function
is within 8 parts in 18 of the exact value In 2. Quantum Monte Caf@MC) simulations and transfer-matrix
density-matrix renormalization grouffMRG) calculations ofy* («,t) are presented for 0.062<10 and
0.05<a<1, and an accurate (210 %) two-dimensional &,t) fit to the combined data is obtained for 0.01
<t=<10 and Gsa<1. From the lowt TMRG data, the spin gap(«) is extracted for 0.8 «<0.995 and
compared with previous results, and a fit function is formulated fera@<1 by combining these data with
literature data. We infer from our data that the asymptotic critical regime near the uniform chain limit is only
entered fora=0.99. We examine in detail the theoretical predictions of BulaeySkiv. Phys. Solid Statél,
921 (1969], for x* (a,t) and compare them with our results. To illustrate the application and utility of our
theoretical results, we model our experiment@l’) and specific heaC(T) data for Na\Os single crystals
in detail. They(T) data above the spin dimerization temperaflige- 34 K are not in quantitative agreement
with the prediction for theS=1/2 uniform Heisenberg chain, but can be explained if there is a moderate
ferromagnetic interchain coupling and/ordfchanges withT. Fitting the x(T) data using oury* («,t) fit
function, we obtain the sample-dependent spin gap and rAfge-0)/kg=103(2) K, alternation parameter
8(0)=(1—-a)/(1+a)=0.034(6) and average exchange consH0t)/kg=640(80) K. Thes(T) andA(T)
are derived from the data. A spin pseudogap with magnita@e4A (0) is consistently found just abovi,,
which decreases with increasing temperature. FronCg(i) measurements on two crystals, we infer that the
magnetic specific heat at low temperatufes 15 K is too small to be resolved experimentally, and that the
spin entropy af . is too small to account for the entropy of the transition. A quantitative analysis indicates that
atT,, at least 77% of the entropy change due to the transitidn ahd associated order parameter fluctuations
arise from the lattice and/or charge degrees of freedom and less than 23% from the spin degrees of freedom.

[. INTRODUCTION magnetic(AF) exchange constantb<J,, J;,J,=0 which
alternate from bond to bond along the chain; the alternation
An antiferromagnetic alternating-exchange Heisenbergarameter isxy=J,/J,. Here we will be concerned with the
chain is one in which nearest-neighbor spins in the chaimagnetic susceptibility and specific heat versus tempera-
interact via a Heisenberg interaction, but with two antiferro-ture T of alternating-exchange chains consisting of sgns
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=1/2. The uniform AF Heisenberg chain is one limit of the rections were studied for this quantity as wellukyanov
alternating chain in which the two exchange constants arbas recently presented an exact theoryxf6r) andC(T) at
equal @=1,J;=J,=J). At the other limit is the isolated low T, including the exact value dF,.® In the present work,
dimer in which one of the exchange constants is zero ( we compare the very recent numerical Bethe ansatz results of
=0). The present work is a combined theoretical and experikllimper anfd Johnstdrwith the predictions of Lukyanov’s
mental study of y(T) and C(T) of the S=1/2 AF theory and find agreement for(T) to high accuracy €1
alternating-exchange chain over the entire rangax3<1 of X 10 %) over a temperature range spanning 18 orders of
the alternation parameter, with the emphasis on the regimmagnitude, 5 10 °<kgT/J<5x10"’; the agreement in
a=<1 at and close to the uniform chain limit. This latter the lower part of this temperatures range is much better,
regime is relevant for compounds showing second order spi®(10~ 7). For C(T), the logarithmic correction in Luky-
dimerization transitions with decreasiig The present work anov’s theory is insufficient to describe the Bethe ansatz data
was originally motivated by our desire to accurately extractsufficiently accurately even at very low temperatures, so we
the temperature dependent energy ge@@) for magnetic  derive the next two logarithmic corrections from the Bethe
excitations, the “spin gap,” from experimentg(T) data for ansatzC(T) data. For various applications, it would be de-
the S=1/2 chain/two-leg ladder compound Ng%; below  sirable to have fits to thg(T) andC(T) Bethe ansatz data
its spin dimerization temperaturg.~34 K. We found that which extend to higher temperatures. We describe the for-
existing theory for the alternating-exchange chain was insufmulation and implementation of fit functions, incorporating
ficient to accomplish this goal. In the present work we criti- the influence of the logarithmic correction terms, which yield
cally examine the predictions of previous theory, perform theextremely precise fits to the data for both quantities over the
required additional theoretical calculations, and then applentire 25 decades in temperature of the calculations, 5
the results to extrack(T) at T<T. from our y(T) data for X 10 ®°<kgT/J<5.
NaV,0s single crystals. We have extended the original goal The x(T) in the intermediate regime<Qa<<1 has been
so that we also include theoretical and experimental studieivestigated analytically in the Hartree-Fock approximation
of C(T) and how this quantity relates §g(T). In the remain-  and using numerical techniqu3Of particular interest here
der of this introduction we briefly review the prior theoretical is the regimex=<1, close to the uniform limit, which is the
results pertaining toy(T) and C(T) of the uniform and regime relevant to materials exhibiting a dimerization transi-
alternating-exchange chain to place our work in the propetion with decreasing such as occurs in materials exhibiting
context. We then review the experimental and theoreticad spin-Peierls transition. There are no accurate theoretical
background on NayOs and describe the plan for the rest of predictions available for(T) of the alternating-exchange
the paper. Heisenberg chain in this regime, which is the property usu-
ally used to initially characterize the occurrence of such a
transition experimentally. To address this deficiency and to
A. Theory . .
also cover a more extendedrange, we carried out extensive
The x(T) and C(T) of both limits of theS=1/2 AF  quantum Monte Carlo(QMC) simulations and transfer-
alternating-exchange Heisenberg chain are known exactlynatrix density-matrix renormalization grougTMRG)
For the dimer, the(T) is given by the exact Eq8a) below  calculationd®! of x(T) for 0.05<a<1 over the tempera-
and the exacC(T) is also easily calculated. Thg(T) and  ture range 0.002kgT/J;=<10.
C(T) of the uniform chain forT=0.4)/kg (kg is Boltz- An interesting issue is how the spin gapevolves with
mann’s constantwere estimated from calculations for chains alternation parametex as the uniform limit is approached,
with <11 spins by Bonner and Fisher in 1964hey ex- a—1. Because the uniform chain is a gapless quantum-
tended their results by extrapolatingTe=0, and in the case critical system, the introduction of alternating exchange
of x(T) to the exactT=0 value’ The exact solution for along the chain has been theoretically predicted to yield a
x(T) of the uniform chain was obtained using the BethenonanalyticA(«) behavior fora—1. We deriveA(«) by
ansatz in 1994 by Eggert, Affleck, and Takahashi, and comfitting our low+ TMRG x(T) data by an expression which
pared with their lowT results from conformal field theofy. we formulated. The\(«) results are compared with those of
They found, remarkably, that(T—0) has infinite slope. previous numerical calculations and with the theoretical pre-
Their numericaly(T) values are up te- 10% larger than the diction. We infer from our data that the asymptotic critical
Bonner-Fisher extrapolation fdr=0.25)/kg (for a compari-  regime is only entered for=0.99.
son of the two predictions, see Fig. 8.1 in Rej. Zheir In order to be optimally useful for accurately modeling
conformal field theory calculations showed that the leadingexperimentaly(T) data for alternating-exchange chain com-
order correction to the zero temperature limit is of the formpounds, our QMC and TMRG/(«,T) results must first be
X(T)=x(0){1+ 112 In(Ty/T)]}, where the value of the scal- accurately fitted by a continuous function of bathand T.
ing temperaturd  is not predicted by the field theory. Such We will introduce a general fit function which eventually
log terms are called “logarithmic corrections” in the litera- proves capable of fitting these combined data for the
ture. One of us recently presented numerical Bethe ansatdternating-exchange Heisenberg chain very accurately. We
calculations of x(T) with a higher absolute accuracy for first fit the x(T) of the uniform chain and isolated dimer
x(T) estimated to be % 10" 7,° and showed that the data are using this function and then use the obtained fitting param-
consistent with the above field theory prediction, with aneters as end-point parameters in the fit to our combined
additional higher order logarithmic correction, over the tem-QMC and TMRG data for intermediate valuesafThe final
perature range %10 ?<kgT/J<10 3. Corresponding fit function is a single two-dimensional function ef and T
C(T) calculations were also carried out, and logarithmic corfor 0<a<1 which can be used to extract thpossibly
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temperature-dependentalternation parameter, exchange about 1.0 eMformula uniy lower than that of the acentric
constants and spin gap from experimentdlT) data for  structure’® consistent with the recent structural studies.
compounds for which th&=1/2 AF alternating-exchange One might expect that the hole-doping which occurs upon
Heisenberg chain Hamiltonian is appropriate. Our fit func-replacing Ca in CayOs by Na would result in metallic prop-
tion will also be useful as a reference fg(T) calculated erties for Na\,Os, because of the nonintegral oxidation state
from other relatedS=1/2 Hamiltonians such as that incor- of the V cations and of the crystallographic equivalence of

porating the spin-phonon interaction for spin-Peierls systhese atoms. However, Na®s is a semiconductof: This
tems. has been explained by the formationddfV-O-V molecular

clusters on the rungs of the two-leg ladders, again resulting
in a Mott-Hubbard insulator due to the on-site Coulomb
B. NaV,Os repulsiont’32 where in this case a “site” is a V-O-V mo-

Vanadi i h Kabl _ ‘ol _lecular cluster. Thus a nonintegral oxidation state and crys-
anadium oxides show a remarkable variety of electroniGg ographic equivalence of transition metal atoms in a com-

behaviors. For exgmple, the metallic fcc norrr_lal—spinel ?trucpound are not sufficient to guarantee metallic character
ture compound L|\4_04 shows local mome_nthke behaviors simply by symmetry; all nearest-neighbor pairs, triplets, ,
above~50 K, crossing over to heavy fermion behaviors be-of transition metal atoms must also be crystallographically
low ~ 10 K.* On the other hand, thé" compound CaYOs  equivalent, which is not the case in Ng®%, since a \{ pair
has a two-leg trellis-ladder-layer structtitén which all of  on a rung is not crystallographically equivalent to one on a
the V atoms are crystallographically equivalent and is &eg in the two-leg ladders. In contrast, all V atoms and pairs
Mott-Hubbard insulator. The(T) shows a spin-gapj\/kg  of V atoms in mixed-valent fcc LiYO, are respectively
~660 K arising from strong coupling of the $=1/2 spins  crystallographically equivalent, resulting in metallic charac-
across a rung® Modeling of y(T) by QMC simulations con- ter as demanded by symmetry.
firmed that this compound consists magnetically of V  The V-O-V rung molecular clusters which are coupled
dimers, with an intradimer AF exchange constalikg along the ladder direction in Ng®@5 may be considered to
~665 K and with very weak interdimer interactiofs. form an effectiveS=1/2 one-dimensional1D) chainl’2332
The compound NaYOs can also be formed. The crystal Experimental support for this picture, often quoted in the
structure was initially reported in 1975 to consist of two-legliterature, is that the magnetic susceptibiliboveT., see
ladders as in Ca)Os, but in a non-centrosymmetri@cen-  below) is in agreement with the Bonner-Fisher prediction for
tric) structure(space groug®2,mn) in which charge segre- the S=1/2 Heisenberg chain, as reported by Isobe and
gation occurs such that one leg of each ladder consists dfeda®®  Angle-resolved  photoemission  spectroscopy
V** and the other of crystallographically inequivalent¥ ~ (ARPES measurements on Na®s by Kobayashiet al>*
ions® However, recently five different crystal structure in- showed that the electronic structure is essentially 1D, despite
vestigations showed that the structure is actually centrosynthe ostensibly 2D nature of the trellis layer, with dispersion
metric (space groupPmmn), with all V atoms crystallo- in the oxygen and copper bandselow the Fermi energy
graphically equivalent at room temperatd?e?® so that occurring only in the ladder directiorb(axis). Interestingly,
(statig charge segregation between the V atoms does not, ithe dispersion in the lowest binding energy part of the occu-
fact, occur. This result is consistent withV NMR investi-  pied Cu Hubbard band showed a lattice periodicity of 2
gations which showed the presence of only one type of \Wwhich may reflect dynamical short-range AF and/or crystal-
atom at room temperatufé?? This compound is thus for- lographic ordering in the ladder direction. Temperature-
mally a mixed-valent®® system, which has been considereddependent ARPES measurements on, §§é,0s by the
in a one-electon-band picture to be a quarter-filled laddesame group from 120 to 300 K showed evidence for the
compound-"? We note that from modeling optical excita- predicted spin-charge separation in 1D magnetic systems.
tions in the energy range 4 meV-4 eV, Damascelli and co- A phase transition occurs in Na@s at a critical tempera-
workers initially concluded that the room-temperature structure T;~33-36 K, below which the spin susceptibilig*"
ture of Na\,Oys is acentric?* their analysis was consistent —0 asT—0 and a lattice distortion occuf$6="The lattice
with the V atoms on a rung of a ladder having oxidationdistortion results in a supercell with lattice parametess 2
states of 4.1 and 4.9, respectively. However, this group subx 2bx 4c.3® Therefore the transition was initially character-
sequently explained that length- and/or time-scale-ofized as a possible spin-Peierls transition, which by definition
measurement issues may be involved in their interpretatioris driven by magnetoelasticspin-phonoi coupling, and in
such that charge disproportionation between V atoms mawhich there is no change in the charge/spin distribution
only occur locally and possibly dynamically, which could within the rungs/V-O-V molecular clusters. The superstruc-
then be consistent with théaverage long-rangecrystal ture in thea andc directions, perpendicular to the V chains
structure refinements and NMR measureméniheoretical ~ which run in theb direction, would be a result of the phasing
support for this scenario was provided by Nishimoto andof the distortions in adjacent chains/ladders. In this interpre-
Ohta?® Factor group analyses of the possible IR- andtation, and within the adiabatic approximatigdiscussed
Raman-active phonon modes and comparisons with experiater), one would expect that the magnetic properties above
mental observations at room temperature are consistent wiffi, should be close to those of tise= 1/2 Heisenberg uniform
the centrosymmetric space group for the compotifd-?°A  chain, and of anS=1/2 alternating-exchange Heisenberg
first-principles electronic structure study based on the densitghain belowT..
functional method within the generalized gradient approxi- It has become clear, however, that the phase transition
mation showed that the total energy of the centric structure isccurring atT. in NaV,Os is accompanied by charge order-
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ing, in contrast to a classic spin-Peierls transition. Thereforesignatures of each of the charge-ordered models to be com-
the magnetoelastic coupling may only play a secondary rolepared with experimental inelastic neutron scattering mea-
and the spin gap may be a secondary order parameter. Burements. Riera and Poilblanc have discussed the influence
particular, >V NMR experiments showed the presence ofOf electron-phonon coupling on the derived charge- and spin-
(inequivalent V4 and V5 below T, whereas only one vV order phase diagrants.
species was present abolig 22 This result is consistent with ~ We have carried ou(T) measurements from 2 to 750 K
the solution of the superstructure beldw by Liidecke and ©n single crystals of NayOs along the ladder{ axis) di-
co-workers® using synchrotron x-ray diffraction. ‘idecke ~ rection to further characterize and clarify the nature of the
et al.found that there are modulated and unmodulated chaindagnetic interactions and ordering below and abbyewe
of V atoms belowT,, tentatively assigned to magnetic and find that the magnetic properties aboligare not accurately
nonmagnetic chains. One interpretation of the results is thaescribed by th&=1/2 Heisenberg uniform chain prediction
the d* V** cations segregate into alternate two-leg laddergVith a T-independeng, although a mean-field ferromagnetic
which are isolated from each other within the@ trellis  interchain coupling can explain these data. Using our theo-
layer by intervening two-leg ladders containing only non-'etical x(«,T) fit function for the AF alternating-exchange
magnetic V¥ °.1° The anomalous strong increase in the ther-chain below T¢, we find that 5(0)=(1-a)/(1+a)
mal conductivity belowT, may also be due to charge =0.034(6) and that the zero-temperature spin-gap of
ordering®® From ultrasonic measurements of shear and lonNaV2Os is A(0)/kg=103(2) K. Thes(T) andA(T) below
gitudinal elastic constants, Schwenk and co-workers havéc are extracted. A spin pseudogap is found to occur above
suggested that the charge ordering is of the zig-zag typ&c With a rather large magnitude. From our specific heat
within each ladde?® In each of these scenarios for chargemeasurements on two crystals, we find that the magnetic
ordering, static charge disproportionation occurs such thagpecific heat at low temperaturéss 15 K is too small to be
1/2 of the V atoms have oxidation statet and the other half resolved experimentally, and that the spin entropyf ats
+5, consistent with the average formal oxidation state off00 small to account for the entropy of the transition. A
+4.5 in the compound. gquantitative analysis shows that at least 77% of the entropy
Koppenet al* have concluded from thermal expansion change afT; due to the transitiois) and associated order
measurements that the phase transitiof atctually consists parameter fluctuations must arise from the lattice and/or
intrinsically of two closely spaced phase transitions sepacharge degrees of freedom and less than 23% from the spin
rated by<1 K, where the upper transition is thermodynami- degrees of freedom.
cally of second order whereas the lower one is first order.
However, a double transition was not found in their specific
heat measurements on the same crystal, which they attributed
to the 50 mK temperature oscillations required by their ac  The rest of the paper is organized as follows. Our notation
measurement technique which were thought to broaden tH©r the Heisenberg spin Hamiltonian and for the reduced sus-
two transitions and render them indistinguishable. ceptibility, temperature and spin gap are given immediately
The nature of the possible charge ordering pattern ha Sec. Il. Some general features of the high-temperature
been studied theoretically by several groups. Seo angeries expansiofHTSE) for x(T) and C(T) of S=1/2
Fukuyam4' predicted(at T=0) a static zig-zag chain of Heisenberg spin lattices and the low-temperature limits of
V™4 jons on each two-leg ladder, with an interpenetratingthese quantities for one-dimensiondlD) systems with a
zig-zag chain of V/° ions. They proposed that pairs of ¥  Spin gap are then given. We then specialize toSkel/2 AF
spins, one each on adjacent ladders, would form spin sirglternating-exchange Heisenberg chain in Sec. Il C, where
glets, resulting in the observed spin gap. A similar zig-zaghe discuss the HTSEs, the spin gap and the one-magnon
charge configuration in each ladder was inferred by Mostodispersion relation&(A k). In the latter subsection, we de-
voy and Khomskil*? with subsequent experimental support five a one-parameter approximation f6(A k) which cor-
by Smirnovet al,** and by Gros and Valentf: Motivated in ~ rectly extrapolates to the— 0 limit and which we will need
part by the above thermal expansion measurement results f order to later fit the TMRG((T) data to extracA («). We
Koppen et al,*® Thalmeier and Fuld@ proposed that the also show that the expressions for the [dwimits of both
charge ordering transition would result in one linear chain ofy(T) andC(T) depend only on the spin gdm addition to
V*4 and one linear chain of V¢ on each two-leg ladder, T). In Sec. lll, we discuss overall features of th¢T) and
thereby then allowing a conventional spin-Peierls transitiorC(T) for the uniform chain and then focus on the Idw-
to occur at a slightly lower temperature, resulting in a doublgdehavior. The explicit forms of the logarithmic corrections
transition as reported by kpenet al*® A similar picture  previously found fory(T) are first discussed. We show that
was put forward by Nishimoto and OhtaThalmeier and a low-T expansion of the theory of Lukyandgives the
Yareskd® have extensively discussed the linear-chain andsame first two corrections, and in addition gives the next
zig-zag scenarios for charge ordering, and in addition havéigher-order term. We then compare the Bethe angéi)
considered the alternating two-leg ladder charge orderingesults directly with the theory with no adjustable param-
pattern of the type suggested bydackeet all® They point  eters or approximations. Logarithmic corrections are also
out that in both the linear and zig-zag patterns, a secondarfpund to be important to accurately describe the Bethe ansatz
spin-Peierls dimerization or spin exchange anisotréipy dat& for C(T). We show that the lowest order correction is
spin spacemay be necessary to give a spin gap, whereas theot sufficient to fit the data, and we derive the next two
two-leg ladder ordering has a spin gap even with no lattichigher-order corrections by fitting the data at very low tem-
distortion. Thalmeier and Yaresko describe the characteristiperatures.

C. Plan of the paper
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General features of our scheme to fit numerjg@l’) data
are described in Sec. IV A, followed by a fit to the exact H=<i2> JiS'S, (1)
x(T) for the antiferromagnetic Heisenberg dimer and two :
fits to the numericak(T) data for the uniform chain. Due to Where J;; is the Heisenberg exchange interaction between
the special requirements of, and constraints on, the twospinsS andS; and the sum is over unique exchange bonds.
dimensional fit function necessary to accuratelyyff, T) A Jij>0 corresponds to AF coupling, whereas<0 refers
data for the alternating-exchange chain over large ranges & ferromagnetic coupling. Note that magnetic nearest neigh-
both « and T, a separate section, Sec. IV E, is devoted toP0rsS; of a given spinS in Eq. (1) need not be crystallo-
formulating and discussing this fit function. Using a fit func- 9raPhic nearest neighbors. A magnetic nearest neighbor of a
tion similar to that used to fit numerical(T) data, in the given spinis any qther spin with which the given spin has an
next section an extremely accurate and precise fit is obtaine%f“:h""mge Interaction. ' .
over 25 decades in temperature to the Bethe anB4m) For I’?OFF-;It-IOI’]a| convenience, we define the redgced spin
data® Our QMC and TMRGy(T) data for the alternating- SuSceptibilitiesy™ andx™, reduced temperaturésindt and
exchange chain are presented and fitted in Sec. V, using &gduced spin gapa* andA* as
end-point parameters those determined for the uniform chain

and the dimer, respectively. The spin gapa) is extracted = X3 = xJ , %)
for 0.8< @=<0.995 by fitting the TMRGy(«, T) data at low Ng?u3 Ng?u3

temperatures in Sec. VI. Section VIl contains a comparison

of our numerical results with previous work. Thd «) val- keT — kgT

ues are compared with previous numerical results and with = Jmax’ =73 (€
the theoretical prediction for the asymptotic critical behavior

in Sec. VII A. Our x(T) calculations are shown in Sec.

VII B to be in good agreement with the previous numerical A* = i _*Eé' (4)
results of Barnes and Riérfor 0.2< «<0.8. The numerical Jmax J

calculations of BulaevsKiihave been extensively used in the where J™ and J are, respectively, the largest and average

past by experimentalists to fit .the(T) of spin—PeierIs com- exchange constants in the systdxnis the number of spins,
pounds, but up to now a detailed analysis of the predictiong js the spectroscopic splitting factor appropriate to the di-
of this theory has not been given. We present such an analygction of the applied magnetic field relative to the crystal-
sis in Sec. VII C and compare our results with these prEd'Crographic axes, angg is the Bohr magneton.

tions.

We begin the experimental part of the paper by studying
the anisotropic magnetic susceptibility of a high quality
NaV,0Os single crystal in Sec. VIII A, where literature data i ) o ) o
on the anisotropy of thg factor and Van Vleck susceptibil- ~ For any Heisenberg spin latticgn any dimensiop in
ity are compared with our results. In the following sectionsWhich the spins are magnetically equivalent, i.e., where each
we illustrate the utility and application of many of the theo- SPin has identical magnetic coordination spheres, the first
retical results derived and presented previously in the papefree to four terms of the exact quantum mechanical high
In Sec. VIII B we present experimentg{T) data for single temperature series expansion df(t) have the same form,
crystals of NayOs; and model these data in detail in Sec. with a parUcuIarIy szrgge form if the series is inverté&or
VIII C using our QMC and TMRGy(T) data fit function for ~ S=1/2, one obtairfs'®

A. High-temperature series expansions for the spin
susceptibility and magnetic specific heat

the AF alternating-exchange Heisenberg chain. We show w0

that qualitatively and quantitatively new information about 1 _ 2 % (53
the temperature dependences of the spin dimerization param- dxy*t = t"°

eter and spin gap below, can be obtained from our mod-

eling. This analysis also shows that spin dimerization fluc- 1 1 )
tuations and a spin pseudogap are present abgyand we do=1, dﬁm 2 Jij» dzszTaX2 EJ: Jij

guantitatively determine their magnitudes. Our specific heat
measurements of Ng@s single crystals and our extensive
modeling of these data are presented in Sec. VIII D, where
we obtain quantitative limits on the relative contributions of Ao 1 S 5 (50
the lattice, spin and charge degrees of freedom to the change 37 5 gmad T

in the entropy due to the transition @t and to associated

order parameter fluctuations. A summary and concludingfql_‘atio'"'@b) is universal, but Eq(5¢) holds only for spin
discussion are given in Sec. IX. attices which are not geometrically frustrated for AF order-

ing and in which the magnetic and crystallographic nearest
neighbors of a given spin are the same. Geometrically frus-
trated lattices typically contain closed triangular exchange
paths within the spin lattice structure, such as in the 2D
In this paper we will only be concerned with the s@n triangular lattice or in the 3B sublattices of the fc&B,0,
=1/2 antiferromagneti¢AF) Heisenberg Hamiltonian oxide normal-spinel andA,B,0; oxide pyrochlore struc-

(5b)

Il. THEORY
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tures. The uniform and alternating-exchange chains consid- o20F ~~ =~ =~ ~ © ]
ered in this paper are not geometrically frustrated, and the

magnetic and crystallographic nearest neighbors of a given AF Heisenberg Dimer
spin are the same. It has been fofirttat the terms to 0.15¢

O(143) on the right-hand-side of Eq5a) are sufficient to Nf ]
quite accurately describe the susceptibilities of a variety of Ng o.10fF ]
nonfrustrated zero-, one-, and two-dimensio8al 1/2 AF 5 ]
Heisenberg spin lattices to surprisingly low temperatures ®

=<1. Higher orderd,/t" terms withn=4 are dependent on 0.05f Fit "

the structure and dimensionality of the spin lattice. The (@ 1

Weiss temperatur® in the Curie-Weiss lawy(T)=C/(T 0.00 A T S SN,

— #) is given by the universal expressigr= —d;J™/kg . 0 1 2 3 4 5
Because the spin susceptibility and the magnetic contribu- ks T/J

tion C(T) to the specific heat can both be expressed, via the

fluctuation-dissipation theorem and the Heisenberg Hamil- 6 I ' '
tonian, respectively, in terms of the spin-spin correlation 4}t i
functions, there is a close relationship between these two %, i
quantities’® In particular, just as there is a universal expres- z 2r 1
sion for the first three to four HTSE terms foi(T) of a 5 I
Heisenberg spin lattice as discussed above, a universal ex- g 0F- 7]
pression for the first one to two HTSE terms fO(T) of > > | i
such a spin lattice exists and is given @ 1/2 by**84° a =
w 4t i
2 3 -
cw_s|Th 3 ST
NKg =3 (2 yma? + 3y’ +O(t—4) . (6) 0.01 0.1 1 10

kT/J
The sums are over all magnetic nearest-neighbor bonds of _ -
FIG. 1. () Magnetic susceptibilityy (O) versus temperaturé

any given spirS . The first term is universal but the second
v pIrS for the spinS=1/2 Heisenberg dimer with antiferromagnetic ex-

e P thang conin T o Soc. V5 i stoun b h Sl
neiahbors of anv diven soin are the same. Hiaher order ter curve.(b) S_eml_log plot of t_he fit deviation v¥. The lines connect-

9 Y9 P . - Figt mﬁg the points in(b) are guides to the eye.
all depend on the structure and dimensionality of the spin
lattice. .

. . ) . where g, =E(k)/J™ E(k) is the nondegenerate one-

A common misconception is thal =0 if the magnetic ._magnon(triplet) dispersion relatiorithe Zeeman degeneracy
suspept|b|I|ty Qf a Iocal-moment.system obeys the Cum.a"ls already accounted fpanda is the (average distance be-
Weiss law. This is only true classically. For Heisenberg spi
lattices, one can easily show that the Weiss temperatume
the Curie-Weiss law arises from the first HTSE term
[O(1h)] of the magnetic nearest-neighbor spin-spin correla
tion function, which is the same quantity that the first HTSE
term of C(t) arises fronf: Thus, e.g., folS=1/2 Heisenberg
spin lattices at temperaturés-1 at which the Curie-Weiss 1
law holds, the magnetic specific heat is given by the univer- X*(t)=———— (dimen), (8a)
sal first term of Eq(6). t 1+3e

Nween spins. This expression is exact in both the low- and
high-temperature limits. For the isolated dimer, for which
ex=A*=1, Eq. (79 is exact at all temperatures. Inserting
z(t)=e " for the dimer into Eq.(7a yields the correct
result

-1k

i . . . e
B. Low-temperature limit of the spin susceptibility Y (t—0)= —. (8b)

and specific heat of 1D systems with a spin gap

Magnetic susceptibility For one-dimensional(1D) S The y*(t) in Eq. (8a) for the antiferromagnetic Heisenberg
=1/2 Heisenberg spin systems with a spin gap such as th@imer is plotted in Fig. 1; the fit shown in the figure will be
S=1/2 two-leg ladderand the alternating-exchange chain presented and discussed later in Sec. IV B.

Troyer, Tsunetsugu, and Wa*! derived a general expres- At low temperatures t<A* and t< one-magnon
sion for y* (t) which approximately takes into account kine- pandwidthd™® and for a dispersion relation with a para-

matic magnon interactions, given by bolic dependence on wave vectonear the band minimum
1 z(t)
*(t)=— ’ 7 E(k)
X (1) t 1+3z(1) (73 skz\m—ax=A*+c*(ka)2, 9
2(t)= EJWe*EK“d(ka), (7b) one can replacey in .Eq_. (7b) by t.he apprqximatiomg) and
mJo replace the upper limit of the integral in E¢rb) by o,
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yielding z(t) =e 2"t\t/(2mc*). Substituting this result C. Alternating-exchange chain
into Eq. (7a) gives the lowt limit>* The S=1/2 AF alternating-exchange Heisenberg chain
A Hamiltonian is written in three equivalent ways as
X*(tﬁo):t_yeiA*/t’ (10@
H=20 1S 1S+ 250 Saia (133
A ! ! (10b
= —_—, ')/: —.
2/ mc* 2 R R .
i =2 1S 1-SutahSy S (13b)
This result is correct for any 105=1/2 Heisenberg spin !
system with a spin gap and with a nondegenefexeluding
Zeeman degeneracylowest-lying excited triplet magnon = 31463 .8 +31-65, .3,
band which is parabolic at the band minimum. On the other Z (1405154 J1= 0S5 S,
hand, the low-temperature limit gf*(t) for the isolated (130

dimer in Eq.(8b) is of the same form as E10g), but with h
y=1. Thus, for 1D systems consisting essentially of dimerg"/"€"®
which are weakly coupled to each other, a crossover from

y=1 to y=1/2 is expected with decreasiig J=J(1+8)= 2_‘] (148
The parameters and y can be determined if very accu- lta
rate y* (t) andA* data are available. Taking the logarithm
of Eq. (109 yields the lowt prediction J, 1-6
=3, T1v s (14D
A* !
In[x*(t)]+ —=InA—yInt, (113
t J; Ji-J, 1-a
so plotting the left-hand-side vs trallows these two param- 0 J 2] 1+a’ (149
eters to be determined. Alternatively, assuming1/2, one
can obtain estimates éfandA* using Eq.(109, according J;+J, 1+«
to I=——=h— (149
A* . . .
_ * [0\N— _ 2 with AF couplingsJ;=J,=0, 0=(«a, 6)<1. The uniform
In(x 0 A+ t (110 undimerized chain corresponds éo=1, §=0, J;=J,=J.
The form of the Hamiltonian in Eq13¢) is most appropriate
and/or for chains showing a second-order dimerization transition at
In(x* JO T. with decreasingrl. If the exchange modulatioA<1 («
WX ND (119 1), the (averagg J below T, can be identified with the
a(1h) exchange coupling in the high-undimerized state.

- o . o In spin-Peierls systems, the spin-phonon interaction
Specific heatThe low4 limit of the magnetic contribution  ¢ayses a lattice dimerization to occur below the spin-Peierls
C(T) to the specific heat for the same mdtles calculated  transition temperature, together with a spin-gap due to the

to be formation of spin singlets on the dimers. The Hamiltonian
12 3 5 can be mapped onto the spin Hamiltonid3) (with renor-
C(t~0) _ §( A ) (ﬁ) 1+ L+§(L e A%t malized exchange constantmly in the adiabatic parameter
NKg 2\ mc* t A* 41 AF regime, in which the relevant phonon energy is much smaller

(12 thanJd. If such a mapping cannot be made, dynamical phonon
effects(quantum mechanical fluctuationsecome important

_ i ) and thex(T) can be significantly different from that pre-
thermal energy to the spin gap, the magnitudgdfin EGs.  icted from Hamiltonian(13).54-5¢ This issue will be dis-

(10) is determined by the actual value of the curvattifeat cussed further when modeling théT) data for Na\Os in
the triplet one-magnon band minimum, whereas the magnige. v B.

tude ofC in Eqg. (12) depends only on theatio of c* to A*.

Thesg formulas have been ap_plied in the Iiteratuye to model 1. High-temperature series expansions
experimental data for alternating-exchange chain and two- . o .

leg spin ladder compounds. However, with one exception ~Magnetic susceptibility For the alternating-exchange
to our knowledge, these modeling studies have not recoghain, according to our definition one ha8®*=J;. Then
nized that the prefactor parameter and the spin gap are n#fing the definition for in Eq. (14b), thed, HTSE coeffi-
independently adjustable parameters. For a given spin lattic§ients in Egs(5b) and(5¢c) become

they are in fact uniquely related to each other. Their relation- 5 5

ship for theS=1/2 two-leg Heisenberg ladder was studiedin ~~ , _ . _ 1+ta doe 1ta do 1+ta

Ref. 52. For the alternating-exchange chain, we estimate the 0T P o 2 8 '’ 3 24
relationship between* andA* below in Sec. Il C 3. (15

Note that, in addition to the ratit/ A* =kgT/A of the
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One can change variables framandJ; in y* («,t) to 5 and Dispersion Relations for Alternating Chain
H * RN - - . L T T T T ]
Jin x*(48,t) using Egs.(14) which give ol E (k) = [A*(c)? + 2(a) sin?(ka)]"2 ]
t i ]
t=—2, (16a | - 1
1+6 S 12 ]
_ =

(5T 1 . 1-6 t 165 B g8l ]

= T :
X OO=5 X 1550 1v ) (160 i i

-~ 4/ Dashed Curves:
04¢ Barnes, Riera & Tennant (1999) \™

- 5% Order Series .

1 En 00 v 1 1 1 1
B (173 00 02 04 06 08
0t

Ay*t n= ka/n

We write the resulting HTSE for the inverse gf (8,t) as

© —o oocoor
om oRbvOg

—

[’

FIG. 2. Dispersion relation&(a,k) for the S=1/2 antiferro-
magnetic alternating-exchange Heisenberg chain. The dashed
. 1 1+ 82 . 1+382 curves for alternation parameters-0, 0.2, 0.4, 0.6, and 0.8 are the
do=1, di=5, d,= , dg= dimer series expansion results of Barnes, Riera, and TeriRaift

2 4 12 53), the solid curves for thesa values are from our expression
) given in the figure and in Eq$23), and the solid curve for=1 is
An important feature of this HTSE Q?( 5,t_) is that it is an _the known exact result for th_e ur_]iform c':hain, Whic_h by construction
even(analytid function of & for any finite temperature. This 'S the same for the expression in the figure at thigalue.
constraint must be true in general and not just for the terms — ) )
listed? becausex_*(é,t_) cannot depend on the sign &f V"’T'Pes ofA Fhan predicted by I.Eq(19b)-. Th,e asymptotic
=(J,—J3,)/(2J): the Hamiltonian in Eq(130 is invariant critical behavior ofA* as the uniform limit is approached

upon such a sign change. Physically, a negativeould ~ (¢—1, —0) has been giverr**as

simply correspond to relabeling &8 — S, ;, which cannot 513

char@a trE physical properties. We will use this constraint A_*( 5) o ) (20)
thaty* (8,t) must be an even function @fto help formulate lIn §|¥2

our fitting function(after a change back in variab)eer our
QMC and TMRG x* («,t) calculations for the alternating-
exchange chain. This constraint is important because it a

lows a fit function for y* («,t) to be formulated which is
; gested that Eq(20) may not be the correct form for the
< < . o . .
accurate fora=1 (9<1), a parameter regime relevant to.asymptotlc critical behavior. On the other hand, Uhrig

compounds exhibiting second-order spin-dimerization transi- ) ; . . o
tionspwith decreasinggtemperature P et al® fitted their T=0 density matrix renormalization

Magnetic specific heatisingJ™= J, anda—=J,/J,, the ~ 9r0UP(DMRG) calculations ofA* (8) for 0.004< 5<0.1 to

general HTSE expression in E¢f) yields the two lowest- & Power-law behavior without the log correction and ob-
order HTSE terms for the magnetic specific h&&T) of the  tainedA* ~1.575%% We will further discuss the above spin

where we find

thus the parametrization in E(L9b) evidently indicates that
It_he fitted data do not reside within the asymptotic critical
regime. Alternatively, Barnes, Riera, and Tennargug-

S=1/2 AF alternating-exchange Heisenberg chain as gap calculation results later in Sec. VII A after deriving our
own A*(«) values from our TMRGy* («,t) data in Sec.
Ct) 3 1+a2+1+a3 1 18 VI.
Nkg 32| t2 2t3 t4) | (18 o .
3. One-magnon dispersion relations
2. Spin gap Barnes, Riera, and Tennant have computed the dimer se-

The spin gapA* of the alternating-exchange chain ries expansion of the dispersion relatior(a,k)
pin gapA* () g g =E(a,k)/J, for the one-magnon3=1) energyE(a,k) vs

was determined to high<(1%) accuracy for & «=<0.9, in K al he chain for the | Vi
a increments of 0.1, using multiprecision methods by Bar-V2V€ vectork along the chain %gt e lowest-lying one-
nes, Riera, and TennatBRT).>® They found that their cal- magnon band, up to fifth order ia,>* which we write as

culations could be parametrized well by o
Ale) e(a,k)= 2>, a,(a)cod2nka), (21)
A*(a)=— ~(1—a)¥(1+a)¥4, (199 n=o
! wherea is the (average spin-spin distance, which is 1/2 the
_ A(d) lattice repeat distance along the chain in the dimerized state.
A*(§)=—5—~25% (19D Plots of e(a,k) for =0, 0.2, 0.4, 0.6, and 0.8 up to fifth

. order in«, as given in Fig. 4 of Ref. 53, are shown as the
The sameA* (5) was found in numerical calculations by dashed curves in Fig. 2. The curves are symmetric about
Ladavacet al®’ for 0.01<8<1, whereas calculations for ka= /2, so the same spin gap* (a)==_,a,(a) occurs
0.03<6<0.06 by Augieret al>® yielded somewhat smaller at ka=0 and . This fifth-order approximation yields
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C A 0.8 were calculated and are shown as the solid curves in Fig.
16L E/, = [A* 2 +  sin®(ka)]' ] 2, where they are seen to be in close agreement with the
! ] respective dashed curves of BRT. An important difference
i f(A*)/ ] for large a, however, is that the (A* k) in Egs.(23) prop-
12¢ ] erly reduces by construction to the exaci,k) for a—1,
— - - whereas the one in Eq21) with a finite number of terms
08l ] does not.
B ] Close to the one-magnon band minimum, the square root
04l ] and the sine function in the dispersion relation in E23a
! \ f(a) if A* = (1 _ (X)3/4(1 + a)1/4 g can be expanded, y|e|d|ng
0.0 AN R TN RN RN 1 fZ(A*)
0.0 0.2 0.4 0.6 0.8 1.0 e(A* k—0)~A* +3 A—*(ka)z. (24)
A*ora

) ) o ] A comparison of Eqs(24) and(9) shows that the parameter
FIG. 3. The functionf(A*) in the expression in the figure and ¢* in the formulas fory* (t—0) [Egs. (10)] and C(t—0)

in Egs. (23 for the one-magnon dispersion relation of e 1/2 [Eq. (12] is a unique function of* which in our approxi-
antiferromagnetic alternating-exchange Heisenberg chain, whe T
mation is given by

A*=A/J, is the spin gap. The dependerfde) is also plotted for
the assumed form ak* («) shown. 1 f2(A%)

c*(A*)=§A—*, (25

A*(a) values for«<0.9 in rather close agreement with
BRTs' results discussed in the previous section. For a dimer

series expansion we expect the average energy of the on@ith f2(A*) given by Eq.(23b. Thus bothy*(t—0) and

magnon band states to be nearly independent, afe., C(t—0) for the alternating-exchange chain only depend on
the single parameteA* (in addition tot). Explicitly, we
1(n obtain
—f e(a,ka)d(ka)=1. (22
mJo
A* 1/2 R
Indeed, upon inserting BRTs' fifth order expansion coeffi- X*(t—=0)= ﬁ(T) SAT (26)
cients into Eq(21) and the result into Eq22), we find that 2mf(A%)
this sum rule is satisfied to within 1% for<0a<1. As might have been anticipated, the only thermodynamic

Also shown as a solid curve in Fig. 2 is the exact resulty,yaple is the ratid/A* =kgT/A of the thermal energy to
e(k)=(m/2)|sin(a)| for the uniform chain ¢=1)" This e spin gap. The numerical prefactor depends explicitly
e(k) has a cusp with infinite curvatur@t ka=0 and ) (only) on the reduced spin gap*=A/J,. Similarly, the
which cannot be accurately approximated by a Fourier Serier%agnetic specific heat is obtained as

with a small number of terms. This singular behavior is evi-

dently closely related to the critical behavior &f (a—1) C(t—0) 3 A% [A*\32

discussed above. In order to later model our TMRG «,t) = - (_

data close to, but not in, the lotvlimit, we will need an Nkg V2m FAT) 1t

expression foe (a,k) which is correct in the limik—1 and t 3/ t1)2

which also reproduces reasonably well #igy,k) of BRT. X[1+—+— _*) e At (27)
We found that the simple one-parametéy*() form sug- A 414

gested earlier by one of us in the context of 8w 1/2 two-

where again the same characteristics are present as just dis-
leg ladde?? J b J

cussed fory* (t). The variations of the prefactors with*
P S 112 for xy*(t) andC(t) can both be ascertained from the plot of

s(A% ) =[A*"+ F2(a%)sir(ka) ], (233 f(A*) in Fig. 3. In particular, whem~1 (5<1) for which

is satisfactory in these regards for the AF alternating-A* <1, fis nearly a constant. For our and our readers’ con-

exchange chain over the entire range 8* <1. The func- venience when modeling materials showing small spin gaps,

tion f(A*) is determined here by the sum ru@2), which  we have fitted our numericd(A*) calculations for GsA*

yields the condition <0.4 by a third-order polynomial to within 2 parts in“.0
2(a%) given by
o
— %7 T (23b 7 2 3
A f(A*)= 5—0.03428%*—1.18953\* +0.4003@Q* .

where Ek) is the complete elliptic integral of the second (28)
kind. From Eq.(23b), f varies nonlinearly withA* from

f(A*=0)=m/2 to f(A*=1)=0, as shown in Fig. 3. From By a change in variables td{5) and using the\* («) in

an independently determined dependencébfon a as in  Eq. (19),°® we obtain the following forms which are more
Eqg. (193, one can then determirfé«) as also shown in Fig. useful for modeling materials with small spin gaps, espe-
3. Using the fifth-orde\* («) values of BRT in Fig. 2, the cially those showing second-order spin dimerization transi-
resulting dispersion relatiori&3) for =0, 0.2, 0.4, 0.6, and tions with decreasing:
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. 1 Ax ) Y2 —_ 015 S= 1./2 AF Heilsenberg (IJhain
X*(tHO): ___ — e—A It | (a) ]
(1+8)\V2mf(a*) |\ t 0.14 ]
(299 i
- Njc,n 0.13_ .
Ct-0) 3 A* (A ) B 012 ]
Nkg (1+ V2w f(a*) | t =011 Magnetic Susceptibility
A. Klimper (1998)
- 0.10
+—+ - e "I (200 -
0.09 ' ' L
0.0 0.5 1.0 15 2.0
KT/
I ar N - N
f(A%)= 5 —0.033933% ~1.19602* "+0.92430* " o110F ' ' '
(299 -
0.108 .
Note that in these formulas*/t=A*/t=A/(kgT). i j Fit2 (0<kgT/ <3)
2 0.106 :
z ]
. THEORY: S=1/2 UNIFORM HEISENBERG CHAIN _:J< 0.104}% i
A. Magnetic spin susceptibility o.100) _
The uniformS=1/2 chain is one limit of the alternating- B (b) ]

exchange chain wit;;=J, a=1, §=0, and with no spin
gap[the y* (t—0) andC(t—0)/t are finitd. The spin sus-
ceptibility was calculated accurately by Eggert, Affleck, and
Takahashi in 1994,and recently refined by Kmper as
shown in Fig. 4a) where only the calculations up te=2 are

shown. An expanded plot of the data fior0.02, including chain (Ref. 5 (®). (b) Expanded plot of the data i@ for O<t

2 _ . . .
th.?he;?.(t:t ('\:/f’?llé()a t?)fthzt (t_‘j;tg’tlos bsglzvg:! 'g d F;?].d%)?,scalggg d .ns 0.02, together with a fitFit 2, solid curve obtained in Sec. IV C
wi 1t v IScu Mo the data of Klmper and Johnsto(Ref. 5. The fit is not shown

.Sec' IV C. The recent calculations of K"”De'f and Johnston in (a) because on the scale of this figure the fit is indistinguishable
in Ref. 5 have an absolute accuracy estimated to~¥e 4,11 the data.

%X 10" ° and show a broad maximum at a temperaftif&*

by up to 6th order polynomials, we determined these numeri- - .

cal values to be given by The coefficients,, of the HTSE fory™ (t),

0100 " 1 L 1 " 1 "
0.000 0.005 0010 0015 0.020
kg T/J

FIG. 4. (a) Magnetic susceptibilityy versus temperatur& for
the spin S=1/2 nearest-neighbor antiferromagnetic Heisenberg

oo

TM#=0.640 851 04)J/Kg, (308 4y*t=3 % (323
n=0
XM _0 146 926 2781), (308 are given up ta(14t") by®*
NG EPTRUE SEP .
Ng2 ) Co=1, C1= Ev C=0, C3_ﬂ! C4_@1
MB
maxrmax—( 094 157 91 . 30¢
X 91) ke (309 7 133 ) -
Cs=~ 280 6~ 30720 " a03z P

These values are consistent within the errors with those
found by Eggeret al.® but are much more accurate. For one Inverting the series, we obtain the correspondifgcoeffi-
mole of spins, settind\=N, (Avogadro’s numberin Eq.  cients in Eq.(5a) as

(300 yields
do=1, d L d ! d ! d !
cmPK 0=1, di=5, dy=5, d3=55, dy :
X"HTM= 0,035 322 93)g° ol (31) 2 4 12 128
29 317 11
Note that the producy™™T™® in Eqgs. (300 and (31) is ds=— 3840’ de=— 92160 d7:—71680' (33

independent of, and hence is a good initial test of whether
the S=1/2 AF uniform Heisenberg chain model might be The d, coefficients withn=0, 1, 2, and 3 are of course in

applicable to a particular compound. agreement with Eq15) for a=1.
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2. Logarithmic corrections at low temperatures A general feature of field theoretical and lattice ap-

At low temperatures a simple expansion of thermody_proaches is their restriction to “low” and “high” tempera-
namic properties in, for instance, the variablis not pos- tures, respectively. Field theorgtlpa}l studies ;uffer at high
sible. Such a nonanalyticity incan be viewed as due to the {€MPeratures from the neglect @ffinitely many irrelevant
strong correlation of the quasiparticles, i.e., the elementar@Perators. Lattice studies show convergence problems at low
excitations of the system are not strictly free; they showl€MPeratures as increasingly larger systems have to be stud-
rather nontrivial scattering processes. Spinons with low enied in order to avoid finite-size effects. In addition, the com-
ergies ¢; and e, have a scattering phasé(e;,e,)=¢, Parson of field theory and lattice results can only verify or
+constjlog(ee,)|. From this property it is cle&? that an falsify the universal aspects of an asymptotic expansion.
expansion in the single variabtds not possible, but has to Non-universal quantities likd, which derive from some
be supplemented by a term 1/l6g(Although being very coupling constant of a marginal or irrelevant opergtorde-

intuitive, this physical picture on the basis of scattering pro_f[ermined within the field theojycan at best be fitted as done

cesses of spinons has not played any important role in the Rﬁf' |3 bl fd ining th i
investigation of logarithmic corrections until recently. . The atter pr?_ I?:imho etermlmnlg t debcoupllng ﬁconhstants
Logarithmic dependencies of physical quantities havd? @n effective field theory was solved by Lukyariowho
|.|sed a bosonic representation of the Heisenberg chain. The

been known for the spin-1/2 Heisenberg chain for a rathe i fixed b . f th
long time. Usually, a quantum chain with critical couplings €°UP!INg constants were fixed by a comparison of the sus-

leads to critical correlations only in the thermodynamic limit C€PtiPility datay(T=0h) obtained by him with Bethe an-
1/L=0 and atT=0, whereL is the length of the chain. If satz calculations for magnetic fleHdatho._ Eventually, the
one of these conditions is not met the physical propertied(T=0.1=0) data could be calculated without any need of
receive nonanalytic contributions in terms of idr T. From & fit parameter. . _

the renormalization group point of view the existence of LukyanoV” obtained the following analytical low-
logarithmic corrections is reflected by the perturbation of thef€MPerature expansion af* (t),

(critical) fixed point Hamiltonian by some marginal operator. 1 g 3g° V3

Such operators usually exist only for isotropic systems. i) =11+ >+ —=+0(gH)+— 1+ 0(9)]{,
The investigation of the size dependence of energy levels " 2 32 T

of critical quantum chains was started more than a decade (359

ago. For the isotropic spin-1/2 Heisenberg chain, expansionghereg obeys the transcendental equation
in 1/L and additional logarithmic corrections [dlbgL etc)

were found in lattice approachéBethe ansaf?=9 as well 1 1

as in field theory[RG study of the Wess-Zumino-Witten 2 Ing+ 52[’ (350
(WZW) model with topological ternk=1 (Refs. 61,69,7(. )
Many of these earlier results are still relevant for the is-Of €quivalently
sues discussed in this section due to an equivalence of many- t
particle systems af=0, 1L >0 (ground-state properties of \/6 elfngO, (350

finite chaing and those at >0, 1L =0 (thermodynamics of
the bulk. This leads to asymptotic series whéreand 1L with a unique value of, given by
play very similar roles. To our knowledge the first explicit

report on log{) corrections in the magnetic susceptibility B \/; 4 (1)
resulting in an infinite slope al=0 was given in Ref. 3. to= 5 € ~2.866257 058, (35d
Including higher order terms, the asymptotic expansion )
XE () for y* (1) is>®06571 where y~0.577215665 is Euler's constant. Lukyanov
showed that his(ﬁ’g(t) is in agreement with the numerical
1 1 In(c+ data of Eggert, Affleck, and Takaha3hi low temperatures
Xi)=—| 1t ot |, (343  t=0.003.
™ 2L (2c) In the following, we will compare high-accuracy numeri-
cal Bethe ansatz calculations carried out by ri¢per and
1 1 InL 1 Johnston to much lower temperatures with this thebin
2 27 _(ZT)Z - w T some detail because this theory is exact at low temperatures

(34b) with no adjustable parameters. The calculations of Ref. 5 are
based on lattice studies, however without suffering from the
L£=In(ty/t), (349 usual shortcomings.' By means of a Iattic_e path integrgl rep-
resentation of the finite temperature Heisenberg chain and
wheret, is a nonuniversalundeterminegparameter. In Ref.  the formulation of a suitable quantum transfer mattiwoth
3 the field theoretical prediction on the basis of the WZWquite analogous to the numerical TMRG calculations pre-
model was compared with the results of thermodynamic Besented later in this papera set of numerically well-posed
the ansatz calculations and showed convincing agreement expressions for the free energy was derived. In more physical
an intermediate temperature regime. Using up to the firsterms the method can be understood as an application of the
logarithmic correction term in Eq(34a, Eggert, Affleck, familiar though often rather vague concept of quasiparticles
and Takahashi estimatdg~7.72 so at low temperatures  to a quantitative description of the many particle system
=0.01 the parametef>1. valid for all temperature¥ and magnetic field valuds® The
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FIG. 6. Log-log plot vs temperatufeof the difference between
. . ¥ L - our approximate logarithmic expansiqnf[k,g of Lukyanov’s theory
(solid curve and its lowest-order approximatiqg(T)=1/In(To/T) (Ref. 6 and his exact predictio;szq’fg for the low-temperature limit

(dashed cury)eln _Lukyano_v S theory(Re_f. § for the S=1/2 anti- of the magnetic susceptibility of the sp8+ 1/2 antiferromagnetic
ferromagnetic uniform Heisenberg chain over the temperature range . . . - 38,
10~ 0<t<0 5. niform Heisenberg chain, for the temperature range °18t

<0.5.

FIG. 5. Log-log plot vs temperaturgé of the functiong(T)

work can be understood as an evaluation of the full scatter-
ing theory of spinons and antispinons. (353 become significant, respectively; we will return to
Our iterative solution of Eq(35b) yields the expansion  these two issues shortly. The third aspect is whether the log
expansion approximatiogi; ,4(t) in Eq.(37) can be used in
this comparison. The absolute accuracy of the most recent
. (39 Bethe ansatz calculatiohss estimated to be~1x10°.
_ . . From Fig. 6, we see thaf; ,4(t) approximateg; (t) to this
A log-log plot of g vs t obtained by numerically solving Eq. gegree only for temperaturés 10 2° [we infer that the pre-
(350 is shown in Fig. Ssolid curve, along with its lowest- o, Eqs.(34) only apply to this accuracy at similarly very
order approximationg(t)~1/£=1/In(t/t) (dashed curve o temperaturels Therefore, to avoid this unnecessary ap-
Thlsiaaygpro.mmatlor.l is 1.1% larger than the exact resut(t) at proximation as a source of error at higher temperatures, we
:_10 15 with the d|scre£)an94 increasing steadily 10 5.8% atyiy henceforth compare the numerical Bethe ansatz calcula-
t=10  and 8.5% att=10 ‘. Substituting Eq.(36) into : % o
tions with xj; 4(t) calculated from Lukyanov's original Egs.

1 InZ (InL)>—Int
S Y (2L)2

(2£)°

(359 gives (35).
1 1 INZ  (InL)2—In £+ (3/4) A comparlson of the Iow—temperat_ure Eethe aps_dtzt?
Xitiog(D)=—21 1+ Y >+ 3 calculationd and Lukyanov’s theoreticakj; , prediction is
™ (2£) (2£) shown in Fig. Ta). On the scale of this figure, the two results

1 3 1 are identical. The(smal) quantitative differences between
10) 1742 1+@<_) ] (37)  them are shown as the filled circles in Figb The lower
ot ™ 2L error bar on each data point in Figl¥ is 1X 107 to indi-

The first three terms are identical with those in E34b), but cate the scale. The upper error bar is the estimated uncer-

) T -,
the constant term in the numerator of the fourth term is nofa'nt}{ n Xitg arising from thg presence O,f the unknown
the same as in Eq34b), indicating that Eq.(34b) is not ~ ©(g") and higher-order terms in E¢85a, which was set to

accurate to order higher thad{ 1/(2£)2]. g*(t)/=2; the uncertainty in the t? contribution,

An important issue is the accuracy to which the log ex-~ V3t?g(t)/@, is negligible at lowt compared to this. At
pansion approximatior)(,’{,,og(t) in Eq. (37) reproduces the the Iowe_r t_emperatures, the data agree ext_remely well with
Xt 4(t) prediction of the original Eqs(35). We have calcu- the prediction o.f Lukyanov’s theory. At the hlghe§t tempera-
lated both quantities to high accuracy and plot the differencéurest=10"%, higher ordett" terms also become important,
vs t, for the range 10%°<t<0.5, in Fig. 6. Thexj o) is @S infe'rred from our empirical fit§=its 1 and 2 below to the
seen to increasingly diverge froj; ,(t) with increasingt. numerical data. o _ _

When comparing the predictions of Lukyanov's theory lrrespective of the uncertainties in the theoretical predic-
with numerical results such as obtained from the Bethe antion at high temperatures just discussed, we can safely con-
satz, it is important to know at what temperature the lowclude directly from Fig. #) that the Bethe ansatg* (t)
temperature expansion in Eq&5) ceases to be accurate data are in agreement with the exact theory of Lukyahtmv
(“accurate” must be definadwith increasing temperature. within an absolute accuracy ofx110™° (relative accuracy
There are three aspects of this issue that need to be ae-10 ppm) over a temperature range spanning 18 orders of
dressed. The first and second aspects concern the tempepaagnitude front=5x10 2°tot=5x10"'. The agreement
tures at which the unknow®(g*) and O(g) terms in Eq. is much better than this at the lower temperatures.
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FIG. 8. (a) Specific heatC vs temperaturel (@) for the S
=1/2 antiferromagnetic uniform Heisenberg chdRef. 5. (b)
Specific heat coefficien€/T vs T from the data in(a). The area

form Heisenberg chaifRef. 5 (®) and the predictioryj , (solid
curve of Lukyanov's theory(Ref. 6 and(b) the difference between

under the curve irfb) from T=0 to T=5J/kg is 99.4% of In 2.

these two results®). In (b), the upper error bar is the estimated

uncertainty inyj 4 (see text

B. Magnetic specific heat

The magnetic specific he& of the S=1/2 AF uniform
Heisenberg chain was recently calculated to high accuracy,
by Klimper and Johnston over the temperature range
X 10" °<kgT/J<52° The accuracy is estimated to be 3
x 107 109C(t). The results forT<2J/kg are shown in Fig.
8(a). The initial T dependence is approximatelgee below

linear, and is given exactly in thie=0 limit by

C(t—0) 2

Nkg 3

The data show a maximum with a val@"® at a tempera-
ture TZ®. By fitting 3—7 data points in the vicinity of the
maximum by up to 6th order polynomials, these values wer

found to be

ke TR
J

—0.48028 4871),

max

Ni ~0-349712123@).

The electronic specific heat coefficie@{T)/T is plotted
vs temperature in Fig.(B). As expected from Eq.38), the
data approach the value (ZKBB@/J for t—0. The initial
deviation from this constant value is positive and approxi-
mately (see below quadratic int. The data exhibit a smooth
aximum with a value €¢/T)™® at a temperatur& {7y, val-
%es which we determined by fitting polynomials to the data
in the vicinity of the peak to be

max
kBTC/T

J

=0.307169962),

(40)
(CIT)™g

NK3

(39 =0.8973651576).

The magnetic entrop$(T) is determined by integrating
the C(T)/T data in Fig. 8b) vs T and the result, normalized
%y S(T—o)=NKkg In 2, is plotted vsT in Fig. 9. This figure
allows one to estimate the maximum magnetic entropy that
can be associated with a dimerization transition or any other
magnetic transition involvingS=1/2 Heisenberg chains
which are weakly coupled to each otHassuming that the
(average J does not change at the transitjofor example,
for NaV,05 wherekgT./J~0.057, one can estimate from
Fig. 9 that the magnetic entropy &k, cannot exceed
0.05RIn2=0.32 J/mol K, whereR is the molar gas con-

(39
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FIG. 10. The Wilson-Sommerfeld raticRy=4m2y* (t)t/
FIG. 9. EntropySvs temperaturd for the S=1/2 antiferromag- [3C(t)] between the spin susceptibility and electronic specific heat
netic uniform Heisenberg chain, obtained from the data in Rig..8 coefficient for theS=1/2 AF Heisenberg chain vs reduced tempera-
The entropy is normalized bg(T=x=)=Nkg In 2. turet=KkgT/J. In the Wilson ratio, we have ség=1.

stant. The reason this value is the upper limit is that magnetitow temperatures ar&=1/2 spinons which are fermions
critical fluctuations will increase the specific heat, and hencevith a Fermi surfacdi.e., Fermi points in one dimensipn

the entropy, abové@ . and thus reduce it gand below T., Since the spinons carry no charge, the chain is an insulator.
by conservation of magnetic entropy, compared to the valueshe deviation of the Wilson ratio from unity and the loga-
for the isolated chain at the same reduced temperaturesthmic corrections are due to spinon interactions.

Similarly, the C(T) data in Fig. 8a) allow one to estimate

the minimum lattice specific heat contributi@{(T) above 1. High-temperature series expansions
T. if the C¥(T) has not been determined previously from  The HTSE for the specific heat of a spBAF uniform
experiments and/or theory directly. Heisenberg chain 18
At low temperatures, the electronic specific heat coeffi-
cient C(T)/T becomes independent of temperatiapart C(T) x? “cp(X)
from logarithmic corrections, see belpwas does the spin N_kB: 312 +nZl | (429

susceptibilityy* (t), just as in a metalFermi liquid). There-
fore it is of interest to compute a normalized ratio of these

two quantities. For a metal, the relevant quantity is the Xx=9S(S+1), t:kB_T, (42b
Wilson-Sommerfeld ratio, which fo6=1/2 quasiparticles J
reads, in the notation of this paper and withset to 1, 1 1
_= T (a_ay_ay2?
= - 4,”_2)(*(4[)»[ " Cl—2, Co 15(3 8x—3x ),
W(t)_T(t)' (41) )
In a degenerate free electron g&g,=1 and is independent 032%(3—1&—4%),

of t. For exchange-enhanced metals Ry,=< 10, for S=1/2
Kondo impurities in a metal the Wilson ratio associated with

the impurities isR,,= 2, and for many heavy fermion metals Cy= (192— 143X+ 1123¢*+ 800+ 160x%),

Rw~2.72 Plotted in Fig. 10 isRy/(t) for the S=1/2 AF 5040

Heisenberg chain, whel@(t)/t andy* (t) were given above

in Figs. 8b) and 4, respectively. Fdr—0, the Wilson ratio Cs==——(414— 3768+ 663>+ 26243+ 480x*).
for the S= 1/2 Heisenberg chain is exactly 2. With increasing 21600

t, Ry is seen to be nearly independenttdd within =10% (420

up tot~0.4, but the influence of the logarithmic corrections Specializing Eqs(42) to S=1/2 (x=3/4) then gives
to both x(T) and C(T) are quantitatively important. Al-

though the logarithmic corrections for(T) and C(T) op- C(T) 3 “ocp

pose each other in their ratio Ry(t), the logarithmic cor- Nkg ~ 162 +r1§=:1 ol (439
rections fory(t) win out, giving a net~10% increase in

Rw(t) with increasingt at low t. At highert, the system 5 7 917

crosses over to the expected local moment Heisenberg be- c1=£, Cr=C3=— 7=, Cs=7—==, C5=o= o~
havior whereRy,t?. Thus as far as the thermodynamics is 2 16 256 7680 43b
concerned, the uniform Heisenberg chain behaves at low (43b)
temperatures as expected for a Fermi liquid, apart from th@he two C(T) HTSE terms of order 17 and 1f* in Egs.
influence of the logarithmic corrections. This quasi-Fermi(43) are in agreement with the general expression for the two
liquid behavior arises because the elementary excitations &west-order HTSE expansion terms f@(T) of the S
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=1/2 alternating-exchange Heisenberg chain in(E8) with 0,04 Logarithmfc Specific Heat Corrections

alternation parameter=1. ' ' T
In a later section, the Bethe ansa£T) dat& will be

fitted to obtain a function accurately representing @@) 0.03

of the S=1/2 AF uniform Heisenberg chain. In order that we

are not required to change our fitting equations from those

——(C)-2/3

—— (CA-(2/3)[1 +(3/8)¢%]

— (C-@/3)[1+(3/8)g+a,g°]

—— (CA-(2/3)[1+(3/8)¢°+a,0*+a,0°]

- , = 1.5374(3)
we use for fitting magnetic susceptibility data, the coeffi- Q 0.02f =3 25(11)
cients for the series inverted from that in E439 are re-
quired. We obtain
0.01 1
C(T) 3 g o "
NkB 16.[ : 1 ( a 0.00 1 1 1
0.00 002 004 006 008 0.10
t
1 9 1 7 7 0.0012
h="3 %7 kTTg YTy bTig
(44b) 0.0010
0.0008

2. Low-temperature logarithmic corrections

At first sight, from Fig. 8 there appear to be no singulari- Q 0.0006
ties in the temperature dependence of the specific heat for the

S=1/2 AF uniform Heisenberg chain. However, if the elec- 0.0004

tronic specific heat coefficief@(T)/T is examined in detalil, 0.0002

one sees anomalous behavior at low temperatures. Shown as ) :

the top curve in Fig. 1(B) is a plot of the difference between 0.0000 s i
the electronic specific heat coefficient and its zero- 0.000 0.001 0.002 0.003 0.004 0.005
temperature value\ C(t)/Nkgt=[ C(t) — (2/3)t]/(NKkgt) for t

0<t=<0.1[compare with Fig. &)]. From this figure, there is
still nothing particularly strange about the data. However
upon further expan_dlng_ the plot to study the ranggto coefficient of 2/3(top data set plotted vs reduced temperature
$0.005.as Sh(_)wn_ in Fig. 1), we see thatAC_/NkBt IS Moving down the figure, successive data sets show the influence of
developing an infinite slope ds~0. This is the signature of qrecting for cumulative logarithmic correction termid) Ex-
the existence of logarithmic corrections to the specific heat §anded plots at low temperatures. The reduced temperature is
temperature$<1, just as it was for the magnetic suscepti- =k,T/J and we have sell=kg=1. In both(a) and (b), the lines
bility. connecting the data points are guides to the eye.

Kltimper® Lukyanov® and others have found a logarith-
mic correction to the low-limit in Eq. (38). Lukyanov's  actor of thet® term is 1.98478. - . If the approximate ex-
exact asymptotic expansion for the free energy per spin ibansion forg(£) in Eq. (36) is substituted into Eq46), one

FIG. 11. (a) Difference AC/t between the electronic specific
‘heat coefficient from the Bethe ansatz ddeaf. 5 and the nominal

zero magnetic field is obtains
kgT)? 3
i (keT) l+_gg+o(g4)} Ciiog(T) _ 2KgT !
3J 8 Nkg  3J (203 | (20)
3" %keT)* 2(3%%) [kgT)? 1
-1+ 0(9)], (45) (3% L) 1

whereg(t/t) andt, are the same as given in Eq85b) and  where the prefactor 3/8 in the logarithmic correction term

(360), respectively, and wherg(t) was plotted in Fig. 5. was found independently by Kiaper® confirming Refs. 61

The specific heat at constant volume is calculated using and 68. The difference betweddy ,4(T) and Cy4(T) is

= —T?f/9T?, yielding plotted vs temperature in Fig. 12, where the difference be-
comes>10 1% only for t=10"°.

Cig(T)  2kgT 3 4 Shown in Fig. 13 is the deviatioA C/Nkg (®) of the
Nkg 37 1+39°+0(9") Bethe ansatz datdrom Lukyanov’s theoretical prediction in
Eq. (46). For temperatures<10 4, the agreement is better
2(3%?) (kgT)\? than 10°8. At higher temperatures, the uncertainty in the
* 57 | J [1+0(9)]. 46 theoretical prediction due to the unknowa(g*) and higher

order correction terms becomes an important factor in the
This formula shows that the electronic specific heat coefficomparison. The length of the error bar on each data point in
cient C(T)/T increases quadradically witi at low T (after ~ Fig. 13 has arbitrarily been set to (418¥(t) [cf. Eq. (46)];
subtracting the logarithmic correctiondhe numerical pref- the O(g) uncertainty in theT® term is negligible compared
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FIG. 12. Log-log plot vs temperatur€ of the difference be-

tween our approximate logarithmic expansi@y qq/(NKkg) of : ! e
Lukyanov's theory(Ref. 6 and his exact predictioBy, 4 /(Nkg) for electronlc_ specific heat_ coefficient at_low temperatu(tep date}

the low-temperature limit of the magnetic specific heat of the spirs€)- Moving down the figure, successive data sets show the influ-

S=1/2 antiferromagnetic uniform Heisenberg chain, for the tem-€"C€ of correcting for cumulative logarithmic correction terms. If
perature range I6°<t<0.5. all logarithmic corrections were accounted for, the data would be-

come independent dffor t—0. Here, the reduced temperature is

. - . . . t=KkgT/J and we have sé&l=kzg=1. The lines connecting the data
to this. Also plotted in Fig. 13 is the deviation of the numeri- points are guides to the eye.

cal data from the extrapolated linear Iwbehavior ©). A
comparison of the two data sets indicates that ¢hg®>) portant, within the accuracy and precision of the data. An-
logarithmic correction term is responsible for at least most ofther indication of this is shown in Fig. 14, where we have
this latter difference for temperatures 0.001. plotted AC/t3 vs t. According to Eq.(46), after accounting

A more rigorous evaluation of the influence of the abovefor the logarithmic correction ter(g), the result should be
logarithmic correction term is obtained by correcting for it in independent of at low t. Instead, both before and after ac-
the plot of AC/t vst, as shown by the second curve from the counting for the log correction term, there is a strong upturn
top in each of Figs. 1) and 11b). From the latter figure, at low temperatures although the strength of the upturn is
we infer that although subtracting this correction term fromsmaller after subtracting the influence of the log correction
the data helps to remove the zero-temperature singularity, ®rm.
singularity is still present but with reduced amplitude. This  The numerical Bethe ansatz specific heat Yata suffi-
means that additional logarithmic correction terms are im<iently accurate and precise that we can estimate the coeffi-
cients of the next two logarithmic correctiogy, g°) terms
in Eq. (46) from these data as follows. From Ed6), if we
plot the numerical data as[C(t)/(Nkgt)—(2/3)(1
" Specific Heat / 1 +3g%8)]/g* vs g at low temperatures, where ttitterm can
- ; 1 be neglected, and fit the lowestlata by a straight line, the
1 intercept forg— 0 gives the coefficient of thg* term and

FIG. 14. CoefficieniA C/t® of the expected? dependence of the

25

S-= 1./2 .AF. l_llr]iflqum Heisenperg Chgin

20

5

LAC = C - (2/3)NKk 2T/

o 15 \ - the slope gives the coefficient of tig term. This plot is
= - AC=C—C ' given in Fig. 15. This type of plot places extreme demands
ém 10 F Itg . on the accuracy of the data. Even so, we see that the data
3 - . follow the required linear behavior even at the lowest tem-
< 5t g peratures. We fitted a straight line to the data from5
! ] X 107 2% up to a maximum temperatut&® The fit param-
Qi i-azesrsnt L . eters and rms deviation held nearly constant f87=5
A AN X101 (11 data points up to t"*=5x108 (18 data
0.0001 0.001 0.01 points, but both quantities changed rapidly upon further in-
kg T/ creasingt™ The fit for t"=5x10 ¢ is shown as the

straight line in Fig. 15, along with the fit parameters. From

FIG. 13. Semilog plot vs temperatufeof the differenceAC  the parameters of the fiafter accounting for the prefactor of
=C—Cyg (@) between the Bethe ansatz numerical specific hea®/3 in Ed.(46)], we include our estimated coefficients in Eq.
C(T) data(Ref. 5 and Lukyanov's theoryRef. 6 [Cy4(T)] for  (46) explicitly as
the spinS= 1/2 antiferromagnetic uniform Heisenberg chain at low
temperatures. The error bar on each data point is an estimated un- Clt,g(T) _ 2kgT
certainty in the theory due to higher order correction terms that Nkg 3J
were not calculated. Also shown is the deviatichC=C 5/
—(2/3)NK2T/J (O) of the numerical data from th&—0 limit of L 26 ) (kB_T
C(M). S5 J

3
[1+§g3+ a,g*+asg®+0(g®)

3
[1+0(9)], (483
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FIG. 15. Plot showing the estimation of the coefficients of the
O(g* and O(g®) logarithmic correction terms in Eq46) for the
magnetic specific heat of tH&= 1/2 AF uniform Heisenberg chain.
The reduced temperaturetis kgT/J and we have sdil=kg=1.
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1.6 T T T T T T ] 1+ E Nn/tn
it n=1
15k F!t. 1.0249(2) + 2.083(7) g i PE(t)= r , (50
Fit range: 0.017 £ g £ 0.052 : N
1.4 (5x10<t<5x109 . 1+n§=‘,l D,/t
1. o i
3 where the orderg andr of the Padeapprommanﬂ?gﬁ)) are
1.2 often constrained by the behavior gf (t) at lowt, and the
| 1 fitted gapA¥; is not necessarily the same as the true gap. At
’ ] hight, x* (t) in Egs.(50) approaches the Curie law 1t)as
1of {(C)-(23)[1+(3/8)g°I/g* | required[for a general spirs lattice, the numerical prefactor

—Fit 1 1/4 in Eq.(50a8 would be replaced bg(S+1)/3].

TheN, andD,, parameters in Eq50b) are not in general
independent if one or more of the HTSE conditions in Egs.
9 (5b) and (5¢) are invoked. For example, fan=1-3 one
finds

Dl:(dl—i_Nl)_Azi(t’ (513)

%2

A7
D2=(d2+d1Nl+Nz)_A:ict(dl'f'Nl)'f'%, (51b)

a,=1.53743), as=3.12511). (48b
D3:(d3+d2Nl+le2+ N3)_A:|‘t(d2+d1N1+N2)
The influences of thesg* andg® logarithmic correction 2 o3
terms on the data in Figs. 11 and 14 are shown as the two AR - Afii (510
additional data sets in each figure, where accounting for 2 (dy Ny 6 ° G

these two terms is seen to largely remove the remaining sin-

gular behavior as—0. From Fig. 14, we can now estimate
that the coefficient of theé® term in Eq.(49) is a little larger n
than 2, contrary to the exact value 1.98478 The magni- D.— 2
tude of this difference is about as expected from &) " 5o

In general, one has

& (-ARP

m=0 p!

drNp—p-m- (52)

logarithmic correction to thé¢® term, sinceg(t~0.1)~0.1.

The remaining upturn at low temperatures in Fig. 14 is du
to residual logarithmic corrections which are not accounte

for.

If the approximate expansion f@(£) in Eq. (36) is in-
serted into Eq(48a, one obtains

A fit of experimental or theoreticg}* (t) data by Eqs(50)

an be constrained by inserting one or more of E§%) and
%2) into Eq. (50b). These constraints are especially useful
for high+ extrapolations whery* (t) data are not available
for high temperaturet>1, and/or to reduce the number of
fitting parameters required to obtain a fit of specified preci-
sion. In the following fits to the numerica* (t) data for the

_ dimer, the uniform chain, and finally our QMC and TMRG
% = ZkBT[ 3 - 9In(£) — 16a4 data for the alternating-exchange c%/ain, the three constraints
Nkg ~ 3J (2£)° (20)* in Egs.(51) onD,, D,, andDg, respectively, are enforced in
each case, whemd,, d,, andd; for the alternating-exchange
N In £[18In(£) —64a,— 9]+ 3235 Lo 1 ] chain are given in Eq(15).
(2L£)° (2L£)°8 All of the fits reported in this paper were carried out on a

400 MHz Macintosh G3(B&W) computer with 1GB of
2(3%7) (kgT\? 140 1 49 RAM. Most fits were implemented using the program
57 | J 2C) | (49 \aTHEMATICA 3.0, although a few of the simpler onéfis
to experimental dajavere done usingALEIDAGRAPH 3.08c.
The fits usinguATHEMATICA sometimes required prodigious
IV. FITS TO x*(t) AND C(1) amounts of memory, e.g., 930 MB for the 28-parameter fit to

OF HEISENBERG SPIN LATTICES the combined 2551 da’ga point QMC anql TM%(a,t)
data set for the alternating-exchange chain in Sec. V below.

A. General x*(t) fit considerations

The general expression we use to fit theoretical numerical B. Fit to x*(t) of the S=1/2 antiferromagnetic
x* (1) data forS=1/2 Heisenberg spin lattices is Heisenberg dimer

The spin gap of thé&s=1/2 Heisenberg dimer ia=J,

where J is the antiferromagnetic exchange constant within

PE(t) (503 the dimer. The spin susceptibility and its low-temperature
PR limit are given by Egs(8). The y*(t) is plotted in Fig. 1a)

*
—Ag/t

X*(t)=
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TABLE |. Fitted parameters fox* (t) of the S=1/2 antiferromagnetically coupled Heisenberg dimer
(«=0) [Egs.(50) with Af=1] and y* (t) andC(t) [Eqgs.(54)] for the uniform chain &=1). x*(t) Fit 1
for the uniform chain (0.0&£t<5) [Eqgs.(50) with Af=0] uses powers of L/only, whereasy* (t) Fit 2
(0<t=<5) [Egs.(53)] also incorporates logarithmic correction terms.

parameter x*(a=0) x*(a=1) Fit 1 x*(a=1) Fit 2 C(a=1)
N1 0.6342798982 —0.053837836 —0.240262331211 —0.018890951426
N, 0.1877696166 0.097401365 0.451187371598 0.024709724025
N3 0.03360361730 0.014467437 0.0125889356883 —0.0037086264240
N, 0.003861106893 0.0013925193 0.0357903808997 0.0030159975962
Nsg 0.0002733142974 0.00011393434 0.00801840643283—0.00037946929995
Ng 0.00182319434072 0.000042683893992
N- 0.0000533189078137
Ng 0.000184003448334
Ng1 1.423476309767
Ng, 0.341607132329
ty 5.696020642244
D, —0.1157201018 0.44616216 0.259737668789 —0.51889095143
D, 0.08705969295 0.32048245 0.581056205993 0.59657583453
D, 0.005631366688 0.13304199 0.261450372018 —0.15117343936
Dy, 0.001040886574 0.037184126 0.142680453011 0.074445241148
D5 0.00006832857434 0.0028136088 0.0572246926066 —0.0024804135233
Dsg 0.00026467628 0.0176410851952 —0.00053631174698
D, 0.00390435823809 0.00082005310111
Dg 0.000119767935536 —0.00010820401214
Dg 0.000011991365422
a; —0.000015933393
a, 0.013021564
as 0.0043275575
a, 49.422168
as 0.00040160786
ag 325.22706
for 0.02<t<4.99. In order to later obtain a continuous fit C. Fits to x*(t) of the S=1/2 antiferromagnetic
function for x* («,t) for the entire range € a<1 of the uniform Heisenberg chain

alternating-exchange chain, it is necessary to first obtain a Fijt 1: 0.01<t<5. Fits to the uniform chainy* (t) calcu-

high accuracy fit to the exact expressi@a) for the dimer  |ated by Eggert, Affleck, and Takahafor limited tempera-
by our general fitting function in Eq$50), in addition to Fit  ture regions were obtained previouélfdere we obtain a fit
1 obtained for the uniform chain below. The form of our fit (Fit 1) to the higher accuracy data of Khper and Johnstdn
function in Egs(50) allows both the low- and highlimiting for the temperature region 0.8x<5 (999 data pointsus-
forms of y* (t) for the dimer to be exactly reproduced. The ing Egs.(50), the results of which will be utilized later in the
low-t limit in Eq. (8b) requires thatr=q and thatD, fit function fort=0.01 for our QMC and TMRG alternating-
=Ng/4 in the Padeapproximanﬂ?E?)); we also takehg;=A, exchange chaiy* (a,t) data. This uniform chain fit can be
so the total number of fitting parameters ig-24. accurately extrapolated to arbitrarily high

We fitted the 498-point double-precision representation of The requirement tha¢* (t—0) is a finite non-zero value
x* (t) in Fig. 1(a) from t=0.02 tot=4.99 by Eqs(50) using  requiresAf=0 andr=qg+1 in Egs.(50). We found that
the above constraints. The variances of the four fitsgfor usingg=5 andr=6 produces a fit sufficiently accurate for
=r=4, 5, 6, and 7 were 2610 3 1.17x10°16 53 use in the fit function for our QMC and TMRG calculations
x 10" Y, and 5.6<10"%°, respectively, showing that Egs. for the alternating chain. The seveN, (n=1-5) and
(500 have the potential for very high accuracy fits with aD, (n=4-6) parameters obtained for the fit witq=5, r
relatively small number of fitting parameters. The six =6 are given in the column labeled “Fit 1” in Table I,
N, (n=1-5) andD, parameters of the fit fog,r=5 are along withD,, D,, andD3; computed from Eqgs(51). The
given in Table I, along witlD,, D,, andD; computed from Padeapproximantpggg in the fit function has no poles or
Egs.(51) andDs=Ns/4. The Padeapproximanl’PEgg in the  zeros on the positiveaxis. The deviation of the fit from the
fit function has no poles or zeros on the positivexis. The data is plotted in Fig. 16. The variance of the fit is 2.97
fit is shown by the solid curve in Fig(d), and the deviation x10 *? and the relative rms deviation of the fit from the
of the fit from the exact susceptibility in E¢8a) is plotted data in the fitted region is 14.5 ppm. Extrapolation of the fit
versust in Fig. 1(b). to higher temperatures is very accurate.
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S = 1/2 AF Heisenberg Chain modeling appropriate experimenta(T) data whose scaled
AL L upper temperature limit is belot=5.
— We initially formulated a fit function utilizing a modified
s o T Padeapproximant in which the last term of the numerator
= and/or denominator contained thef,, expansion in Eq.
_E Or - (37), such that the low-temperature expansion of the fit func-
® : tion yielded xj o4 to lowest orders irt. The best fit to the
& -5} _ data fromt=5x10"2°to 2.5(777 data pointswas unsatis-
a factory, with a variancer=2.4x10" ! and a relative rms
= 10k ] deviationo,me=45 ppm. Allowing an arbitrary? coefficient
uw in place of the exact valug3/#° yielded an improved fit
15 L with v=1.1x10"*? and o,,=9.6 ppm. However, this fit
0.01 0.1 1 10 was still unsatisfactory, given the high absolute accuracy

K_T/J (1x10°) of the data. From these results it became clear
B that a fit function which can fit the data to much higher
FIG. 16. Semilog plot vs temperatufeof the deviation of Fit 1~ @ccuracy over such a large temperature range would indeed
from the magnetic susceptibility calculations of ‘kiper and have to include an expressigif,y(t) containing logarithmic
Johnstor(Ref. 5 for the S=1/2 uniform antiferromagnetic Heisen- correction terms, but where the form and/or coefficient of
berg chain. one or more of these terms would have to be empirically
determined by trial and error. This process yielded the for-
mulation we now describe.
The X,’;g(t) function is incorporated into our fit function
in Egs.(50) as follows. As in Fit 1, the finite value gf* (0)
requiresA},=0 in Eq. (509 andr=q+1 in the Padeap-
JoroximantP (3(t) in Eq. (50b). Since the two terms highest
order in 1t in P{Y(t) (one each in the numerator and de-
nominatoy dominate the fit as—0 and become small for

t—0; this divergence cannot be fitted accurately by a finite ?‘13 relative 1o th_e ?ther tgrms in the nurr)erat%r e}nd de-

polynomial or Padepproximant. We attempted to improve nomln.ator, respectively, we mcorpqr'a;t@?é)t) into t € ?St

the accuracy of the fit over the same temperature rangl®™ in the numerator of a modifie®/(t). Trial fits

0.01=t<5 by replacing the Peicmoproximantpgg’; in the fit shpwed that to obtain the optimum accuracy of the fit re-
. (6) ST A - quiredg=8 andr=9.

function by P (7}, whlch mcorporates two additional fitting our final fit function for Fit 2 is

parameters. The variance improved somewhat to 2.18

X 10 12 and the relative rms deviation improved slightly to

The quality of Fit 1 does not approach the limitation im-
posed by the absolute accuracy of the datx (D °). For
an ideal fit, the variance is expected to .0 * and the
relative rms deviation~-0.01 ppm. As can be inferred from
Fit 2 in the following section, the reason that Fit 1 cannot b
optimized to this extent is due to thie=0 critical point and
associated logarithmic divergence in the slopeyd{t) as

7
> N,/

12.2 ppm, but the Padapproximant developed a pole at 1 1+ 2 +4Ngxiog(t)/t?
14=129.23, and hence this fit was discarded. Although the X*(t)=<— Nt . , (533
temperature at which this pole occurs is below the fitted tem- 4t N 9

perature range, as a general rule we cannot allow poles in the 1+ nzfl Dn/t")+Ng/t

fit function at low temperatures because of problems that can
occur vyhen using the fit function to mod_el experimental _data 1 1 In(L+ 3)—Ng, N,
which include data at temperatures lying below the fitted XTBg(t)Z —| 1+ - 5 + 3
temperature range of the fit function. In fact, we will encoun- m 2L (2£) (2£)
ter this situation frequently in modeling experimental data (53b)
later. For example, for Na)Ds, t=0.01 corresponds to an L=In(t, /1) (530
absolute temperatufe~7 K, whereas the experimental data 1
and modeling extend down ts2 K. subject to the three constraints &n, D,, andD5 in Egs.
Fit 2: O<t=<5. We can greatly improve the accuracy of (51) which are required by the HTSE. Two of the four loga-
the fit compared to that of Fit 1, and extend the fit+00, by  rithmic correction terms in Eq53b) are identical to the first
restricting the high-temperature limit of the fit and using intwo such terms in Eq(34a. By construction, the exact
the fit function one or more low-temperature logarithmic cor-x* (0)= 1/7? is fitted exactly.
rection terms discussed in Sec. Ill A 2. In particular, in this ~ We fitted all of the numericay* (t) data’ calculated over
section we obtain a very high precision(fit 2) to the exact the range X 10 2°<t<5 (1119 data points by Egs.(53).
t=0 value and to the calculations of Khper and Johnstdn  The 19 fitting parameters of the fit functi¢f3), which are
over the entire temperature rang& 50" 2°<t<5 ofthe cal- N, (n=1-8),D, (n=4-8), Ng;, Ng,, andt,, are given in
culations. We do not use this fit in our formulation of the fit the column labeled “Fit 2” in Table I, along witld,, D,
function for the alternating-exchange chain. However, Fit 2andD; computed from Eqe51). The data to parameter ratio
will be generally useful for evaluating the accuracy of otheris 59. The denominator of the modified Paagproximant in
theoretical calculations gf* (t) for the uniform chain, such Egq. (538 has no zeros for any real positite The fit is
as our TMRG calculations to be presented below, and foshown in the low-temperature regior<@<0.02 in Fig. 4b)
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FIG. 17. (a) Semilog plot of the absolute deviation of Fit 2 (0
<t=<4) from the magnetic susceptibility calculations of Kiper
and JohnstoriRef. 5 versus temperatur€. (b) Expanded plot of
the data in(a) at the higher temperatures.

[over the largett range plotted in Fig. @), the fit is indis-
tinguishable from the data and is therefore not plotted there
The deviation of Fit 2 from the numerical data for 19
<t<5 is plotted vs logyt in Fig. 17a), and an expanded

plot at the higher temperatures is shown in Figihl.7Due to
a logarithmic divergence ir)(r;g(t) at t=t,=5.696, Fit 2
should not be use(k.g., for modeling experimental datat
temperature$=5. The variance of the fit is 9:810" '/, and
the relative rms deviation is,,c=0.087 ppm. These values

are both much smaller than for Fit 1 above. The relatively

large number of fitting parameters in Fit 2 is justifi@ghos-
teriori by the extremely high quality of the fit over a tem-
perature range spanning 25 orders of magnitude.

D. Fit to C(t) for the S=1/2 antiferromagnetic uniform
Heisenberg chain

THERMODYNAMICS OF SPINS=1/2 ...
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multiplicative leading ordet* dependence oE(t). Even so,

in order to obtain the optimum fit to the highly accurate
Bethe ansat£(t) data® we found it necessary to take the
influence of the logarithmic corrections into account.

Our fit to the Bethe ansat€(t) data® some of which
were shown previously in Fig.(8), was carried out in two
stages. First, the data froms 0.01 to the maximum tempera-
turet=5 of the calculations were fitted by the Paajgprox-
imant (% in Eq. (50D with a prefactor 3/(16) to satisfy
the HTSE in Egs(44) to lowest order in 1/ The orderg
andr of P{) were chosen to satisfy=q+3 so thatC(t
—0)et. To obtain a fit of the required accuracsee the fit
deviations given beloywe found thatgj=6 andr =9 are of
sufficiently high order. Due to the presence of the log cor-
rections at very lowt, we did not require the paramete\g
andDg to yield the exact coefficient= 2/3 in the expression
C(t)/Nkg=vt, in a lowt expansion of the fit function. We
also found that to obtain the best fit, only the one additional
HTSE constrain{on D) in Eq. (519 (with Af=0) could
be used. It was quite difficult to find the region in parameter
space in which the absolute minimum in the variance of the
fit resided; the initial starting parameters usually flowed to
regions with local variance minima in them with much larger
values(by two to four orders of magnitugiéhan the smallest
variance we ultimately found. Then the deviation of the fit
from all the data for % 10~ ?°<t<5 was computed. The fit
deviations fort=0.01 were very small®(10 )], but the
log corrections which become most important at lower tem-
peratures resulted in fit deviations &£0.01 an order of
magnitude larger. We therefore fitted the fit deviation versus
t for 0<t=<0.1 by a separate empirically determined function
F(t), so the net fit function consists of the Paafgproximant
fit function minus the fit function to the low-it deviations.

In the final fitting cycles the two functions were refined si-
multaneously.

Our final fit function forC(t) in the range 6t<5 is

I pY () A
6
1+ > Nn/t”}
(6) _ n=1
Ploy(t)= 9 : (54b
1+ > Dn/t”}
n=1
F(t)=a tsin( 2m e l4 g te %t (540
! a,+ast 5 ’

subject to the constraint dp, in Eq. (518 which is required
by the HTSE. By construction, the exa€{0)=0 is fitted
exactly. The 20 fitting parametery, (n=1—-6), D, (n

The logarithmic corrections to the magnetic specific heat=2—9), anda, (n=1—6), are given in Table I, together
C(t) at low temperatures, discussed above in Sec. Il B 2, devith the constrained paramet®r, computed from Eq(518
not pose as serious a problem for fitting the data as fowith Af;=0 andd, given in Eq.(44b). The deviation of the
x* (1), because the strength of these log corrections is mucfit from the data is shown in a semilog plot vs temperature in

smaller forC(t) than forx* (t). In addition, since here we fit
C(t), and not the electronic specific heat coefficiext)/t,

Fig. 18. The maximum deviations of +4x 10" occur at
t~0.3. The absolute rms deviation of the fit from all the data

the influence of the log corrections is ameliorated by the(1119 data poinjs which extend over the temperature range
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_S=1/2 AF Uniform Heisenberg Chain when transformed to the forg* (5,t), must have the prop-

Specific heat: deviation of fit from data | erty dx*(8,t)/98]5-0=0 at all finite temperatures. This re-
N quirement is clearly the minimum necessary in order to ac-

] curately interpolate the fit va& for a—1 at eacht, and to
] thereby accurately model the susceptibility of materials
] which are in or near this limit. Finally, the QMC and TMRG
A calculations of y* (a,t) to be presented below are suffi-
] ciently accurate and cover sufficiently large ranges @nd
] t with sufficient resolution thativ) we require thenonana-
[ ] lytic energy gap\ (@) [see Egs(19) and(20)] to be included
-4 rms deviation = 1.34 x 10°8 ] in the fit function in order to fit the data far<1 att<1, so
| Fit Region: 5 x 1072 < kT <5 ] as to av0|q th_e alternat_e necesgty of. including high-order
-6 . L ! - . L power series ina andt in the fit function. We note that
10° 10° 10* 10° 10% 107 10° 10 according to Eq(19b) or (20), dA* (8)/ 98] 5—o=2. The ma-
K_T/J jor obstacle we faced in formulating the fit function for
B x* (a,t) was to simultaneously satisfy both requirements
FIG. 18. Semilog plot of the absolute deviation of the fit (iii) and (iv), which at first sight seem to require mutually
(10" 5<kgT/J=<5) from the specific heat calculations of Khper  exclusive forms for the fit function.

Fit Deviation (1078

and Johnstor(Ref. 5 in Fig. 8@a) versus temperatur&. The fit We found that these four requirements can all be satisfied
deviation is negligible at low temperatur€s10~%J/kg. The lines by an extension of the form of the fit function in Eq§0)
connecting the data points are guides to the eye. which was used above for the isolated dimer and for the

_ _ ~uniform chain Fit 1. This extension consists of using a modi-
5x 10 ?°<t=<5, is 1.34x10"®, and the relative rms devia- fied Padeapproximanﬂ?mgg in the fit function in place of the

tion for 0.01=t=<5 (999 data pointsis 0.50 ppm. former'pgg)). The fit function is
At high temperatures, ou€(t) fit function reduces by
construction to the lowest orderti/and 1t° terms of the e Af(a)t
HTSE of C(t) in Egs.(44), so extrapolation of ou€(t) fit X*(a,t) = ———Puig)(ab), (563

function to arbitrarily higher temperatures should be very 4t

accurate(see Fig. 18 In particular, even though our fit was )
to C(t) and hence not optimized as a fit to the electronicPm(s)(:t)

specific heat coefficient(t)/t, the magnetic entrop$ at t 6
=00 computed from ouC(t) fit function is {E N /t"| + (N7ga+ Noa®) (A% /t)YIt7
n=0
S(t:w)—fwc(t) dt=0.693147235, (55 T '
Nkg  Jo Nkgt - 69 LZO D, /t" |+ (Dgga+Dga?) (A% /1) %l ~ 2t/

which is the same as the exact value #®2693 147 181 to (56h)
within 8 parts in 18. This agreement reflects well on our fit
function, and of course also strongly confirms the high accu- 1 3
racy of the Bethe ansat2(t) data® Af(a)=1— 5@~ 2a°+ Ea?’, (560

E. Fit function for the S=1/2 AF alternating-exchange

K/ N a_ N34 14 _ 204 N2
Heisenberg chainy* (a,t) Ap(a)=(1=a)™(1+ )"+ gra(l-a)+gra™(1- )",

(560
Here we formulate a single two-dimensional,{) func-

tion to accurately fit numerical calculations gf («,t) for No=Do=1, (560
the S=1/2 alternating-exchange Heisenberg chain for the en-
tire range G=a<1, and for the entire temperature range 4
=0.01 over which our Fit 1 fox* (t) of the uniform chain is Np(a)= 2, Nyme™ (n=1-6), (56f)
most accurate, subject to four general requirements as fol- m=0
lows. (i) The HTSE of they* («,t) fit function must give the

4
correct result ta?(11%), as satisfied by the fit functions for B m B
the dimer and uniform chaitFit 1) susceptibilities above, so D”(a)_,go Dma™  (n=1=7). (569
that the fit can be accurately extrapolated to higher tempera-
tures. (i) We require thex* (a,t) fit function to become To satisfy requiremerti), D;(a), D,(a), andD3(«a) are

identical with those found above for the isolated dimer andjetermined from theN;(«), N,(«), and Ns(«) fitting pa-

for the uniform chain(Fit 1) when«=0 anda=1, respec- rameters according to the three constraints in Egs) de-
tively. As discussed above in Sec. Il C, at any finite temperamanded by the HTSE. In order to satisfy requirem@n the
ture, x* (4,t) in the variabless andt is aneven(analytioc  {N,9,D,o} parameters are set to be identical with those de-
function of §. Therefore, as a minimum accommodation oftermined above for the dimer, and we require
this fact, (iii) we require that the fit function fox* (a,t),  {N,(1),D,(1)} to be identical with the corresponding fit pa-
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rameters determined above in Fit 1 for the uniform chain. Inn each of the numerator and denominatormg; were
order to satisfy requirementii ), the Ny, and Dy coeffi-  designed to result in the form of E6LO8 in the low+ limit,
cients must satisfy with A% andt entering the prefactor only as their ratio as in
Eqg. (26), in addition to being consistent with requirements
(iii) and(iv). One might expect the fitteg and z powers to
satisfy y—z=vy=1/2 as in Eq.(10b. However, if a fit of
x* (t) data by Eq(109 is not carried out completely within
so that nos" term appears in the Taylor series expansions inhe low+ limit, an effective exponeny~1 is often inferred
& of the transformedN,(58),D,(8)}. These various con- [see, e.g., Eq(70) and subsequent discussion, and Fig. 36
straints on thg§N,,,D,m} parameters reduce the number of below]. Similarly, since many of our calculatgd («,t) data
independent fitting parameters within this set from 50 to 20sets for differentx in the fitted temperature range0.01 are
Together with the parameteh;;, N75, Ngi, Ngo, Y, Zin not, or do not contain extensive data, in the lblimit, we
Eq. (56b) andg;, g, in Eq. (560, the total number of inde- did not impose the constraigt—z=1/2. On the basis of the
pendent fitting parameters in the fit function is 28. above discussion we expect the actual fitted valugsanidz
The quantityAf;(«) in the exponential prefactor @mgg to yieldy—z~1. In fact, as will be seen in the next section,
in Eq. (563 cannot be set equal to the true nonanalytic gapour fitted parameterg andz give y—z=1.14.
A*(a), because this prefactor affects the fit at &lland
would not allow requirementiii) above to be fulfilled. In
addition, the nonanalytic critical behavior &f (¢—1) in V. QMC AND TMRG x*(a,t) CALCULATIONS AND FIT
practice only becomes manifest jif («,t) at low tempera- FOR THE S=1/2 AF ALTERNATING-EXCHANGE
turest<1. Therefore, we separated the spin gap into an ana- HEISENBERG CHAIN

. . ) : X
lytic part A (a) which goes into the argument of the expo QMC simulations of y*(a,t) were carried out onS

. . . .
nenyal _prefacto_r in Eq(_56&), and a_nonanalyt_|c parto («) =1/2 alternating-exchange chains containing 100 spins for
[satisfying requirementiv)] which is placed into the argu- ,_q o5 0.1, 0.15, . .,0.9, 0.92, 0.94, 0.96, 0.97, 0.98, and

4
2, (n=2m)(Nyy or D) =0, (57)

of Pmia) in Eq. (56b) and which therefore only becomes o blementary TMRG calculations of* (at) of S
important at low temperatures. The first two terms\df(a)  —1/2 alternating-exchange chains were carried out dor
(to orderal) in Eq. (560 are the first two terms of the exact =0.80, 0.82,..., 0.96, 0.97, 0.98, 0.99, 0.995, and 1,
dimer series expansion up f@(a_g) given by Barnes, Riera, \yhere the number of states kept was=150 or 256. The
and Tennartt for the AF alternating-exchange chain, and theca|culations were carried out for temperatures given y 1/
last two are included so thatAf(6)/d9d];-0=0, in accor-  =0.1,0.2..., (1t)™ with (1£)™*<500 increasing with
dance with requiremertfii ). The nonanalytidAg («) in Eq.  increasinga, and comprised a total of 22 37@(t) param-
(560 contains the behavior in E¢L93 proposed by Barnes, eter combinations. The details of the calculational method
Riera, and Tennant plus two analytic terms which are in- are given in Refs. 10 and 11. It should be noted that the
cluded to adjust the: dependence foie— 1 but which make TMRG calculations by their nature are explicitly in the ther-
no contribution atw=0 or «=1. Provided that the inequal- modynamic limit.
ity y,z>4/3 is satisfied by the powessandz in Eq. (56b), The reason for doing TMRG calculations for the uniform
the last term in each of the numerator and denominator ofhain (@=1) was to enable comparison of the results with
'pmgg(a,t)’ when transformed to the variables,{), has a the value3 computed with the Bethe ansatz which have a
partial derivative with respect té which is zero at9=0. high absolute accuracy of>110™°. This comparison was
We have now shown that @=0 (a=1), the partial de- done using the above very accurate and precise Fit 2 for the
rivative of each part of* (5,t) with respect tos is zero(if Eethe ansatz (r:i]ata. The .relatlve deviation of the TM:?Gfdata
y,z>4/3, which is confirmed in the actual fit lajeHence, rom Fit 2 is shown in Fig. 16, and an expanded plot for

o . — = B the higher temperature regios 0.01 is shown in Fig. 1®).
the entire it function has the properd™ (5,t)/38|,-0=0  This comparison indicates that the accuracy of the TMRG

at aII. finite temperatures, thus .satisfying_ requiremein}, _calculations for bottm= 150 and 256 in the range=0.01 is
d(isplte the fac_t that the fit _functlo_n contains the nonanalytmbetter than 0.1%, which is the same as the estifiatade
o(a) as required by requiremefiv). _ previously form=_80. However, the accuracy of these calcu-
At the lowest temperatures, the last term in each of thgations deteriorates rapidly at lowey to about 3% at the
numerator and denominator armggg in Eq. (56b) should  |owest temperatures~0.002 form= 150.
dominate the fit, together with the exponential prefactor t0 sjnce the TMRG calculations extend close to te0
Prmis) in Eq. (568, so in this limit our fit function for <« |imit for most of the above-stated values, the spin gaps can
<1 becomes be estimated from these data. Comparisons with previous
work can then be made of the dependence of the spin gap on
a. An important question, not answered yet in previous
work, is the approximater value at which the asymptotic
(58) critical region is entered upon approaching the uniform limit.
Performing these estimates and comparisons will be post-
This expression has the form of HQ0g (with y=y—2z) as  poned to the following sections. In the present section, we
required in the lowtlimit. In fact, the forms of the last term present the QMC and TMR&* («,t) data and obtain a fit to

2 y—-z
N716Y+ N72a e—AS(a)/t_

4(D81a+ Dgza’z)

Aj(a)

x*(a,t—0)= :
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FIG. 19. (a) Semilog plot vs temperatur€ of the relative de- k T/,

viation of the magnetic susceptibility of the S=1/2 antiferromag-

netic uniform spin Heisenberg chain calculated with the TMRG  FIG. 20. (a) Magnetic susceptibilityy versus temperatur€ for
technique from that calculatg@Ref. 5 using the Bethe ansatt) the spin S=1/2 antiferromagnetic (AF) alternating-exchange
Expanded plot of the data if@®) at the higher temperatures. Heisenberg chain with alternation parameterJ,/J; from O to 1,

) ) ) ) as shown. The small filled circles are a selection of the calculated
these combined data by the fit function formulated in thegmc and TMRG data, where for clarity only a small subset of the
previous section. available data are plotted. The set of curves through the data is

Some of the results far<2 are shown as the filled sym- obtained from the global two-dimensionat.t) fit function in Egs.
bols without error bars in Fig. 28) (the error bars are (56) with parameters given in Table Il. The solid curves o0
smaller than the data symbglsin expanded plot of data for and 1 are plots of the fit function for the dimer and uniform chain
t=<0.4 is shown in Fig. 2(0). [A log-log plot of the TMRG  susceptibilities, respectively, for which no data are plotted. The
x*(a,t) data at lowt is shown below in Fig. 27.Also parameted, is the larger of the two alternating exchange constants.
shown in both figures as the two bounding solid curves with(b) Expanded plot of the fit for a selection of data at low tempera-
no data points are the fits we obtained abovg*¢t) for the  tures. Error bars are plotted with the QMC data(, but are not
dimer and uniform chain(Fit 1), respectively. The data plotted in(a) because they are not visible on the scale of this figure.
points plotted for a giverx value are the subset below the
upper temperature limits of the figures, of the subset of availtemperature data to determine the spin gaps as described in
able data points which were fitted by our fit function as de-the following section.
scribed below. We fitted this y* («,t) data set by Eqs(56), with the

We fitted a combined QMC and TMR&" («,t) data set constraints on the parameters discussed above. Obtaining a
containing 2551 selected data points over the temperatuneliable 28-parameter two-dimensional fit to these data over
range 0.0%t<10. The 802 QMC data points covered the the full above-cited ranges tinda, with no poles in the fit,
ranges 0.0£t<4 and 0.05«=<0.99. The average esti- posed a very difficult challenge. The particular choice of
mated absolute accuracy of these QMC data is<1G 4. starting parameters and the detailed sequence of refinements
The best estimated accuracy among these QMC data is 7were found to be important to avoiding poles in the final fit.
%1075 and the worst is 1.810 3, with the better accura- Since there are a total of 28 parameters in the fit function for
cies occurring at the highest temperatures. The 1749 TMR@551 data points, the data to parameter ratio is 91. The num-
data points covered the ranges G0%10 and 0.&« ber of fitting parameters seems large, until it is realized that
=<0.995. We did not use all 22 370 TMRG data points in thewe are simultaneously fitting™* (t) data for 29 different
available data set, because this would have weighted the realues, so on averageyd (t) data set for a givem value is
gion <1 too heavily in the fit, and in any case a largefitted by a single parameter. A weighting function was not
fraction of these are for temperatures below our low-included during the variance minimization, because we were
temperature fitting limit oft=0.01. We used the low- interested in obtaining a fit which treated all the data points
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TABLE Il. Parameters in the fit functiofEgs.(56)] for x* (a,t) of the S= 1/2 antiferromagnetic alternating-exchange Heisenberg chain.
Note thatD, andD; are respectively of seventh and tenth ordewin

parameter m=0 m=1 m=2 m=3 m=4

Nim 0.63427990 —2.06777217 —0.70972219 489720885  —2.80783223

Nom 0.18776962 —2.84847225 5.96899688 —3.85145137 0.64055849

Nam 0.033603617 —0.757981757 4.137970390 —6.100241386 2.701116573

Nam 0.0038611069 0.5750352896 —2.3359243110 2.934083364 —1.1756629304

Nsm 0.00027331430 —0.10724895512 0.40345647304 —0.48608843641 0.18972153852

Ngm 0 0.00578123759 —0.02313572892 0.02892774508—0.01157325374

N7m 2.5987034% 107 —2.3923619% 107

Dim —0.11572010 —1.31777217 1.29027781 3.39720885 —2.80783223

Dom 0.08705969 —1.44693321 5.09401919 —10.51861382 8.97655318
5.75312680 =5) —11.83647774 {i=6) 4.21174835 1Hi=7)

Dam 0.00563137 0.65986015 —1.38069533 —0.09849603 7.54214913

—22.31810507 ©i=5)  27.60773633 (=6) —6.39966673 IH=7)
—15.69691721 ©=8)  13.37035665 ri=9) —3.15881126 f=10)

Dum 0.0010408866 0.1008789796 —0.9188446197 1.6052570070 —0.7511481272
Dsm 0.0000683286 —0.1410232710 0.6939435034 —0.9608700949 0.4106951428
Dem 0 0.0367159872 —0.1540749976 0.1982667100 —0.0806430233
D7m 0 —0.00314381636 0.01140642324 —0.01338139741 0.00511879053
Dem 1.2512467% 10 7 —1.0382452% 107

91 92 y z

0.38658545 —0.20727806 4.69918784 3.55692695

the same on an absolute scale; this choice optimizes the fihe fit function from the QMC data in thisrange is at the
for use in modeling experimental data. lowest temperaturé=0.01 for each of the four values.
The parameters of the fit are given in Table Il, where weBecause the fit deviations at this temperature remain upon
have also included the constrained parameters for completécreasing the length of the simulated chain fram 400 to
ness and for ease of implementation of our fit function by theL =800, these fit deviations are most likely due to inaccura-
reader. From Eqg51), the constrained parametdds, and  cies in the fit function, as expected at this lowest fitted tem-
D5 contain products of the third-ordéin «) polynomialAf,  perature.
with itself and/or with the fourth-orde, fitting polynomial, For compounds showing spin-Peierls or other types of
soD, and D5 are of seventh and tenth-order, respectively.second-order spin dimerization transitions, it is more appro-
The two-dimensional fit is shown as the set of solid curves irpriate to scaley by 1/J andT by J, whereJ is the average of
Fig. 20. The variance of the fit s=3.77x10 8. The abso- J; andJ,, in which case the appropriate alternation param-
lute rms deviation\/aw 1.9x 104 is about the same as the eter is§ rather thana. It is straightforward to convert our
average estimated accuracy of the QMC data noted abovg?* (a,t) fit function to the formy* (8,t), wheret=KkgT/J,

indicating that the fit function is appropriate and that the fit issing Eq.(161). We have done this and plot the (5,t) fit
a reliable representation of the data. The fit deviations fromynction versus temperature for a seriesdofalues in Fig.
the 802 QMC and 1749 TMRG data are shown separately 'Qs(a). An appealing monotonic progressionﬁ(a,t_) with

Figs. 212 and 21b), respectively. A comparison of the two increasingd is seen in Fig. 2@); an expanded plot at lower

figures shows that the TMRG data are, on average, signifi- . - . )
cantly more precise at a given temperature. temperatures is shown in Fig. @3. This formulation of the

After the parameters in the preseqt (a,t) fit function fit function allows accurate estimates to be made of the

were finalized, as a check on the accuracy of the fit functior;temperature—dependent spin gap in compounds exhibiting

. e . spin-dimerization transitions, provided that the nearest
for a values close to the uniform limit, we carried out QMC ~". - : ;

. . : . : neighborS=1/2 AF alternating-exchange Heisenberg model
x™ (t) simulations for alternating-exchange chains of length . h An il . £ th q d
L =400 and 800, factors of four and eight longer than the> appropriate 1o t em. An | ustrqtlon of the procedure an

. S ) ) the results to be gained will be given later when we model
chains for which QMC data were combined with TMRG datathe (T) data for NaO
to determine the fit function, respectively. The simulations X 5
were carried out forr=0.98, 0.985, 0.99, and 0.995 at tem-
peratures 0.0%t<4. Overall, the fit function was found to
be in extremely good agreement with the QMC data. For
0.4<t=<4, the y*(«,t) fit function agreed with the simula- According to Eq(110), if highly precisex* (t) data in the
tion data to within about-5x 10" ° or better. The deviations low-t limit are available, the spin gap* can in principle be
of the fit function from the data for 0.64t<0.4 are shown computed directly from the derivative of these data with re-
in Fig. 22, along with the error bars on the QMC data. Asspect to inverse temperature. However, in general the maxi-

can be seen from the figure, the only significant deviation oimum temperature of the lowlimit region is ill defined since

VI. SPIN GAP FROM TMRG x*(a,t)
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kBT/J1 magnetic susceptibilityy* versus temperatur@ for the spinS

=1/2 antiferromagnetic(AF) alternating-exchange Heisenberg
FIG. 21. Deviation in absolute units of the fit function for the chain, fromL=400 (@) andL =800 (open squargsQMC data for
magnetic susceptibilityy* versus temperaturd for the spinS a=0.98, 0.985, 0.99 and 0.995. The only significant deviation is at
=1/2 antiferromagnetic(AF) alternating-exchange Heisenberg the lowest temperaturé=0.01)/kg. The fit function is given in
chain, with alternation parameter=J,/J; from 0.05 to 0.995, Egs.(56) with the parameters in Table II.
from the QMC datda) and TMRG datdb). The parametel; is the
larger of the two alternating exchange constants. The absolute rms Lo to A*

o . . o ) 5 as t—0, as illustrated in Fig. 2%) for «
deviations of the respective data from the fit are given in the figures. 0.8. Eor thi h il not ®
The fit function is given in Eqs(56) with the parameters in Table = =~ orthis among other reasons, we will not use (&6
m to extract the spin gaps from our TMRE" («,t) data. On

the other hand, we need to know whether such behavior is
ﬁépected, since it could co_nceivably arise f_rom systematic
accuracy to whichA* is to be determined. Therefore, in errors in the TMR? calculations. Therefore, in the next sec-
practice one could define a temperature-dependent effectiiP" We study thedgq(a,t) expected at low temperatures for
spin gapA%; from Eq. (110 as the alternatlng-exchangg chaln.. As pa_rt of this .study,.we for-

mulate and discuss the fit function which we will use in Sec.
VI B to extractA* (a) from our TMRG x* («,t) data at low

it depends on how precise and accurate the data are and t

*
% (t)= — aIn(x* \t) (59  temperatures.
eff a1y
and then try to ascertaid* from the extrapolated zero- A. Effective spin gap Agy(A*,t)
temperature limit\* =lim,_ oA *((t). Using Eq.(11b) would for the alternating-exchange chain

be less desirable and precise because a fit of this type typi- From our definition ofA%; in Eq. (59), a discussion of
cally averages\z(t) over a rather large temperature range.how this quantity varies with at low t requires an indepen-

An overview of AZ(a,t) determined from our TMRG dent estimate of* (a,t) for the alternating-exchange chain,
x* (a,t) data for 0.8<a=<0.995 using Eq(59) is shown in  which must include at least the leading order correction to
Fig. 24@). At the lowest temperatures, and far not too  the lowt limit in Egs. (10). As a first attempt, we used the
close to 1, theA¥4(«a,t) data do approach a constant value general expression foy* (t) in Egs.(7), which requires as
with decreasing, confirming the applicability of Eq910) input the one-magnon dispersion relatiotk) for the alter-
and prior assumptions and hence E(sl) and (59 to the  nating chain. For this we used the explieitA*,k) for O
alternating chain, and the approximate valuead{«a) can <a<1 in Eqgs.(23) that we presented and discussed previ-
be estimated from the figure. Closer inspection reveals thausly. The resultany* (t) is plotted for eleverA* values in

A¥«(a,t) shows a weak maximum before decreasing byFig. 25a), where the results are designated %) in the
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T FIG. 24. (a) Overview of the effective spin gapgi(a,t) vs
B temperature for the S=1/2 AF alternating-exchange Heisenberg

chain, derived from our TMRG* («,t) data using the definition in
Eq. (59), where a=J,/J, is the alternation parametetb) Ex-
gpanded plot ofA%4(t) for «=0.8 at low temperatures froi(a).

FIG. 23. (a) Magnetic susceptibilityy versus temperatur€ for
the spinS=1/2 antiferromagnetic alternating-exchange Heisenber
chain with values of alternation paramet&from 0 to 1 as shown,

where y is scaled by 17 and T by J in contrast to Fig. 20. The ]
parameterd=J,/(1+ 8) is the average of the two exchange con- Note that we make no assumptions here about the form of

stantsJ; andJ, alternating along the chairib) Expanded plot at

low temperatures. Thes;e_*(é,t_) plots were generated using our
two-dimensionaly* («,t) fit function which was converted to the

variables §,t) using Eq.(16b).
figure. Althoughy* M(A* t) is exact in both the low- and

the functionA* («), since onlyA* appears in the expres-
sion. Thisy* ?)(A*t) is exact in both the low- and high-
limits, as isy* M (A*,t), and both reproducg* (t) for the
isolated dimer A*=1) exactly, buty* ?)(A* t) is more
accurate at intermediate temperaturesdet1 as shown in
Fig. 25b). In addition, by comparingy* ®(A*,t) and

high+ limits, the results are only qualitatively correct at in- *(2)(A* t) with the TMRG x* (a,t) calculations at lowt,
termediate temperatures, as can be seen by comparing Fige found that the lowt-corrections to the love-limit in Egs.

25(a) with the QMC and TMRG data and fit in Fig. 20.
Troyer, Tsunetsugu, and Wa>! obtained a very good fit of
x*D(A* 1) to QMC x*(t) simulation data over a large
temperature range for the=1/2 two-leg Heisenberg ladder
with spatially isotropic exchange; however, they assumed
e(A* k) in the fit function which was later found to be in-
accurate over much of the Brillouin zone.

We formulated an approximatiofdesignated ag* (?)]
which is more accurate in the low-temperature range, an
which we will use in the next section as a fit function to fit
our TMRG x* (t) data at lowt to extractA* («). The func-

tion x*(?) was obtained by summing the susceptibilities of

isolated dimers with a distribution of singlet-triplet energy
gaps given by our one-parameter dispersion
e(A* k) for 0<A*<1 in Egs.(23), which takes into ac-
count the interdimer interactions. Thus from H&a we
simply obtain

f dk
03+ es(A* Kt

m

1
*(2) A* —
XA )= —

(60)

(10) are much more accurately given ky (®)(t) than by
x* M(t). We will therefore not discusg* (Y)(t) further here.

At low temperatures, the approximatioqt (2(A* t) is
expected to accurately describe the leading-otdeorrec-
flons to the low limit only as long as the average number of
magnond,, occupying a state near the minimum in the one-

magnon band is much less than unity. Using the expression

fpr the boson occupation number for this case,

1

nm: * ’
eA It_ 1

(61)

relation

yields t/A*=0.22 and 0.42 fon,,=0.01 and 0.1, respec-
tively. Thus, when fitting our low-TMRG x*(«a,t) data by
the fit functiony* 2 (A*,t) in the following section, we ex-
pect xy* ?)(A* t) to be sufficiently accurate only fdr A*
=0.4. For this reason, our fits will be limited to this maxi-
mum scaled temperature.
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FIG. 25. Magnetic susceptibilitieg®) (a) and x{® (b) vs tem-
perature T for the spin S=1/2 antiferromagnetic alternating-

exchange Heisenberg chain, calculated using two different approx'\;\,here N

mations fory* (t), respectively(see text Note the different scales
for the ordinates irfa) and (b).

We have computed «(A*,T)/A from x*@(A* 1) in
Eq. (60), using the definition in Eq59), and plot the results
vs kgT/A in Fig. 26. For the dimer4* =1), one finds ana-
lytically that A 4(T)/A=1—-2kgT/A to lowest order inT.

1.03 S = 1/2 AF Alternating-Exchange Chain

1.02F A/J1=0.8\ ]
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FIG. 26. Effective spin gap ., defined in Eq(59) and com-
puted using Eq(60), vs reduced temperatukg T/A=t/A* for the
S=1/2 antiferromagnetic alternating-exchange Heisenberg chai
for various values ofA* =A/J;, wheret=kgT/J;. A limiting be-
havior is seen fon* — 0, for which the maximum i\ .#(kgT/A)
occurs atkgT/A=~0.14. The linear inT behavior of A 4(kgT/A
—0) for the isolated dimer4* =1) is due to the identically zero
width of the one-magnon dispersion relation for thi§ value.

On the other hand, for€A* <1, the initial dependence is
positive and quadratic i, and a maximum is seen in
Aw(T)/A, which for A*<0.4 occurs att/A*=kgT/A
~0.14 with a height of=0.5%. This height is quantitatively
consistent with the data in Fig. @) derived from the
TMRG yx*(t) for «=0.8. Thus the weak maximum seen in
that figure is not a spurious effect.

B. Fits to the lowt TMRG x* (a,t) data

We were tempted to fi\34(«,t) derived from the lowt-
TMRG x*(a,t) data, as discussed above, to obtain the spin
gaps A*(a,t). However, this procedure would have
weighted they* («,t) data in an ill advised way. We there-
fore decided to do conventional fits of the ldw* (a,t)
data by the fit functionc* (?)(A*,t) in Eq. (60). For a given
a, this is a one-parameten() fit function and the fits are
therefore stringent tests of both the appropriateness of the fit
function and the precision and accuracy of the data. Because
the temperature dependence of the accuracy of the calcula-
tions is unknown except for the uniform chain dé&ae Fig.

19), we assumed that all data for a givenin a given fitted
temperature range have the same accuracy. Thus in the non-
linear least-squares fits for eaehwe minimized the square

of the relative rms deviation of the fit from the data

N

1 & @) —x*(t)1?
Np iZl [x* (1)1

, (62

2 _
Orms™

p is the number of data points fitted, which was
usually between 250 and 1500.

Due to the presence of the spin gap in the exponential
of the fit function, o, IS extremely sensitive to the precise
value of A* when lowi fits are carried out. For example,
close to the optimunA* fit value, a change id* by only
0.0001 (~0.1%) can change s by up to~300%. Thus a
few percent accuracy in theg* (t) data at lowt is sufficient
to allow A* to be determined for a given fit to a precision
better than 0.0001. For a givem, the obtainedA* was
found to be insensitive, typically to withis0.0002, to the
range of the fit, as long as the maximum fitted temperature
satisfiedt/A* <0.4, consistent with the above discussion of
the boson occupation number. This lack of sensitivity of the
value of the fittedA* to the precise fit range demonstrated
that the fit functiony* (®)(t) is an appropriate one. Depend-
ing on thea value and the range of the fit,o s was typi-
cally between 0.1% and several percent.

The A*(a) values obtained from the fits are listed in
Table lll, together with the estimated accuracies in parenthe-
ses. Note that a quoted accuracy is associated with variations
in A* in fits to a specific set of data for a given over
various temperature ranges as discussed above, and does not
include possible systematic errors due to, e.g., the finite fixed
pumber of states kept in the TMRG calculations. Also in-
cluded in Table Il are literature date’°85?which will be
compared with the present results in the next section. Log-
log plots of the lowt data and fits are shown in Fig. 27,
where on the scale of this figure, for mastvalues the data
and fit are identicalcannot be distinguishédvithin the fit-
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TABLE IlI. Spin gapsA*(8)=A(6)/J andA* («@)=A(«)/J; for the S=1/2 antiferromagnetic alternating-exchange Heisenberg chain
as determined usin§=0 DMRG calculations by Uhrigt al.[A* () andA* y(«)] (Ref. 62, by Barnes, Riera, and Tenndmt* gr(5) |
using multiprecision method®Ref. 53, by Augieret al.[A* o(5)] (Ref. 58, and by us[A_*pW( 6) andA*,,(«a)] in the present workpw)
from our TMRG x* («,t) data as described in the text. Twovalues are given foar=0.995 in the present work: the firdarge) value is
for the number of states kept in the calculatioms=150 att<0.004533, whereas the secofsmalley value is form=256 att
>0.004533. The\* («) data of Barnes, Riera, and Tennant are given in Table IV. Additional literature data include those of Letdavac
obtained using a Green'’s function Monte Carlo technique on rings of 6 to 200 @&fis57: A* () = 0.181%5) (6=0.04), 0.21561)
(0.05, 0.30%1) (0.08, and 0.3608L) (0.10.

g a A*y(9) A% gry(5) A* A(0) A*0u(6) A% y(a) A* (@)

0.0025063 0.995 0.0268 0.02673)
0.02481) 0.02441)

0.004 0.99203 0.046) 0.0462)
0.0050251 0.99 0.0402 0.04022)
0.006 0.98807 0.038) 0.0582)
0.008 0.98413 0.068%0) 0.0682)
0.01 0.98020 0.078%0) 0.0782)
0.010101 0.98 0.0662) 0.066G2)
0.015228 0.97 0.0902) 0.08872)
0.02 0.96078 0.1213) 0.1192)
0.020408 0.96 0.1118) 0.10944)
0.03 0.94175 0.1559) 0.1269 0.15(12)
0.030928 0.94 0.15@8) 0.14613)
0.035 0.1485
0.04 0.92308 0.1882) 0.1686 0.18(12)
0.041667 0.92 0.1878) 0.179%3)
0.045 0.1871
0.05 0.90476 0.2188) 0.2049 0.208)
0.052632 0.9 0.222) 0.22193) 0.21083)
0.06 0.88679 0.248%) 0.2383 0.23®)
0.063830 0.88 0.25%2) 0.24042)
0.07 0.86916 0.2770Q) 0.2592)
0.075269 0.86 0.2883) 0.2685%3)
0.08 0.85185 0.3048) 0.2822)
0.086957 0.84 0.3213) 0.29562)
0.09 0.83486 0.3319) 0.3052)
0.098901 0.82 0.3533) 0.32172)
0.1 0.81818 0.3583) 0.3262)
0.11 0.80180 0.3842) 0.3462)
0.11111 0.8 0.3860) 0.38522) 0.34672)
0.12 0.78571 0.409%) 0.3662)
0.14 0.75439 0.4589) 0.4032)
0.16 0.72414 0.5066) 0.4372)
0.17647 0.7 0.54468)
0.18 0.69492 0.5530) 0.4691)
0.2 0.66667 0.5981) 0.498514)
0.25 0.6 0.706620)
0.33333 0.5 0.8766369)
0.4 0.42857 1.0052) 0.7181)
0.42857 0.4 1.05865914
0.53846 0.3 1.256683488
0.6 0.25 1.363(M) 0.851948)
0.66667 0.2 1.475349990
0.7 0.17647 1.5302) 0.900247)
0.8 0.11111 1.6917) 0.9398%6)
0.81818 0.1 1.720507887
0.85 0.081081 1.770%) 0.957016)

0.9 0.052632 1.848m) 0.97265%6)
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FIG. 27. Log-log plots of reduced magnetic susceptibiljtly/ é
E)(JllNgz,ué vs reduced temperatute=kgT/J, (solid curveg for - - -
spin S=1/2 antiferromagnetic alternating-exchange Heisenberg
chains with alternation parametesis=J,/J; shown in the figure, 0.3 N ]
calculated using TMRG. The corresponding fits to the lower tem- s
perature datdkgT/A(a)=<0.4] by Eg. (60) are shown as the [ 2 5%4
dashed curves, which are extrapolated to lower and higher tempera- — 0.2 | £ s
tures in the figure. The discontinuity in the data and fit fer ] [ >
=0.995 att~0.0043 is due to an increase with increasiray that - / ©
t in the number of states kept in the calculations from 150 to 256. 0.1 L » ]
The spin gapA* (a)=A(«)/J; found from the fits are given in ) 1
Table IlI. [ o (b) ]
ted temperature range. Extrapolations of the fits to higher 08.00 0.02 004 006 008 0.10
and lower temperatures are also shown for comparison with )
the data.

FIG. 28. (a) Spin gapA/J vs alternation parametet for the S
=1/2 antiferromagnetic alternating-exchange Heisenberg chain.
Our data @) were determined by fitting our TMRG* (t) data by
Eq. (60) and are shown along with data of Barnes, Riera, and Ten-
nant(Ref. 53 (filled squarey Uhrig et al. (Ref. 62 (O), Ladavac
A. Spin gap et al. (Ref. 57 (open squargs and Augieret al. (Ref. 58 (open
— . . » diamonds. The solid curve is the functiofRef. 53 A/J=25%* (b)

Our A* (6) spin gap data determined by fitting our g,nanded plot of the data and curve(@ for 5<0.1. Error bars for
TMRG x*(t) data by Eq(60) are plotted in Fig. 2&) (®),  the data are not shown ife), but are shown inb) for all data
along with the results of previous workets"***listed in  gycept for those of Augieet al.

Table lll. The solid curve is the function* =25%* in Eq.

(19b) proposed by Barnes, Riera, and Tenn@RT).>® The  spin gap data for 08 @=<0.995 to within the respective er-
overall behavior of the data in Fig. @8 is well described by  ror bars. To formulate a more flexible expression, we modify
this function, but significant deviations of the data from theBRTs' formula to read

curve occur as illustrated in the expanded plot #s%0.1 in
Fig. 28b). The error bars are included with each plotted data
point in Fig. 28b), except for the data of Ref. 58 which were
not available, but they are all small and not clearly seen. Our .
values for6=<0.1 are significantly smaller than those of Uh- So thed-dependent powey is

VIl. COMPARISONS OF THE CALCULATIONS
WITH PREVIOUS WORK

F(@)sﬁzzsm, (639

rig et al,%? where the differences are far outside the com- In[A(5)/2]]
bined limits of error, and are larger than those of Augier T Y (63b
et al>® n

__As will be seen explicitly in Sec. VIIIC below, our The numerical prefactor “2” in Eq(63a must be retained
x*(4,1) fit function allows §(T) to be determined for real in order to reproduce the exasst (6=1)=2. Shown in Fig.
materials by using the fit function to model experimental29(a) is a semilog plot ofy versusé for the same numerical
x(T) data. However, if one would like to determine the spindata as in Fig. 28. This plgand Fig. 2%b) below] explicitly
gapA(T) from the derivedS(T), an expression is needed for shows, from BRTs’ data, that the exponent deviates signifi-
A(8) over the entire range€€5<1 in order to be generally cantly from the value 3/4 even fo6<1. The plot also
useful and applicable. At present, the only extant expressionlearly differentiates the various numerical data for snaall

is that of BRT in Eqs(19). As seen in Fig. 28 and in Table by the different groups, and shows that one of our two data
IV below, this expression is only an approximation that fitspoints from the TMRG ford=0.0025(the one derived from
neither BRTS'A* () data for 0.k a=<0.9 nor our TMRG m=256 data at high) is not in agreement with the trend of
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TABLE IV. Prefactora and spin-gap\ describing the low-temperature spin susceptibility in &) of
the S=1/2 alternating chain with alternation parametefand §=(1— a)/(1+ «), see Eqs(13)]. Fit pa-
rameters given by BulaevskiRef. 7) (ag, Ag ryp) that he obtained by fitting to his lowx* (t) calculations
using Eq.(70) are shown. We obtained the actual spin gap valligsl; in Bulaevskii's theory by numeri-
cally solving Egs.(65) and (66). Also included are the accurate calculations of the spin &ggr/J; by
Barnes, Riera, and TennafRef. 53, which are compared with numerical values of their approximate form
A(a)lI~(1—a)¥ 1+ )Y [Eq. (193].

@ 5 ag Agri/d; Agldy Agrt/d; (1— a)¥(1+ o)V
0.0 1 1 1 1 1 1

0.1 0.81818 0.980 0.995 0.946245 0.946279339 0.94630
0.2 0.66667 0.873 0.954 0.884911 0.885209996 0.88535
0.3 0.53846 0.733 0.897 0.815791 0.8168442y5 0.81716

0.4 0.42857 0.582 0.818 0.738504 0.741063%1 0.74156

05 0.33333 0.427 0.720 0.652443 0.6574B77 0.65804

0.6 0.25 0.346 0.617 0.556661 0.565¢06 0.56569

0.7 0.17647 0.224 0.484 0.449626 0.4698 0.46286

0.8 0.11111 0.138 0.345 0.328631 0.3@54 0.34641

0.9 0.05263 0.076 0.193 0.186319 0.2098 0.20878

1.0 0 0 0 0

the remainder of our data. This data point will not be in-

cluded in the plot and fit to be discussed in the next para- S = 1/2 Alternating-Exchange Chain Spin Gap
graph. 0.78 ke ]
Our y(0) data at small are in agreement with both the 7= [ °o ]
magnitude and trend of BRTs’ data at largefThey(5) for € 076f <><><> ]
these two data sets from Fig.(@9 with the exception of one - : . »Beduspoce n N nme)
of our two data points fo=0.0025 just noted above, are i 0.74F, o = *° e°° ]
plotted together on an expanded vertical scale in Figh)29 - [ o
where a rather smooth behavior p{s) is seen over the g 0.72p¢ o ]
combined range of the two calculations 0.062%< 1. With g 0.70 a 3 ]
the behavior in Fig. 2®) in mind, we formulated a five- g 5 @
parameter fit function for these two combing(¥) data sets = 068l ¢ (@ 1
that yields the correct limita* (6—0)=0 andA*(5—1) N S T T S
=2, with the property lig_oy(8) = const, given by 6 S5 4 3 -2 A 0
In(3)
In 5 In 6 T T T L S s T T
y(8)=y(1)+nstan —In
ma % 0.750
(aV}
it I’?lnﬁ (In&) (630 I
nytantf| —In 0 >
2 m; |\ m, 3 0.745
{ =]
An unweighted fit of this expression to all the data in Fig. >
29(b) yielded the parameters € 0.740
o
y(1)=0.74922, n,;=0.00776, n,=—0.00685, §- -
% 0.735
m1:3.3297, m2:_2.2114, (63d) (4 i s svwmmuar s o pmmunsa s sz nmpgy |
6 5 4 B 2 0
so that In(5)
lim y(8)=y(1)—n;+n,=0.7346. (64) FIG. 29. (a) Semilog plot vs alternation parametér of the
-0 exponenty=1In(A/2J)/In §in the expressioh/J=2 & for the spin

_ . - gap A of the S=1/2 antiferromagnetic alternating-exchange
The fit is plotted as the solid curve in Fig. @, As can be Heisenberg chain. The data and symbol references are the same as

seen from the figure, our data are fitted to within our error, . ;
o ’ . o, in Fig. 28. Each data point has an attached error bar except for those
bars. In addition, when thg(6) fit function in Egs.(630 9 P P

o ) . of Augier et al. (Ref. 58 (open diamonds (b) Expanded view of
and(63d is inserted into Eq(633), the predicted values of ,y(s) data @) and those derived from the numerical spin gap
A* () are in agreement with each of the values of BRT atdata of Barnes, Riera and TennaRef. 53 (filled square along
larger § to within 0.0001, which is sufficient for modeling with the fit in Egs.(63¢) and(63d) to the two combined/() data

experimental data. Thé=0 limit of y(5) in Eq. (64) isin  sets(solid curve.
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Spin Gap gt 1
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0.1t i > Symbols: Lanczos Calculations
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FIG. 30. Spin gap\/J vs 6%¥|In 8”2 obtained from the data in
Fig. 28. The straight line passes through the origin with slope 3.3.
agreement with the theoreticakffective value y(0) ﬁg
=0.723), which was obtained without the log correction -
term by Singh and Weihorigjfrom an eleventh-order dimer S
series expansion of the triplet dispersion relation. We will =
use Eqs(63) to computeA(T) from the experimentally de- 3
rived 8(T) for NaV,0s in Sec. VIII C below. L o
In order to test the critical behavior prediction*
=A6%%In §Y? in Eq. (20), which need only hold in the

asymptotic critical regim&— 0 in contrast to the fit function
for 0=<6<1 in Egs. (63), in Fig. 30 is plottedA/J vs
5%"%|In 8*2in the regiond=<0.06 for the same data and sym-
bols as in Fig. 28. A proportionality appears to be developing
in our data for6=0.005, as shown by the straight line with
slope A= 3.3 passing through the origin of the figure, sug-

gesting that the asymptotic critical regime begins with de- “(symbol3, calculated by Barnes and Rief@ef. 9 using the Lanc-
creasmg 6 below 6~0.005 (@=0.99). High-accuracy zos technique. Ouy* (t) fit function as in Fig. 2dsolid curves$ for

A*(5) data for§<0.001 are needed to test this conjecture.the samea values is shown for comparisoth) Deviation of the
From Fig. 30, the slope 3.3 of the line drawn is evidently agata of Barnes and Riera from our fit function Ts

lower limit of the prefactorA within the actual asymptotic
critical regime.

1.0
ke T/,

FIG. 31. (a) Magnetic susceptibilityy versus temperatur€ for
the spinS=1/2 antiferromagnetic alternating-exchange Heisenberg
chain with alternation parameter=0.2, 0.4, 0.6, 0.7, and 0.8

C. Bulaevskii theory

Bulaevskil calculatedy* (t) analytically in the Hartree-
Fock approximation. He first obtained an integral equation
Barnes and Riera previously carried out exact diagonalfor the magnon spectrur(k):
izations of Hamiltoniar(14) for S=1/2 alternating chains of

B. Numerical x* (a,t) results

length up to 16 spins using the Lanczos techniyjdéeir Ek) 1

computedy* (t) values fora=0.2, 0.4, 0.6, 0.7, and 0.8 e(k)=——=5 V1+a®—2acosk

were extrapolated to the bulk limit and the results are shown !

as the symbols in Fig. 34). Our fit function as in Fig. 20 for _

the samex values is plotted as the solid curves in Fig(@1 + Cat aCy (aCyt Cp)cosk , (65)
which are seen to be in good overall agreement with the V1+a®—2a cosk

calculations of Barnes and Riera. The deviations of the data

of Barnes and Riera from our fit function are plotted vs tem- 1—acosk (k)
perature in Fig. 3(b). The average deviation of their data Ci(t)= —f dk anh TR

from our fit function is very small for each data set: V1+a?—2a cosk

~0.41, +0.33, —0.40, —0.26, and+0.79x10* for « (66)
=0.2, 0.4, 0.6, 0.7, and 0.8, respectively. The absolute rms C(t) = _f dk—2 ?—a cosk tanr's(k)
deviations o,y Of their data from our fit function fora V14 a?—2a cosk 2t

=0.2, 0.4, 0.6, 0.7, and 0.8 afi@ units of 10 %) 1.73, 1.43,

0.73, 0.78, and 3.76, respectively. We conclude that theiwherek is measured in units of 2/d. d=1 is the lattice
data are in good quantitative agreement with our data and fitepeat distance along the chain, which is twice the average
with the exception of their data point fagk=0.8 at their distance between spins. He then expresged) in terms of
lowest temperaturé=0.05. e(k):
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FIG. 32. Dispersion relationg(k) at temperaturel=0 from
Bulaevskii's theory(Ref. 7 in Egs.(65) and (68) for ten values of

the alternation parameter. The inset shows an expanded plot near
k=0 of E(k) for «=0.9.

. F(t)
S TR

(67)
dk

1

2mt

w

F(t)=

At t=0 anda#0, from Eqs.(66) we obtain

da
1(6!)—* (1+a) m +(1*a)K (1+a)
_ 1 da 108
CZ(a)_; (1+01)Em —(l—a)K (1+C¥) ]

where Kfy) and Efy) are, respectively, the complete elliptic
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FIG. 33. (a) Energy gapA versus alternation parameter for
the S=1/2 alternating chain, as calculated by Barnes, Riera, and
Tennant(Ref. 53 (@) and by us using the theory of Bulaevskii
(Ref. 7) (solid curve. The dashed curve is a plot &f versusa
given in EQ.(19a. The values ofA obtained by BulaevskiiRef. 7)
by fitting his numerical calculations of(T) for 0.033<kgT/J;
=<0.25 according to Eq(70) are shown as the open squarés.
Wave vectorkg, at which the minimum spin gap occurs in the
magnon dispersion relation &t=0, vs alternation parameter.

=0.3, but the agreement becomes progressively worse as

increases further. From Eq&5) and(66), E(k) is tempera-

ture dependent. In addition, in the range Gs®<1 for
whichkg# 0 att=0, we find thaks depends on, as shown

integrals of the first and second kinds. The dispersion rela—

tions versusa at t=0 are obtained by inserting Eq&8)
into (65) and a selection of results is shown in Fig. 32. From
Eqgs.(65) and(68), att=0 the spin-gap\—o(«@) atk=0 is
given by

{H

This expression gives the actual spin-gap for £<0.79.
However, for 0.7 a<1, the minimum in the dispersion
relation does not occur &= 0, as illustrated in an expanded
plot of E(K) for «=0.9 in the inset to Fig. 32. The wave
vectorkg at which the minimum spin gafsg occurs is plot-
ted versusy in Fig. 33b). The Az from Bulaevskii's theory
att=0 is plotted versusr as the solid curve in Fig. 38),

4o
(1+a)?

l1-a

2

2(1—a)
T

Ay—ola)= (69)

0.020 —
0.015¢ .
<5 0.010] ]

0.005

0.000 +
0. OO

0.15

0.10
kgTH,

0.05

and a few representative values are given in Table IV. The FIG. 34. The temperaturedependence of the wave vectgy at

predictions of Bulaevskii's theory are in very good agree-
ment with those of Barnes, Riera, and Tennaror o

which the spin-gap occurs in the triplet magnon dispersion relation
(65), for five values of the alternation parameter
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FIG. 35. Magnetic susceptibilityy versus temperaturg@ for
0.001= @=<0.99 as predicted by the theory of BulaevgREef. 7) in
Egs.(65-(67).

in Fig. 34. From Fig. 34kg—0 att~0.083, 0.122, 0.131,
0.125, and 0.111 for=0.8, 0.85, 0.9, 0.95, and 0.99, re-
spectively.

We computedy* (t) by insertinge(k) in Eqg. (65 into

D. C. JOHNSTONet al.
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I 0.001
6 0.1
0.2
X :
Y 0.7
= '8.3
3 2r 0.95
= 0.99
0 -
-2 1
0 -8 -6 4 -2 0
In(t)

FIG. 36. Log-log plot ofy* (t)e" ' at low t versus reduced
temperature for 0.00l<a<0.99 [see Eq.(118] as predicted by
the theory of Bulaevski{Ref. 7) in Egs. (65)—(67).

carried out completely within the lowdimit. This issue is
discussed in more detail below.

Equation (70) together with Bulaevskii's table of
{ag(@),Agri(a)/J,} values were subsequently used exten-
sively in the analysis of experimentg(T) data for com-
pounds exhibiting spin-Peierls transitions to determine the
alternation parameter at low temperature$<T_ where the
experimental spin-gap is nearly independenToHowever,
from Table IV and Fig. 3@), the Agry(a) values of
Bulaevskil are in generally poor agreement with the actual
spin gapsAg(«) of his theory and with thos@Aggr(«@)]
calculated for the same values by Barnes, Riera, and
Tennant? Therefore, one should consider the r param-

Egs. (66), numerically solving the latter two simultaneous ters as fitting parameters only, with no direct relation to the

equations forC; and C, at eacht, and then inserting the
resultinge (k) into Egs.(67). The progression of* (t) with

increasinga from 0.001 to 0.99 is shown in Fig. 35. As
noted by Bulaevskif,the values ofy* at the maxima are too

actual spin gap.

According to Eqg.(8a) for x*(t) of the isolated dimer
which is a zero-dimensional spin system, the formy6{t)
in Eq. (70) with y=1 is correct fora=0 andt—0. On the

large and the temperatures at which these occur are too sm&finer hand, for one-dimensional spin systems such as the

by ~5-10%(compare Fig. 35 with Fig. 20

At low temperatures 0.033t<1/4, Bulaevskii fitted
x*(a,t), calculated from Eqs(67), by the two-parameter
form

a(a)

*(at)= — g~ Ma)(I1t),
X" (a,t) I

(70)

and obtained values @iz andAg g /J; for 0= a=<0.9 which
are reproduced in Table IVAgri(a)/J; is plotted as the
open squares in Fig. 8. Note that the temperature expo-
nent in the prefactor to the exponentialys-1, contrary to
the y=1/2 in Eq.(10b) which is expected in the lowdimit

two-leg spin laddefand the alternating-exchange chaat
temperatureskgT<<A and kgT<<one-magnon bandwidth,
Egs. (10) apply, with y=1/2, assuming that the triplet one-
magnon dispersion relatioR(k) is parabolic at the mini-
mum. In this case one expects- 1/2 at sufficiently lowt for
any finite . Thus, in the temperature region of validity of
Eqg. (103, a plot of the left-hand-side of Eq11g vs Int
should give a straight line with slope y. Shown in Fig. 36
are such plots, obtained using ouf («,t) calculated from
Bulaevskii's theory as described above, far=0.001 to
0.99. Fora=0.001, a crossover is clearly evident frop
=1 to y=1/2 with decreasing. The other curves also ex-
hibit signs of a crossover, with~1/2 at the lowest tempera-
tures, with the exception of the curve far=0.8. For thisa

for any 1D S=1/2 Heisenberg spin system with a spin gapvalue, which is just above the value~0.79 at whichkg
(and with a nondegenerate one-magnon band with a pardecomes nonzero &t 0 [see Fig. 38)], the y at the lowest

bolic minimum). We have confirmed that over the tempera-

ture range fitted by Bulaevskii, one indeed obtajns1 for
the best fit of Eq(70) to numerical calculations of* (a,t).
We infer that the discrepancy between Bulaevskiys 1

t is intermediate between the values of 1/2 and 1, and the
assumption of a parabolic form fd& (k) at the band mini-
mum is evidently not satisfie@see Fig. 32 In fact, Troyer,

Tsunetsugu, and Wiz>! calculated the low-limit of y* (t)

and the expected/=1/2 arises because the fits were notfor 1D systems with general dispersion relatiotk) = A*
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S = 1/2 AF Alternating-Exchange Chain VIII. MAGNETIC SUSCEPTIBILITY OF NaV ,05

0.20} PR 1 Crystals of N@.ggs(3)V20s.00(6) Were grown at the Max-
Planck-Institut fu Festkoperforschung, Stuttgart, in a Pt
crucible in flowing Ar atmosphere by a self-flux method
from a 5:1:1 mixture of NaVvV@, V,0;, and \,L0s.”* The
flux was dissolved by boiling the solidified melt in distilled
water. X-ray powder diffraction patterns collected with a
STOE diffractometer yielded the lattice parameteas
=11.3187(8) A, b=3.6111(3) A, andc=4.8007(5) A.
Chemical analyses on two independent representative
samples of the batch were performed with a standard AAS
analysis technique for V and Pt and ICP emission spectros-
copy for the Na content. The oxygen content was determined
kg T/, by measuring with IR spectroscopy the amount of CO gen-
- - - . ] erated when the sample is fused in a graphite crucible at
e 2700°C in vacua Platinum impurities above the level of
sensitivity of the analysi§500 ppm with respect to Mcould
not be detected.

At Ames Laboratory, single crystals of Nal; were
grown out of the ternary melf Powders of \JOs and V,04
were prepared by oxidizing and reducing NHD5 at 600 °C
and 900 °C, respectively. The resulting®% is reacted with
Na,CO; at 550°C yielding NavV@. About 10 grams of
NaVvVQO;, V,0s5, and WL,O; in the molar ratio 32:1:1 were

A . placed in a Pt crucible and sealed in an evacuated quartz
0-08_00 005 010 015 020 025 030 tube. The melt was then slowly cooled from 800 to 660 °C
over 50 h and the remaining liquid was decanted. Small
amounts of solidified melt remaining on the crystals were
dissolved with hot water. Typical dimensions of the ribbon-

FIG. 37. (a) Magnetic susceptibilityy versus temperatur€ for shaped crystals grown in this manner are >0155
alternating chains withv=0.2, 0.4, 0.6, 0.8, 0.9, and 0.980lid X 11 mn? with the ¢ axis perpendicular to the plane of the
curves generated using oux*(at) fit function as in Fig. 20.  yiphon, theb axis along the length of the ribbon and the

These are compared with the predictions of the theory of Bulaevski(l:lxis along the width of the ribbon, with lattice parameters
(Ref. 7 (corresponding dashed curye&) Expanded plots at lowWw a~11.303 A,b~3.611 A, andc~4.752 A. The crystal de-

from (@. noted as AL1 has a mass of 8.2 mg and approximate planar
dimensions 1.%2.5 mnt.

The magnetic susceptibility(T)=M(T)/H of the crys-
+c*|kaj", wherek is the deviation of the wave vector from tals was measured using Quantum Design SQUID magneto-
that at the band minimum. They found the same formmeters at Stuttgart and Ames. The measurements on eight
x* (t)=(A,/t")exp(—A*/t) as for the parabolic case=2, crystals of NayOs in Stuttgart were carried out in a field
but wherey=1—(1/n). Thus, e.g.,y=2/3 and 3/4 forn H=1 T along the V ladde¢tb) axis direction in various tem-
=3 and 4, respectively. This range gfis consistent with  perature ranges between 2 and 750 K. Measurements of the
the slope of the data at the lowest temperaturesf60.8 in  anisotropy ofy(T) along thea, b, andc axis directions were

015} .71
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Fig. 36. carried out from 2 to 300 K in Ames on crystal AL1
The predictions of Bulaevskii's theory fog* (t) from =2T.
Fig. 35 are compared with oy* («,t) fit function (solid The results for two of the crystals up to 750 K are shown

curves for «=0.2, 0.4, 0.6, 0.8, and 0.9@s in Fig. 20 in in Fig. 38. The data illustrate the variabilities we have ob-
Fig. 37, where the Bulaevskii prediction for each of these served between measurements along the same axis on differ-
values is shown as the corresponding dashed curve. The disnt crystals. Above-50 K, the two data sets are nearly par-
agreement between the two calculations becomes progreaHel, with the difference between them being3—4
sively more severe as temperature decreases and as the uri10~° cm®/mol; we have no explanation for this difference,
form chain limit is approached with increasiag Therefore, and no comments have been made in the literature about
the accuracies of the andJ; values previously extracted such variabilities and/or their origins jp(T) along the same
from experimental data at low for compounds withe<1 axis in different crystals that we are aware of. The data from
using Bulaevskii's theory are unclear. Ogf (a,t) fit func-  T,~33-34 K up to 300 K are in approximate agreement
tion now provides a much more accurate and reliable meansith the single crystal data of Isobe, Kagumi, and Ueda
of extracting exchange constants and spin gaps from experiaken in thisT range along the same axis =5 T.”* A
mental y(T) data. variable Curie-Weiss-like contributiop®V(T) to x(T) oc-
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FIG. 38. Magnetic susceptibility in a fieldH=1 T parallel to ~ 90r HIl b \ﬁoooogzsiii22222333333'"-
the V chains b axig versus temperatur@ for two crystals of g I Hll a 00222:322332. oo —
NaV,Os as indicated. The solid curve is a “Fit” of the data by the o~ 40 " nH e
theoretical prediction for th&=1/2 uniform Heisenberg chain with g -
parameters in E(76). UE: 30 4
curs below~20 K which is attributed to paramagnetic de- ; 20 8
fects, impurities, inclusions and/or intergrowths in the crys-  S% -
tals. The “Fit” shown in the figure will be discussed later in L 10 .
= Hll ¢
Sec. VIII B. 5 (b) |
The experimental data are analyzed with the general ex- o—_ .
pression 0 50 100 150 200 250 300
_ T (K)
x(T)=xo+x“M(T) +x*PT), (713 _ N _
FIG. 39. (a) Magnetic susceptibility versus temperaturgin a
Xo=x%"+ x\V, (71  field H=2 T parallel H||b) and perpendicular{||a, H||c) to the
V chains in Na\tOs crystal AL1. (b) The data in(a) corrected for
C. the respective Curie-Weiss contributiogs"= Ciy,/(T— 6) attrib-
cwW, Ty _—imp . . ”
x (T)= T—o (710 uted to paramagnetic defects or impurities.
' Ng? Mé —(KgT perimentally examine the anisotropy #T) of NaV,0g and
xPNT)=— X*(T), (710 its implications in the next section.

where xq is the sum of a temperature independent and
(nearly) isotropic orbital diamagnetic core contribution and a
usually anisotropic and temperature independent orbital The magnetic susceptibilities of Na®@s crystal AL1
paramagnetic Van Vleck contribution. We estimgf@©us-  along thea, b, andc axes are plotted vs temperature in Fig.
ing the values-5, —7, —4, and—12x 10" cm®/mol for ~ 39(a), where thea and c axes are perpendicular to the V
Na™!, V4 V'S5 and O2, respectively? yielding the iso- ~ chains which run along thle axis, and thec axis is perpen-
tropic value dicular to the trellis layers that the V chain/ladders reside in.
The data are similar to the anisotropi€T) data reported by
Isobe, Kagami, and Ued4,although the anisotropies we
measure at both room temperature and at low temperatures
are somewhat larger than they reported. The anisotropies at
The second term in E¢713 is the above-noted Curie-Weiss |ow temperatures are seen more clearly if the respective im-
impurity and/or defect contribution and the last term is thepurity term y©"(T) in Eq. (710 is subtracted from each data
intrinsic spin susceptibility, each of which may or may not set, as shown in Fig. 38). The impurity Curie constare;y,

be anisotropic. For a Heisenberg spin systginjs isotropic, and Weiss temperaturé for each direction of the applied
and therefore so ig*"" apart from anisotropy in thg factor.  field were determined by the requirement tly&T) become

The impurity Curie-Weiss terg®"(T) can be anisotropic if independent off for T—0. The fitted values O, Were

the impurities are defects or intergrowths in the crystalsfound to be slightly anisotropic and are given in Table VI
which have atomic coordination principal axes which arebelow. The values o€y, are equivalent to the contribution
fixed with respect to the crystal axes rather than being ranef only 0.07 mol% ofS=1/2 impurities withg=2; if the
domly oriented. We model oyy(T) data according to Eq. impurity spin is actually greater than 1/2, the concentration
(713 in terms of they* (t) in Eq. (71d), which are(fit func-  of paramagnetic impurities could be much less than this es-
tions to theoretical susceptibility calculations presented intimate. From a comparison of Figs.@9and 33b), x“(T)
previous sections. Before moving on to do that, we first exis seen to make a negligible contribution to the measured

A. Anisotropy of the magnetic susceptibility

x°ore=—7.8X 10*5L. (718
mol NaV,Os
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10— One can make rather strong general statements about the

L A% s RIS SO magnetic susceptibility anisotropies and their temperature
~ 8 e i dependences as follows. Defining the Van Vleck susceptibil-
e ity anisotropyA x%=x»" — x5’ and similarly the spin sus-
‘YE 6 Ay, NaV O ceptibility anisotropy A xgfg™= x2""— x#", from Egs. (71)
o ’ 275 one obtains an expression for the anisotrapy,s(T) for a
‘?D 4l Crystal AL1 | spin system in which the only anisotropy 4i"" arises from
- i Ay H=2T anisotropy in they factor, given by
=
< 2t ab cenrrgen . Nu2(d? — o2

3e00%% e e peasse sestyge ‘“"u"o..."“ Iu’B(ga g ) e kBT
F ~ AXa,g(T):AXX\ﬁ/JF—J 2 X*(T . (74

0 50 10 150 200 250 300 The reduced spin susceptibiliﬁ(t_) is necessarily positive,
T (K) and it is isotropic for a Heisenberg spin system as noted

e WV w w ;

FIG. 40. Temperatur& dependences of the intrinsic anisotropy above. Thus, ify," and Xp and thereforeAXaB are inde-
differencesA x4 (e8=ac, bc, ab) in the magnetic susceptibili- pendent of temperature, the SIO@A%MB(T)/.&T must have
ties along thea, b, andc axes in NayOs, as defined in Eq(73. ~ he Same sign as the differengg— g . As discussed in the
These data were obtained from the respective differences betwedlXt subsection, for Na)Ds, this difference has been re-
the three pairs of data sets in Fig.(BP ported to be positive foeg=ac andbc and near zero for

aB=ab, consistent with the slopes in Fig. 40. However, in a
x(T) above~100 K. Since in the presence of a spin galos.imple'ionic 'crystallilne electric field model and with a po;i—
YP"=0 at the lowest temperatures, from E6&L) and Fig. tive splg\-/orblt coqplmg parameter for V one wo-ulq predict
39(b) we obtain that ay, should increase with the negative deviatiorggf
from the free electron valug=2. Thus, a particularly vis-
ible and puzzling discrepancy is that since—(g,)~(2
—0p)<(2—g.) according to the reported, values below,
on this basis one strongly expegt$’ ~ xy ' <x¢" ; thus two
w . c of the threey " values should be about the same anthller
Xa —20.0<107° —— (T<To). (72 than the third one. Qualitatively contrary to this expectation,
for T<T, we observe in Eq(72) that yy ' ~xp > xo" .

From Fig. 39b), the anisotropies of(T) are seen to be We will not emphasize or further discuss these puzzling
quite temperature dependent upon heating throdgh discrepancies with expectation with respect to their possible
=33.4 K. These results are surprising, becay®¥' is ex-  influence on our theoretical modeling of oy{T) data in
pected to be isotropi@part from the small anisotropy due to Secs. VIII B and VIII C, since at present there is no way to
the anisotropig facton, with y>*"(T—0)=0 because of the model, e.g., a temperature dependent Van Vleck susceptibil-
spin gap, and the anisotropic’V values are expected to be ity which changes rapidly nedr., but the anisotropic sus-
temperature independent for obi= 1/2 system over the tem- ceptibility results and the above discussion should be kept in
perature range of our measurements. Thus one expects th@nd. In the following two subsections the reported anisotro-
difference x,(T) — x4(T) (a, B=a, b, c) to be nearly in- pies in theg factor as measured using electron spin reso-
dependent of temperature compared with the magnitude dfance(ESR) and in the Van Vleck susceptibility as deduced
either, where a subscript refers to the crystallographic axi§om nuclear magnetic resonan@¢MR) measurements will

cm cm
W _ ~5 wW_ -5
Xo =187x10°° ——, x{V=13.3x10°° —,

along which the magnetic field is applied. be discussed, respectively, in light of our anisotrop(d@)
To be more quantitative, we define the anisotropy in thedata.
intrinsic susceptibility as Anisotropy in the g factor from ESRIany ESR measure-

o o ments have recently been reported for Nay.2>"6~8Each
Axap(M=[Xa=Xa ITM—[xg—xp 1(T), (73  study found a signal witig=~2 which was attributed to bulk
V species, and thg values found in the various studies were

which eliminates extrinsic anisotropy in the Curie-Weiss M- & same within the errors, 4.,

purity contribution from the values calculated from the ex-
perimentgl data..For example, according to this definition, 0,=0,=1.9722), ¢.=1.93§82). (75
Axac(T) is the difference between the uppermost and low-

ermost data sets in Fig. @9. The threeA y,4(T) anisotro- The powder-average value isg= \/(gaz+ gzb+ gcz)/3

pies are plotted in Fig. 40. It seems to us that the only rea=1.9612). Theg values were found to be independenflof
sonable explanation for the strong temperature-dependedbwn to 20 K, which is belowl .. From all these measure-
anisotropies in Fig. 40 for two of the three data sets is thaments, there is no indication that tH&=1/2 Heisenberg

one or more of the(ZV susceptibilities is strongly tempera- Hamiltonian is not appropriate to the spin system in
ture dependent nedr,, contrary to our initial expectations. NaV,Os. Unfortunately, given the sensitivity of the ESR
Such a temperature dependence may be associated with tteehnique, we cannot be certain that these ESR results are
crystallographic and charge-ordering transitions which occurepresentative of the bulk spin species in N@¥, because

at or near the same temperature as the spin dimerization trane quantitative measurements of the concentration of spin
sition, as discussed in the Introduction. species observed in these measurements were reported. Al-
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though the(uncalibrateg ESR intensity versus temperature yes of~44 and 4& 10~ ° cm®/mol for the two crystals in
measurements approximately mirror the bulk susceptibilityrjg 38 respectively. We therefore proceeded to try to fit the

behavior in mostbut not al) of these studies, it is still pos- data by the uniform chain model. The “Fit,” shown as the
sible that the signal arises from a minority spin species that i§o|id curve in Fig. 38, is a plot of Iéq(s?l) Wit,h ¥* (1) being

coupled to the bulk spin system. An interesting related issu - . i .
which has not been discussed in the literature is why th?hhg ;L;?;?np;tte”rlgy of the uniform chaifit 2 abovg and with

presumed bullsS=1/2 species in Na)Os are observable to
low temperaturesT <0.03)/kg by ESR, where the AF ex-

change constant i9/kg~580 K (see below;, whereas the Yo=8X 10—5ﬁ’ Cinp=0,
bulk Cu"2 spins 1/2 in the highF, cuprates are not observ- | P
able by ESR up to 1100 K, which i0.7J/kg whereJ/kg (76)
~1600 K is only a factor of 2.8 largér. J .
In Ref. 21 the authors estimated th¥" values using the 9=1.972, k—B=580 K (“Fit” ).

reported anisotropig values obtained from ESR measure-
ments, obtainingyy’ = xy ' =2.4x10"° cm®mol and xy”  This “Fit” is not really a fit, since we just set thg and J
=6.6x 10 cn’/mol, which were stated to be in agreementvalues to those estimated above and thenygeso that the
with the values from theilK-x analysis discussed in the calculated curve is in the vicinity of the data, because no
following subsection. These values do not agree withDur small change in the parameters can bring the theory in agree-
=0 values in EQ(72). In addition, from thex"" values of  ment with the data. It is clear that adjusting further will
Ohama etal,”® one obtains Axgy=Axey =42 notimprove the agreement, nor will including a nonzero im-
X 10"° cm®/mol, which are similar in magnitude but oppo- purity Curie constan€;,,. However, the shapes of the curve
site in sign to our data in Eq72). If the strong change in  and the data are similar, so the agreement can be improved
each of Ay,. and Ay, below T in Fig. 40 is due to a considerablynot shown by simultaneously decreasing to
respectiveAXX\B’ which is strongly temperature dependent in ~ — 10x 10~ ° cm® mol, which is not possible physically ac-
this temperature range, an effect similar to that reported teording to Eqs(71) because it would require the Van Vleck
occur from NMR measurements discussed in the next sulsusceptibility to be negative, and increasg the unphysi-
section, it is hard to understand why this change is not reeally large value of~2.4, while keeping] constant. These
flected in a distinct change in the reported temperature deesults are in disagreement with the conclusion of Isobe and
pendent anisotropy of thg values atT, if these g-value  Ueda who found that the Bonner-Fisher predictiditted
measurements are recording the characteristics of the butkeir powder susceptibility data from 50 to 700 K very well
phase. assumingg= 223 We can only note that thejy(T) data have
Anisotropy in the Van Vleck susceptibility from NMR not been quantitatively reproduced in either theif or oth-
From a so-calleK-y analysis using NMR paramagnetic ers’ subsequent measurements on Nay/ including ours,
nuclear resonance shif(T) data, combined withy(T) and that the Bonner-Fisher prediction is not accurate at tem-
measurements, under certain assumptigi$ can be ob- peratures below-J/(4kg)~ 145 K as discussed in the Intro-
tained ifK is proportional toy, with T as an implicit param- duction.
eter. In this way "V values have been obtained by Ohama Lohmannet al.”” and Hembergeet al.”® also previously
and coworkers for Na)Os using #Na (Ref. 8) and ®*v concluded that the(T) of NaV,Os is not describedbelow
(Ref. 2) NMR measurements on the same aligned powdeR50 K) by the prediction for theS=1/2 Heisenberg chain,
sample. The former ?Na study yielded yy'=23 based on their fits by the Bonner-Fisher predictitm their
x107°% cm®/mol below T, and 16<10 ° cm®/mol above x(T) deduced from ESR measurements up to 650 K. They
T., corresponding to a decrease ok Z0™° cm®/mol atT.. suggested that additional exchange couplings may be re-
Their low temperature value is quite similar to our value inquired to explain the observeg(T). We consider this pos-
Eq. (72). sibility here by modeling the influence of possible interchain
The % NMR study?! carried out aboveT,, yielded spin coupling. Because there are no accurate and generally
Xg‘/:z(l)x 10~ ° cm®/mol, roughly an order of magnitude applicable numerical calculations for this case that we are
smaller than obtained in the authors’ first stidp comment aware of, we utilize the following simple molecular field
was made about this discrepancynd in addition gave theory(MFT) prediction for the spin susceptibilfty*
x2V=1(1)x10"% cm?/mol and xY'=4(1)x10"°cm®/
mol. These values are significantly smaller than our values. 1 1 ')
We note that & -y analysis on thel® V** compound VQ *(1) s 10 5 (77)
yielded yVV=6.5x 10"° cm’/mol & X Achai

where x3.i{t) is the reduced spin susceptibility of the iso-
lated quantunS=1/2 uniform Heisenberg chaifour Fit 2

Turning now to the experimentg(T) data in Fig. 38, we abovg. The parametez’ is the effective number of spins on
haveT™®~ 370 K. Assuming the validity of the Hamiltonian other chains to which a spin in a given chain is coupled with
(1), Eq. (309 for the uniform Heisenberg chain yields the effective(or averaggexchange constadt. To be consistent
exchange constail/kg~580 K. Then theg, value in Eq.  with our sign convention for the intrachain exchange con-
(75) and oury, values afT=0 in Table VI below, together stantJ, J' is positive for AF interactions and negative for
with Egs. (31) and (70), predict that the measuregd™ ferromagnetiqdFM) interactions. Equatio(78) is very accu-
~40x10~° cm®/mol, which is similar to the measured val- rate whenz'J’/J|<1.4

B. Modeling the susceptibility of Na\,O5 above T,
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TABLE V. Fit parameters for the magnetic susceptibility of two analysis are consistent with the dispersion relations deduced
NaV,Os crystals according to E¢71) with C;,,=0,g=1.972and  from the neutron scattering data.

the spin susceptibility*"" given by the molecular field theory ex-  An alternative and/or additional mechanism which can
pression(77) for coupled quantumS=1/2 uniform Heisenberg produce a strong deviation of the measusgd) of a uni-
chains. form chain compound from that predicted for Heisenberg
uniform and alternating chains is the spin-phonon
Xo interaction>*~5684-86At Jow T this interaction can lead to a
(10_5ﬁ) J/Kkg spin-Peierls transition and can strongly modif¢T) above
crystal mol (K) z'3'13 T, from that expected for the Heisenberg ch¥in® Sandvik,
e aan s amp o a1 Camphalcaied o delale QUC ivesin
E106E -0.1(2) 592(1) -1.232)

tions were modified by the presence of dynamicplantum
mechanicaldispersionless Einstein phonaotidor particular
] ~values of the spin-phonon coupling constant and phonon fre-
~We fitted they(T) data above 50 K fqr the two crystals in quency, they found that the effective exchange constant
Fig. 38 by Eqs(71) and(77), where we fixedy,=1.972 and  gecreases strongly with increasiigand atT=0 is about
Cimp=0 and allowedy,, J and the product’J’ to vary. 27394 larger than the bard Perhaps surprisingly, they
Very good fits were obtained, for which the fitting param- found however that if the barg factor is reduced by=7%
eters are given in Table V. The fits are plotted as the solidynq the barel by ~18% in the y*(t) predicted for the
curves in Fig. 41. For the parameters of the two crystal§yeisenberg model, this model was then in good agreement
taken together, the fitted/ky=584(9) K is the same as de- yith their QMC simulations for temperatures abotg. A
duced above580 K) from the temperature of the maximum recent important extensive study of many finite-temperature
in x(T), and the fittedyo=1.4(16)x10"° cm’/mol is simi-  properties of the same model using QMC simulations was
lar to our results at low temperatures in Fig (39 A mod-  carried out by Kiine and L'ov.%® They found that for not too
erately large and negativi&M) interchain couplingz’J’/J ow temperatures, the susceptibilities for various Einstein
=—1.26(5) was obtained. This coupling is sufficiently phonon frequencies and spin-phonon coupling constants can
strong that long-range magnetic ordering might be expectedy| pe scaled onto a universal curve, given by that for the
but which is not observed, possibly due to magnetic frustrayniform Heisenberg chain, using only a suitably defined ef-
tion effects. If the present mean-field interchain couplingfective exchange constadts>J. Contrary to the result of
analysis is correct, this interchain coupling should be evidengef, 54, they found that a rescaling of thefactor was not
in the magnon dispersior_1 relations observable by ine|aStiﬁecessary. Our experimental results for N@y are not con-
magnetic neutron scattering measurements. Indeed, mod&jistent with either of these theoretical studies, because as
ately strong dispersions of 1.4 meV in each of two bandgjiscussed below Eq76) above, to force-fit the Heisenberg
perpendicular gg_the chains have in fact been observed byhain (T) prediction onto the data requires an unphysically
Yosihamaet al°” in such measurements on single crystals. 'tlarge negative value of,, as well as an unphysically large
remains to be seen whether the magnitude and sign of thg.rease ing.
interchain exchange coupling that we infer in the mean-field o, the other hand, our observg€T) does not agree with
the Heisenberg chain mode@tlith a temperature-independent

L J), and in the next section we simultaneously model the data

S50 , EO83EF - both above and belowW, within the context of the Heisen-

. F I berg chain model with a temperature-dependenthere we

© 40 find that J(T) aboveT, is very similar in form to that de-
mE duced in the calculations of Refs. 54 and 56. Thus it may be
g 30 MFT Fits the case that the spin-phonon interaction is indeed important

© 50-750 K to determiningy(T) in NaV,0s, but where the effects on
e 20 1 x(T) are somewhat different than calculated in the models.
= | NaVv,O, Crystals 1 In particular, the theoretical predictions may be substantially
10 H=1T parallel to V chains modified if phonon spectrg app_ropriate to re_al ma_terials were
r to be used in the calculations instead of dispersionless Ein-

%0 100 200 300 400 500 600 700 BOO  Se" Phonons.

T (K)
C. Simultaneous modeling of the susceptibility of NayOg
FIG. 41. Fits of the magnetic susceptibilityvs temperaturd below and aboveT,

from 50 K to 750 K for the two crystals in Fig. 38 by Eq1) with . . .
Cimp=0, §=1.972 and the spin susceptibility*™" given by the Previous modeling of(T) of NaV,0Os to extract the spin

molecular field theoryMFT) prediction(77) for coupled quantum 92P has usually been done at the lowest temperatures without
S=1/2 uniform Heisenber chains. The fits are shown as the solidéference to the magnitude gf aboveT,. Here we utilize
curves and the fit parameters are given in Table V. The fits overla@Uur fit to the x*(t) for the Heisenberg chain to extragt

the data so they are difficult to see; consequently they have beedbOVET from the experimental data. Clearly, since the mea-
extrapolated to higher and lower temperatures to show where thesured x(T) aboveT. cannot be modeled within this frame-
are. work using a temperature-independérats shown in the pre-
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TABLE VI. Fitted parameters in Eq9.71), using thex* (a,t) fit function (50) for the alternating-
exchange chain, obtained by fitting ty€T) data in the range 2—20 K for nine crystals of N&®¢, for an
assumedy factor of 1.972. If an arror bar is not given fa(¢0), this value isJ(50 K) which was determined
from a single data point near 50 K. The spin gef®) is not a fitted parameter, but is rather computed from
the fitted alternation parameté(0) using Eqs(63). Similarly, the alternation paramete(0) is computed
from 6(0) using Eq.(14b). Note that all three measurements for crystal AL1 were carried out in a field of 2
T, whereas all the other crystals were measured in a field of 1 T.

Xo Cimp

(10,5 @) (1 3 mf"_K) —0  J(0)/kg A(0)/kg
Crystal mol mol (K) (K) 5(0) a(0) (K)
E082E 6.824) 1.1235) 0.461) 7104) 0.02872) 0.94424) 101.110)
E083B 4.569) 0.81(1) 0.305) 6543) 0.03273) 0.93666) 102.613)
EO83EF 11.2) 1.1%1) 0.434) 7232 0.02794) 0.94588) 100.814)
E083G 6.583) 1.1123) 0.451) 688 0.0298l) 0.94212) 100.12)
E083H 4.243) 0.7803) 0.331) 650 0.033%2) 0.93574) 102.95)
E083l 4.186) 0.9447) 0.322) 657 0.032¢4) 0.93638) 103.39)
E097A 5.923) 0.1703) 0.254) 5892 0.03892) 0.92514) 104.66)
E106E 5.678) 0.1348) 0.311) 6622) 0.03325 0.93589) 104.813)
ALl (H||a) 12.226) 0.2217) 0.466) 5981) 0.03663) 0.92946) 101.58)
AL1 (H||b) 10.946) 0.24Q7) 0.466) 6071) 0.03523) 0.932@6) 100.48)
AL1 (H||c) 5.497) 0.2988) 0.757) 6351) 0.03374) 0.93487) 101.19)

vious section, it follows that if we are to remain within this J(T) or J(50 K), the(T) is computed using our fit function
framework,J, which is then evidently an effective exchange Y (8.1) for the alternating-exchange chain by finding the

constant incorporating additional physics of the material; 7
must be temperature dependent. Then wiffi) fixed, we oot for 4, at each data point temperatureof

derive theT-dependent spin gafp(T) and exchange alterna-
tion parameters(T) near and belowT, directly from the Xgp‘“(T)z
measuredy(T) data, which has not, to our knowledge, been
carried out before for any system showing a spin-

dimerization transition, using ow™ («,t) fit function for the cedure in steps 1-5, the spin gAST) is computed from

alternating chain. . : . .
The specific procedure we adopted for modeling theﬁ(T) determined in step 5 using an independently known

xb(T) measurement on each crystal consists of the foIIowinéunCt'_SnA* (5)EA,(5)/,J and ourJ(T) orq(50 K). We used
six steps, where we fixeg,=1.972 in steps 3-5. our A*(6) fit function in Eq;.(63) for this purpose.

(1) The x(T) from 2 to 10 K is fitted by Eqs(72), setting . We measureg,(T) for nine different crystgls from four
¥P"=0 because of the presence of the spin gap, thereb9'ffere”t bgtchgs of Na)Os and now presentllllustrauve re-
obtaining the parametefg,, Cipp, and . sglts pbtamed in each of the above model_lng steps 2 to 4

(2) Using theseyo, Cimp, andf parameters, we solve for (final iteration, 5 and 6 for three representative crystals. We

J(T) for T=60 K, or for T=50 K only, using our “Fit 1" will follow in graphical form the data modeling through suc-
\ ’ cessive steps for these three crystals to show how differences

function for X*(_t) of the Heisenberg chain, which is one ;, one ronerty between the crystals may or may not propa-
end-point function of oury*(4,t) fit function, and fit the  gate through the next stés of the analysis, but we present
resultingJ(T) by a polynomial inT for extrapolation below  the fitting parameters for all of the crystals in Table VI.

T.; we used the extrapolation functial(T)=J(0)+aT? The measureg(T) data below 50 K for the three crystals
+bT3, are shown in Fig. 4@), where the fits below 20 K in step 4

(3) With this J(T), or usingJ(50 K) only, we fittedx(T)  are shown as the solid curves with parameters in Table VI.
from 2 to 20 K, now includingy*"{T) for the alternating-  Crystals E097A and AL1 are seen to have much lower levels
exchange chaifi.e., using our alternating chajg* (5,t) fit of paramagnetic impurities than EO83EF, as reflected in the
function] assuming al-independent (andA), and obtain a  impurity Curie constant, i.e., the magnitude of the impurity
new set ofyq, Cinp, @and@ parametersin addition to5(0)]. Curie-Weiss upturn at low. By subtracting they, and im-

(4) Steps 2 and 3 are repeated until convergence ipurity Curie-Weiss terms from the data, the spin susceptibil-
achieved, which takes in practice only one additional iteraity xP'(T) is obtained for each crystal as shown in Fig.
tion. Note that we implicitly assume thgh, Cin,, andgare  42(b). These data show good consistency befbwfor the
independent oT, i.e., that the transitidis) at T, do not affect three crystals, despite the differences in fhevalues, the
them. magnitudes of the Curie-Weiss impurity term and in the

(5) The experimentally determined molar spin susceptibil-y(T) aboveT.. The J(T) determined for the three crystals
ity x*P"(T) is now computed by inserting the fingh, Cin,,  in Step 2 are shown up to 300 K in Fig. 43is found to
and ¢ fit parameters into Eq(71a. Then using the fitted decrease by-10-20% upon increasingfrom 60 to 300 K,

keT
"Jp(T)

NAggﬂzB —
Jp(T)

. (78

(6) In a separate step not associated with the fitting pro-
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curves are polynomial fits to the data between 60 and 150 K for the
respective samples, which are extrapolated +00 as shown.

] arise from differences in, e.g., the types of measurements
i which are used to determinde(0) and in the different analy-
ses of those data, rather than from differ&{0) values in

(b) ] the samples. The variability iA(0) between the crystals in

0 I ol W Fig. 44(a), compared with the lack of much variability in
0 10 20 30 40 50 A(0) in Fig. 44b), evidently arises becaugemust be com-
T (K) bined withJ to obtainA, and the variations in the first two
FIG. 42. (a) Magnetic susceptibilityy versus temperatur€ for i i i
three crystals of NayOs in the low-T regime near the dimerization 0.041 ' ' ' ' ' ' ]
transition temperaturd@ ~33-34 K. The crystal symbol designa- w NaV,O, Crystals ]
tions are EOS3EF@®), E097A (O), AL1 (filled squares The solid e i 275 ]
curves are fits to the data below 20 K by Ed@la), where the spin GE’ 0.03., 5
gap is assumed independent if and have been extrapolated to s
higher temperaturegb) Magnetic spin susceptibility*P"(T), ob- & .
tained from the data ifia) by subtracting xo+ Cimp/(T—6)] ap- 5 0.02 ]
propriate to each crystal according to E@l3. - i
g 0.01¢
which whenT is scaled byJ is similar to the fractional de- = [
crease predicted by Sandwét al®* due to the spin-phonon 0.00 L— . . . . . .
interaction. It is noteworthy that crystal EO83EF, with by far 15 20 25 30 35 40 45 50
the highest level of paramagnetic defects and/or impurities,
also has the larges{T) and the largest change dwith T. 120
Figures 44a) and 44b) show the spin dimerization pa-
rameter 5(T) and spin gapA(T) determined for each of 100
the three crystals in the final modeling steps 5 and 6, 80-
respectively. Several features of these data are of note. First, < I
there is a rather large variation in the dimerization para- T 80
meter, 5(0)=0.028-0.040, between the three crystals, de- ‘g

spite the fact thafl .=33-34 K is nearly the same for the
different crystals; the most impure crystal EO83EF has the
smallest5(0), asmight have been expected. Despite this
variability, theses(0) values are all significantly smaller
than the three values reported for various samples by differ-
ent groups as determined using different techniques, which
are listed in Table VII along with other related
information?227:33:36.37.4057.76-79.8187-8y the other hand,

40

20 " (b)

0 |

15 20

25

T30 35 40 45 50

T (K)

) FIG. 44. Alternation parametef (a) and spin gap\ (b) versus
the corresponding range af(0)/kg=103(2) K for the three  temperaturel below 50 K for the three crystals of Na®@s in Fig.
crystals is fractionally much smaller than that &f0). We 42, The nonzeros and A above the transition temperature
infer that some of the discrepancies betweenif@) values ~33-34 K are presumed to arise from spin dimerization fluctua-
in Table VII reported for NaYOs by different groups may tions and concurrent spin gap fluctuations, respectively.
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TABLE VII. Exchange constani, spin gapA, and alternation parametérfor NaV,Os at the tempera-
ture(s) T as determined by the listed method for the sample with transition tempefBturéhe literature
reference is given in the last column. Method abbreviatignamagnetic susceptibility; Neutrons, neutron
scattering; NMR, nuclear magnetic resonance; ESR, electron spin resor@ncspecific heat; Raman,
Raman light scattering.

sample T (K) J/kg (K) T(K) A/kg (K) é Method Ref.
Powder none 529 350 X 87
Powder 33.9 560 35-700 X 33
Powder 35.3 7 114 Neutrons 36
Aligned powder 10-20 98 2Na NMR 81
Crystals 33 441 2-30 855) X 37
Crystal 35 560 2-34 920) 0.102) ESR, x 76
Crystal 335 560 15-30 10D 0.107 ESR 77
Crystal 34 578 250-650 100 ESR, 79
Crystal 32.7,33.0 1.8-12 810) Cp 40
Crystal 5 882) Raman 27
Crystal 35 10-35 820) ESR 78
Crystal 34 455 15 0.047 Raman 57
Crystal 4.2 94 ESR 88
Crystals 33 7-15 6B) Cp 89
Aligned powder 34.0 11-20 108 5V NMR 22
Powder 34.0 491 4-30 77 X 20

parameters must largely cancel. Thus, not surprisingly, th@MC and TMRG x* («,t) fit function (not otherwise dis-
low-T x3P"(T) is governed by the spin gap and not by  cussed in this papgrwe did not enforce the requiremsit)
or J separately. in Sec. IVE that the transformedy*(5,t) satisfy

The 5(T_) dgta for our _best crystals show very Sharp'ax*(é,t)/a5| s=0=0, and the same fluctuation effects above
nearly vertlcal_mcre_a_ses with decreasingt T,. We cannot T. were found using that fit function as using the present
extract a precise critical expone#tirom our 5(T) data due oo “5ithough these fluctuations were somewhat reduced in
to the large temperature-dependent background abevé 1 anitude compared to the present results. Finally, these
be discussed shortly. Homgever, rough fits beldwby the — g,4,ations are observable directly in the measuréd)
expressions(T) ~(1—T/T.)"” gavep values consistent With  y4ta in Fig. 422) as a rounding of the susceptibility curves
the valuesg=0.25(10) (Ref. 90 from infrared reflectivity — ,pqyeT

. c*

measurements, 0.88) (Ref. 93 from sound velocity mea- From Fig. 44, the fluctuation effects persist up to high
surements anng the chain axis and Q&35Ref. 49 from temperaturesI >50 K, although the fluctuation amplitudes
thermal expansion measurements along that axis. We nolg,rease with increasirg Precursor effects above, have

that these values are a factor of two larger than the value qf,,, reported in x-ray diffuse scattering measurerfeafs
~0.15(Ref. 92 inferred from x-ray diffuse scattering mea- to ~90K, in ultrasonic sound velociy and optical

surements. . absorptioA*?>**measurements up t0 70 K, and in specific
The data in Figs. 44) and 44b) clearly show the exis- o4 measurements*up to ~40-50 K, so it is not surpris-
tence of spin dimerization quctuathns an_d aspln.pseudogaﬂg that spin dimerization parameter fluctuations in Fig.
above T, for_ each _crys;al, respectively, Irrespective of t.he44(a), and a spin pseudogap in Fig.(#®#reflecting fluctua-
crystal quality as judging from the Curie-Weiss impurity tions in the spin gap, are found abovVe
term in the lowT x(T), with magnitudes just abov&, of ' '
about 20 and 40 % of(0) andA(0Q), respectively. This is a .
robust result, which was obtained for each of the nine crys- D. Specific heat of NayOs
tals we measured, which does not depend on the precise In order to correlate the magnetic effects discussed above
value of J [and resultanty"(T,5=0)] or the details of in NaV,Os with thermal effects, we have carried out specific
how J is determined abové., or even on the detailed for- heat vs temperatu@,(T) measurements on the same crystal
mulation of the y* («,t) fit function for the alternating- AL1, and a crystal E097 from the same batch as E097A, for
exchange chain. For example, settidgo be a constant, which y(T) data were presented and modeled above. The
equal to the value at 50 K, yields nearly the safh{d) near results fran 2 K to 50 K for crystals E097 and AL1 are
T, as determined using &dependend. Similarly, deleting  shown in Fig. 4%a). Over this temperature range, tg(T)
the impurity Curie-Weiss term in the fit to the data abdye data for the two crystals agree extremely well, except in the
changes the deriveg, and J(T) or J (50 K) somewhat as range 33.0-34.2 K, i.e., in the vicinity of the transitions as
well as the detailed temperature dependence of theill be discussed shortly. The shapes of the specific heat
pseudogapA(T) above T, but has little influence on the anomalies aT are not mean-field-like specific heat jumps as
magnitude ofA nearT.. Further, in a previous version of the observed in, e.g., conventional superconductors, but instead
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for NaV, Oy crystals E097 and AL1(b) Expanded plots of the data

in the vicinity of the transition temperatures of the two crystals. The
lines connecting the data points for crystal AL1 are guides to the
eye.

S
o

in spite of the fact that the overall height of the anomaly is
much larger than previously reported for any crystal of
_ ] NaV,0Os. Two peaks are also observed for crystal E097, at
R SR 2" vals 33.4 K and 33.8 K, which are more widely separated than for
320 325 33.0 335 340 345 350 crystal AL1. From Fig. 460), the entropy under the anoma-
T (K) ly(ies) for each crystal is about the sartsz=e below. Com-
paring these results with th&(T) andA(T) data in Fig. 44,
FIG. 45. () Specific healC, vs temperaturel for NaV,0s  the larger splitting of theC(T) peak for crystal E097 does
ﬁ;ﬁﬁ;jﬁg;;?:ﬂﬁ:rﬂ%;;ﬂ?;‘gi‘: ﬂgtm 235‘1';:; _'r”emge"r':n' not result in any major difference in the magnetic order pa-
ture derivative ofy T vs T for the same crystal AL1 as i@) and(b) [?amnzittei};np:)?]zztliesssﬁgﬁgi E;gurse:jwfgrCg;St?AT’E?)Ig;OAU%ZnTe
plus data for crystals EO97&rom the same batch as EQ9@nd . . .
E106E. The lines connecting the data points are guides to the eyg_ared to AL1. By using the Flshe_r relat'a?]ﬁ[X(T)T]/&T
~C(T) whereC(T) is the magnetic contribution to the spe-
are \-shaped anomalies. Thus, any attempt to define aific heat, one obtains results which show the same features
(mean-field “specific heat jump aff.” is fraught with am-  nearT. as does the specific heat, as shown in Figic45
biguity. These shapes are retained in plot<CgfT)/T vs T Thus, careful scrutiny of the magnetic properties can reveal
as shown in Fig. 4@&). This A shape has been observed the fine detail observed in the specific heat nEar In par-
previously, and variously attributed to fluctuation effects or aticular, this comparison suggests that both anomalies in the
possible smeared-out first order transition. In view of thespecific heat neail. for each crystal are associated with
coupled structural, charge-ordering and spin dimerizatiorand/or reflected by magnetic effects.
transitions aff . in NaV,Og as discussed in the Introduction,  The splitting of the transition into two apparent transitions
their relative contributions to the specific heat anomalies arghat we report here was previously observed in thermal ex-
not clear, if indeed their contributions can be uniquely dis-pansion, but not seen in their specific heat, measurements of
tinguished. a crystal by Kppenet al*° The detailed origin of the tran-
Expanded plots o€ (T) andCy(T)/T versusT, shown in  sition splitting, and more fundamentally whether the splitting
Figs. 48b) and 4&b), respectively, reveal a sharp high peakis instrinsic to ideal crystallographically ordered N&,
at 33.4 K for crystal AL1, which is slightly split by=0.1 K remain to be clarified. An essential feature that any explana-

dixT)YdT (10~* cm®mol)

N
o
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tion must account for is that the temperature splitting be- nNr———— 7T
tween the two transitions in a crystal varies from crystal to 60 i
crystal. [ NaV205 Crystal E097

Modeling In this section we will only consider the model ~ 50 .
utilized above for analyzing oury(T) data, in which x I
NaV,Os consists, effectively, of isolate8=1/2 uniform or g 40y ]
(below T.) alternating-exchange Heisenberg chains, where 3 30t .
the (average exchange constant shows, at most, only a o I
smooth and relatively small change beldw. For reasons 20 i i
which will become clear below, unfortunately we cannot use 10 y
our specific heat data to extract detailed information about i ==~ Background Specific Heat |
the magnetic subsystem in Na®s. However, other types of 00 2'0' ' '4'0' ' I6|0I ' I8|0I 100

important information about the thermodynamics will be de-
rived using various of the theoretical results presented and

discussed previously in this paper. . FIG. 47. Measured specific he@}, vs temperaturd up to 100
There have been two repo”r‘ig deriving the spin gap g for NaV,0; crystal E097 O). The solid curve is the background
from C(T) data atT=<15 K. We first discuss the limits of specific heat, which is the specific heat that would have been ob-
this type of analysis. Using(0)/kg=600 K, §(0)=0.040  served had no transitions or order parameter fluctuations occurred,

andA/kg=100 K (see Table V), Egs.(29b and(29¢) pre-  determined as described in the text.
dict that the magnetic specific he@{(T) in the dimerized
phase at low temperaturds<(A/kg,T,) is

T (K)

A potentially definitive and effective way to proceed from
this point would be tayuantitativelydetermine the magnetic
contributionC(T) to the measured specific he@y(T) from

' x(T) at and neail ., using a relationship betweegy(T) and
(799  C(T) such as the Fisher relation cited above, and then com-
pare this result withC,(T). From a comparison of Figs.
with T in units of K. Equation(79) predicts thatC(15 K) 45(b) and 45c), it seems clear that such a relatipn mgst exist,
=0.026 J/mol K, which is about 40 times smaller than theal least for temperatures ne@ig, but the relationship be-
observedC(15 K)~1 J/mol K (which must therefore be tweenx(T) andC(T) near spin dimerization transitions has
due to the lattice contributiorand hence is unresolvable at Not yet been worked out theoretically.
such low temperatures. Within this model, we must therefore In the absence of such a formulation, we proceed to esti-
conclude that the previous estimates of the spin gap basedate thechangein the specific heat associated with the tran-
upon modeling the low temperature specific heat were mosgition(s). In order to do this modeling, we must fit(T) to
likely artifacts of modeling the lattice specific heat. This canhigher temperatures than we have been discussing so far. The
happen if one does not utilize the fact that the prefactor taC(T) data from 2 to 100 K for NayOs crystal E097 are
the activated exponential term of the magnetic contributiorshown as the open circles in Fig. 47. As noted above, except
C(T) is not an independently adjustable parameter, but isn the immediate vicinity ofT, the C,(T) data for crystal
rather determined by the spin gap itself as we have previal1 are nearly identical with those for crystal E097 up to at
ously demonstrated and emphasized in Sec. Il C 3. _least 50 K, so it will suffice to model the data for crystal
A related question is whether the entropy associated witlgg7, The four modeling steps and the assumptions we em-
the_tran5|t|01(ls) atT. can _bg assomate_d solely_ with the mag- ployed are as follows.
netic subsystem. The minimum possible estimate of the en- (1) we assume that critical and other order parameter
tropy' of Fhe transition IS obtameq from t.r@P(T)/ T VST fyctuations associated with the transifignat T, make a
data in Fig. 4€0) _by drawing a horlzontal line from the data negligible contribution toC,(T) over some specified high
at theCy(T)/T minimum at~35.0 K, just aboveT,, to the tem < P . i
perature T>T.) range. By subtracting the known mag

data that the line intersects with belowy at ~30.6 K, and . SN . : .
th tina th betw the Ii d th K netlc-contrlbgtlonC(T.) due fco isolated Helsgnbgrg chains
en compliting the area between the ne an e (pea [obtalned using our fit function fo€(kgT/J)] in this tem-

above the line. In this way we obtain a value of 0.397 J/mo . : o
K for crystal E097 and 0.375 J/mol K for crystal ALL. On the p(laraturg range, we obtain the background Iattlc;e contribution
other hand, the maximum magnetic entropy of Bre1/2 C®¥{(T) in the hlgh temp<_ar_ature region. Also, since we have
uniform chain subsystem at,, usingJ/kg=600 K andT, shown_ thaFC(T) is nfagllg|ble forT= 15 K, t'he measured
=34 K, is S(T)~(2R/3)(kgT./J)=0.31 J/mol K. Thus, Cp(T) inthisTrange is assumed to be identical@'(T) at

the specific heat anomaly aff, cannot arise solely from the these temperatureve again neglect the possible but un-
magnetic subsystem, since the minimum possible entropy dfnown specific heats associated with possible order param-
the transition is significantly greater than the maximum poseter fluctuations in this rangeThus we obtain background
sible magnetic entropy af.. At the least, the remaining lattice specific heat€'®(T) in high and low temperature
entropy must therefore be due to the crystallographic and/aranges which are assumed unaffected by the tran&jiand
charge-ordering transitions which occur at or close to theassociated order parameter fluctuations.

spin dimerization transition temperature as discussed in the (2) We interpolate between th@2{(T) determined in step
Introduction. 1 in the low- and high-temperature ranges to obtain, in the

=10 100, % LTI 2l oor
(M=L05| 7 1002|100 |€
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Magnetic Specific Heat Calculated NN
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T (K) FIG. 49. Background lattice specific he@f! vs temperaturd

. o for NaV,0Os crystal E097 (). The data shown, in the temperature
FIG. 48. Magnetic specific heélvs ternpergturé’ for NaV,0s ranges 2-15 K and 60-101 K, were fitted by a polynomial; this
crystal E097, calculated for uniform chains with exchange constant . . . . .
' . - interpolation fit is shown as the solid curve. This background, in-

J(T) determined from the analysis of the susceptibility data forcludin the curve in the interpolated temperature region, is the lat-
crystal E097A. The values are those which are assumed to have 9 P P gton,

tice specific heat assumed to have been observed had no transitions

been observed had no transitions or associated order parameter fluc- . -
. of associated order parameter fluctuations occurred.
tuations occurred.

temperature rang€ox T Whereast(T)EC'at(T)xT?’. The
C{(T)=C(T)—C(T) in the high temperaturé50—100 K
region is shown in Fig. 49, together With'a‘(T)ECp(T) in
the low temperatur¢2—15 K) region.

Step 2 In this step we must interpolat@'®(T) between

intermediate temperature range, whaf{(T) would have
been in the absence of the transiti®rand associated order
parameter fluctuations.

(3) We add theC(T) for isolated chains, used in step 1,
back to theC™(T) derived in step 2 over the full temperature . o, ang high-temperature regions, i.e., in a broad tem-
range of the measurements. This is thg total background sp erature range spanning the transition region. The best way
cific heat that would have occurred in the absence of th 0 do this would be to determir@@{(T) directly from C(T)
transition{s) and associated order parameter ﬂucwaﬁonsmeasurements on a suitably chosen reference comgound but
Then we subtract the total calculatgd b.ackground SpeCifi(§uch measurements have not yet been done. At first sigHt, a
heat from the measuredy(T) data. This differenc&C(T) v sically realistic possibility might be to interpolate the low

should hopefully be a reasonable estimate of the change 0 high temperatur€(T) data using the Debye specific

the specific hea'g asso_ciated_ with the t_ransition and order P3eat function; however, this method is questionable because
rame_ter _fluctuat|ons, including all lattice, charge, apd SPMNpe Debye temperatur®p in real materials can be rather
contributions.AC(T) must go to zero, by co'nstrucnon, at strongly temperature dependent within the temperature range
temperatures above the lower end of the high temperaturge yrarest here. The Debye function for the molar lattice

region fitted in step 2. s eby ‘e (i 5
(4) Finally we integrateA C/T with T up to and beyond specific heat at constant volun@2*>{T) is given by

to obtain the change in entropyS(T) associated with the
transition and order parameter fluctuation$s(T) must be-
come constant, by construction, at temperatures above the CDebye(T)=9rR(®—>
lower end of the high temperature region fitted in step 2. D
In the following we will present and discuss the results in
each of the four steps of our modeling program describedvherer is the number of atoms per formula unit= 8 here
above. and R is the molar gas constant. We attempted to fit our
Step 1 Here we first use ou€(T) fit function for the  C'3(T) data for the temperature ranges 2—15 K and 40—100
numericalC(T) data® which was given in Eq(54), to ex- K to 80—100 K by Eq.(80). The fits parametrized the data
tract C'(T) in the high-temperature region aboVe. For very poorly. We obtained a more reasonable fit by allowing
consistency with our analysis of the susceptibility in Sec.to be a fitting parameter, yielding a fitted value 4, but the
VIII C, we use the temperature-dependd(T) derived in  data were still poorly fitted, due to too much curvature in the
that section for crystal EO974#see Fig. 4Bwhen computing Debye function in the high temperature region. Therefore,
C(T). The backgroundC(T) thus estimated for crystal we were led to interpolating between the low- and high-
E097, i.e., the values which would have been observed if ntemperature regions using a simple polynomial interpolation
transitior(s) at T, or associated order parameter fluctuationsfunction.
had occurred, is shown in Fig. 48. Comparison of these data To obtain the background lattice specific heat interpola-
with the measure€,(T) data in Figs. 45 and 47 shows that tion function, we fitted the combine@d?{(T) data(a total of
this C(T) is a small, but non-negligiblex1%), fraction of 141 data poinfsin the low and high temperature ranges
Cy(T) aboveT.. On the other handC(T) is much larger 2-15 K and 60-101 K, respectively, by polynomials of the
than the observe@(T) at low temperatures, because in this form

3J‘®D/T x4eX

o w dax, (80)
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pmax L L L B T
Clat(-l-):nZ3 CnTn. (81) 16 NaV205 ; (a) i
. Crystal EQ97 ¢
- - . < 12 A T
The minimum summation index=3 is set by the expected S 2
Debye low-temperatur@® behavior of the lattice specific £ i
heat. The maximum value™® was varied to see how the fit 3 8 i i
parameters and variance changed. In addition, for checking 2 I
the final fits we fitted theC'®(T) data in the 2—15 K lowF 4 / .
range together witlC'?(T) data in a high-temperature range - v \
varying from 40-101 K to 90-101 K. We found that the O | o222 oLl LTI
most stable fits were fan™®=7 and 8. For both values, the ' ' ' ' '
fit did not visibly change when the lower limit of the upper 0 10 20 30 40 50 60
temperature range of the fitted data was varied from 60 to 70 T (K)
K. We chose to use the fit fai™®=7 because in this case 30—
the fit was also stable for lower limits of 50 and 80 K. This o5 AS(60 K) = 2.28 Jimol K (b) ]
stability allows one to be confident that the interpolation of ~l Caees
the fit between the fitted low- and high-temperature rangesis _ 2 gl 7 ) .
an accurate representation of the background lattice specific < - 1
heat in the interpolated intermediate temperature range. The g 1.5r T
fit for the temperature ranges 2-15 K and 60-101 K is 3 | 0'_ ]
shown as the solid curve in Fig. 49. The absolute rms devia- ¢y | ]
tion of this fit from the fitted data is quite smaltr,ms < 0.5+ 1
=0.046 J/mol K. The curve over the full temperature range I - ]
2-101 K represents the background lattice specific heat 0.0 s it e ]
C'¥{(T) expected in the absence of any transitions or order I S P U P PP R
parameter fluctuations. 0 10 20 30 40 50 60
Step 3 Adding the magnetic background specific heat T (K)
contribution C(T) obtained in step 1 to the lattice back-
ground specific heat contributid®'®(T) obtained in step 2 FIG. 50. Temperaturd dependence of the change in the spe-

gives the total background specific heat, which is plotted a§ific heatAC (a) and in the entrop S (b) in NaV,Os crystal E097
the solid curve in Fig. 47. We reiterate that this backgrouncflue to the transitials) at T;~34 K as well as to crystallographic,
is interpreted as the specific heat that would have been Otgnggnetlc, and c_h_arge order parameter fluctuatlor_ls associated with
served had the transitiés) at T, and associated order param- this (these transitior(s). The occurrances of negativeC andAS _
eter fluctuations not occurred. The different€ between ~Y2lues at low temperatures are real effects due to loss of magnetic
the measure@,(T) and the total background specific heat is specific heat and magnetic entropy, respectively, at these tempera-
P tures due to the opening of the spin gapTat By construction,
plott_ed Versus tgmperature n Flg.(ép As would have been AC(T>60 K)=0 andAS(T>60 K)=const. The actual order pa-
qualitatively ant|C|patedAQ IS neggtlve below about 16 K rameter fluctuation effects likely extend to temperatures higher than
due to the loss of magnetic specific heat at low temperatureg,
arising from the opening of the spin gapTat. This negative
AC does not arise from a problem in our polynomial inter-
polationC'3(T) fit function or from ourC(T) function; these ~and consequentl S(T>60 K)=const. This requirement is
functions are both positive for all>0. Since the magnetic not desirable, but we had to enforce it to ensure that the
background contribution is proportional #oand the lattice AC(T) and AS(T) derived at lower temperatures were ac-
background contributiofwhich is assumed not to change curate. Since the effects of the order parameter fluctuations
below 15 K due to the occurrence of the transit®@his are likely to continue to be present at temperatures higher
proportional toT? at low T, opening a spin gap &, must  than 60 K, theAC(T) and AS(T) at temperatures at and
necessarily lead to a negativeC at sufficiently low tem- near 60 K in Fig. 50 are lower limits.
peratures since the magnetic contribution then becomes ex- The net change in the entropy at 60 K in Fig(i50due to
ponentially small there. the occurrence of the transitie at T,~34 K and associ-
Step 4.Finally, we can compute the chandeS in the  ated order parameter fluctuations above and belQwis
total entropy of the system versus temperature due to thAS(60 K)=2.28 J/mol K. This is far larger than the maxi-
transitior(s) and associated order parameter fluctuations bynum possible changASmg§=0.556 J/mol K in the mag-
integrating AC(T) from step 3 according toAS(T) netic entropy at this temperature obtained from Fig. 48,
=[o[AC(T)/T]dT. The result is shown in Fig. §8). The  where this value is just the maximum possible entropy of the
entropy change is negative below about 22 K, due to the lossiagnetic subsystem at this temperature, confirming our
of magnetic entropy at low temperatures associated with thqualitative conclusion above based on very rough arguments.
loss of magnetic specific heat as just discussed. From corin particular, our quantitative analysis indicates that at least
servation of magnetic entropy, this lost entropy must reap76% of the entropy change at 60 K must arise from the
pear at higher temperatures. lattice and charge degrees of freedom, and only a minor frac-
By construction, step 2 requires thAIC(T>60 K)=0  tion (<24%) from the magnetic degrees of freedom. Simi-
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larly, at T,=33.7 K, we obtain AS=1.38J/molK and experimentally determined spin susceptibilig?"(T) data

ASpag=0.311J/mol K, yielding ASTAJAS<23% atT.. above the transition temperature, the alternation paranseter
As a closing remark for this section, it is clear from Fig. is uniquely determined by our fit function at each tempera-

50 and the discussion in the above two paragraphsAi@at ture below the transition temperature from the valug 3f"

andAS do not saturate to their respective high temperatureat that temperature. One can then find the spin 44p)

limiting values until a temperature of at least 60 K is ysing an independently knowh* ().

reached, which is.almost twiCE,. The present analysis of Our QMC and TMRG data and fit fox* (a,t) are in

the thermal behavior of Na)Ds thus lends strong support 1o g404 agreement with previous calculations based on exact

our independent analysis and interpretation of our magnet'i‘]iagonalization of the nearest neighbor Heisenberg Hamil-

susceptibility data for this compound in Sec. VIl C. tonian for short chains withk=0.2. 0.4. 0.6. 0.7. and 0.8
extrapolated to the thermodynamic limit, by Barnes and
IX. SUMMARY AND CONCLUDING DISCUSSION Riera’ However, the numerical and analytical theoretical

predictions of Bulaevskii,which have been used extensively

We have shown that the high-accuracy numerical Bethen the past by experimentalists to model the{iT) data for
ansatz calculations of the magnetic susceptibifity(t) for  weakly dimerized chain compounds, are found to be in poor
the S=1/2 uniform Heisenberg chain by Kiwper and  agreement with our results and should be abandoned for such
Johnstof are in excellent agreement with the theory of yse in favor of our fit function. Similarly, the previously used
LukyanoV’ over 18 decades of temperature at low temperasi functior®® for the Bonner-Fisher calculation af* (t) for
tures. An independent high precision empirical fit to thesehe uniform chain &=1) should be replaced by one of our
data was obtained over 25 decades of temperature which Wg;o fit functions for the most accurate calculation to date
found useful to determine the accuracy of our TMR&(t) x* (t) for the uniform chain.
calculations. The magnetic specific heat déta the uniform An important theoretical issue in the study of the alternat-
chain at very low temperatures was also compared with thﬁ1g exchange chain is how the spin ggb( 5) evolves as the
theoretical predictions of Lukyanov, and extremely gooditorm chain limit is approacheds(-0, a—1). We for-

agreement was found over many decades in temperature. W& ated a fit function for the temperature dependence of our

formulated an empirical fit function for these data which iSTMRG susceptibilityx* (a,t) calculations at low tempera-

highly accurate over a temperature range spanning 25 orde{areS which was used to extract the dependeﬁth(aé) in
of magnitude; the infinite temperature entropy calculated usy '

. g S . his regime. We find that th mptotic critical regime is not
ing this fit function is within 8 parts in f0of the exact value. s regime. We find that the asymptotic critical regime is no

, . entered until, at leasty=<0.005 (@=0.99). We compared
We used poth of the above fit funcyons to mod_el our respecg, spin gap data with many literature data. We formulated a
tive experimental data for Ng@s in later sections of the

| - fit function for our spin gap data together with those of Bar-
Paper. We_ expect that they will be useful to ather theor'St%es, Riera, and Tennanwhich quite accurately covers the
and experimentalists as well.

) . . . entire range & 6<1.

TMVI\?/E ha;/e Ic?med fogt e>t<tefnsn$ QMCSi”I};la“?.?S _and In the remainder of this paper, we showed how the above
caicuiations Oly (a,1) for the Spin antiter™ = eoretical results could be used to obtain detailed informa-

romagnetic alternating-exchange Heisenberg chain for "Sion about real systems. As a specific illustration, we carried

duced temperaturds=kgT/J; from 0.002 to 10 and alterna- out a detailed analysis of our experimentdlT) and specific

:'r?n lpararrletersTluEDsz/Jth frq[m Ocit5 to % where]hl (J2) is heatCy(T) data for Na\,Os crystals. This compound shows
€ largerismaile) ol the two atternaling excnange con- o ., qqjiion to a spin dimerized state below the transition

stants. An accurate global two-dimensionalt) fit to these temperatureT .~34 K. We used one of our twa* (t) fit
combined data was obtained, constrained by the fitting Punctions for Cthe uniform Heisenberg chain to model the

rameters for the accurately knowd (t) for the o parameter .

end points, the dimera«=0) and the uniform chain ¢ -X(T) a.boveTC,.Wh_ere we found that the expenmgnxz(l‘l’)
Lo ) ; ._is not in quantitative agreement with the prediction for the

=1), resulting in an accura_te fit function over _the e‘r!t'reuniform Heisenberg chain. A model incorporating a mean-

range O<a=<1 of the alternation parameter. Our fit function field ferromagnetic interchain coupling between quan®m

anorpor?tes the first fogr fcerms of Dtp\;h.eﬁaﬁf hlgh'=1/2 Heisenberg chains fits the experimental data very well
emperature Sseries expansion in powWers oI Which allows iy reasonable parameters. It remains to be seen whether

accu_rate extrapolation to arbitrarily high tgmp_eratl_Jres. Thiﬁhe inelastic neutron scattering measurements of the magnon
function should prove gseful for many applications InCIUOIIngdispersion relatiof’§ are consistent with our derived intra-
the modeling of experimentgl(T) data as we have shown. chain and interchain exchange constants.

Our x* (a,1) fit function for the alternating chain can be In an alternate description, we modeled the deviation in
easily treﬂsfoinecdas we have donento an equivalent fit the measured(T) of NaV2057above 60 K>T, from the
functiony* (4,t) in the two variablesi=(J;—J,)/(2J) and  Hejsenberg chain modénith fixed exchange constad) as
t=kgT/J, where the average exchange constani=gJ; due to a temperature-dependdniWe found that this) de-
+J,)/2. This is a more appropriate function for analyzing creases with increasing up to 300 K in a manner very
experimentaly(T) data forS=1/2 Heisenberg chain com- similar to J.z(T) predicted by Sandvik, Singh, and
pounds showing dimerization transitiorisuch as a spin- Campbeft* and Kihne and Lav®® for the spin-Peierls chain.
Peierls transition which result in an alternating-exchange Our J(T) cannot however be compared directly with their
chain with a small value ob at low temperatures. Oncké  J.4(T) because the two quantities are defined differently.
has been determined by fitting our function #®#0 to the  They found that by defining an appropriate effective ex-
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change constantJs, their resulting susceptibility were made. Similar to that case, in the present system one
x(kgT/Jes) is universal at the higher temperatures for vari-may think of the pseudogap as the rms fluctuation in the spin
ous Einstein phonon frequencies and spin-phonon couplingap aboveT., with an associated reduction in the magnon
constants. This function agrees well with tékgT/J) for density of states at low energy. In this interpretation, the
the S=1/2 AF uniform Heisenberg chain at these tempera{seudogap in Na)Os should be observable in high resolu-
tures. As we discussed, thegéT) calculations are not ap- tion quasielastic neutron scattering and other spectroscopic
plicable to Na\Os, possibly because the calculations do notmeasurements probing the low energy magnetic excitations.
incorporate realistic phonon spectra. Finally, we carried out an extensive modeling study of our

Below T., we used the)(T) extrapolated from above 60 Sspecific heat data for Na\Ds crystals, using the same model
K and our globaly*(a,t) fit function for the alternating that we used to analyze our susceptibility data. The most
Heisenberg chain to determine the temperature-dependent dlportant part of this study is that we have been able to
ternation parametes(T), and then the spin gap(T) from detgrmine a I?mit on the relative contributions of the mag-
8(T), directly from they(T) data. We find that the (0)/kg netic and Iatt.|ce/charge q§grees of freedom to the entropy
values for nine single crystals of NaWs are in the range associated with the _transmCB) atT.. We find j[hat at least
103(2) K. This result is in agreement, within the errors, with 83% of the change in the entropy Bt must arise from the
many previous analyses of data from various types of medattice and/or charge degrees of freedom, to which the spin
surements for this compound by other groups. However, oufieégrees of freedom must of course be coupled, and that the
values of 5(0)=0.034(6) for various crystals are signifi- SPin _degrees of freedom themselves contr_|buj[e less than 17%
cantly smaller than previous estimates. We note that the tw8f this entropy change. Our results also indicate that order
estimates with5(0)~0.1 in Table VIl were obtained using Parameter fluctuation effects are |mpor§ant in the speplf!c
Bulaevskii's theory for the alternating-exchange chain, Neat up to at least 60 K, strongly confirming the above simi-
which we have shown is not accurate at low temperatures iftf @nd independent conclusion based on our modeling of our
the relevant alternation parameter range. magnetic susceptibility data for the same crystals.

The dispersion of two one-magnon branches perpendicu-
lar to the chains observed in the neutron scattering measure-
ments has been recently explained quantitatively by Gros
and Valenti assuming that a zig-zag charge ordering transi- We thank E. Braher and C. Lin for help with the sample
tion occurs afl..** They also predict tha#(0)~0.034. This  preparation, and C. Song for assistance with Laue x-ray dif-
is within our range of5(0) values in spite of the fact that we fraction measurements. We are grateful to S. Eggert and T.
assumed thad(T) is either constant or increases slightly Barnes for providing the numericg* (t) calculation results
with decreasing below T, contrary to their prediction that for the uniform chain in Ref. 3 and the alternating chain in
J decreases beloW;. Gros and Valenti made no predictions Ref. 9, respectively, and to D. Poilblanc and G. S. Uhrig for
for x(T), &(T), A(T) or C(T), so comparisons with our sending us theid* (8) data in Refs. 58 and 62, respectively.
results for these quantities are not possible. We note thai/e are grateful to M. Greven and X. Zotos for helpful dis-
Kitimper, Raupach, and Saffeld® obtained a good fit to  cussions, and to A. A. Zvyagin for helpful correspondence.
the x(T) data belowT, for the spin-Peierls compound One of us(D.C.J) thanks the Max-Planck-Institut fuFest-
CuGeQ within the context of a spin-Peierls model contain- korperforschung, Stuttgart, where this work was started, for
ing frustrating second-neighbor interactions and static spinkind hospitality. Ames Laboratory is operated for the U.S.
phonon coupling. Department of Energy by lowa State University under Con-

We discovered thak (T) [and5(T)] of NaV,Os does not  tract No. W-7405-Eng-82. The work at Ames was supported
go to zero afl, indicating the existence of a spin pseudogapby the Director for Energy Research, Office of Basic Energy
aboveT_ with a large magnitude just abovig of ~40% of  Sciences. The QMC program was written Ga+ using a
A(0); the pseudogap is present up to at least 50 K with aparallelizing Monte Carlo library developed by one of the
magnitude decreasing with increasifigaboveT,. To our  authors’® The QMC simulations by M.T. were performed on
knowledge, this pseudogap has not been reported previouslihe Hitachi SR2201 massively parallel computer of the Uni-
and there are as yet no theoretical predictions for the magnitersity of Tokyo and on the IBM SP-2 of the Competence
tude or temperature dependence of this pseudogap. THhgenter for Computational Chemistry of ETH @ah. X.W.
pseudogap is strongly reminiscent of the spin pseudogap decknowledges Swiss National Funding Grant No. 20-49486-
rived by one of us using(T) measurements above the tran- 96. A.K. acknowledges financial support by tBeutsche
sition temperature of inorganic quasi-one-dimensionaForschungsgemeinschafhder Grant No. Kl 645/3 and sup-
charge density wave compountisas predicted theoretically port by the research program of the Sonderforschungsbereich
by Lee, Rice, and Andersdhlong before those observations 341, Kdn-Aachen-Jiich.
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